WO2023241095A1 - 双层车辆的空调系统及双层车辆 - Google Patents

双层车辆的空调系统及双层车辆 Download PDF

Info

Publication number
WO2023241095A1
WO2023241095A1 PCT/CN2023/078409 CN2023078409W WO2023241095A1 WO 2023241095 A1 WO2023241095 A1 WO 2023241095A1 CN 2023078409 W CN2023078409 W CN 2023078409W WO 2023241095 A1 WO2023241095 A1 WO 2023241095A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
arc
double
air duct
tube wall
Prior art date
Application number
PCT/CN2023/078409
Other languages
English (en)
French (fr)
Inventor
黄玉婷
纪绪北
潘亚南
赵世宜
林文
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2023241095A1 publication Critical patent/WO2023241095A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices

Definitions

  • the present disclosure belongs to the technical field of double-decker vehicles, and in particular relates to an air conditioning system of a double-decker vehicle and a double-decker vehicle.
  • air conditioning systems are often installed in the vehicles, and air is supplied to the upper and lower layers of the vehicles through the air conditioning systems. Due to the relatively complex structure of a double-layer vehicle, the related technology cannot meet the air supply needs of different vehicle areas. In the related technology, when the air conditioning system supplies air to the upper floor of the vehicle, when the upper floor has a large glass area, the air supply effect is poor and cannot meet the air supply demand for the upper floor.
  • An object of the present disclosure is to provide an air conditioning system for a double-decker vehicle and a new technical solution for the double-decker vehicle.
  • an air conditioning system for a double-decker vehicle includes:
  • An air-conditioning box the air-conditioning box is used to be installed on a double-layer vehicle body, and the air-conditioning box has two upper air supply outlets;
  • the upper main air duct is arranged on the top of the upper layer of the double-layer vehicle body.
  • the upper main air duct has two upper air inlets.
  • the upper air supply outlet and the upper air inlet are in the horizontal direction. staggered upward;
  • each of the upper layer transition air ducts is respectively connected to one of the upper layer air supply openings and one of the upper layer air inlets;
  • the inner wall of the upper transition air duct smoothly transitions to the inner wall of the upper air supply port, and the inner wall of the upper transition air duct transitions smoothly to the inner wall of the upper air inlet.
  • the cross-section of the upper transition air duct is rectangular, and the minimum curvature radius of the four corners of the rectangle is 25 mm;
  • the upper transition air duct includes a first pipe section, a second pipe section and a third pipe section that are connected in sequence, the first pipe section is connected with the upper air supply port, and the third pipe section is connected with the upper air inlet;
  • the first tube section has a first arc-shaped tube wall and a second arc-shaped tube wall.
  • the first arc-shaped tube wall is opposite to the second arc-shaped tube wall.
  • the minimum diameter of the first arc-shaped tube wall is The radius of curvature is 6 mm, the minimum radius of curvature of the second arc-shaped tube wall is 382 mm, and the bending directions of the first arc-shaped tube wall and the second arc-shaped tube wall face the same side;
  • the second pipe section has a third pipe wall and a fourth pipe wall.
  • the third pipe wall is opposite to the fourth pipe wall.
  • the third pipe wall includes a third pipe located on one side of the first pipe section.
  • the arc-shaped tube wall and the first straight tube wall located on one side of the third tube section.
  • the minimum radius of curvature of the third arc-shaped tube wall is 78mm.
  • the third arc-shaped tube wall moves away from the fourth arc.
  • the direction of the arc-shaped tube wall is offset, the maximum angular offset of the third arc-shaped tube wall is 11°, and the size of the third arc-shaped tube wall in the direction of angular offset is 50mm;
  • the fourth tube wall It includes a fourth arc-shaped pipe wall located on one side of the third pipe section and a second straight pipe wall located on one side of the first pipe section.
  • the minimum radius of curvature of the fourth arc-shaped pipe wall is 746mm.
  • the four arc-shaped tube walls are offset in a direction away from the third arc-shaped tube wall, and the maximum angular offset of the fourth arc-shaped tube wall is 4°;
  • the third pipe section has a fifth arc-shaped pipe wall and a sixth arc-shaped pipe wall.
  • the minimum radius of curvature of the fifth arc-shaped pipe wall is 170mm, and the minimum radius of curvature of the sixth arc-shaped pipe wall is 73mm.
  • the bending directions of the fifth arc-shaped tube wall and the sixth arc-shaped tube wall face the same side.
  • the two upper transition air ducts are arranged symmetrically;
  • the concave surfaces of the first arc-shaped tube wall and the second arc-shaped tube wall face the area between the two upper transition air ducts, and the concave surface of the third arc-shaped tube wall faces the area between the two upper transition air ducts.
  • the fourth arc-shaped pipe wall extends from the direction along the third pipe section side to the first pipe section side to the two upper.
  • the outer side of the layer transition air duct is offset, the fifth arc-shaped tube wall and the sixth arc-shaped tube wall are bent toward the inside of the double-layer vehicle body, the fifth arc-shaped tube wall and the sixth arc-shaped tube wall
  • the concave side of the tube wall faces the interior of the double-deck vehicle body.
  • connection between the first pipe section and the upper air supply port has a first cross-sectional area
  • connection between the second pipe section and the first pipe section has a second cross-sectional area
  • the third pipe section has a second cross-sectional area
  • the connection point between the second pipe section and the upper air inlet has a third cross-sectional area
  • connection between the third pipe section and the upper air inlet has a fourth cross-sectional area
  • the upper main air duct corresponds to the upper seat distribution of the double-layer vehicle body.
  • the upper main air duct includes two upper side air ducts corresponding to the seats on both sides of the upper layer. Each upper side air duct is connected to one of the upper layers.
  • the transitional air ducts are connected, and the two upper-level side air ducts are equipped with first upper-level air outlets corresponding to the seats on both sides of the upper level;
  • the two upper-layer side air ducts include a first upper-layer side air duct and a second upper-layer side air duct.
  • the first upper-layer side air duct is located on the side of the double-layer vehicle body staircase.
  • the first upper air outlet is staggered with the area where the double-layer vehicle body staircase is located.
  • a second upper air outlet is provided between adjacent first upper air outlets.
  • the upper main air duct also includes an upper front air duct corresponding to the front seats of the upper level.
  • the upper front air duct is connected to the two upper side air ducts.
  • the upper front air duct is an annular air duct.
  • the annular air duct is provided with an upper front air outlet, and the upper front air outlet is a first adjustable air outlet.
  • the distance between the first upper air outlet and the passenger's facial area on the corresponding seat is 180mm-250mm.
  • the air conditioning system also includes a cab air duct and an evaporator;
  • the evaporator is connected to the air conditioning box, and the evaporator is provided with a cab return air outlet facing the cab.
  • the evaporator is connected to the cab air duct, and the cab air duct extends to the top of the cab.
  • the channel is equipped with a second adjustable air outlet.
  • the air conditioning system also includes two lower transition air ducts and two lower main air ducts,
  • the air-conditioning box has two lower air supply outlets, and the two lower main air ducts are respectively connected to one lower air supply outlet through one of the lower transition air ducts.
  • the lower main air duct is provided with a first air outlet corresponding to the lower seat. lower air outlet;
  • a second lower air outlet is provided corresponding to the door.
  • the second lower air outlet includes one to three rows of strip air outlets.
  • the air conditioning system further includes an upper return air duct, which is connected to the air conditioning box.
  • the upper return air duct has an upper return air outlet, and the upper return air outlet is located at the rear of the upper layer of the double-layer vehicle body. Side bottom area.
  • the air conditioning system further includes a lower return air duct, the lower return air duct is connected with the upper return air duct, the lower return air duct has a lower return air outlet, and the lower return air outlet is located on the lower layer of the double-layer vehicle body.
  • the lower return air outlet is provided with an air outlet switch device.
  • a double-decker vehicle includes a double-decker vehicle body, and the double-decker vehicle main body is provided with the air conditioning system of the double-decker vehicle as described in the first aspect.
  • Each upper transition air duct of the present disclosure is connected to an upper air supply port and an upper air inlet respectively; the inner wall of the upper transition air duct smoothly transitions from the inner wall of the upper air supply port, and the inner wall of the upper transition air duct smoothly transitions from the inner wall of the upper air inlet. Transition and smooth transition can avoid the problems of pressure loss and uneven wind speed caused by the air supply from the air-conditioning box into the upper main air duct, reduce the resistance caused by the upper transition air duct to the air-conditioning box supplying air to the upper main air duct, and increase The air supply volume is increased, the air supply efficiency of the air conditioning system is improved, the wind speed sent into the car through the upper main air duct is uniform, and the noise is reduced.
  • Figure 1 is one of the structural schematic diagrams of an air conditioning system according to an embodiment of the present disclosure.
  • Figure 2 is a second structural schematic diagram of an air conditioning system according to an embodiment of the present disclosure.
  • Figure 3 is a schematic bottom view of the upper main air duct of the air conditioning system according to an embodiment of the present disclosure.
  • Figure 4 is a schematic side view of an air conditioning system according to an embodiment of the present disclosure.
  • FIG. 5 is a partial enlarged view of FIG. 4 .
  • Figure 6 is a schematic bottom view of the lower main air duct of the air conditioning system according to an embodiment of the present disclosure.
  • Figure 7 is a schematic structural diagram of a double-decker vehicle according to an embodiment of the present disclosure.
  • Air conditioning box 10. Skylight viewing glass; 20. Skylight side viewing glass; 30. Rear viewing glass; 5. Condensing fan area; 2. Main air duct on the lower floor; 21. Transitional air duct on the lower floor; 23. Stair area; 31. Upper transition air duct; 311. First pipe section; 312. Second pipe section; 313. Third pipe section; 3111. The first arc-shaped tube wall; 3112. The second arc-shaped tube wall; 3121. The third arc-shaped tube wall; 3122. The fourth arc-shaped tube wall; 3123. The first straight tube wall; 3124. The second straight tube Wall; 3131, fifth arc-shaped tube wall; 3132, sixth arc-shaped tube wall; 32.
  • any specific values are to be construed as illustrative only and not as limiting. Accordingly, other examples of the exemplary embodiments may have different values.
  • an air conditioning system for a double-decker vehicle is provided. As shown in Figures 1-7, the air-conditioning system for a double-decker vehicle includes:
  • Air-conditioning box 1 The air-conditioning box 1 is used to be installed on a double-layer vehicle body.
  • the air-conditioning box 1 has two upper air supply ports;
  • the upper main air duct 32 is arranged on the top of the upper layer of the double-layer vehicle body.
  • the upper main air duct 32 has two upper air inlets.
  • the upper air supply port and the upper air inlet are staggered horizontally;
  • each of the upper layer transition air ducts 31 is respectively connected with one of the upper layer air supply openings and one of the upper layer air inlets;
  • the inner wall of the upper transition air duct 31 smoothly transitions to the inner wall of the upper air supply port, and the inner wall of the upper transition air duct 31 smoothly transitions to the inner wall of the upper air inlet.
  • the upper air supply outlet is the outlet of the duct that supplies air to the upper transition air duct 31 of the air-conditioning box 1.
  • the inner wall of the upper air supply outlet refers to the inner wall of the duct.
  • the inner wall of the upper air inlet is the inner wall of the upper main air duct 32 .
  • the smooth transition smoothes the inner surface of the pipe connection location and streamlines the inner surface of the pipe.
  • each upper-layer transition air duct 31 is connected to an upper-layer air supply port and an upper-layer air inlet respectively.
  • the smooth transition between the inner wall of the upper transition air duct 31 and the inner wall of the upper air supply port can avoid energy loss caused by the upper transition air duct 31 forming an intracavity vortex on the wind when the air conditioning box 1 supplies air to the upper transition air duct 31 .
  • the smooth transition between the inner wall of the upper transition air duct 31 and the inner wall of the upper air inlet can avoid energy loss caused by the formation of intracavity vortices on the wind when the wind in the upper transition air duct 31 enters the upper main air duct 32 . It is beneficial to increase the wind speed of the air outlet of the upper main air duct 32.
  • Smooth transition can avoid the problems of pressure loss and uneven wind speed caused by the air supply from the air-conditioning box 1 entering the upper main air duct 32, and reduce the impact of the upper transition air duct 31 on the upper main air duct from the air-conditioning box 1.
  • the resistance formed by the air supply 32 increases the air supply volume, improves the air supply efficiency of the air conditioning system, makes the wind speed sent into the car through the upper main air duct 32 uniform, and reduces the noise.
  • the air conditioning box 1 may be disposed on the rear or front side of the double-layer vehicle body.
  • the air-conditioning box 1 When the air-conditioning box 1 is installed on the rear side of the double-layer vehicle body, the air-conditioning box 1 and the upper layer transition air duct 31 are connected through the upper layer air supply opening.
  • the upper air inlet is located on the rear side of the double-layer vehicle body.
  • the air conditioning box When the air conditioning box is provided on the front side of the double-layer vehicle body, the upper air inlet is located on the front side of the double-layer vehicle body.
  • a condensing fan area 5 is provided below the air conditioning box 1, and the condensing fan area 5 is used to cool the air conditioning box 1 and the evaporator 61 behind the driver.
  • the pipelines are concentrated to the area farthest from the air outlet of the upper main air duct 32 using wire harnesses.
  • the inner side of the upper main air duct 32 is covered with thermal insulation cotton, and the smoothness of the upper main air duct 32 is taken into account. This avoids the vortices in the flow field in the upper main air duct 32 and reduces the flow resistance.
  • the cross-section of the upper transition air duct 31 is a rectangle, and the minimum curvature radius of the four corners of the rectangle is 25 mm;
  • the upper transition air duct 31 includes a first pipe section 311, a second pipe section 312 and a third pipe section 313 that are connected in sequence.
  • the first pipe section 311 is connected with the upper air supply port, and the third pipe section 313 is connected with the upper layer.
  • the air inlet is connected;
  • the first tube section 311 has a first arc-shaped tube wall 3111 and a second arc-shaped tube wall 3112.
  • the first arc-shaped tube wall 3111 and the second arc-shaped tube wall 3112 are arranged oppositely.
  • the minimum radius of curvature of the arc-shaped tube wall 3111 is 6 mm, and the minimum radius of curvature of the second arc-shaped tube wall 3112 is 382 mm.
  • the bending directions of the first arc-shaped tube wall 3111 and the second arc-shaped tube wall 3112 are toward same side;
  • the second pipe section 312 has a third pipe wall and a fourth pipe wall.
  • the third pipe wall is opposite to the fourth pipe wall.
  • the third pipe wall includes a wall located on one side of the first pipe section 311.
  • the minimum radius of curvature of the third arc-shaped tube wall 3121 is 78 mm.
  • the third arc-shaped tube wall 3121 The maximum angular offset of the third arc-shaped tube wall 3121 is 11°, and the third arc-shaped tube wall 3121 is offset in the direction of the angular offset.
  • Size is 50mm;
  • the offset of the third arc-shaped tube wall 3121 forms a concave structure consistent with the characteristics of the fluid in the upper transition air duct 31 , thereby avoiding the formation of low-speed vortices in the upper transition air duct 31 .
  • the fourth pipe wall includes a fourth arc-shaped pipe wall 3122 located on one side of the third pipe section 313 and a second straight pipe wall 3124 located on one side of the first pipe section 311.
  • the fourth arc-shaped pipe wall The minimum radius of curvature of 3122 is 746mm, the fourth arc-shaped tube wall 3122 is offset in a direction away from the third arc-shaped tube wall 3121, and the maximum angular offset of the fourth arc-shaped tube wall 3122 is 4°. ;
  • the third tube section 313 has a fifth arc-shaped tube wall 3131 and a sixth arc-shaped tube wall 3132.
  • the fifth arc-shaped tube wall 3131 has a minimum curvature radius of 170 mm
  • the sixth arc-shaped tube wall 3132 has a minimum curvature radius of 170 mm.
  • the radius of curvature is 73 mm
  • the bending directions of the fifth arc-shaped tube wall 3131 and the sixth arc-shaped tube wall 3132 are toward the same side.
  • the structure of the third pipe section 313 effectively reduces the resistance of wind entering the upper main air duct 32 from the upper transition air duct 31, and reduces the resistance of wind entering the upper main air duct 32 by at least 23% compared to related technologies.
  • the present disclosure effectively enables the wind entering the upper main air duct 32 to flow out from the upper air outlet of the upper main air duct 32 at a uniform speed, ensuring the uniformity of the wind speed entering the car and avoiding the use of air outlet wind guides and other methods to adjust the wind speed.
  • the problem of wind resistance is a problem of wind resistance.
  • the first pipe section 311, the second pipe section 312 and the third pipe section 313 form an upper transition air duct 31 with a streamlined structure, so that the inner wall of the upper transition air duct 31 conforms to the flow trend of the fluid.
  • the air conditioning system of the present disclosure can reduce the wind resistance of the upper transition air duct 31 by at least 15%.
  • the cross-section of the upper transition air duct 31 is a rectangle, and the four sides of the rectangle form four corners, each of which is an arc-shaped corner with a minimum curvature radius of 25 mm. This can avoid the formation of intra-cavity vortices and energy loss between adjacent tube walls of the upper transition air duct 31 .
  • the cross-sections of the first pipe section 311, the second pipe section 312 and the third pipe section 313 are all rectangular.
  • the first pipe section 311 further includes two opposite pipe walls.
  • the two pipe walls are connected with the first arc-shaped pipe wall 3111 and the second arc-shaped pipe wall 3112 to form the first pipe section 311.
  • the transverse direction of the first pipe section 311 is The cross section is rectangular.
  • the second pipe section 312 further includes two opposite pipe walls.
  • the two pipe walls are connected with the third pipe wall and the fourth pipe wall to form the second pipe section 312 .
  • the cross section of the second pipe section 312 is rectangular.
  • the third pipe section 313 further includes two opposite pipe walls, and the two pipe walls are connected to the fifth arc.
  • the arc-shaped tube wall 3131 and the sixth arc-shaped tube wall 3132 are connected to form a third tube section 313, and the third tube section 313 has a rectangular cross-section.
  • the two upper transition air ducts 31 are symmetrically arranged;
  • the fourth arc-shaped pipe wall 3122 is offset from the outside of the two upper transition air ducts 31 in the direction from the third pipe section 313 side to the first pipe section 311 side, so
  • the fifth arc-shaped tube wall 3131 and the sixth arc-shaped tube wall 3132 are bent toward the inside of the double-layer vehicle body, and the concave surfaces of the fifth arc-shaped tube wall 3131 and the sixth arc-shaped tube wall 3132 are toward the double-layer vehicle body.
  • the two upper transition air ducts 31 are symmetrically arranged to avoid blocking the rear viewing glass 30 of the double-deck vehicle, thereby avoiding affecting the views of the passengers from the rear viewing glass 30 .
  • the structures of the first arc-shaped tube wall 3111, the second arc-shaped tube wall 3112, the third arc-shaped tube wall 3121, the fourth arc-shaped tube wall 3122, the fifth arc-shaped tube wall 3131 and the sixth arc-shaped tube wall 3132 can
  • the streamlined structure of the upper transition air duct 31 is ensured, and the inner wall of the upper transition air duct 31 conforms to the flow trend of the wind, thereby effectively reducing the intracavity vortex and energy loss caused by the air supply passing through the upper transition air duct 31 .
  • connection between the first pipe section 311 and the upper air supply port has a first cross-sectional area
  • connection between the second pipe section 312 and the first pipe section 311 has a second cross-sectional area
  • connection between the third pipe section 313 and the second pipe section 312 has a third cross-sectional area
  • connection between the third pipe section 313 and the upper air inlet has a fourth cross-sectional area
  • the upper transition air duct 31 has different cross-sectional areas at different positions, so that the streamlined upper transition air duct 31 can effectively avoid energy loss and intra-cavity vortices.
  • the upper main air duct 32 corresponds to the upper seat distribution of the double-layer vehicle body.
  • the upper main air duct 32 includes two upper side air ducts corresponding to the seats on both sides of the upper layer. Each upper side The air duct is connected to one of the upper floor transition air ducts 31, and both upper floor side air ducts are provided with first upper floor air outlets corresponding to the seats on both sides of the upper floor.
  • the first upper air outlet may be a diffuse air outlet or an adjustable air outlet.
  • the two upper-layer side air ducts include a first upper-layer side air duct 331 and a second upper-layer side air duct 332.
  • the first upper-layer side air duct 331 is located on the side of the double-layer vehicle body staircase.
  • the first upper air outlet on the side air duct 331 is staggered from the area where the double-layer vehicle body staircase is located.
  • the adjacent first upper air outlet There is a second upper air outlet 81 between them.
  • the first upper air outlet on the first upper side air duct 331 is staggered with the area where the stairs of the double-layer vehicle body are located, so that there is no air outlet in the area 35 opposite the first upper side air duct and the stairs. This can avoid the formation of a hedging when the low-temperature airflow in the lower layer of the vehicle flows up to the upper layer. Moreover, passengers’ stay time on the stairs is shorter, which does not affect passenger comfort. It can also effectively increase the air volume of the air outlets in other areas of the main air duct 32 on the upper floor, greatly improving the thermal comfort of the upper floor passengers.
  • a second upper floor air outlet 81 is provided between adjacent first upper floor air outlets. This can ensure that the temperature on this side and the stair area 23 is uniform, while ensuring the air volume at the seats, while reducing the air volume loss in the non-passenger area.
  • the first upper floor air outlet includes an upper floor window air outlet 83 and an upper floor corridor air outlet 84.
  • the upper floor window air outlet 83 corresponds to the upper floor window seat arrangement.
  • the upper window air outlet 83 blows air toward the upper window seat.
  • the air vents 84 on the upper floor near the corridor correspond to the seating arrangements on the upper floor near the corridor.
  • the upper floor corridor air outlet 84 blows air toward the upper floor corridor.
  • each seat is equipped with an air outlet.
  • the upper floor window air vents 83 and the upper floor corridor air vents 74 can be diffuse air vents or adjustable air vents.
  • the distance between the first upper air outlet and the passenger's facial area on the corresponding seat is 180mm-250mm.
  • the front and rear direction of the vehicle is the X-axis direction
  • the axial distance on the X-axis between the first upper air outlet and the passenger's facial area on the corresponding seat is 180mm-250mm.
  • the center of the air outlet of each first upper air outlet is kept between 180mm and 250mm away from the passenger's face to ensure passenger comfort.
  • the facial position of the passenger on the seat is the position of the passenger's face when sitting on the seat with a correct posture.
  • the upper window air vents 83 allow the wind to blow to the window seats. Passengers at the upper window seats are affected by the heat radiation of the skylight, side skylights and side glass.
  • the distribution of the upper window air vents 83 of the present disclosure allows the wind to blow directly to the window seats.
  • the passenger seat effectively improves the comfort of window seat passengers.
  • the corridor air vents 84 on the upper floor allow the wind to blow close to the corridor.
  • the corridor air vents 84 on the upper floor are conducive to reducing the temperature of the heat at the upper skylight and improving the temperature uniformity of the entire vehicle.
  • the upper main air duct 32 also includes an upper front air duct 34 corresponding to the upper front seats, and the upper front air duct 34 is connected with the two upper The side air ducts are connected, and the upper-layer front air duct 34 is an annular air duct.
  • the upper-layer front air outlet is provided on the annular air duct, and the upper-layer front air outlet is the first adjustable air outlet 82 .
  • the first adjustable air outlet 82 is an adjustable air outlet.
  • the upper front side of the vehicle has glass, and the annular air duct can adapt to the vehicle structure on the upper front side.
  • the upper front air outlet is a first adjustable air outlet 82, and the air volume of the air outlet can be adjusted through the first adjustable air outlet 82, so that the upper front air outlet can be adjusted. Passenger thermal comfort is improved.
  • eight first adjustable air outlets 82 are distributed on the annular air duct.
  • the eight first adjustable air outlets 82 are symmetrically distributed on both sides of the corridor position of the vehicle.
  • Eight first adjustable air outlets 82 are distributed on the annular air duct, which solves the problem that passengers in front receive a lot of heat from radiation and passengers on the window side receive a lot of heat from the skylight, thereby improving passenger comfort.
  • the cross-sectional area A (cm 2 ) of the upper main air duct 32 is equal to the total area A (cm 2 ) of the air outlets on one side of the upper main air duct 32.
  • the cross-sectional area of the first upper side air duct 331 is equal to the sum of the areas of the first upper air openings on the first upper side air duct 331 and half of the upper front air openings on the upper front air duct 34 of the annular air duct.
  • the air conditioning system also includes a cab air duct 63 and an evaporator 61;
  • the evaporator 61 is connected with the air conditioning box 1 , and the evaporator 61 can cool down through the air conditioning box 1 .
  • the evaporator 61 is provided with a cab return air outlet 62 facing the cab.
  • the evaporator 61 is connected with the cab air duct 63.
  • the cab air duct 63 extends to the top of the cab.
  • the cab air duct 63 is provided with The second adjustable air outlet 72.
  • the wind in the cab enters the evaporator 61 through the cab return air outlet 62, is cooled and sent to the cab air duct 63, and is blown to the cab through the second adjustable air outlet 72.
  • the wind blown to the cab through the second adjustable air outlet 72 is sent to the driver's head.
  • the cab air duct 63 is provided with a plurality of second adjustable air outlets 72, and the second adjustable air outlet located in the middle area
  • the mouth 72 is 190mm-210mm away from the tip of the driver's nose in the X-axis direction. This can ensure the thermal comfort of the driver's place and solve the problem that the main air duct 2 on the lower floor is cut off by the stair area 23 and cannot supply air to the cab.
  • the air conditioning system also includes two lower transition air ducts 21 and two lower main air ducts 2.
  • the air conditioning box 1 has two lower air supply outlets, and two lower air supply outlets.
  • the lower main air duct 2 is connected to a lower air supply outlet through one of the lower transition air ducts 21, and the lower main air duct 2 is provided with a first lower air outlet corresponding to the lower seat;
  • a second lower air outlet 74 is provided corresponding to the door.
  • the second lower air outlet 74 includes one to three rows of strip-shaped air outlets.
  • the first lower air outlet supplies air to the lower seat.
  • the lower floor side air vents include a lower floor window air vent 73 corresponding to the lower floor window seat, and a lower floor corridor air vent 71 corresponding to the lower floor corridor seat.
  • the lower floor window air vents 73 and the lower floor corridor air vents 71 can be diffuse air vents or adjustable air vents. The wind from the window air vents 73 on the lower floor blows to the passenger seats on the lower floor, and the wind from the corridor air vents 71 on the lower floor blows to the corridor on the lower floor, so that both standing and sitting passengers have better comfort.
  • the second lower air outlet 74 includes one to three rows of strip air outlets, which can form a gas air curtain with a certain temperature difference and even flow velocity distribution at the door, allowing passengers to feel cool as soon as they enter the car in the summer, and improving the thermal comfort of the passengers. sex.
  • the cross-sectional area A (cm 2 ) for the lower main air duct 2 disposed on the door side of the vehicle is equal to the lower window air outlet 73 for the lower main air duct 2 disposed on the door side of the vehicle. and the total area A (cm 2 ) of the lower floor corridor air outlet 71 and the second lower floor air outlet 74.
  • the air conditioning system further includes an upper return air duct 44, which is connected to the air conditioning box 1, and has an upper return air outlet 43.
  • the upper layer return air outlet 43 is located in the rear bottom area of the upper layer of the double-layer vehicle body.
  • the upper rear bottom area of the vehicle upper layer is used to set the upper layer return air outlet 43 to keep the temperature of the lower layer lower.
  • the return air flows up from the stair area 23 to the upper floor return air outlet 43, and then flows back to the air-conditioning box 1, which can lower the temperature of the upper floor of the vehicle for a second time.
  • Embodiments of the present disclosure are suitable for double-decker vehicles with a large upper sunroof glass area and a large load on the air conditioning system.
  • the air conditioning system also includes a lower return air duct 42,
  • the lower return air duct 42 is connected with the upper return air duct 44.
  • the lower return air duct 42 has a lower return air outlet 41.
  • the lower return air outlet 41 is located in the rear top area of the lower floor of the vehicle.
  • the lower return air outlet 41 is located There is an air outlet switch device 40.
  • the air outlet switch device 40 can control the opening and closing of the return air outlet 41 of the lower floor. According to the temperature of the upper floor, the return air outlet 41 of the lower floor can be opened, and the return air duct 42 of the lower floor is connected to the return air duct 44 of the upper floor, so that the return air returns from the upper floor. The air duct 44 is sent back to the air conditioning box 1 together.
  • a double-decker vehicle includes a double-decker vehicle body, and the double-decker vehicle body is provided with the air conditioning system of the double-decker vehicle as described in any one of the embodiments of the present disclosure.
  • the double-decker vehicle has the technical effects brought about by the air conditioning system of the double-decker vehicle in the embodiment of the present disclosure.
  • the vehicles in this disclosure are all double-decker vehicles in this disclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种双层车辆,具有双层车辆的空调系统,该双层车辆的空调系统包括:空调箱,空调箱用于设置于双层车辆主体,空调箱具有两个上层送风口;上层主风道,上层主风道用于设置在双层车辆主体上层的顶部,上层主风道具有两个上层进风口,上层送风口与上层进风口在水平方向上错开;两个上层过渡风道,每个上层过渡风道分别与一个上层送风口以及一个上层进风口连通;上层过渡风道的内壁与上层送风口的内壁平滑过渡,上层过渡风道的内壁与上层进风口的内壁平滑过渡。

Description

双层车辆的空调系统及双层车辆
本公开要求于2022年06月13日提交中国专利局、申请号为202221482199.2、申请名称为“双层车辆的空调系统及双层车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于双层车辆技术领域,尤其涉及一种双层车辆的空调系统及双层车辆。
背景技术
目前,为了使双层车辆满足用户的乘坐舒适的需求,往往在车辆内设置空调系统,通过空调系统向车辆的上下两层送风。双层车辆由于其结构相对于复杂,相关技术中不能满足不同车辆区域的对送风的需求。相关技术中,空调系统向车辆上层送风的过程中,当上层有大片玻璃面积时,送风效果欠佳,不能满足对上层的送风需求。
发明内容
本公开的一个目的是提供一种双层车辆的空调系统及双层车辆的新技术方案。
根据本公开的第一方面,提供一种双层车辆的空调系统,双层车辆的空调系统包括:
空调箱,所述空调箱用于设置于双层车辆主体,所述空调箱具有两个上层送风口;
上层主风道,所述上层主风道用于设置于双层车辆主体上层的顶部,所述上层主风道具有两个上层进风口,所述上层送风口与所述上层进风口在水平方向上错开;
两个上层过渡风道,每个所述上层过渡风道分别与一个所述上层送风口以及一个所述上层进风口连通;
所述上层过渡风道的内壁与所述上层送风口的内壁平滑过渡,所述上层过渡风道的内壁与所述上层进风口的内壁平滑过渡。
可选地,所述上层过渡风道的横截面为矩形,所述矩形的四个角的最小曲率半径均为25mm;
所述上层过渡风道包括依次连通的第一管段、第二管段和第三管段,所述第一管段与所述上层送风口连通,所述第三管段与所述上层进风口连通;
所述第一管段具有第一弧形管壁和第二弧形管壁,所述第一弧形管壁与所述第二弧形管壁相对设置,所述第一弧形管壁的最小曲率半径为6mm,所述第二弧形管壁的最小曲率半径为382mm,所述第一弧形管壁与所述第二弧形管壁的弯曲方向朝向同一侧;
所述第二管段具有第三管壁和第四管壁,所述第三管壁与所述第四管壁相对设置,所述第三管壁包括位于所述第一管段一侧的第三弧形管壁和位于所述第三管段一侧的第一直管壁,所述第三弧形管壁的最小曲率半径为78mm,所述第三弧形管壁向远离所述第四弧形管壁的方向偏移,所述第三弧形管壁的最大角度偏移为11°,所述第三弧形管壁在角度偏移的方向的尺寸为50mm;所述第四管壁包括位于所述第三管段一侧的第四弧形管壁和位于所述第一管段一侧的第二直管壁,所述第四弧形管壁的最小曲率半径为746mm,所述第四弧形管壁向远离所述第三弧形管壁的方向偏移,所述第四弧形管壁的最大角度偏移为4°;
所述第三管段具有第五弧形管壁和第六弧形管壁,所述第五弧形管壁的最小曲率半径为170mm,所述第六弧形管壁的最小曲率半径为73mm,所述第五弧形管壁与所述第六弧形管壁的弯曲方向朝向同一侧。
可选地,两个所述上层过渡风道对称设置;
所述第一弧形管壁和所述第二弧形管壁的凹面朝向两个上层过渡风道之间的区域,所述第三弧形管壁的凹面朝向两个上层过渡风道之间的区域,所述第四弧形管壁由在沿第三管段一侧向第一管段一侧的方向上向两个上 层过渡风道的外侧偏移,所述第五弧形管壁和所述第六弧形管壁向双层车辆主体的内部弯曲,所述第五弧形管壁和所述第六弧形管壁的凹面朝向双层车辆主体的内部。
可选地,所述第一管段与所述上层送风口连通处具有第一横截面积,所述第二管段与所述第一管段连通处具有第二横截面积,所述第三管段与所述第二管段连通处具有第三横截面积,所述第三管段与所述上层进风口连通处具有第四横截面积;
其中,所述第一横截面积的55%-70%等于所述第二横截面积,所述第二横截面积的85%-95%等于所述第三横截面积,所述第三横截面积的85%-95%等于所述第四横截面积。
可选地,所述上层主风道对应双层车辆主体的上层座椅分布,上层主风道包括对应上层两侧座椅的两个上层侧风道,每个上层侧风道与其中一个上层过渡风道连通,两个上层侧风道均设有对应上层两侧座椅的第一上层风口;
所述两个上层侧风道包括第一上层侧风道和第二上层侧风道,所述第一上层侧风道位于双层车辆主体楼梯所在的一侧,所述第一上层侧风道上的第一上层风口与双层车辆主体楼梯所在的区域错开,在所述第二上层侧风道的与双层车辆主体楼梯相对的区域内,相邻的第一上层风口之间设有第二上层风口。
可选地,所述上层主风道还包括对应上层前侧座椅的上层前风道,所述上层前风道与两个所述上层侧风道连通,所述上层前风道为环形风道,所述环形风道上设有上层前风口,所述上层前风口为第一可调风口。
可选地,在双层车辆主体的前后方向上,所述第一上层风口与对应的座椅上的乘客面部区域之间的距离为180mm-250mm。
可选地,所述空调系统还包括驾驶室风道和蒸发器;
所述蒸发器与空调箱连通,所述蒸发器设有朝向驾驶室的驾驶室回风口,所述蒸发器与驾驶室风道连通,所述驾驶室风道延伸至驾驶室顶部,驾驶室风道设有第二可调风口。
可选地,所述空调系统还包括两个下层过渡风道和两个下层主风道, 所述空调箱具有两个下层送风口,两个所述下层主风道分别通过一个所述下层过渡风道与一个下层送风口连通,所述下层主风道设有对应下层座椅的第一下层风口;
在用于设置在双层车辆主体的车门一侧的下层主风道上,对应车门设置有第二下层风口,所述第二下层风口包括一排至三排的条形风口。
可选地,所述空调系统还包括上层回风道,所述上层回风道与空调箱连通,所述上层回风道具有上层回风口,所述上层回风口位于双层车辆主体上层的后侧底部区域。
可选地,所述空调系统还包括下层回风道,所述下层回风道与上层回风道连通,所述下层回风道具有下层回风口,所述下层回风口位于双层车辆主体下层的后侧顶部区域,所述下层回风口设有风口开关装置。
根据本公开的第二方面,提供一种双层车辆,双层车辆包括双层车辆主体,所述双层车辆主体设有如第一方面所述的双层车辆的空调系统。
本公开的每个上层过渡风道分别与一个上层送风口以及一个上层进风口连通;上层过渡风道的内壁与上层送风口的内壁平滑过渡,上层过渡风道的内壁与上层进风口的内壁平滑过渡,平滑过渡能够避免空调箱送风进入上层主风道的过程中产生的压损和风速不均匀的问题,降低了上层过渡风道对空调箱向上层主风道送风形成的阻力,增加了送风量,提高空调系统的送风效率,使通过上层主风道送入车内的风速均匀,噪音降低。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
图1是本公开一个实施例的空调系统的结构示意图之一。
图2是本公开一个实施例的空调系统的结构示意图之二。
图3是本公开一个实施例的空调系统的上层主风道的仰视示意图。
图4是本公开一个实施例的空调系统的侧视示意图。
图5是图4的局部放大图。
图6是本公开一个实施例的空调系统的下层主风道的仰视示意图。
图7是本公开一个实施例的双层车辆的结构示意图。
附图标记说明:
1、空调箱;10、天窗观景玻璃;20、天窗侧面观景玻璃;30、后侧观
景玻璃;5、冷凝风扇区;
2、下层主风道;21、下层过渡风道;23、楼梯区域;
31、上层过渡风道;311、第一管段;312、第二管段;313、第三管段;
3111、第一弧形管壁;3112、第二弧形管壁;3121、第三弧形管壁;3122、第四弧形管壁;3123、第一直管壁;3124、第二直管壁;3131、第五弧形管壁;3132、第六弧形管壁;
32、上层主风道;331、第一上层侧风道;332、第二上层侧风道;34、
上层前风道;35、第一上层侧风道与楼梯相对区域;
40、风口开关装置;41、下层回风口;42、下层回风道;43、上层回
风口;44、上层回风道;
61、蒸发器;62、驾驶室回风口;63、驾驶室风道;
71、下层靠走廊风口;72、第二可调风口;73、下层靠窗风口;74、
第二下层风口;
81、第二上层风口;82、第一可调风口;83、上层靠窗风口;84、上
层靠走廊风口。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术和设备可能不作详细讨论,但在适当情况下,所述技术和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
根据本公开的一个实施例,提供了一种双层车辆的空调系统,如图1-图7所示,双层车辆的空调系统包括:
空调箱1,所述空调箱1用于设置于双层车辆主体,所述空调箱1具有两个上层送风口;
上层主风道32,所述上层主风道32用于设置于双层车辆主体上层的顶部,所述上层主风道32具有两个上层进风口,所述上层送风口与所述上层进风口在水平方向上错开;
两个上层过渡风道31,每个所述上层过渡风道31分别与一个所述上层送风口以及一个所述上层进风口连通;
所述上层过渡风道31的内壁与所述上层送风口的内壁平滑过渡,所述上层过渡风道31的内壁与所述上层进风口的内壁平滑过渡。上层送风口为空调箱1向上层过渡风道31送风的管道的出口,上层送风口的内壁指的是该管道的内壁。上层进风口的内壁为上层主风道32的内壁。平滑过渡使管道连接位置的内表面平滑,管道内表面呈流线型。
在本公开的实施例中,每个上层过渡风道31分别与一个上层送风口以及一个上层进风口连通。上层过渡风道31的内壁与上层送风口的内壁平滑过渡,能够避免空调箱1向上层过渡风道31送风时,上层过渡风道31对风形成腔内旋涡造成的能量损失。上层过渡风道31的内壁与上层进风口的内壁平滑过渡,能够避免上层过渡风道31内的风进入上层主风道32时,上层主风道32对风形成腔内旋涡造成的能量损失。有利于提高上层主风道32的风口的风速。
平滑过渡能够避免空调箱1送风进入上层主风道32的过程中产生的压损和风速不均匀的问题,降低了上层过渡风道31对空调箱1向上层主风道 32送风形成的阻力,增加了送风量,提高空调系统的送风效率,使通过上层主风道32送入车内的风速均匀,噪音降低。
可选地,空调箱1可以设置于双层车辆主体的后侧或前侧。在所述空调箱1设置于双层车辆主体的后侧的情况下,空调箱1与上层过渡风道31通过上层送风口连接。上层进风口位于双层车辆主体的后侧。在空调箱设于双层车辆主体的前侧的情况下,上层进风口位于双层车辆主体的前侧。
可选地,空调箱1下方设置有冷凝风扇区5,冷凝风扇区5用于空调箱1和司机后方蒸发器61的冷却。
上层主风道32单侧的的风道截面积A(m2)≥空调系统对上层送风口的单侧的出风量Q(m3/s)÷5.5,这样可使空调系统的腔体利用率最大化。上层主风道32内无扬声器等电器件,管线采用线束集中至离上层主风道32的风口最远的区域,上层主风道32内侧贴有保温绵,且兼顾上层主风道32的平顺性,避免了上层主风道32内的流场内漩涡,减小了流阻。
在一个实施例中,如图1-图5所示,所述上层过渡风道31的横截面为矩形,所述矩形的四个角的最小曲率半径均为25mm;
所述上层过渡风道31包括依次连通的第一管段311、第二管段312和第三管段313,所述第一管段311与所述上层送风口连通,所述第三管段313与所述上层进风口连通;
所述第一管段311具有第一弧形管壁3111和第二弧形管壁3112,所述第一弧形管壁3111与所述第二弧形管壁3112相对设置,所述第一弧形管壁3111的最小曲率半径为6mm,所述第二弧形管壁3112的最小曲率半径为382mm,所述第一弧形管壁3111与所述第二弧形管壁3112的弯曲方向朝向同一侧;
所述第二管段312具有第三管壁和第四管壁,所述第三管壁与所述第四管壁相对设置,所述第三管壁包括位于所述第一管段311一侧的第三弧形管壁3121和位于所述第三管段313一侧的第一直管壁3123,所述第三弧形管壁3121的最小曲率半径为78mm,所述第三弧形管壁3121向远离所述第四弧形管壁3122的方向偏移,所述第三弧形管壁3121的最大角度偏移为11°,所述第三弧形管壁3121在角度偏移的方向的尺寸为50mm; 第三弧形管壁3121的偏移在上层过渡风道31上形成了与流体特点一致的凹陷结构,避免了在上层过渡风道31内形成低速旋涡。
所述第四管壁包括位于所述第三管段313一侧的第四弧形管壁3122和位于所述第一管段311一侧的第二直管壁3124,所述第四弧形管壁3122的最小曲率半径为746mm,所述第四弧形管壁3122向远离所述第三弧形管壁3121的方向偏移,所述第四弧形管壁3122的最大角度偏移为4°;
所述第三管段313具有第五弧形管壁3131和第六弧形管壁3132,所述第五弧形管壁3131的最小曲率半径为170mm,所述第六弧形管壁3132的最小曲率半径为73mm,所述第五弧形管壁3131与所述第六弧形管壁3132的弯曲方向朝向同一侧。第三管段313的结构有效地减小了风从上层过渡风道31进入上层主风道32的阻力,相对于相关技术,使进入上层主风道32风的阻力减小至少23%。本公开有效地使进入上层主风道32的风能够从上层主风道32的上的风口匀速流出,保证了进入车内的风速的均匀性,避免了使用风口导风罩等方式调整风速对风形成阻力的问题。
在本公开的实施例中,第一管段311、第二管段312和第三管段313形成了流线形结构的上层过渡风道31,使上层过渡风道31的内壁贴合流体的流动趋势,有效地减少了腔内旋涡和能耗损失,减小了上层过渡风道31对风的阻力,提高了空调系统的送风效率。本公开的空调系统相对于相关技术,能够使上层过渡风道31对风的阻力减小至少15%。
上层过渡风道31的横截面为矩形,矩形的四条边形成四个角,每个角均为最小曲率半径为25mm的弧形角。这样能够避免上层过渡风道31的各相邻的管壁之间形成腔内旋涡和能耗损失。例如,第一管段311、第二管段312和第三管段313的横截面均为矩形。
例如,第一管段311还包括两个相对设置的管壁,两个管壁与第一弧形管壁3111以及第二弧形管壁3112连接围成第一管段311,第一管段311的横截面为矩形。
例如,第二管段312还包括两个相对设置的管壁,两个管壁与第三管壁以及第四管壁连接围成第二管段312,第二管段312的横截面为矩形。
例如,第三管段313还包括两个相对设置的管壁,两个管壁与第五弧 形管壁3131以及第六弧形管壁3132连接围成第三管段313,第三管段313的横截面为矩形。
在一个实施例中,如图1-图7所示,两个所述上层过渡风道31对称设置;
所述第一弧形管壁3111和所述第二弧形管壁3112的凹面朝向两个上层过渡风道31之间的区域,所述第三弧形管壁3121的凹面朝向两个上层过渡风道31之间的区域,所述第四弧形管壁3122由在沿第三管段313一侧向第一管段311一侧的方向上向两个上层过渡风道31的外侧偏移,所述第五弧形管壁3131和所述第六弧形管壁3132向双层车辆主体的内部弯曲,所述第五弧形管壁3131和所述第六弧形管壁3132的凹面朝向双层车辆主体的内部。
在本公开的实施例中,两个上层过渡风道31对称设置,能够避免遮挡双层车辆的后侧观景玻璃30,以避免影响乘客从后侧观景玻璃30观景。
第一弧形管壁3111、第二弧形管壁3112、第三弧形管壁3121、第四弧形管壁3122、第五弧形管壁3131和第六弧形管壁3132的结构能够保障上层过渡风道31的流线型结构,以及使上层过渡风道31的内壁贴合风的流动趋势,从而有效地减少了送风经过上层过渡风道31形成的腔内旋涡和能耗损失。
在一个实施例中,所述第一管段311与所述上层送风口连通处具有第一横截面积,所述第二管段312与所述第一管段311连通处具有第二横截面积,所述第三管段313与所述第二管段312连通处具有第三横截面积,所述第三管段313与所述上层进风口连通处具有第四横截面积;
其中,所述第一横截面积的55%-70%等于所述第二横截面积,所述第二横截面积的85%-95%等于所述第三横截面积,所述第三横截面积的85%-95%等于所述第四横截面积。
在本公开实施例中,上层过渡风道31在不同位置的横截面积不同,使流线型的上层过渡风道31能够有效避免能耗损失和腔内旋涡。
在一个实施例中,所述上层主风道32对应双层车辆主体的上层座椅分布,上层主风道32包括对应上层两侧座椅的两个上层侧风道,每个上层侧 风道与其中一个上层过渡风道31连通,两个上层侧风道均设有对应上层两侧座椅的第一上层风口。例如,第一上层风口可以是弥散风口,也可以是可调风口。
所述两个上层侧风道包括第一上层侧风道331和第二上层侧风道332,所述第一上层侧风道331位于双层车辆主体楼梯所在的一侧,所述第一上层侧风道331上的第一上层风口与双层车辆主体楼梯所在的区域错开,在所述第二上层侧风道332的与双层车辆主体楼梯相对的区域内,相邻的第一上层风口之间设有第二上层风口81。
在本公开实施例中,第一上层侧风道331上的第一上层风口与双层车辆主体楼梯所在的区域错开,能够使第一上层侧风道与楼梯相对区域35上无风口。这样能够避免车辆下层的低温气流上流至上层时形成对冲。且乘客在楼梯的停留时间较短,不影响乘客舒适性。还能够使上层主风道32的其他区域的风口风量有效提高,极大地提高了上层乘客的热舒适性。
在所述第二上层侧风道332的与车辆楼梯相对的区域内,相邻的第一上层风口之间设有第二上层风口81。这样能够保证该侧和楼梯区域23的温度均匀,在保证座椅处风量的同时,减少了非乘客区域的风量损失。
可选地,第一上层风口包括上层靠窗风口83和上层靠走廊风口84,上层靠窗风口83对应上层靠窗的座椅设置。例如,上层靠窗风口83朝向上层靠窗的座椅吹风。上层靠走廊风口84对应上层靠走廊的座椅设置。例如,上层靠走廊风口84朝向上层走廊吹风。例如,每个座椅对应设置一个风口。上层靠窗风口83和上层靠走廊风口74可以为弥散风口,也可以为可调节风口。
可选地,在车辆的前后方向上,所述第一上层风口与对应的座椅上的乘客面部区域之间的的距离为180mm-250mm。
例如,车辆的前后方向为X轴方向,第一上层风口与对应的座椅上的乘客面部区域之间的在X轴的轴向距离为180mm-250mm。每个第一上层风口的出风口中心距离乘客面部保持在180mm-250mm之间,保证乘客舒适性。座椅上的乘客的面部位置为乘客以正确坐姿坐在座椅上时,面部的位置。
上层靠窗风口83使风吹至靠窗座椅,上层的靠窗处乘客受天窗、侧天窗、侧玻璃的热辐射影响,本公开上层靠窗风口83的分布,使风直吹靠窗处乘客座椅,有效提高了靠窗乘客舒适性。上层靠走廊风口84使风吹至靠近走廊处,上层靠走廊风口84利于上层天窗处热量的温度降低,提高整车温度均匀性。
在一个实施例中,如图1-图3所示,所述上层主风道32还包括对应上层前侧座椅的上层前风道34,所述上层前风道34与两个所述上层侧风道连通,所述上层前风道34为环形风道,所述环形风道上设有上层前风口,所述上层前风口为第一可调风口82。第一可调风口82为可调节风口。
车辆的上层前侧具有玻璃,环形风道能够适应上层前侧的车辆结构,上层前风口为第一可调风口82,通过第一可调风口82能够调节风口的风量,从而使上层前侧的乘客的热舒适性提高。例如,环形风道上分布了八个第一可调风口82。八个第一可调风口82在车辆的走廊位置两侧对称分布。
环形风道上分布了八个第一可调风口82解决了前方乘客受辐照热量大、靠窗侧乘客受天窗太阳辐射热量大的问题,提高了乘客的舒适性。
可选地,上层主风道32的截面积A(cm2)等于上层主风道32一侧的出风口总面积A(cm2)。例如,第一上层侧风道331的截面积等于第一上层侧风道331上的第一上层风口和环形风道的上层前风道34上的一半上层前风口的面积之和。
在一个实施例中,所述空调系统还包括驾驶室风道63和蒸发器61;
所述蒸发器61与空调箱1连通,蒸发器61能够通过空调箱1降温。所述蒸发器61设有朝向驾驶室的驾驶室回风口62,所述蒸发器61与驾驶室风道63连通,所述驾驶室风道63延伸至驾驶室顶部,驾驶室风道63设有第二可调风口72。
驾驶室内的风经驾驶室回风口62进入蒸发器61,降温后送入驾驶室风道63,并经第二可调风口72吹向驾驶室。
例如,经第二可调风口72吹向驾驶室的风送至司机头顶。
驾驶室风道63设有多个第二可调风口72,位于中区域的第二可调风 口72在X轴向上距离司机鼻尖190mm-210mm。这样可以保证司机处的热舒适性,解决了下层主风道2被楼梯区域23截断无法送风至驾驶室的问题。
在一个实施例中,如图6所示,所述空调系统还包括两个下层过渡风道21和两个下层主风道2,所述空调箱1具有两个下层送风口,两个所述下层主风道2分别通过一个所述下层过渡风道21与一个下层送风口连通,所述下层主风道2设有对应下层座椅的第一下层风口;
在用于设置在车辆的车门一侧的下层主风道2上,对应车门设置有第二下层风口74,所述第二下层风口74包括一排至三排的条形风口。
在本公开实施例中,第一下层风口向下层座椅送风。例如,下层侧风口包括与下层靠窗座椅对应的下层靠窗风口73,以及与下层靠走廊座椅对应的下层靠走廊风口71。下层靠窗风口73和下层靠走廊风口71可以为弥散风口,也可以为可调节风口。下层靠窗风口73的风吹至下层乘客座椅处,下层靠走廊风口71的风吹至下层走廊处,使站立和坐下的乘客都有较好的舒适性。
第二下层风口74包括一排至三排的条形风口,能够在车门处形成有一定温差、流速分布均匀的气体风帘,让乘客在夏天一进入车内就感到凉意,提高了乘客热舒适性。
可选地,用于设置在车辆的车门一侧的下层主风道2的截面积A(cm2)等于用于设置在车辆的车门一侧的下层主风道2上的下层靠窗风口73和下层靠走廊风口71以及第二下层风口74的总面积A(cm2)。
在一个实施例中,如图4所示,所述空调系统还包括上层回风道44,所述上层回风道44与空调箱1连通,所述上层回风道44具有上层回风口43,所述上层回风口43位于双层车辆主体上层的后侧底部区域。
如图7所示,双层车辆上层天窗观景玻璃10和天窗侧面观景玻璃20的面积大、夏季热量大时,采用车辆上层的后侧底部区域设置上层回风口43,使下层温度较低的回风从楼梯区域23上流至上层回风口43,再流回空调箱1,能够二次降低车辆上层的温度。本公开的实施例适用于上层的天窗玻璃面积大、空调系统负荷大的双层车辆。
在一个实施例中,如图4所示,所述空调系统还包括下层回风道42, 所述下层回风道42与上层回风道44连通,所述下层回风道42具有下层回风口41,所述下层回风口41位于车辆下层的后侧顶部区域,所述下层回风口41设有风口开关装置40。
通过风口开关装置40能够控制下层回风口41的打开和关闭,根据上层的温度情况,可以选择打开下层回风口41,由下层回风道42接入上层回风道44,使回风从上层回风道44一起送回空调箱1。
根据本公开的另一个实施例,提供了一种双层车辆,双层车辆包括双层车辆主体,双层车辆主体设有如本公开实施例中任意一项所述的双层车辆的空调系统。
该双层车辆具有本公开实施例中双层车辆的空调系统所带来的技术效果。
本公开中的车辆均为本公开中的双层车辆。
上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改。本公开的范围由所附权利要求来限定。

Claims (12)

  1. 一种双层车辆的空调系统,其特征在于,包括:
    空调箱(1),用于设置于双层车辆主体,所述空调箱(1)具有两个上层送风口;
    上层主风道(32),用于设置于双层车辆主体上层的顶部,所述上层主风道(32)具有两个上层进风口,所述上层送风口与所述上层进风口在水平方向上错开;
    两个上层过渡风道(31),每个所述上层过渡风道(31)分别与一个所述上层送风口以及一个所述上层进风口连通;
    所述上层过渡风道(31)的内壁与所述上层送风口的内壁平滑过渡,所述上层过渡风道(31)的内壁与所述上层进风口的内壁平滑过渡。
  2. 根据权利要求1所述的双层车辆的空调系统,其特征在于,所述上层过渡风道(31)的横截面为矩形,所述矩形的四个角的最小曲率半径均为25mm;
    所述上层过渡风道(31)包括依次连通的第一管段(311)、第二管段(312)和第三管段(313),所述第一管段(311)与所述上层送风口连通,所述第三管段(313)与所述上层进风口连通;
    所述第一管段(311)具有第一弧形管壁(3111)和第二弧形管壁(3112),所述第一弧形管壁(3111)与所述第二弧形管壁(3112)相对设置,所述第一弧形管壁(3111)的最小曲率半径为6mm,所述第二弧形管壁(3112)的最小曲率半径为382mm,所述第一弧形管壁(3111)与所述第二弧形管壁(3112)的弯曲方向朝向同一侧;
    所述第二管段(312)具有第三管壁和第四管壁,所述第三管壁与所述第四管壁相对设置,所述第三管壁包括位于所述第一管段(311)一侧的第三弧形管壁(3121)和位于所述第三管段(313)一侧的第一直管壁(3123),所述第三弧形管壁(3121)的最小曲率半径为78mm,所述第三弧形管壁(3121)向远离所述第四管壁的方向偏移,所述第三弧形管壁(3121)的 最大角度偏移为11°,所述第三弧形管壁(3121)在角度偏移的方向的尺寸为50mm;所述第四管壁包括位于所述第三管段(313)一侧的第四弧形管壁(3122)和位于所述第一管段(311)一侧的第二直管壁(3124),所述第四弧形管壁(3122)的最小曲率半径为746mm,所述第四弧形管壁(3122)向远离所述第三管壁的方向偏移,所述第四弧形管壁(3122)的最大角度偏移为4°;
    所述第三管段(313)具有第五弧形管壁(3131)和第六弧形管壁(3132),所述第五弧形管壁(3131)的最小曲率半径为170mm,所述第六弧形管壁(3132)的最小曲率半径为73mm,所述第五弧形管壁(3131)与所述第六弧形管壁(3132)的弯曲方向朝向同一侧。
  3. 根据权利要求2所述的双层车辆的空调系统,其特征在于,两个所述上层过渡风道(31)对称设置;
    所述第一弧形管壁(3111)和所述第二弧形管壁(3112)的凹面朝向两个上层过渡风道(31)之间的区域,所述第三弧形管壁(3121)的凹面朝向两个上层过渡风道(31)之间的区域,所述第四弧形管壁(3122)由在沿第三管段(313)一侧向第一管段(311)一侧的方向上向两个上层过渡风道(31)的外侧偏移,所述第五弧形管壁(3131)和所述第六弧形管壁(3132)向双层车辆主体的内部弯曲,所述第五弧形管壁(3131)和所述第六弧形管壁(3132)的凹面朝向双层车辆主体的内部。
  4. 根据权利要求2所述的双层车辆的空调系统,其特征在于,所述第一管段(311)与所述上层送风口连通处具有第一横截面积,所述第二管段(312)与所述第一管段(311)连通处具有第二横截面积,所述第三管段(313)与所述第二管段(312)连通处具有第三横截面积,所述第三管段(313)与所述上层进风口连通处具有第四横截面积;
    其中,所述第一横截面积的55%-70%等于所述第二横截面积,所述第二横截面积的85%-95%等于所述第三横截面积,所述第三横截面积的85%-95%等于所述第四横截面积。
  5. 根据权利要求1所述的双层车辆的空调系统,其特征在于,所述上层主风道(32)对应双层车辆主体的上层座椅分布,上层主风道(32)包括对应上层两侧座椅的两个上层侧风道,每个上层侧风道与其中一个上层过渡风道(31)连通,两个上层侧风道均设有对应上层两侧座椅的第一上层风口;
    所述两个上层侧风道包括第一上层侧风道(331)和第二上层侧风道(332),所述第一上层侧风道(331)位于双层车辆主体楼梯所在的一侧,所述第一上层侧风道(331)上的第一上层风口与双层车辆主体楼梯所在的区域错开,在所述第二上层侧风道(332)的与双层车辆主体楼梯相对的区域内,相邻的第一上层风口之间设有第二上层风口(81)。
  6. 根据权利要求5所述的双层车辆的空调系统,其特征在于,所述上层主风道(32)还包括对应上层前侧座椅的上层前风道(34),所述上层前风道(34)与两个所述上层侧风道连通,所述上层前风道(34)为环形风道,所述环形风道上设有上层前风口,所述上层前风口为第一可调风口(82)。
  7. 根据权利要求5所述的双层车辆的空调系统,其特征在于,在双层车辆主体的前后方向上,所述第一上层风口与对应的座椅上的乘客面部区域之间的距离为180mm-250mm。
  8. 根据权利要求1所述的双层车辆的空调系统,其特征在于,所述空调系统还包括驾驶室风道(63)和蒸发器(61);
    所述蒸发器(61)与空调箱(1)连通,所述蒸发器(61)设有朝向驾驶室的驾驶室回风口(62),所述蒸发器(61)与驾驶室风道(63)连通,所述驾驶室风道(63)延伸至驾驶室顶部,驾驶室风道(63)设有第二可调风口(72)。
  9. 根据权利要求1所述的双层车辆的空调系统,其特征在于,所述空调系统还包括两个下层过渡风道(21)和两个下层主风道(2),所述空调箱(1)具有两个下层送风口,两个所述下层主风道(2)分别通过一个所述下层过渡风道(21)与一个下层送风口连通,所述下层主风道(2)设有对应下层座椅的第一下层风口;
    在用于设置在双层车辆主体的车门一侧的下层主风道(2)上,对应车门设置有第二下层风口(74),所述第二下层风口(74)包括一排至三排的条形风口。
  10. 根据权利要求1所述的双层车辆的空调系统,其特征在于,所述空调系统还包括上层回风道(44),所述上层回风道(44)与空调箱(1)连通,所述上层回风道(44)具有上层回风口(43),所述上层回风口(43)位于双层车辆主体上层的后侧底部区域。
  11. 根据权利要求10所述的双层车辆的空调系统,其特征在于,所述空调系统还包括下层回风道(42),所述下层回风道(42)与上层回风道(44)连通,所述下层回风道(42)具有下层回风口(41),所述下层回风口(41)位于双层车辆主体下层的后侧顶部区域,所述下层回风口(41)设有风口开关装置(40)。
  12. 一种双层车辆,其特征在于,包括双层车辆主体,所述双层车辆主体设有如权利要求1-11中任意一项所述的双层车辆的空调系统。
PCT/CN2023/078409 2022-06-13 2023-02-27 双层车辆的空调系统及双层车辆 WO2023241095A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221482199.2 2022-06-13
CN202221482199.2U CN217778284U (zh) 2022-06-13 2022-06-13 双层车辆的空调系统及双层车辆

Publications (1)

Publication Number Publication Date
WO2023241095A1 true WO2023241095A1 (zh) 2023-12-21

Family

ID=83934714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078409 WO2023241095A1 (zh) 2022-06-13 2023-02-27 双层车辆的空调系统及双层车辆

Country Status (2)

Country Link
CN (1) CN217778284U (zh)
WO (1) WO2023241095A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217778284U (zh) * 2022-06-13 2022-11-11 比亚迪股份有限公司 双层车辆的空调系统及双层车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001542A (ja) * 2005-06-27 2007-01-11 Denso Corp 車両用空調装置
CN202806296U (zh) * 2012-08-27 2013-03-20 比亚迪股份有限公司 一种双层大巴的空调风道
CN202827039U (zh) * 2012-08-27 2013-03-27 长沙市比亚迪汽车有限公司 一种双层大巴的空调风道
CN204774487U (zh) * 2015-06-02 2015-11-18 中联重机股份有限公司 空调过渡分配风道及具有其的空调系统和拖拉机
CN217778284U (zh) * 2022-06-13 2022-11-11 比亚迪股份有限公司 双层车辆的空调系统及双层车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001542A (ja) * 2005-06-27 2007-01-11 Denso Corp 車両用空調装置
CN202806296U (zh) * 2012-08-27 2013-03-20 比亚迪股份有限公司 一种双层大巴的空调风道
CN202827039U (zh) * 2012-08-27 2013-03-27 长沙市比亚迪汽车有限公司 一种双层大巴的空调风道
CN204774487U (zh) * 2015-06-02 2015-11-18 中联重机股份有限公司 空调过渡分配风道及具有其的空调系统和拖拉机
CN217778284U (zh) * 2022-06-13 2022-11-11 比亚迪股份有限公司 双层车辆的空调系统及双层车辆

Also Published As

Publication number Publication date
CN217778284U (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
CN105946884B (zh) 一种车辆用送风系统
WO2023241095A1 (zh) 双层车辆的空调系统及双层车辆
CN202038315U (zh) 一种高速列车用外接式变截面均匀送风系统
US20100242513A1 (en) Air conditioner of track system vehicle
WO2022037304A1 (zh) 一种轨道交通车辆用空调风道
CN202213585U (zh) 高速轨道车辆空调通风系统
CN201914054U (zh) 一种司机室风道系统
CN103158730A (zh) 城际动车组用空调风道系统
CN107757642B (zh) 一种高度集成的多功能司机室空调通风系统
WO2019144538A1 (zh) 一种双层列车车厢和列车
CN110126864A (zh) 一种低噪声低静压轨道车辆空调系统
WO2022257445A1 (zh) 一种轨道车辆车顶结构
JP4729209B2 (ja) 鉄道車両用空調システム
JP2009012527A (ja) 鉄道車両
CN201300857Y (zh) 高吸力风机风道系统
CN106184251A (zh) 一种送风装置
CN102180179A (zh) 一种高速列车用外接式变截面均匀送风系统
CN216546168U (zh) 一种车厢送风系统及轨道车辆
CN212373110U (zh) 车辆送风结构和汽车
WO2020012627A1 (ja) 軌条車両
CN103879423A (zh) 低地板轻轨车辆采暖通风及空调系统
CN208665188U (zh) 风道分配箱、双层风道系统和双层车辆
CN216943065U (zh) 一种多厢式轨道游览车的空调风道结构
CN113830116A (zh) 一种车厢送风系统及轨道车辆
CN216424012U (zh) 一种驻车空调室内机及驻车空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822667

Country of ref document: EP

Kind code of ref document: A1