WO2023238654A1 - 光測定装置 - Google Patents

光測定装置 Download PDF

Info

Publication number
WO2023238654A1
WO2023238654A1 PCT/JP2023/019148 JP2023019148W WO2023238654A1 WO 2023238654 A1 WO2023238654 A1 WO 2023238654A1 JP 2023019148 W JP2023019148 W JP 2023019148W WO 2023238654 A1 WO2023238654 A1 WO 2023238654A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
optical path
optical
wavelength swept
Prior art date
Application number
PCT/JP2023/019148
Other languages
English (en)
French (fr)
Inventor
拓馬 横山
寿一 長島
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2023238654A1 publication Critical patent/WO2023238654A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/08Beam switching arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity

Definitions

  • the present disclosure relates to an optical measurement device.
  • Wavelength sweep spectroscopy is known as one of the methods for measuring optical properties.
  • a wavelength-sweeping spectrometer generates wavelength-swept light whose wavelength changes over time, and irradiates the object to be inspected.
  • the wavelength swept light is a pulse or pulse train in which time and wavelength have a one-to-one relationship. Then, the wavelength-swept light is irradiated onto the inspection target, and the temporal waveform of the light obtained is detected by the light receiver.
  • the output waveform of the optical receiver represents a spectrum whose time axis corresponds to wavelength.
  • Spectroscopic analysis is classified into transmission type, in which the light transmitted through the object is used as object light, and reflection type, in which reflected light is used as object light.
  • the reflective type is suitable for measuring objects with high reflectance, but the optical information obtained is limited to information near the surface of the object. Therefore, it cannot be said to have sufficient accuracy when measuring objects such as precision industrial products, specimens collected from animals and plants, substances ingested by humans, and liquids and gases manufactured in production plants.
  • Patent Document 1 discloses a transmission type product inspection device.
  • This product inspection device includes an irradiation optical system that irradiates the surface of a product (inspection target) with pulsed light, and a light receiver (photodetector) that is provided on the back side of the product and receives the light that has passed through the product.
  • FIG. 1 is a diagram showing a wavelength sweeping type spectrometer 10.
  • the spectroscopic device 10 includes a light source device 20, a spectroscopic head 30, and an arithmetic processing device 40.
  • the light source device 20 generates wavelength swept light L1.
  • the wavelength swept light L1 is guided to the spectroscopic head 30.
  • the irradiation optical system 31 of the spectroscopic head 30 irradiates the sample 2 with the wavelength swept light L1.
  • the first light receiver 32 detects transmitted light (object light) L2 obtained as a result of irradiating the sample 2 with the wavelength swept light L1.
  • a part of the wavelength swept light L1 is branched as the reference light L3.
  • the second light receiver 33 measures the reference light L3.
  • the first detection signal S1 generated by the first light receiver 32 and the second detection signal S2 generated by the second light receiver 33 are supplied to the arithmetic processing device 40.
  • the object light L2 and the reference light L3 inherit the one-to-one time-wavelength correspondence of the wavelength swept light L1. Therefore, the time waveform of the first detection signal S1 can be converted into the spectrum of the object light L2 by converting the time axis into a wavelength.
  • the time waveform of the second detection signal S2 can be converted into the spectrum of the reference light L3 by converting the time axis into a wavelength.
  • the arithmetic processing unit 40 calculates the ratio of each corresponding wavelength of the object light L2 to the reference light L3, and measures the spectral characteristics (reflectance) of the sample 2.
  • the product to be measured (hereinafter also referred to as the product) has low light transmittance and high diffusivity
  • the light receiver is designed and selected assuming low-power incident light.
  • a pulsed laser with high peak power is used to increase the power of transmitted light.
  • the products When inspecting industrially mass-produced products, the products are automatically transported at high speed by a transport device, so there is a possibility that the products may fall off the transport machine or become misaligned. As a result, a situation may arise where the product is not present at a measurement position where the product should be present. In this situation, the wavelength swept light L1, which is a pulsed laser beam irradiated to the measurement position, directly hits the light receiver without passing through the product.
  • the wavelength swept light L1 which is a pulsed laser beam irradiated to the measurement position
  • the receiver is designed and selected assuming low-power incident light, so if a high peak power laser beam is directly incident, the power will exceed the allowable power of the receiver and cause a decrease in reliability. There is a risk that this may occur.
  • the product conveyor there may be gaps between the products. In such a case, there is a possibility that the laser beam may enter the light receiver through the gap.
  • elements having an amplification mechanism within the element such as an avalanche photodiode
  • have a low damage threshold For example, the damage threshold of the InGaAs avalanche photodetector APD430C manufactured by THORLABS in the United States is 1 mW, and the power of the laser used in this spectroscopic method is sufficiently larger than this.
  • the present disclosure has been made in view of such circumstances, and one exemplary objective of a certain aspect thereof is to provide a light measurement device that can protect a light receiver.
  • An optical measurement device includes a light source device that generates wavelength swept light, an irradiation optical system that irradiates a measurement position with the wavelength swept light, and a transport device that transports a measurement target so as to pass through the measurement position. , a light receiving device that measures the object light that is the wavelength swept light transmitted through the measurement target; an optical path switching element that is provided in the optical path of the wavelength swept light and switches the optical path of the wavelength swept light; A controller that controls the switching element.
  • This optical measurement device consists of a light source device that generates wavelength-swept light, an irradiation optical system that irradiates the measurement position with the wavelength-swept light, a transport device that transports the measurement object so that it passes through the measurement position, and a transmission device that transmits the measurement object.
  • a light-receiving device that measures the object light, which is wavelength-swept light; a light-shielding element that is installed in the optical path of the wavelength-swept light and can switch between transmitting and blocking the wavelength-swept light;
  • a controller for controlling the.
  • the light receiver can be protected.
  • FIG. 1 is a diagram showing a wavelength sweep type spectrometer.
  • 1 is a diagram showing an optical measurement device according to Embodiment 1.
  • FIG. 3 is a diagram showing wavelength swept light.
  • FIG. 3 is a diagram illustrating spectroscopy performed by the optical measurement device of FIG. 2;
  • FIG. 7 is a diagram showing an optical measurement device according to modification example 1.1.
  • FIG. 7 is a diagram showing an optical measurement device according to modification example 1.2.
  • FIG. 7 is a diagram showing an optical measurement device according to modification example 1.3.
  • FIG. 7 is a diagram showing an optical measurement device according to modification example 1.4.
  • FIG. 3 is a diagram showing an optical measurement device according to a second embodiment.
  • FIG. 7 is a diagram showing an optical measurement device according to modification example 2.1.
  • An optical measurement device includes: a light source device that generates wavelength swept light; an irradiation optical system that irradiates the measurement position with the wavelength swept light; and a transport device that transports the measurement target so as to pass through the measurement position.
  • a light receiving device that measures the object light, which is the wavelength swept light that has passed through the measurement target, an optical path switching element that is provided in the optical path of the wavelength swept light and switches the optical path of the wavelength swept light, and an optical path switching element that switches the optical path of the wavelength swept light depending on the presence or absence of the measurement target.
  • An optical measurement device includes: a light source device that generates wavelength swept light; an irradiation optical system that irradiates the measurement position with the wavelength swept light; and a transport device that transports the measurement target so as to pass through the measurement position.
  • a light-receiving device that measures the object light, which is the wavelength-swept light that has passed through the measurement target; a light-shielding element that is installed in the optical path of the wavelength-swept light and can switch between transmitting and blocking the wavelength-swept light; and a controller for controlling the light shielding element.
  • the optical path of the wavelength-swept light can be diverted from the normal optical path toward the receiver, or a light blocking element can be activated to prevent the wavelength swept light from directly entering the receiver. .
  • the optical path switching element may include any one of a galvanometer mirror, a MEMS (Micro Electro Mechanical Systems) mirror, a piezo-driven mirror, a polygon mirror, and a fiber switch.
  • a galvanometer mirror a MEMS (Micro Electro Mechanical Systems) mirror
  • a piezo-driven mirror a piezo-driven mirror
  • a polygon mirror a fiber switch.
  • the optical measurement device may further include an aperture provided on the output end side of the optical path switching element. As a result, the light diverted from the normal optical path is blocked by the aperture, so that it can be prevented from becoming stray light within the optical measurement device.
  • the aperture may be a pinhole, a slit, or a knife edge.
  • the light shielding element may include either a movable shutter or a variable attenuator.
  • the variable attenuator may include a liquid crystal shutter, an acousto-optic modulator, or an electro-optic modulator.
  • the light blocking element does not need to completely block the wavelength swept light, but only needs to be able to reduce the amount of light to a level below the damage threshold of the light receiver.
  • each member described in the drawings may be scaled up or down as appropriate for ease of understanding. Furthermore, the dimensions of multiple members do not necessarily represent their size relationship, and even if a member A is drawn thicker than another member B on a drawing, member A may be drawn thicker than member B. It may be thinner than that.
  • FIG. 2 is a diagram showing the optical measurement device 100A according to the first embodiment.
  • the optical measuring device 100A includes a light source device 200, a spectroscopic head 300, and an arithmetic processing device 400.
  • the optical measuring device 100A tests a product (sample 2) that is industrially mass-produced.
  • the light source device 200 generates wavelength swept light L1 whose wavelength changes over time.
  • time and wavelength are associated in a one-to-one relationship. This means that the wavelength swept light L1 "has wavelength uniqueness.”
  • the light source device 200 includes a pulsed light source 202 and a stretcher 210.
  • the pulsed light source 202 emits broadband pulsed light L1a having a continuous broadband spectrum.
  • the spectrum of the broadband pulsed light L1a is continuous over a wavelength range of at least 10 nm, preferably 50 nm, and more preferably 100 nm, for example in the range of 900 nm to 1300 nm.
  • the width of the wavelength range of the broadband pulsed light L1a should just cover the wavelength range necessary for spectroscopy.
  • the stretcher 210 stretches the broadband pulsed light L1a emitted by the pulsed light source 202 on the time axis to generate wavelength swept light L1.
  • FIG. 3 is a diagram showing the wavelength swept light L1.
  • the upper part of FIG. 3 shows the intensity (time waveform) I WS (t) of the wavelength swept light L1, and the lower part shows the temporal change in the wavelength ⁇ of the wavelength swept light L1.
  • the wavelength swept light L1 is one pulsed light, and the dominant wavelength is ⁇ 1 at the leading edge, and the dominant wavelength is ⁇ n at the trailing edge, and the wavelength changes from ⁇ 1 to ⁇ within one pulse. n changes over time.
  • the wavelength swept light L1 is a positive chirped pulse ( ⁇ 1 > ⁇ n ) whose frequency increases with time, in other words, whose wavelength decreases with time.
  • the wavelength swept light L1 may be a negative chirped pulse whose wavelength becomes longer with time ( ⁇ 1 ⁇ n ). As described later, the wavelength swept light L1 may be a pulse train consisting of temporally isolated pulses (wave packets) for each wavelength.
  • the spectroscopic head 300 includes an irradiation optical system 310, a light receiving device 320, a transport device 330, an optical path switching element 340, an aperture 342, and a controller 350.
  • the irradiation optical system 310 receives the wavelength swept light L1 from the light source device 200 and irradiates it to a measurement position through which the sample 2 to be measured should pass.
  • the optical path switching element 340 is configured as a part of the irradiation optical system 310, and the irradiation optical system 310 includes a beam splitter 314, mirrors 316 and 318, and the optical path switching element 340.
  • the irradiation optical system 310 may include a mirror, a lens, etc. that are not shown.
  • the beam splitter 314 splits the wavelength swept light L1 into two light beams.
  • One luminous flux is the measurement light irradiated onto the sample 2, and the other luminous flux is the reference light L3.
  • Mirror 318 directs the measurement light toward optical path switching element 340 .
  • the optical path switching element 340 can switch between a first state ⁇ 1 and a second state ⁇ 2. , the light beam is directed toward a second optical path OP2 that is shifted from the first optical path OP1.
  • a galvano mirror, a MEMS (Micro Electro Mechanical Systems) mirror, a polygon mirror, a piezo-driven mirror, or the like can be used as the optical path switching element 340.
  • An aperture 342 is provided between the optical path switching element 340 and the measurement position 4.
  • the aperture 342 is an iris, a pinhole, a slit, a knife edge (slit with one edge), etc., and opens the first optical path OP1 and blocks light from the second optical path OP2.
  • the irradiation optical system 310 may further include a collimator that collimates the wavelength swept light L1 emitted from the light source device 200 at a stage before the beam splitter 314.
  • the transport device 330 transports the sample 2 to be measured so as to pass through the measurement position 4.
  • the configuration and shape of the transport device 330 are not particularly limited.
  • the transport device 330 is of a disk rotating type and includes a plurality of sample holders 332 arranged around the disk.
  • a mounter (not shown) sequentially mounts samples 2 before inspection onto the sample holder 332, and sequentially takes out samples 2 that have been inspected.
  • the transport device 330 and the mounter are operating normally, the sample 2 is mounted on all the sample holders 332.
  • the light receiving device 320 includes a first light receiver 322 and a second light receiver 324.
  • the first light receiver 322 detects object light L2 obtained by irradiating the sample 2 with the wavelength swept light L1.
  • the object light L2 is light that is the wavelength swept light L1 that has passed through the sample 2.
  • the second light receiver 324 detects the reference light L3.
  • the output signals of the first light receiver 322 and the second light receiver 324 are converted into digital signals D1 and D2 by an A/D converter (not shown).
  • the time waveform I OBJ (t) of the object light L2 indicated by the digital signal D1 and the time waveform I REF (t) of the reference light L3 indicated by the digital signal D2 are taken into the arithmetic processing device 400.
  • the processing unit 400 converts the time waveform I OBJ (t) of the object light L2 into a frequency domain spectrum I OBJ ( ⁇ ).
  • the arithmetic processing unit 400 also calculates the reference spectrum I REF ( ⁇ ) by converting the temporal waveform I REF (t) of the reference light L3 into a spectrum and appropriately scaling the spectrum.
  • the processing of the arithmetic processing device 400 is not particularly limited, as an example , the arithmetic processing device 400 calculates the transmittance T( ⁇ ) can be calculated.
  • T( ⁇ ) I OBJ ( ⁇ )/I REF ( ⁇ )
  • FIG. 4 is a diagram illustrating spectroscopy by the optical measurement device 100A of FIG. 2.
  • the time t and the wavelength ⁇ correspond one to one, so the time waveform I REF (t) can be converted into the frequency domain spectrum I REF ( ⁇ ). I can do it.
  • the time waveform I OBJ (t) of the object light L2 also has a one-to-one correspondence between the time t and the wavelength ⁇ . Therefore, the processing unit 400 can convert the waveform I OBJ (t) of the object light L2 indicated by the output of the light receiving device 320 into the spectrum I OBJ ( ⁇ ) of the object light L2.
  • the arithmetic processing unit 400 calculates the transmission spectrum T( ⁇ ) of the object OBJ based on the ratio I OBJ ( ⁇ )/I REF ( ⁇ ) of the two spectra I OBJ ( ⁇ ) and I REF ( ⁇ ). be able to.
  • the wavelength ⁇ varies linearly with time t according to a linear function.
  • the processing in the arithmetic processing device 400 is not limited to this.
  • the variable t of this time waveform T(t) The transmission spectrum T( ⁇ ) may be calculated by converting ⁇ to ⁇ .
  • Controller 350 monitors transport device 330 and determines the presence or absence of sample 2 in each sample holder 332.
  • the optical path switching element 340 is then controlled depending on the presence or absence of the sample 2.
  • the controller 350 includes a position sensor 352 and a calculation section 356.
  • the position sensor 352 is, for example, a rotary encoder, and detects the position (rotation angle) of the transport device 330.
  • the position information (stock information) of the sample holder 332 without the sample 2 is stored in advance in the calculation unit 356.
  • This inventory information can be acquired, for example, from a mounter that mounts the sample 2 on the sample holder 332 or from a higher-level controller that controls the mounter. Alternatively, this inventory information may be manually input by a worker operating the optical measurement device 100. Alternatively, a test sequence is set up in which a plurality of samples 2 are inspected as a unit (lot), and during the test of one lot, all the sample holders 332 are filled, and at the break between lots, the sample holders 332 are In the case where the sample holder 332 becomes empty, the sample 2 may not be present in the sample holder 332 during the period between lots.
  • the calculation unit 356 compares the measured value of the position sensor 352 with the inventory information indicating the position of the sample holder 332 without the sample 2, and determines the presence or absence of the sample at the measurement position 4.
  • the calculation unit 356 controls the optical path switching element 340 based on the determination result of the presence or absence of the sample 2 at the measurement position 4.
  • the calculation unit 356 sets the optical path switching element 340 to the first state ⁇ 1 during a period when the sample holder 332 in which the sample 2 is present passes through the measurement position 4. On the contrary, the calculation unit 356 switches the optical path switching element 340 to the second state ⁇ 2 during the period when the sample holder 332, in which the sample 2 is not present, passes the measurement position 4.
  • the optical path switching element 340 may be in either the first state ⁇ 1 or the second state ⁇ 2. Basically, the probability that sample 2 is mounted on sample holder 332 is higher, and the probability of occurrence of sample holder 332 without sample 2 is not so high. Furthermore, since the optical path switching element 340 has a limited lifespan, it is preferable to reduce the number of times the optical path switching element 340 is switched. Therefore, it is preferable that the controller 350 keeps the optical path switching element 340 in the first state ⁇ 1 during the period when the structure (disk) between the sample holders 332 passes through the measurement position 4.
  • the above is the basic configuration and operation of the optical measurement device 100A.
  • the optical path switching element 340 diverts the optical path of the wavelength swept light L1 from the regular optical path OP1. Thereby, the high-intensity wavelength swept light L1 that is not attenuated by the sample 2 can be prevented from directly entering the first light receiver 322, and the first light receiver 322 can be protected.
  • the beam diameter of the wavelength swept light L1 in the wavelength swept light L1 was set to 0.8 mm (1/e 2 diameter).
  • the aperture 342 a slit with an opening width of 2 mm was used.
  • the retraction distance that is, the distance between the first optical path OP1 and the second optical path OP2 on the aperture 342, was set to 3 mm.
  • the intensity of light incident on the first light receiver 322 was measured in a state where the sample 2 was not present in the sample holder 332.
  • the incident intensity of the first light receiver 322 is 58 mW
  • the incident intensity of the first light receiver 322 is 12 ⁇ W, which can be reduced to 0.021%. can. This is a value well below the allowable input (damage threshold) of the first light receiver 322.
  • the retraction distance can be determined experimentally by considering the damage threshold of the light receiver 322, the beam diameter, the transport frequency, and the performance (speed) of the optical path switching element 340.
  • Embodiment 1 Next, a modification of Embodiment 1 will be described.
  • FIG. 5 is a diagram showing an optical measurement device 100Aa according to modification example 1.1.
  • the aperture 342 in FIG. 2 is omitted.
  • the second optical path OP2 when the optical path switching element 340 is in the second state ⁇ 2 is directed toward the retracted position of a portion of the structure of the transport device 330 other than the sample holder 332. Others are the same as in FIG. 2.
  • FIG. 6 is a diagram showing an optical measuring device 100Ab according to modification example 1.2.
  • the optical path switching element 340 is a part of the irradiation optical system 310, but in this modification 1.2, the position of the optical path switching element 340 is different from that in FIG. Specifically, the optical path switching element 340 is provided closer to the first light receiver 322 than the measurement position 4 . Other than that, it is the same as FIG. 2.
  • FIG. 7 is a diagram showing an optical measuring device 100Ac according to modification example 1.3.
  • the structure of the conveying device 330c is different from that in FIG. 2.
  • the transport device 330c is similar to the transport device 330 of FIG. 2 in that it includes a rotating disk, but does not include the sample holder 332 and can support the sample 2 at any position on the circumference using a vacuum suction mechanism. is possible.
  • the controller 350 compares the measured value of the position sensor 352 with the position information of the sample holder without a sample stored in the calculation unit 356 in advance, and estimates whether the sample 2 is present at the measurement position 4. Then, during the period when the sample 2 is present at the measurement position 4, the optical path switching element 340 is set to the first state ⁇ 1, and during the period when the sample 2 is not present at the measurement position 4, the optical path switching element 340 is switched to the second state ⁇ 2.
  • the aperture 342 in FIG. 7 may be omitted.
  • the wavelength swept light L1 guided through the second optical path OP2 propagates unobstructed by the aperture 342, but does not enter the first light receiver 322, so the purpose of protecting the first light receiver 322 cannot be achieved. It will be done. If stray light becomes a problem, appropriate measures against stray light can be taken.
  • the second optical path OP2 may be set toward the disk as shown in FIG.
  • FIG. 8 is a diagram showing an optical measuring device 100Ad according to modification example 1.4.
  • an optical path switching element 340d is provided between the light source device 200 and the spectroscopic head 300.
  • they are coupled with an optical fiber (outgoing fiber) 258, and the optical path switching element 340d is connected to the outgoing fiber 258.
  • the optical path switching element 340d is a fiber switching device, and one output of the fiber switching device becomes a first optical path OP1 and is connected to the spectroscopic head 300, and the other output becomes a second optical path OP2.
  • FIG. 8 shows a specific configuration example of the light source device 200.
  • the light source device 200 includes a pulsed light source 202, a wavelength selection section 220, and a stretcher 210.
  • the pulsed light source 202 emits broadband pulsed light L1a having a broadband continuous spectrum.
  • the spectrum of the broadband pulsed light L1a is continuous over a wavelength range of at least 10 nm, preferably 50 nm, and more preferably 100 nm, for example in the range of 900 nm to 1300 nm.
  • the width of the wavelength range of the broadband pulsed light L1a should just cover the wavelength range necessary for spectroscopy.
  • the pulsed light source 202 may include an ultrashort pulse laser and a nonlinear element.
  • ultrashort pulse lasers include gain switch lasers, microchip lasers, fiber lasers, and the like.
  • the nonlinear element further widens the spectral width of the ultrashort pulses generated by the ultrashort pulse laser through nonlinear phenomena.
  • a fiber is suitable as the nonlinear element, and for example, a photonic crystal fiber or other nonlinear fiber can be used. Although it is preferable to use a single mode as the fiber mode, a multimode fiber can also be used as long as it exhibits sufficient nonlinearity.
  • pulsed light source 202 other broadband pulsed light sources such as an SLD (Superluminescent Diode) light source may be used.
  • SLD Superluminescent Diode
  • the broadband pulsed light L1a output from the nonlinear element has a pulse width on the order of femtoseconds to nanoseconds.
  • the broadband pulsed light L1a generated by the pulsed light source 202 is once radiated into free space.
  • the wavelength selection unit 220 selects a wavelength band to be used for measurement from the broadband pulsed light L1a, and removes unused wavelength bands.
  • the wavelength selection unit 220 includes a lens 222, a wavelength selection filter 224, and a condenser lens 226.
  • the lens 222 collimates the broadband pulsed light L1a.
  • the wavelength selection filter 224 transmits wavelength bands used for measurement and removes unused wavelength bands by reflection or absorption.
  • the condenser lens 226 condenses the light transmitted through the wavelength selection filter 224 onto the input end of the splitter 230 .
  • the stretcher 210 receives the broadband pulsed light L1a and converts it into wavelength swept light L1.
  • Stretcher 210 includes a divider 230, a delay line 240, and a coupler 250.
  • the splitter 230 includes an input side fiber 238 and a first AWG 232.
  • the first AWG 232 has an input waveguide 234 and a plurality of n output waveguides 236 (n ⁇ 2).
  • the first AWG 232 receives the broadband pulsed light L1a via the input fiber 238.
  • the light guided through the input waveguide 234 is branched into n output waveguides 236 according to the wavelength.
  • the delay line 240 includes a plurality of n fibers 242_1 to 242_n. Fibers 242_1-242_n have different lengths and provide different delays to the beams split by splitter 230.
  • the broadband pulsed light L1a before division is a positive chirp pulse (up-chirp pulse) whose frequency increases (wavelength decreases) with time.
  • the leading edge of the pulse contains a component with the longest wavelength ⁇ 1 and the trailing edge of the pulse contains a component with the shortest wavelength ⁇ n .
  • the fibers 242_1 to 242_n do not need to have different group delay characteristics for each wavelength, and the same fiber (fiber with the same core/cladding material) can be used.
  • the fiber 242 can be a multimode fiber, which is advantageous in that unintended nonlinear optical effects can be prevented.
  • Coupler 250 recombines the plurality of beams given different delays by delay line 240.
  • coupler 250 includes a second AWG 252 and an exit fiber 258.
  • the second AWG 252 has n input waveguides 254 and an output waveguide 256.
  • the n input waveguides 254 are connected to n fibers 242_1 to 242_n.
  • the second AWG 252 combines n beams guided through n input waveguides 254 and outputs the combined beams to an output waveguide 256 .
  • the input end of the output fiber 258 is connected to the output waveguide 256 .
  • the output side fiber 258 extends to the spectroscopic head 300, and the output end of the output side fiber 258 is connected to the spectroscopic head 300.
  • the wave packets of wavelengths ⁇ 1 to ⁇ n are separated in time, and the wavelength swept light L1 is divided into a pulse train containing n pulses corresponding to the wavelengths ⁇ 1 to ⁇ n . Become.
  • the spectroscopic head 300 includes a controller 350.
  • the controller 350 compares the measured value of the position sensor 352 with the position information of the sample holder without a sample stored in the calculation unit 356 in advance, determines the presence or absence of the sample 2, and switches the optical path switching element 340d based on the determination result. control.
  • FIG. 9 is a diagram showing an optical measurement device 100B according to the second embodiment.
  • the optical measuring device 100B includes a light shielding element 360 instead of the optical path switching element 340 in FIG.
  • the light shielding element 360 is provided in the optical path of the wavelength swept light L1, and is configured to be switchable between the first state ⁇ 1 and the second state ⁇ 2.
  • the light blocking element 360 transmits the wavelength swept light L1 in the first state ⁇ 1 (transmission state), and blocks the object light L2 in the second state ⁇ 2.
  • Light blocking also includes light reduction.
  • variable attenuator examples include a liquid crystal shutter, an acousto-optic modulator (AOM), and an electro-optic modulator (EOM).
  • the controller 350 controls the state of the light shielding element 360. Control by the controller 350 is the same as in the first embodiment.
  • the light blocking element 360 blocks the optical path of the wavelength swept light L1.
  • the high-intensity wavelength swept light L1 that is not attenuated by the sample 2 can be prevented from directly entering the first light receiver 322, and the first light receiver 322 can be protected.
  • FIG. 10 is a diagram showing an optical measuring device 100Ba according to modification example 2.1.
  • the light shielding element 360 is provided on the path of the wavelength swept light L1 and closer to the first light receiver 322 than the measurement position 4.
  • the transport device 330c in FIG. 7 may be used.
  • a light shielding element 360 may be provided between the light source device 200 and the spectroscopic head 300.
  • Embodiment 1 a modification related to both Embodiment 1 and Embodiment 2 will be described.
  • the conveying device 330 is not limited to a disc-shaped one, and for example, a roller conveyor may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

受光器を保護可能な光測定装置を提供する。 光源装置200は、波長掃引光L1を発生する。照射光学系310は、波長掃引光L1を測定位置4に照射する。搬送装置330は、測定位置4を通過するように試料2を搬送する。受光装置320は、試料2を透過した波長掃引光である物体光L2を測定する。光路切替素子340は、波長掃引光L1の光路に設けられ、波長掃引光の光路を切り替える。コントローラ350は、測定対象2の有無に応じて、光路切替素子340を制御する。

Description

光測定装置
 本開示は、光測定装置に関する。
 光学特性の測定手法のひとつとして、波長掃引型の分光法が知られている。波長掃引型の分光器は、波長が経時的に変化する波長掃引光を生成し、検査対象に照射する。波長掃引光は、時間と波長が1対1の関係にあるパルスあるいはパルス列である。そして波長掃引光を検査対象に照射して得られる光の時間波形を受光器によって検出する。受光器の出力波形は、時間軸が波長に対応するスペクトルを表す。
 分光解析は、対象物の透過光を物体光とする透過型と、反射光を物体光とする反射型に分類される。反射型は、反射率が高い対象物の測定に適しているが、得られる光学的情報が、対象物の表面付近のものに限定される。したがって、精密な工業製品、動植物から採取した検体、人が体内に摂取する物、生産プラントで製造される液体や気体などを対象物とする測定では、十分な精度を有するとはいえない。
 透過型は、対象物の表面のみでなく深い部分を含めた光学的特性を得ることができるため、食品や飲料(以下、飲食品と総称する)などを対象物とする場合に適している。特許文献1には、透過型の製品検査装置が開示される。この製品検査装置は、製品(検査対象)の表面にパルス光を照射する照射光学系と、製品の裏面側に設けられ、製品を透過した光を受光する受光器(フォトディテクタ)を備える。
 図1は、波長掃引型の分光装置10を示す図である。分光装置10は、光源装置20、分光ヘッド30、演算処理装置40を備える。
 光源装置20は、波長掃引光L1を生成する。波長掃引光L1は、分光ヘッド30に導かれる。分光ヘッド30の照射光学系31は、波長掃引光L1を試料2に照射する。第1受光器32は、波長掃引光L1を試料2に照射した結果得られる透過光(物体光)L2を検出する。
 照射光学系31において、波長掃引光L1の一部が参照光L3として分岐される。第2受光器33は、参照光L3を測定する。
 第1受光器32が生成する第1検出信号S1と、第2受光器33が生成する第2検出信号S2は、演算処理装置40に供給される。物体光L2および参照光L3は、波長掃引光L1の時間-波長の1対1の対応関係を引き継いでいる。したがって、第1検出信号S1の時間波形は、時間軸を波長に換算することにより、物体光L2のスペクトルに変換できる。同様に、第2検出信号S2の時間波形は、時間軸を波長に換算することにより、参照光L3のスペクトルに変換できる。演算処理装置40は、参照光L3に対する物体光L2の対応する波長ごとの割合を計算し、試料2の分光特性(反射率)を測定する。
特開2020-159973号公報
 本発明者は、透過型の分光装置について検討した結果、以下の課題を認識するに至った。
 測定対象製品(以下製品ともいう)が、光の透過性が低くかつ拡散性の高い場合、受光器は、低パワーの入射光を想定して設計、選定されている。一方、光源装置としては、透過光のパワーを高めるため、高ピークパワーのパルスレーザを用いる。
 工業的に大量生産される製品を検査する場合、製品は搬送装置によって高速に自動運搬されるため、製品が搬送機から脱落したり、位置ズレを起こす可能性がある。その結果、製品が存在すべき測定位置に、製品が存在しない状況が生じうる。この状況では、測定位置に照射されたパルスレーザビームである波長掃引光L1は、製品を介さずに受光器を直射する。
 上述したように、受光器は低パワーの入射光を想定して設計、選定されるため、高ピークパワーのレーザビームが直接入射すると、受光器の許容パワーを超えて、信頼性低下の原因となるおそれがある。
 また、製品の搬送機によっては、製品と製品の間に隙間が生じているものもある。そのような場合は、その隙間からレーザビームが受光器に入射するおそれがある。
 特に、特にアバランシェフォトダイオードのような素子内に増幅機構を持つ素子は、損傷閾値が低いことが知られている。たとえば、米国THORLABS社のInGaAsアバランシェフォトディテクタAPD430Cの損傷閾値は1mWであり、本分光方式で用いるレーザーのパワーはこれより十分大きい。
 本開示は係る状況に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、受光器を保護可能な光測定装置の提供にある。
 本開示のある態様の光測定装置は、波長掃引光を発生する光源装置と、波長掃引光を測定位置に照射する照射光学系と、測定位置を通過するように測定対象を搬送する搬送装置と、測定対象を透過した波長掃引光である物体光を測定する受光装置と、波長掃引光の光路に設けられ、波長掃引光の光路を切り替える光路切替素子と、測定対象の有無に応じて、光路切替素子を制御するコントローラと、を備える。
 本開示の別の態様もまた、光測定装置である。この光測定装置は、波長掃引光を発生する光源装置と、波長掃引光を測定位置に照射する照射光学系と、測定位置を通過するように測定対象を搬送する搬送装置と、測定対象を透過した波長掃引光である物体光を測定する受光装置と、波長掃引光の光路に設けられ、波長掃引光の透過、不透過を切り換え可能な遮光素子と、測定対象の有無に応じて、遮光素子を制御するコントローラと、を備える。
 なお、以上の構成要素を任意に組み合わせたもの、構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明あるいは本開示の態様として有効である。さらに、この項目(課題を解決するための手段)の記載は、本発明の欠くべからざるすべての特徴を説明するものではなく、したがって、記載されるこれらの特徴のサブコンビネーションも、本発明たり得る。
 本開示のある態様によれば、受光器を保護できる。
波長掃引型の分光装置を示す図である。 実施形態1に係る光測定装置を示す図である。 波長掃引光を示す図である。 図2の光測定装置による分光を説明する図である。 変形例1.1に係る光測定装置を示す図である。 変形例1.2に係る光測定装置を示す図である。 変形例1.3に係る光測定装置を示す図である。 変形例1.4に係る光測定装置を示す図である。 実施形態2に係る光測定装置を示す図である。 変形例2.1に係る光測定装置を示す図である。
(実施形態の概要)
 本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。またこの概要は、考えられるすべての実施形態の包括的な概要ではなく、実施形態の欠くべからざる構成要素を限定するものではない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
 一実施形態に係る光測定装置は、波長掃引光を発生する光源装置と、波長掃引光を測定位置に照射する照射光学系と、測定位置を通過するように測定対象を搬送する搬送装置と、測定対象を透過した波長掃引光である物体光を測定する受光装置と、波長掃引光の光路に設けられ、波長掃引光の光路を切り替える光路切替素子と、測定対象の有無に応じて、光路切替素子を制御するコントローラと、を備える。
 一実施形態に係る光測定装置は、波長掃引光を発生する光源装置と、波長掃引光を測定位置に照射する照射光学系と、測定位置を通過するように測定対象を搬送する搬送装置と、測定対象を透過した波長掃引光である物体光を測定する受光装置と、波長掃引光の光路に設けられ、波長掃引光の透過、不透過を切り換え可能な遮光素子と、測定対象の有無に応じて、遮光素子を制御するコントローラと、を備える。
 これらの装置では、測定対象の有無を監視することにより、光源装置から受光装置の受光器へ向かう波長掃引光の光路上に存在しない状態、言い換えると、波長掃引光が直接、受光器に入射しうる状態を検出することができる。そして、この状態を検出すると、波長掃引光の光路を、受光器に向かう正規の光路から逸らし、または遮光素子を有効化することで、受光器に、波長掃引光が直接入射するのを防止できる。
 一実施形態において、光路切替素子は、ガルバノミラー、MEMS(Micro Electro Mechanical Systems)ミラー、ピエゾ駆動ミラー、ポリゴンミラー、ファイバ切替器のいずれかを含んでもよい。
 一実施形態において、光測定装置は、光路切替素子の出射端側に設けられるアパーチャをさらに備えてもよい。これにより、正規の光路から逸らされた光が、アパーチャによって遮られるため、光測定装置内で迷光となるのを防止できる。
 一実施形態において、アパーチャは、ピンホールであってもよいし、スリットまたはナイフエッジであってもよい。
 一実施形態において、遮光素子は、可動式シャッタ、可変式アテネータのいずれかを含んでもよい。一実施形態において、可変式アテネータは、液晶シャッタ、音響光学変調器、電気光学変調器のいずれかを含んでもよい。遮光素子は波長掃引光を完全に遮光する必要はなく、受光器の損傷閾値以下の光量まで減光できればよい。
(実施形態)
 以下、本開示を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、開示を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも開示の本質的なものであるとは限らない。
 図面に記載される各部材の寸法(厚み、長さ、幅など)は、理解の容易化のために適宜、拡大縮小されている場合がある。さらには複数の部材の寸法は、必ずしもそれらの大小関係を表しているとは限らず、図面上で、ある部材Aが、別の部材Bよりも厚く描かれていても、部材Aが部材Bよりも薄いこともあり得る。
(実施形態1)
 図2は、実施形態1に係る光測定装置100Aを示す図である。光測定装置100Aは、光源装置200、分光ヘッド300および演算処理装置400を備える。光測定装置100Aは、工業的に大量生産される製品(試料2)を検査対象とする。
 光源装置200は、波長が経時的に変化する波長掃引光L1を発生する。波長掃引光L1は、時間と波長が一対一の関係で対応付けられる。これを波長掃引光L1は「波長の一意性を有する」という。
 光源装置200は、パルス光源202およびストレッチャ210を含む。パルス光源202は、広帯域な連続スペクトルを有する広帯域パルス光L1aを出射する。広帯域パルス光L1aのスペクトルは、たとえば900nm~1300nmの範囲において、少なくとも10nm、好ましくは50nm、より好ましくは100nmの波長域にわたって連続している。広帯域パルス光L1aの波長域の幅は、分光に必要な波長域をカバーしていればよい。
 ストレッチャ210は、パルス光源202が出射する広帯域パルス光L1aを時間軸上で伸長し、波長掃引光L1を生成する。
 図3は、波長掃引光L1を示す図である。図3の上段は、波長掃引光L1の強度(時間波形)IWS(t)を、下段は波長掃引光L1の波長λの時間変化を示す。この例において、波長掃引光L1は1個のパルス光であり、その前縁部において主波長がλ、後縁部において主波長がλであり、1パルス内で波長がλからλの間で経時的に変化する。この例では、波長掃引光L1は、時間とともに振動数が増加する、言い換えると時間とともに波長が短くなる正のチャープパルス(λ>λ)である。なお、波長掃引光L1は、時間とともに波長が長くなる負のチャープパルスであってもよい(λ<λ)。後述するように、波長掃引光L1は、波長ごとに、時間的に孤立したパルス(波束)からなるパルス列であってもよい。
 図2に戻る。分光ヘッド300は、照射光学系310、受光装置320、搬送装置330、光路切替素子340、アパーチャ342、コントローラ350を備える。
 照射光学系310は、光源装置200から波長掃引光L1を受け、測定対象である試料2が通過すべき測定位置に照射する。本実施形態において、光路切替素子340は、照射光学系310の一部分として構成されており、照射光学系310は、ビームスプリッタ314、ミラー316,318および光路切替素子340を含む。なお照射光学系310は、図示しないミラーやレンズなどを含んでいてもよい。
 ビームスプリッタ314は、波長掃引光L1を、2つの光束に分岐する。一方の光束は、試料2に照射される測定光であり、他方の光束は、参照光L3である。ミラー318は、測定光を、光路切替素子340に向ける。
 光路切替素子340は、第1状態φ1と第2状態φ2が切替可能であり、第1状態φ1において、波長掃引光L1を、測定位置4を通過する第1光路OP1に向け、第2状態φ2において、第1光路OP1からずれた第2光路OP2に向ける。その限りでないが、光路切替素子340としては、ガルバノミラー、MEMS(Micro Electro Mechanical Systems)ミラー、ポリゴンミラー、ピエゾ駆動ミラーなどを用いることができる。
 光路切替素子340と測定位置4の間には、アパーチャ342が設けられる。アパーチャ342は、アイリス、ピンホール、スリット、ナイフエッジ(片エッジのスリット))などであり、第1光路OP1が開口され、第2光路OP2の光を遮蔽する。アパーチャ342を設けることで、第2状態φ2において、波長掃引光L1が迷光となるのを防止できる。
 照射光学系310は、ビームスプリッタ314の前段において、光源装置200から出射される波長掃引光L1をコリメートするコリメータをさらに備えてもよい。
 搬送装置330は、測定対象である試料2を測定位置4を通過するように搬送する。搬送装置330の構成や形状は特に限定されるものではない。本実施形態では、搬送装置330は、円盤回転式であり、円盤の周囲に配置される複数のサンプルホルダ332を有する。図示しないマウンタは、検査前の試料2を順次、サンプルホルダ332にマウントし、また検査済みの試料2を順次、取り出す。搬送装置330およびマウンタが正常に動作している場合、すべてのサンプルホルダ332に、試料2がマウントされる。
 受光装置320は、第1受光器322および第2受光器324を含む。第1受光器322は、波長掃引光L1を試料2に照射して得られる物体光L2を検出する。本実施形態において、物体光L2は、波長掃引光L1が試料2を透過した光である。第2受光器324は、参照光L3を検出する。第1受光器322および第2受光器324の出力信号は、図示しないA/Dコンバータによって、デジタル信号D1,D2に変換される。
 デジタル信号D1が示す物体光L2の時間波形IOBJ(t)およびデジタル信号D2が示す参照光L3の時間波形IREF(t)は、演算処理装置400に取り込まれる。
 波長掃引型の分光法では、波長掃引光L1における時刻と波長は1対1の対応関係を有する。この対応関係は、当然ながら参照光L3も有しており、また物体光L2にも引き継がれる。この時間と波長の対応関係を利用して、演算処理装置400は、物体光L2の時間波形IOBJ(t)を、周波数ドメインのスペクトルIOBJ(λ)に変換する。また演算処理装置400は、参照光L3の時間波形IREF(t)を、スペクトルに変換し、適切にスケーリングすることで、参照スペクトルIREF(λ)を計算する。
 演算処理装置400の処理は特に限定されないが、一例として演算処理装置400は、参照スペクトルIREF(λ)と物体光L2のスペクトルIOBJ(λ)にもとづいて、対象物OBJの透過率T(λ)を計算することができる。
 T(λ)=IOBJ(λ)/IREF(λ)
 図4は、図2の光測定装置100Aによる分光を説明する図である。上述のように、波長掃引光L1は、時間tと波長λが1対1で対応しているから、その時間波形IREF(t)は、周波数ドメインのスペクトルIREF(λ)に変換することができる。
 物体光L2の時間波形IOBJ(t)も、時間tと波長λが1対1で対応したものとなる。したがって演算処理装置400は、受光装置320の出力が示す物体光L2の波形IOBJ(t)を、物体光L2のスペクトルIOBJ(λ)に変換することができる。
 演算処理装置400は、2つのスペクトルIOBJ(λ)とIREF(λ)の比IOBJ(λ)/IREF(λ)にもとづいて、対象物OBJの透過スペクトルT(λ)を計算することができる。
 波長掃引光L1における時間tの波長λの関係が、λ=f(t)なる関数で表されるとする。最も簡易には、波長λは、時間tに対して、一次関数にしたがってリニアに変化する。物体光L2の時間波形IOBJ(t)が、ある時刻tにおいて低下するとき、透過スペクトルT(λ)は、波長λ=f(t)に吸収スペクトルを有することを意味する。
 なお、演算処理装置400における処理はこれに限定されない。時間の2つの時間波形IOBJ(t)とIREF(t)の比T(t)=IOBJ(t)/IREF(t)を演算した後に、この時間波形T(t)の変数tをλに変換することで、透過スペクトルT(λ)を算出してもよい。
 図2に戻る。コントローラ350は、搬送装置330を監視し、各サンプルホルダ332内の試料2の有無を判定する。そして試料2の有無に応じて、光路切替素子340を制御する。
 たとえばコントローラ350は、位置センサ352、演算部356を含む。位置センサ352は、たとえばロータリエンコーダであり、搬送装置330の位置(回転角)を検出する。
 演算部356には、試料2の無いサンプルホルダ332の位置情報(在荷情報)が、あらかじめ記憶されている。この在荷情報は、たとえばサンプルホルダ332に試料2をマウントするマウンタから、もしくはマウンタを制御する上位のコントローラから取得することができる。あるいは、この在荷情報は、光測定装置100を操作する作業者が手入力してもよい。あるいは、複数の試料2を単位(ロット)として検査を行う試験シーケンスが組まれており、1ロットの試験中は、すべてのサンプルホルダ332が埋まっており、ロットとロットの区切れ目において、サンプルホルダ332が空になるようなケースでは、ロットとロットの区切れ目の期間において、サンプルホルダ332に試料2がないものとしてもよい。演算部356は、位置センサ352の測定値と、試料2の無いサンプルホルダ332の位置を示す在荷情報を比較し、測定位置4における試料の有無を判定する。
 演算部356は、測定位置4における試料2の有無の判定結果にもとづいて、光路切替素子340を制御する。
 演算部356は、試料2が存在するサンプルホルダ332が、測定位置4を通過する期間、光路切替素子340を第1状態φ1とする。反対に演算部356は、試料2が存在しないサンプルホルダ332が、測定位置4を通過する期間、光路切替素子340を第2状態φ2に切り替える。
 サンプルホルダ332とサンプルホルダ332の間の構造体(円板)が、測定位置4を通過する期間は、光路切替素子340は第1状態φ1、第2状態φ2のいずれであってもよい。基本的には、サンプルホルダ332には、試料2がマウントされている確率の方が高く、試料2が存在しないサンプルホルダ332の発生確率はそれほど高くない。また光路切替素子340には寿命があるため、光路切替素子340の切替回数は減らすことが好ましい。そこで、コントローラ350は、サンプルホルダ332とサンプルホルダ332の間の構造体(円板)が、測定位置4を通過する期間は、光路切替素子340を第1状態φ1としておくことが好ましい。
 以上が光測定装置100Aの基本構成および動作である。
 この光測定装置100Aによれば、測定位置4に試料2が存在しない場合に、光路切替素子340が、波長掃引光L1の光路を、正規の光路OP1から逸らす。これにより、試料2によって減衰されない高強度の波長掃引光L1が、直接、第1受光器322に入射するのを防止でき、第1受光器322を保護することができる。
 この光測定装置100Aの効果を検証するために実験を行った。波長掃引光L1における波長掃引光L1のビーム直径は0.8mm(1/e径)とした。アパーチャ342として、開口幅2mmのスリットを用いた。また、退避距離、すなわちアパーチャ342上における第1光路OP1と第2光路OP2の距離は、3mmとした。
 第1状態φ1、第2状態φ2それぞれについて、サンプルホルダ332に試料2が存在しない状態で、第1受光器322に入射する光強度を測定した。第1状態φ1では、第1受光器322の入射強度は58mWであるのに対して、第2状態φ2では、第1受光器322の入射強度は12μWとなり、0.021%まで低下させることができる。これは、第1受光器322の許容入力(損傷閾値)を十分下回る値である。
 退避距離については、受光器322の損傷閾値、ビーム直径、搬送頻度、光路切替素子340の性能(速度)を考慮し実験的に決定することができる。
 続いて実施形態1に関する変形例を説明する。
(変形例1.1)
 図5は、変形例1.1に係る光測定装置100Aaを示す図である。この変形例では、図2のアパーチャ342が省略されている。光路切替素子340が第2状態φ2であるときの第2光路OP2は、搬送装置330の構造体のうち、サンプルホルダ332以外の部分の退避位置に向けられている。その他は図2と同様である。
(変形例1.2)
 図6は、変形例1.2に係る光測定装置100Abを示す図である。図2では、光路切替素子340が、照射光学系310の一部分であったが、この変形例1.2では、光路切替素子340の位置が、図2と異なっている。具体的には、光路切替素子340は、測定位置4よりも第1受光器322側に設けられている。それ以外は、図2と同様である。
(変形例1.3)
 図7は、変形例1.3に係る光測定装置100Acを示す図である。この変形例1.3では、搬送装置330cの構造が、図2と異なっている。搬送装置330cは、回転円盤を備える点で、図2の搬送装置330と同様であるが、サンプルホルダ332を備えず、真空吸着機構によって、円周の任意の位置において、試料2を支持することが可能となっている。
 コントローラ350は、位置センサ352の測定値とあらかじめ演算部356に記憶された試料の無いサンプルホルダの位置情報を比較して、測定位置4に試料2が存在するか否かを推定する。そして、測定位置4に試料2が存在する期間において、光路切替素子340を第1状態φ1とし、測定位置4に試料2が存在しない期間は、光路切替素子340を第2状態φ2に切り替える。
 図7においてアパーチャ342を省略してもよい。この場合、第2光路OP2を導波する波長掃引光L1は、アパーチャ342によって遮られずに伝搬するが、第1受光器322には入射しないため、第1受光器322の保護という目的は達せられる。迷光が問題となる場合には、適切な迷光対策を施せばよい。
 あるいは図7においてアパーチャ342を省略した場合、第2光路OP2を、図5のように、円盤に向かうように定めてもよい。
(変形例1.4)
 図8は、変形例1.4に係る光測定装置100Adを示す図である。この変形例1.4では、光路切替素子340dが、光源装置200と分光ヘッド300の間に設けられる。
たとえば、光ファイバ(出射側ファイバ)258でカップリングされており、光路切替素子340dは、出射側ファイバ258に接続されている。光路切替素子340dは、ファイバ切替器であり、ファイバ切替器の一方の出力が第1光路OP1となって分光ヘッド300と接続され、他方の出力が第2光路OP2となっている。
 図8には、光源装置200の具体的な構成例が示される。光源装置200は、パルス光源202、波長選択部220およびストレッチャ210を備える。
 パルス光源202は、広帯域な連続スペクトルを有する広帯域パルス光L1aを出射する。広帯域パルス光L1aのスペクトルは、たとえば900nm~1300nmの範囲において、少なくとも10nm、好ましくは50nm、より好ましくは100nmの波長域にわたって連続している。広帯域パルス光L1aの波長域の幅は、分光に必要な波長域をカバーしていればよい。
 たとえばパルス光源202は、超短パルスレーザと、非線形素子を含みうる。超短パルスレーザとしては、ゲインスイッチレーザ、マイクロチップレーザ、ファイバレーザ等が例示される。
 非線形素子は、非線形現象によって、超短パルスレーザが生成する超短パルスのスペクトル幅をさらに広げる。非線形素子としてはファイバが好適であり、たとえば、フォトニッククリスタルファイバやその他の非線形ファイバを用いることができる。ファイバのモードとしてはシングルモードの場合が好適であるが、マルチモードであっても十分な非線形性を示すものであれば、使用することができる。
 パルス光源202として、SLD(Superluminescent Diode)光源のような他の広帯域パルス光源を使用してもよい。
 非線形素子から出力される広帯域パルス光L1aは、フェムト秒~ナノ秒オーダーのパルス幅を有する。
 パルス光源202が生成する広帯域パルス光L1aは、一旦、自由空間に放射される。
波長選択部220は、広帯域パルス光L1aの中から、測定に使用する波長帯域を選択し、使用しない波長帯域を除去する。たとえば波長選択部220は、レンズ222、波長選択フィルタ224、集光レンズ226を含む。
 レンズ222は、広帯域パルス光L1aをコリメートする。波長選択フィルタ224は、測定に使用する波長帯域を透過し、使用しない波長帯域を反射または吸収によって除去する。集光レンズ226は、波長選択フィルタ224の透過光を、分割器230の入射端に集光する。
 ストレッチャ210は、広帯域パルス光L1aを受け、波長掃引光L1に変換する。ストレッチャ210は、分割器230、ディレイライン240、カプラ250を含む。
 分割器230は、入射側ファイバ238および第1AWG232を含む。第1AWG232は、入力導波路234と、複数n個(n≧2)の出力導波路236を有する。第1AWG232は、入射側ファイバ238を介して、広帯域パルス光L1aを受ける。入力導波路234を導波する光を、波長に応じて、n個の出力導波路236に分岐する。
 ディレイライン240は、複数n本のファイバ242_1~242_nを含む。ファイバ242_1~242_nは、異なる長さを有し、分割器230によって分割された複数のビームに対して、異なる遅延を与える。
 分割前の広帯域パルス光L1aが、時間とともに周波数が上昇する(波長が短くなる)正のチャープパルス(アップチャープパルス)であるとする。この場合、パルスの前縁部に最長波長λの成分が含まれ、パルスの後縁部に最短波長λの成分が含まれている。
 複数のファイバ242_1~242_nは、異なる長さl~lを有している。λが最長波長、λが最短波長であるとすると、波長掃引光L1を、広帯域パルス光L1aと同じ正のチャープパルスとするためには、1<l<…<lの関係を満たしていればよい。一例として、n=20の場合、20本のファイバ242の長さl~l20は、1m~20mまで、1m刻みで増加してもよい。
 ファイバ242_1~242_nは、波長毎に異なる群遅延特性を有する必要はなく、同一のファイバ(同一のコア/クラッド材料のファイバ)を使用することができる。この意味で、ファイバ242は、マルチモードファイバを使用することが可能であり、この場合、意図しない非線形光学効果を防止することができる点において有利である。
 カプラ250は、ディレイライン240によって異なる遅延が付与された複数のビームを再結合する。たとえばカプラ250は、第2AWG252および出射側ファイバ258を含む。第2AWG252は、n個の入力導波路254と、出力導波路256を有する。
n個の入力導波路254は、n本のファイバ242_1~242_nが接続される。第2AWG252は、n個の入力導波路254を導波するn個のビームを合波し、出力導波路256に出力する。出射側ファイバ258の入射端は、出力導波路256と接続される。
 出射側ファイバ258は分光ヘッド300まで伸びており、出射側ファイバ258の出射端は、分光ヘッド300と接続されている。
 ファイバ242によって十分に大きな遅延を与えるとき、波長λ~λそれぞれの波束が時間的に分離し、波長掃引光L1は、波長λ~λに対応するn個のパルスを含むパルス列となる。
 分光ヘッド300は、コントローラ350を含む。コントローラ350は、位置センサ352の測定値と、あらかじめ演算部356に記憶された試料のないサンプルホルダの位置情報を比較して、試料2の有無を判定し、判定結果にもとづいて光路切替素子340dを制御する。
(実施形態2)
 図9は、実施形態2に係る光測定装置100Bを示す図である。光測定装置100Bは、図2の光路切替素子340に代えて、遮光素子360を備える。
 遮光素子360は、波長掃引光L1の光路に設けられ、第1状態φ1と第2状態φ2が切替可能に構成される。遮光素子360は、第1状態φ1において、波長掃引光L1を透過し(透過状態)、第2状態φ2において、物体光L2を遮光する。遮光には、減光も含まれる。
 遮光素子360としては、可動式シャッタもしくは可変式アテネータのいずれかを利用することができる。可変式アテネータとしては、液晶シャッタ、音響光学変調器(AOM)、電気光学変調器(EOM)などが例示される。
 コントローラ350は、遮光素子360の状態を制御する。コントローラ350による制御については、実施形態1と同様である。
 実施形態2に係る光測定装置100Bによれば、測定位置4に試料2が存在しない場合に、遮光素子360が、波長掃引光L1の光路を遮断する。これにより、試料2によって減衰されない高強度の波長掃引光L1が、直接、第1受光器322に入射するのを防止でき、第1受光器322を保護することができる。
 続いて実施形態2に関連する変形例を説明する。
(変形例2.1)
 図10は、変形例2.1に係る光測定装置100Baを示す図である。変形例2.1では、遮光素子360が、波長掃引光L1の経路上であって、測定位置4よりも第1受光器322側に設けられている。
(変形例2.2)
 実施形態2に関して、図7の搬送装置330cを用いてもよい。
(変形例2.3)
 実施形態2に関して、図8に示したように、遮光素子360を、光源装置200と分光ヘッド300の間に設けてもよい。
 最後に、実施形態1,実施形態2の両方に関連する変形例を説明する。
 搬送装置330としては、円盤状のものに限定されず、たとえばローラコンベアを用いてもよい。
 本開示に係る実施形態について、具体的な用語を用いて説明したが、この説明は、理解を助けるための例示に過ぎず、本開示あるいは請求の範囲を限定するものではない。本発明の範囲は、請求の範囲によって規定されるものであり、したがって、ここでは説明しない実施形態、実施例、変形例も、本発明の範囲に含まれる。
 L1 波長掃引光
 L1a 広帯域パルス光
 L2 物体光
 2 試料
 4 測定位置
 L3 参照光
 100 光測定装置
 200 光源装置
 202 パルス光源
 210 ストレッチャ
 220 波長選択部
 222 レンズ
 224 波長選択フィルタ
 226 集光レンズ
 230 分割器
 232 第1AWG
 234 入力導波路
 236 出力導波路
 238 入射側ファイバ
 240 ディレイライン
 242 ファイバ
 250 カプラ
 252 第2AWG
 254 入力導波路
 256 出力導波路
 258 出射側ファイバ
 300 分光ヘッド
 310 照射光学系
 312 コリメータ
 314 ビームスプリッタ
 316 ミラー
 320 受光装置
 322 第1受光器
 324 第2受光器
 330 搬送装置
 332 サンプルホルダ
 340 光路切替素子
 342 アパーチャ
 350 コントローラ
 352 位置センサ
 356 演算部
 360 遮光素子
 400 演算処理装置
 

Claims (6)

  1.  波長掃引光を発生する光源装置と、
     前記波長掃引光を測定位置に照射する照射光学系と、
     前記測定位置を通過するように測定対象を搬送する搬送装置と、
     前記測定対象を透過した前記波長掃引光である物体光を測定する受光装置と、
     前記波長掃引光の光路に設けられ、前記波長掃引光の光路を切り替える光路切替素子と、
     前記測定対象の有無に応じて、前記光路切替素子を制御するコントローラと、
     を備えることを特徴とする光測定装置。
  2.  前記光路切替素子は、ガルバノミラー、MEMS(Micro Electro Mechanical Systems)ミラー、ピエゾ駆動ミラー、ポリゴンミラー、ファイバ切替器のいずれかを含むことを特徴とする請求項1に記載の光測定装置。
  3.  前記光路切替素子の出射端側に設けられるアパーチャをさらに備えることを特徴とする請求項2に記載の光測定装置。
  4.  波長掃引光を発生する光源装置と、
     前記波長掃引光を測定位置に照射する照射光学系と、
     前記測定位置を通過するように測定対象を搬送する搬送装置と、
     前記測定対象を透過した前記波長掃引光である物体光を測定する受光装置と、
     前記波長掃引光の光路に設けられ、前記波長掃引光の透過、不透過を切り換え可能な遮光素子と、
     前記測定対象の有無に応じて、前記遮光素子を制御するコントローラと、
     を備えることを特徴とする光測定装置。
  5.  前記遮光素子は、可動式シャッタ、可変式アテネータのいずれかを含むことを特徴とする請求項4に記載の光測定装置。
  6.  前記可変式アテネータは、液晶シャッタ、音響光学変調器、電気光学変調器のいずれかを含むことを特徴とする請求項5に記載の光測定装置。
     
PCT/JP2023/019148 2022-06-07 2023-05-23 光測定装置 WO2023238654A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-092376 2022-06-07
JP2022092376A JP2023179208A (ja) 2022-06-07 2022-06-07 光測定装置

Publications (1)

Publication Number Publication Date
WO2023238654A1 true WO2023238654A1 (ja) 2023-12-14

Family

ID=89118187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019148 WO2023238654A1 (ja) 2022-06-07 2023-05-23 光測定装置

Country Status (2)

Country Link
JP (1) JP2023179208A (ja)
WO (1) WO2023238654A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295448A (ja) * 1985-10-23 1987-05-01 Kowa Co 粒子測定方法及び装置
JPH0974848A (ja) * 1995-09-12 1997-03-25 Toyo Noki Kk 根菜類検出装置
JPH0979978A (ja) * 1995-09-11 1997-03-28 Ishikawajima Harima Heavy Ind Co Ltd 菜果の非破壊式成分計測装置
JPH1151928A (ja) * 1997-08-06 1999-02-26 Kubota Corp 青果物の品質計測装置
JP2011147966A (ja) * 2010-01-21 2011-08-04 Sumitomo Electric Ind Ltd レーザ加工装置及びその加工方法
JP2020159973A (ja) * 2019-03-27 2020-10-01 ウシオ電機株式会社 光測定用光源装置、分光測定装置及び分光測定方法
JP2021089283A (ja) * 2019-12-04 2021-06-10 ロッキード マーティン コーポレイションLockheed Martin Corporation 区分的光学遮断

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295448A (ja) * 1985-10-23 1987-05-01 Kowa Co 粒子測定方法及び装置
JPH0979978A (ja) * 1995-09-11 1997-03-28 Ishikawajima Harima Heavy Ind Co Ltd 菜果の非破壊式成分計測装置
JPH0974848A (ja) * 1995-09-12 1997-03-25 Toyo Noki Kk 根菜類検出装置
JPH1151928A (ja) * 1997-08-06 1999-02-26 Kubota Corp 青果物の品質計測装置
JP2011147966A (ja) * 2010-01-21 2011-08-04 Sumitomo Electric Ind Ltd レーザ加工装置及びその加工方法
JP2020159973A (ja) * 2019-03-27 2020-10-01 ウシオ電機株式会社 光測定用光源装置、分光測定装置及び分光測定方法
JP2021089283A (ja) * 2019-12-04 2021-06-10 ロッキード マーティン コーポレイションLockheed Martin Corporation 区分的光学遮断

Also Published As

Publication number Publication date
JP2023179208A (ja) 2023-12-19

Similar Documents

Publication Publication Date Title
US10866319B2 (en) Stray-light tolerant lidar measurement system and stray-light tolerant lidar measurement method
EP2031374B1 (en) Apparatus and method for obtaining information related to terahertz waves
CN113544480B (zh) 光测定用光源装置、分光测定装置及分光测定方法
US20220268629A1 (en) Spectral measurement method, spectral measurement system, and broadband pulsed light source unit
JP6182471B2 (ja) テラヘルツ波位相差測定システム
CN106443707B (zh) 一种超光谱激光雷达系统及其控制方法
US20120050849A1 (en) Apparatus for Temporal Displacement of White Light Laser Pulses
JP2012185012A (ja) 画像形成装置
WO2023238654A1 (ja) 光測定装置
EP0758082B1 (en) Measurement apparatus for internal information in scattering medium
WO2020196692A1 (ja) 広帯域パルス光源装置、分光測定装置及び分光測定方法
US10018557B2 (en) Terahertz wave measuring device
CN107991286B (zh) 基于反射光功率的拉曼光谱检测设备及方法
US9244002B1 (en) Optical method and system for measuring an environmental parameter
JP2008008842A (ja) 電磁波測定装置
EP4009018A1 (en) Broadband pulsed light source device, spectrometry device, spectrometry method, and spectroscopic analysis method
JP2022160819A (ja) 光測定装置および光測定方法
EP4001868A1 (en) Apparatus and method for measuring the reflectivity or transmissivity of an optical surface
JP6541366B2 (ja) テラヘルツ波計測装置
US20230333010A1 (en) Light source apparatus
CN116997788A (zh) 光测定装置
WO2019159375A1 (ja) 光遅延装置、検査装置、光遅延方法及び検査方法
NL8401284A (nl) Optische verplaatsingsaftastinrichting.
JP2019196949A (ja) 光干渉装置、及び、oct装置
JP2020159978A (ja) 分光測定装置及び分光測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819638

Country of ref document: EP

Kind code of ref document: A1