WO2023236935A1 - 一种利用次氧化锌制备纳米氧化锌的方法 - Google Patents

一种利用次氧化锌制备纳米氧化锌的方法 Download PDF

Info

Publication number
WO2023236935A1
WO2023236935A1 PCT/CN2023/098526 CN2023098526W WO2023236935A1 WO 2023236935 A1 WO2023236935 A1 WO 2023236935A1 CN 2023098526 W CN2023098526 W CN 2023098526W WO 2023236935 A1 WO2023236935 A1 WO 2023236935A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
zinc
solution
nano
sodium hydroxide
Prior art date
Application number
PCT/CN2023/098526
Other languages
English (en)
French (fr)
Inventor
申玉芳
王松
张建彬
黄超冠
谢凌凌
Original Assignee
桂林理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 桂林理工大学 filed Critical 桂林理工大学
Publication of WO2023236935A1 publication Critical patent/WO2023236935A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of material chemistry, and specifically relates to a method for preparing nano zinc oxide by utilizing sub-zinc oxide.
  • the production of zinc and zinc oxide products generally uses concentrates with higher zinc content, which are first roasted into zinc roasting sand. After leaching and impurity removal with sulfuric acid, zinc is obtained by electrolysis with pure zinc sulfate solution or zinc is precipitated with carbonate. A precursor is prepared, and zinc oxide is obtained after the precursor is roasted and decomposed.
  • the grade of zinc oxide ore is now relatively low. The zinc is often present in the form of zinc carbonate and zinc silicate, making mineral processing and dissolution difficult.
  • a large amount of zinc-containing waste has been generated in long-term production and life. The composition and phase of these zinc-containing waste are complex and diverse, making it difficult to process in large batches.
  • Chinese patent CN 106219593 B discloses a method for preparing zinc oxide powder by using zinc suboxide. This method first uses an ammonia water-ammonium bicarbonate system as a leaching agent for zinc suboxide, and then mixes it with leaching agents such as sulfuric acid and sodium hydroxide. Compared with the ammonia water-ammonium bicarbonate system, the leaching efficiency is low and the leaching time is long; then ammonium sulfide is used as the precipitant of the leach solution. The generated sulfide precipitate is mainly lead sulfide.
  • the particles are extremely fine and it is extremely difficult to separate from the water phase, so it cannot be Activated carbon is not introduced to adsorb and remove impurities; at the same time, during the entire process, ammonia is a volatile substance with a strong smell, which is not conducive to environmental protection and is difficult to manage in industry.
  • the object of the present invention is to provide a method for preparing nano-zinc oxide using zinc suboxide in view of the above-mentioned defects.
  • the method has low cost, high production efficiency and simple process.
  • Zinc element exists in the filtrate in the form of zincate.
  • the raw material of sub-zinc oxide can be the sub-zinc oxide prepared by treating zinc-containing waste residue in an industrial rotary kiln. This step is selective leaching to remove alkali-insoluble impurities in sub-zinc oxide, such as Fe 2+ , Fe 3+ , Ca 2+ , Mg 2+ , Mn 2+ , Cu 2+ , Cd 2+ , Bi 3+ , etc. , the sodium hydroxide solid is dissolved in deionized water and mixed with zinc suboxide while it is hot. After the sodium hydroxide dissolution is completed, the temperature of the sodium hydroxide solution reaches 80°C, and the temperature of the sodium hydroxide solution is still 40°C after leaching for about 1 hour.
  • alkali-insoluble impurities in sub-zinc oxide such as Fe 2+ , Fe 3+ , Ca 2+ , Mg 2+ , Mn 2+ , Cu 2+ , Cd 2+ , Bi 3+ , etc.
  • Zinc elements can also exist in the solution in the form of zincate ions, substituting Pb 2+ in zinc oxide. , Al 3+ and Si 4+ enter the solution together, and the zinc leaching rate reaches more than 97%.
  • step (1) Take the filtrate obtained in step (1), add sulfuric acid solution to the filtrate, adjust the pH value to 5 ⁇ 5.5, react at room temperature, and after the reaction is completed, filter to remove impurities in zinc oxide, including Pb 2+ , Al 3+ , Si 4+ , Bi 3+ , Sn 4+ to obtain a zinc sulfate solution.
  • the inventor's research found that the difference in solubility products of aluminum and zinc can be used.
  • the zinc element continues to exist in the sulfuric acid solution, while the aluminum generates aluminum hydroxide precipitate, lead generates lead sulfate precipitate, and silicon forms silica gel and is separated from the solution, thereby obtaining sulfuric acid.
  • zinc solution it is necessary and only under acidic conditions with a pH value ranging from 5 to 5.5 that the corresponding precipitation can be obtained and solid-liquid separation can be achieved.
  • NaAlO 2 +H 2 SO 4 Al(OH) 3 ⁇ +Na 2 SO 4 +H 2 O
  • step (2) Add sodium carbonate solution to the zinc sulfate solution obtained in step (2), adjust the pH value to 7 to 8, stir the reaction at 35 to 60°C, and filter after the reaction is completed.
  • the resulting filter residue is the basic zinc carbonate precursor.
  • pure hydroxide In acidic solutions, pure hydroxide generally does not precipitate, and zinc oxide can only precipitate in the form of basic salts. If the pH value of the solution is adjusted with sodium hydroxide, basic zinc sulfate will be generated, and basic zinc sulfate The higher decomposition temperature will cause the subsequent zinc oxide particles to grow and affect the quality of nano-zinc oxide. Therefore, carbonate is used to adjust the pH value of the solution to generate basic zinc carbonate, which has a lower decomposition temperature. , it can be decomposed at 400°C, and nano-sized zinc oxide particles can be obtained after decomposition.
  • the basic zinc carbonate precursor obtained in step (3) is calcined at 400 to 700°C to obtain nano zinc oxide.
  • the concentration of the sodium hydroxide solution in the step (1) is 6-7 mol/L; the leaching time is 0.5-1.5 h; the solid-liquid ratio of zinc suboxide and sodium hydroxide aqueous solution is 1:20-25.
  • the concentration of the sulfuric acid solution in step (2) is 3-5 mol/L; the reaction time is 0.5-1 h.
  • the concentration of the sodium carbonate solution in step (3) is 0.5-1.5 mol/L; the stirring reaction time is 0.5-1 h.
  • the calcination time in step (4) is 1.5 to 4 h.
  • Figure 1 is a graph showing the relationship between the concentration of sodium hydroxide solution and the zinc leaching rate.
  • Figure 2 is a comparison diagram of the raw material sub-zinc oxide and the obtained product nano-zinc oxide in the specific embodiment of the present invention.
  • Figure 3 is the XRD pattern of the nano zinc oxide product obtained in the specific embodiment of the present invention.
  • Figure 5 is a particle size morphology diagram of nano zinc oxide powder obtained by calcining at 400°C for 2 hours in the specific embodiment of the present invention.
  • Figure 6 is a particle size morphology diagram of nano zinc oxide powder obtained by calcining at 500°C for 2 hours in the specific embodiment of the present invention.
  • Figure 7 is a particle size morphology diagram of nano zinc oxide powder obtained by calcining at 600°C for 2 hours in the specific embodiment of the present invention.
  • step (2) Add a sulfuric acid solution with a concentration of 4 mol/L to the sodium metazincate solution obtained in step (1) dropwise until the pH value reaches 5.5, then stir at room temperature for 0.5 hours, filter, and obtain the filtrate zinc sulfate solution;
  • step (2) Adjust the zinc sulfate solution obtained in step (2) to a pH value of 7 with a sodium carbonate solution with a concentration of 1 mol/L. Stir thoroughly at 60°C for 1 hour and then filter. The filter cake is washed alternately with deionized water and ethanol and dried. Obtain white basic zinc carbonate powder;
  • step (3) Calculate the white basic zinc carbonate powder obtained in step (3) at 400°C for 2 hours to obtain nano zinc oxide powder.
  • the average particle size of the obtained nano zinc oxide powder particles is 20-25 nm.
  • the purity of the nano zinc oxide powder is 99.53%.
  • step (2) Add a sulfuric acid solution with a concentration of 4 mol/L to the sodium metazincate solution obtained in step (1) dropwise until the pH value reaches 5.5, then stir at room temperature for 0.5 hours, filter, and obtain the filtrate zinc sulfate solution;
  • step (2) Adjust the zinc sulfate solution obtained in step (2) to a pH value of 8 with a sodium carbonate solution with a concentration of 1 mol/L. Stir thoroughly at 60°C for 1 hour and then filter. The filter cake is washed alternately with deionized water and ethanol and dried. Obtain white basic zinc carbonate powder;
  • step (3) Calculate the white basic zinc carbonate powder obtained in step (3) at 400°C for 2 hours to obtain nano zinc oxide powder.
  • the average particle size of the obtained nano zinc oxide powder is 20-25 nm.
  • Nano zinc oxide powder Body purity is 99.65%.
  • step (3) Calculate the white basic zinc carbonate powder obtained in step (3) at 400°C for 2 hours to obtain nano zinc oxide powder.
  • the average particle size of the obtained nano zinc oxide powder is 20-25 nm.
  • Nano zinc oxide powder The body purity is 99.17%.
  • step (2) Add a sulfuric acid solution with a concentration of 4 mol/L to the sodium metazincate solution obtained in step (1) dropwise until the pH value reaches 5.5, then stir at room temperature for 0.5 hours, filter, and obtain the filtrate zinc sulfate solution;
  • step (3) Adjust the zinc sulfate solution obtained in step (2) to a pH value of 8 with a sodium carbonate solution with a concentration of 1 mol/L. Stir thoroughly at 60°C for 1 hour and then filter. The filter cake is washed alternately with deionized water and ethanol. , dry to obtain white basic zinc carbonate powder;
  • step (3) Calculate the white basic zinc carbonate powder obtained in step (3) at 400°C for 3 hours to obtain nano zinc oxide powder.
  • the average particle size of the obtained nano zinc oxide powder particles is 20-30nm, with a small amount of long rods appearing. Particles, the particle size range is 10-90 nm, and the purity of nano zinc oxide powder is 99.53%.
  • step (2) Add a sulfuric acid solution with a concentration of 4 mol/L to the sodium metazincate solution obtained in step (1) dropwise until the pH value reaches 5.5, then stir at room temperature for 0.5 hours, filter, and obtain the filtrate zinc sulfate solution;
  • step (3) Calculate the white basic zinc carbonate powder obtained in step (3) at 400°C for 4 hours to obtain nano zinc oxide powder.
  • the average particle size of the obtained nano zinc oxide powder particles is 40-60 nm, and a large number of long particles appear.
  • Rod-shaped particles, the particle size range is 20-120 nm, and the purity of nano zinc oxide powder is 99.53%.
  • step (3) Adjust the zinc sulfate solution obtained in step (2) to a pH value of 8 with a sodium carbonate solution with a concentration of 1 mol/L. Stir thoroughly at 60°C for 1 hour and then filter. The filter cake is washed alternately with deionized water and ethanol. , dry to obtain white basic zinc carbonate powder;
  • step (3) Calculate the white basic zinc carbonate powder obtained in step (3) at 600°C for 2 hours to obtain nano zinc oxide powder.
  • the average particle size of the obtained nano zinc oxide powder particles is 40-45 nm.
  • Nano zinc oxide The powder purity is 99.53%.
  • step (2) Add a sulfuric acid solution with a concentration of 4 mol/L to the sodium metazincate solution obtained in step (1) dropwise until the pH value reaches 5.5, then stir at room temperature for 0.5 hours, filter, and obtain the filtrate zinc sulfate solution;
  • step (3) Adjust the zinc sulfate solution obtained in step (2) to a pH value of 8 with a sodium carbonate solution with a concentration of 1 mol/L. Stir thoroughly at 60°C for 1 hour and then filter. The filter cake is washed alternately with deionized water and ethanol. , dry to obtain white basic zinc carbonate powder;
  • step (3) Calculate the white basic zinc carbonate powder obtained in step (3) at 700°C for 2 hours to obtain nano zinc oxide powder.
  • the average particle size of the obtained nano zinc oxide powder particles is 60-70 nm.
  • Nano zinc oxide The powder purity is 99.53%.
  • the product obtained is pure nano zinc oxide crystals with good crystallinity.
  • the morphology of the obtained product nano zinc oxide is granular or short rod-shaped, and the average particle size is below 100 nm, which is small and uniform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于材料化学的技术领域,具体的涉及一种利用次氧化锌制备纳米氧化锌的方法。所述方法首先采用氢氧化钠溶液对次氧化锌进行选择性浸出,以去除次氧化锌中的Fe 2+、Fe 3+、Ca 2+、Mg 2+、Mn 2+、Cu 2+等碱不溶性杂质;然后加入硫酸溶液去除Pb 2+,Al 3+,Si 4+;最后采用碳酸钠溶液使Zn 2+形成碱式碳酸锌前躯体,通过煅烧前躯体以获得高纯度的纳米氧化锌。该方法成本低廉,生产效率高,工艺过程简单。

Description

一种利用次氧化锌制备纳米氧化锌的方法 技术领域
本发明属于材料化学的技术领域,具体的涉及一种利用次氧化锌制备纳米氧化锌的方法。
背景技术
目前锌和氧化锌产品的生产一般采用含锌量较高的精矿首先焙烧为锌焙砂后,通过硫酸浸出、除杂后,以纯净硫酸锌溶液电解获得锌或是以碳酸盐沉锌制备前躯体,前驱体经焙烧分解后获得氧化锌。但随着经济的发展,高品位的矿源越来越少,现氧化锌矿的品味较低,其锌常以碳酸锌,硅酸锌存在,选矿和溶出均比较困难。另一方面,在长期的生产、生活中产生了大量的含锌废弃物,这些含锌废弃物的成分及物相复杂多样,难以大规模批量处理。
基于以上现实情况,采用回转窑处理各种氧化锌矿和含锌废弃物成为有效的方法,该方法工艺简单,适用范围广,处理量大。在回转窑尾收集到的烟尘即为次氧化锌,含锌量在60~65%。
中国专利CN 106219593 B公开了一种利用次氧化锌制备氧化锌粉体的方法,该方法首先采用氨水-碳酸氢铵体系作为次氧化锌的浸出剂,而与硫酸、氢氧化钠等浸出剂相比,氨水-碳酸氢铵体系的浸出效率低,浸出时间长;然后采用硫化铵作为浸出液的沉淀剂,生成的硫化物沉淀主要为硫化铅,颗粒极为细小,与水相分离极为困难,因此不得不引入活性炭吸附除杂;同时在整个过程中,氨水为易挥发,气味较大的物质,不利于环保且工业上管理困难。
硫酸浸出制备氧化锌也是一种常用的方法,中国专利CN104058447A公开了一种以锌渣氧粉为原料制备纳米氧化锌的方法,将锌渣氧粉加入到硫酸溶液中,水浴加热搅拌反应,过滤,得到浸出液。然而采用硫酸作为浸出剂,其浸出选择性差,大量杂质如铁,锰,铜,铬,钴等一起进入到溶液中,导致后续步骤中除杂工序复杂、漫长。
发明内容
本发明的目的在于针对上述存在的缺陷而提供一种利用次氧化锌制备纳米氧化锌的方法。该方法成本低廉,生产效率高,工艺过程简单。
本发明充分研究、利用次氧化锌中的各杂质与锌在不同碱液、酸液中的不同溶解特性,发现可以首先采用氢氧化钠溶液对次氧化锌进行选择性浸出,以去除次氧化锌中的Fe 2+、Fe 3+、Ca 2+、Mg 2+、Mn 2+、Cu 2+等碱不溶性杂质;然后加入硫酸溶液去除Pb 2+,Al 3+,Si 4+;最后采用碳酸钠溶液使Zn 2+形成碱式碳酸锌前躯体,通过煅烧前躯体以获得高纯度的纳米氧化锌。
具体技术方案如下:
一种利用次氧化锌制备纳米氧化锌的方法,包括以下步骤:
将次氧化锌与氢氧化钠溶液混合,常温下搅拌,浸出,过滤,以除去次氧化锌中的碱不溶性杂质,锌元素以锌酸根的形式存在于滤液中。
原料次氧化锌可以选用工业回转窑处理含锌废渣制备的次氧化锌。此步骤为选择性浸出,以去除次氧化锌中碱不溶性杂质,如Fe 2+,Fe 3+,Ca 2+,Mg 2+,Mn 2+,Cu 2+,Cd 2+,Bi 3+等,氢氧化钠固体溶解在去离子水中趁热与次氧化锌混合,在氢氧化钠溶解完成后,氢氧化钠溶液温度达到80℃,浸出1 h左右氢氧化钠溶液的温度仍有40℃,85%左右的氧化锌可在前15分钟浸出,90%左右可在30分钟浸出,因此不需要额外加热,锌元素也能够以锌酸根的形式存在于溶液中,次氧化锌中的Pb 2+,Al 3+,Si 4+一起进入到溶液中,锌浸出率达到97%以上。
反应方程式为:
ZnO+2NaOH=Na 2ZnO 2+H 2O
Al 2O 3 + 2NaOH = 2NaAlO 2+H 2O
PbO+2NaOH=Na 2PbO 2+H 2O
SiO 2+2NaOH(浓)=Na 2SiO 3+H 2O
NaOH+Bi 2O 3=NaBiO 2+H 2O
SnO 2+2NaOH=Na 2SnO 3+H 2O
取步骤(1)所得滤液,在滤液中加入硫酸溶液,调节pH值至5~5.5,在常温下反应,待反应结束后,过滤,以除去次氧化锌中的杂质,包括Pb 2+,Al 3+,Si 4+,Bi 3+,Sn 4+,得到硫酸锌溶液。
发明人研究发现,可以利用铝与锌的溶度积差异,锌元素继续存在于硫酸溶液中,而铝则生成氢氧化铝沉淀,铅生成硫酸铅沉淀,硅形成硅胶与溶液分离,从而得到硫酸锌溶液。但必须且仅有在pH值范围为5~5.5的酸性条件下,才能获得相应的沉淀,实现固液分离。
此过程发生的主要反应有:
Na 2ZnO 2+2H 2SO 4= ZnSO 4+Na 2SO 4+2H 2O
NaAlO 2+H 2SO = Al(OH) 3↓+Na 2SO 4+H 2O
Na 2PbO 2+2H 2SO 4= PbSO 4↓+Na 2SO 4+2H 2O
Na 2SiO 3+H 2SO 4= H 2SiO 3↓+Na 2SO 4
2SnSO 4+2H 2O = (SnOH) 2SO 4↓+H 2SO 4
在步骤(2)所得硫酸锌溶液中加入碳酸钠溶液,调节pH值在7~8,在35~60 ℃下搅拌反应,待反应结束后,过滤,所得滤渣即为碱式碳酸锌前驱体。
发明人经研究分析,得出Zn 5(OH) 6(CO 3) 2沉淀析出的最佳pH值范围在7~8。
在酸性溶液中,一般不会析出纯的氢氧化物,氧化锌只能以碱式盐的形式析出,如果以氢氧化钠调节溶液pH值,则会生成碱式硫酸锌,而碱式硫酸锌的分解温度较高,会导致后续生成的氧化锌颗粒长大,影响纳米氧化锌的品质,因此采用碳酸盐调节溶液pH值,以生成碱式碳酸锌,碱式碳酸锌的分解温度较低,400℃即可进行分解,分解后可得到纳米级颗粒氧化锌。
此过程中发生的主要反应为:
5ZnSO 4+5NaCO 3+3H 2O=Zn 5(OH) 6(CO 3) 2↓+5Na 2SO 4+3CO 2
将步骤(3)所得碱式碳酸锌前驱体置于400~700 ℃下煅烧,得到纳米氧化锌。
煅烧温度过低会导致碱式碳酸锌分解不完全,而过高则会导致生成的氧化锌颗粒长大。
此过程发生的反应为:
Zn 5(OH) 6(CO3) 2=5ZnO+2CO 2↑+3H 2O↑
所述步骤(1)中氢氧化钠溶液的浓度为6~7 mol/L;浸出的时间为0.5~1.5 h;次氧化锌与氢氧化钠水溶液的固液比为1:20~25。
通过图1可以看出,氢氧化钠溶液的浓度在6~7 mol/L,Zn 2+的浸出率达到95%以上。
所述步骤(2)中硫酸溶液的浓度为3~5 mol/L;反应时间为0.5~1 h。
所述步骤(3)中碳酸钠溶液的浓度为0.5~1.5 mol/L;搅拌反应的时间为0.5~1 h。
所述步骤(4)中煅烧时间为1.5~4 h。
所述步骤(4)中制备得到的纳米氧化锌为粒状或短棒状;粒状纳米氧化锌的平均粒径为20~70 nm;纳米氧化锌的纯度在99.5 %以上。
本发明的有益效果为: 本发明利用高温回转窑高温还原-挥发-氧化-收尘煅烧工艺所得的次氧化锌粉尘(含锌60%左右)为原料,制备高纯度的纳米氧化锌,工艺简单易操作,可产业化推广。
所述方法采用氢氧化钠为浸出剂,硫酸为除杂剂,碱式碳酸锌为前躯体,经煅烧所得的纳米氧化锌为为粒状或短棒状;粒状纳米氧化锌的平均粒径为20~70 nm;纳米氧化锌的纯度在99.5 %以上。
附图说明
图1为氢氧化钠溶液的浓度与锌浸出率的关系变化曲线图。
图2为本发明具体实施方式中原料次氧化锌和所得产品纳米氧化锌的对比图。
图3为本发明具体实施方式中所得产品纳米氧化锌的XRD图谱。
图4为本发明具体实施方式中所得产品纳米氧化锌的SEM形貌图。
图5为本发明具体实施方式中 400℃下煅烧2h所得纳米氧化锌粉体的粒度形貌图。
图6为本发明具体实施方式中 500℃下煅烧2h所得纳米氧化锌粉体的粒度形貌图。
图7为本发明具体实施方式中 600℃下煅烧2h所得纳米氧化锌粉体的粒度形貌图。
图8为本发明具体实施方式中 700℃下煅烧2h所得纳米氧化锌粉体的粒度形貌图。
实施方式
以下实施例旨在进一步说明本发明内容,而不是限制本发明权利要求的保护范围。
以广西某工厂提供的次氧化锌为例,该次氧化锌的化学成分见下表1。
表1 原料次氧化锌化学成分
实施例
(1)按氢氧化钠浓度为6mol/L进行氢氧化钠溶液的配制,待氢氧化钠溶解完成后趁热,按照次氧化锌与氢氧化钠水溶液固液比为1:20,将次氧化锌加入氢氧化钠水溶液中混合,于常温下搅拌1h充分反应,反应完成后过滤,得到滤液偏锌酸钠溶液;
(2)向步骤(1)中所得的偏锌酸钠溶液中滴加浓度为4mol/L的硫酸溶液,直至pH值达到5.5,然后常温下搅拌0.5h后,过滤,得到滤液硫酸锌溶液;
用浓度为1mol/L的碳酸钠溶液调节步骤(2)所得的硫酸锌溶液至pH值为7,在60℃下充分搅拌1h后过滤,滤饼经去离子水和乙醇交替洗涤后,烘干获得白色碱式碳酸锌粉体;
将步骤(3)中所得白色碱式碳酸锌粉体在400℃下煅烧2h,获得纳米氧化锌粉体,所得纳米氧化锌粉体颗粒平均粒径为20-25 nm,纳米氧化锌粉体纯度为99.53%。
实施例
(1)按氢氧化钠浓度为6mol/L进行氢氧化钠溶液的配制,待氢氧化钠溶解完成后趁热,按照次氧化锌与氢氧化钠水溶液固液比为1:25,将次氧化锌加入氢氧化钠水溶液中混合,于常温下搅拌1h充分反应,反应完成后过滤,得到滤液偏锌酸钠溶液;
(2)向步骤(1)中所得的偏锌酸钠溶液中滴加浓度为4mol/L的硫酸溶液,直至pH值达到5.5,然后常温下搅拌0.5h后,过滤,得到滤液硫酸锌溶液;
用浓度为1mol/L的碳酸钠溶液调节步骤(2)所得的硫酸锌溶液至pH值为8,在60℃下充分搅拌1h后过滤,滤饼经去离子水和乙醇交替洗涤后,烘干获得白色碱式碳酸锌粉体;
(4)将步骤(3)中所得白色碱式碳酸锌粉体在400℃下煅烧2h,获得纳米氧化锌粉体,所得纳米氧化锌粉体颗粒平均粒径为20-25nm,纳米氧化锌粉体纯度为99.65%。
实施例
(1)按氢氧化钠浓度为6mol/L进行氢氧化钠溶液的配制,待氢氧化钠溶解完成后趁热,按照次氧化锌与氢氧化钠水溶液固液比为1:20,将次氧化锌加入氢氧化钠水溶液中混合,于常温下搅拌1h充分反应,反应完成后过滤,得到滤液偏锌酸钠溶液;
(2)向步骤(1)中所得的偏锌酸钠溶液中滴加浓度为4mol/L的硫酸溶液,直至pH值达到5,然后常温下搅拌0.5h后,过滤,得到滤液硫酸锌溶液;
(3)用浓度为1mol/L的碳酸钠溶液调节步骤(2)所得的硫酸锌溶液至pH值为7,在60℃下充分搅拌1h后过滤,滤饼经去离子水和乙醇交替洗涤后,烘干获得白色碱式碳酸锌粉体;
(4)将步骤(3)中所得白色碱式碳酸锌粉体在400℃下煅烧2h,获得纳米氧化锌粉体,所得纳米氧化锌粉体颗粒平均粒径为20-25nm,纳米氧化锌粉体纯度为99.17%。
实施例
按氢氧化钠浓度为6mol/L进行氢氧化钠溶液的配制,待氢氧化钠溶解完成后趁热,按照次氧化锌与氢氧化钠水溶液固液比为1:20,将次氧化锌加入氢氧化钠水溶液中混合,于常温下搅拌1h充分反应,反应完成后过滤,得到滤液偏锌酸钠溶液;
(2)向步骤(1)中所得的偏锌酸钠溶液中滴加浓度为4mol/L的硫酸溶液,直至pH值达到5.5,然后常温下搅拌0.5h后,过滤,得到滤液硫酸锌溶液;
(3)用浓度为1mol/L的碳酸钠溶液调节步骤(2)所得的硫酸锌溶液至pH值为8,在60℃下充分搅拌1h后过滤,滤饼经去离子水和乙醇交替洗涤后,烘干获得白色碱式碳酸锌粉体; 
(4)将步骤(3)中所得白色碱式碳酸锌粉体在500℃下煅烧2h,获得纳米氧化锌粉体,所得纳米氧化锌粉体颗粒平均粒径为30-40 nm,纳米氧化锌粉体纯度为99.53%。
实施例
按氢氧化钠浓度为6mol/L进行氢氧化钠溶液的配制,待氢氧化钠溶解完成后趁热,按照次氧化锌与氢氧化钠水溶液固液比为1:20,将次氧化锌加入氢氧化钠水溶液中混合,于常温下搅拌1h充分反应,反应完成后过滤,得到滤液偏锌酸钠溶液;
(2)向步骤(1)中所得的偏锌酸钠溶液中滴加浓度为4mol/L的硫酸溶液,直至pH值达到5.5,然后常温下搅拌0.5h后,过滤,得到滤液硫酸锌溶液;
(3)用浓度为1mol/L的碳酸钠溶液调节步骤(2)所得的硫酸锌溶液至pH值为8,在60℃下充分搅拌1h后过滤,滤饼经去离子水和乙醇交替洗涤后,烘干获得白色碱式碳酸锌粉体;
 (4)将步骤(3)中所得白色碱式碳酸锌粉体在400℃下煅烧3h,获得纳米氧化锌粉体,所得纳米氧化锌粉体颗粒平均粒径为20-30nm,出现少量长棒状颗粒,颗粒粒度范围在10-90 nm,纳米氧化锌粉体纯度为99.53%。
实施例
(1)按氢氧化钠浓度为6mol/L进行氢氧化钠溶液的配制,待氢氧化钠溶解完成后趁热,按照次氧化锌与氢氧化钠水溶液固液比为1:20,将次氧化锌加入氢氧化钠水溶液中混合,于常温下搅拌1h充分反应,反应完成后过滤,得到滤液偏锌酸钠溶液;
(2)向步骤(1)中所得的偏锌酸钠溶液中滴加浓度为4mol/L的硫酸溶液,直至pH值达到5.5,然后常温下搅拌0.5h后,过滤,得到滤液硫酸锌溶液;
(3)用浓度为1mol/L的碳酸钠溶液调节步骤(2)所得的硫酸锌溶液至pH值为8,在60℃下充分搅拌1h后过滤,滤饼经去离子水和乙醇交替洗涤后,烘干获得白色碱式碳酸锌粉体;
(4)将步骤(3)中所得白色碱式碳酸锌粉体在400℃下煅烧4h,获得纳米氧化锌粉体,所得纳米氧化锌粉体颗粒平均粒径为40-60 nm,出现大量长棒状颗粒,其颗粒粒度范围为20-120 nm,纳米氧化锌粉体纯度为99.53%。
实施例
按氢氧化钠浓度为6mol/L进行氢氧化钠溶液的配制,待氢氧化钠溶解完成后趁热,按照次氧化锌与氢氧化钠水溶液固液比为1:20,将次氧化锌加入氢氧化钠水溶液中混合,于常温下搅拌1h充分反应,反应完成后过滤,得到滤液偏锌酸钠溶液;
(2)向步骤(1)中所得的偏锌酸钠溶液中滴加浓度为4mol/L的硫酸溶液,直至pH值达到5.5,然后常温下搅拌0.5h后,过滤,得到滤液硫酸锌溶液;
(3)用浓度为1mol/L的碳酸钠溶液调节步骤(2)所得的硫酸锌溶液至pH值为8,在60℃下充分搅拌1h后过滤,滤饼经去离子水和乙醇交替洗涤后,烘干获得白色碱式碳酸锌粉体;
(4)将步骤(3)中所得白色碱式碳酸锌粉体在600℃下煅烧2h,获得纳米氧化锌粉体,所得纳米氧化锌粉体颗粒平均粒径为40-45 nm,纳米氧化锌粉体纯度为99.53%。
实施例
(1)按氢氧化钠浓度为6mol/L进行氢氧化钠溶液的配制,待氢氧化钠溶解完成后趁热,按照次氧化锌与氢氧化钠水溶液固液比为1:20,将次氧化锌加入氢氧化钠水溶液中混合,于常温下搅拌1h充分反应,反应完成后过滤,得到滤液偏锌酸钠溶液;
(2)向步骤(1)中所得的偏锌酸钠溶液中滴加浓度为4mol/L的硫酸溶液,直至pH值达到5.5,然后常温下搅拌0.5h后,过滤,得到滤液硫酸锌溶液;
(3)用浓度为1mol/L的碳酸钠溶液调节步骤(2)所得的硫酸锌溶液至pH值为8,在60℃下充分搅拌1h后过滤,滤饼经去离子水和乙醇交替洗涤后,烘干获得白色碱式碳酸锌粉体;
(4)将步骤(3)中所得白色碱式碳酸锌粉体在700℃下煅烧2h,获得纳米氧化锌粉体,所得纳米氧化锌粉体颗粒平均粒径为60-70 nm,纳米氧化锌粉体纯度为99.53%。
通过图2可以看出,次氧化锌的颜色发黑,而本发明所得的纳米氧化锌颜色为白色,物相纯净。
通过图3可以看出,所得产物为纯纳米氧化锌晶体,结晶度好。
通过图4-8可以看出,所得产物纳米氧化锌的形貌为颗粒状或短棒状,颗粒尺寸平均在100nm以下,细小均匀。

Claims (5)

  1. 一种利用次氧化锌制备纳米氧化锌的方法,其特征在于,包括以下步骤:
    (1)将次氧化锌与氢氧化钠溶液混合,常温下搅拌,浸出,过滤,以除去次氧化锌中的碱不溶性杂质,锌元素以锌酸根的形式存在于滤液中;
    (2)取步骤(1)所得滤液,在滤液中加入硫酸溶液,调节pH值至5~5.5,在常温下反应,待反应结束后,过滤,以除去次氧化锌中的杂质,包括Pb2+,Al3+,Si4+,Bi3+,Sn4+,得到硫酸锌溶液;
    (3)在步骤(2)所得硫酸锌溶液中加入碳酸钠溶液,调节pH值在7~8,在35~60℃下搅拌反应,待反应结束后,过滤,所得滤渣即为碱式碳酸锌前驱体;
    (4)将步骤(3)所得碱式碳酸锌前驱体置于400~700℃下煅烧,得到纳米氧化锌;制备得到的纳米氧化锌为粒状或短棒状;粒状纳米氧化锌的平均粒径为20~70nm;纳米氧化锌的纯度在99.5%以上。
  2. 如权利要求1所述利用次氧化锌制备纳米氧化锌的方法,其特征在于,所述步骤(1)中氢氧化钠溶液的浓度为6~7mol/L;浸出的时间为0.5~1.5h。
  3. 如权利要求1所述利用次氧化锌制备纳米氧化锌的方法,其特征在于,所述步骤(2)中硫酸溶液的浓度为3~5mol/L;反应时间为0.5~1h。
  4. 如权利要求1所述利用次氧化锌制备纳米氧化锌的方法,其特征在于,所述步骤(3)中碳酸钠溶液的浓度为0.5~1.5mol/L;搅拌反应的时间为0.5~1h。
  5. 如权利要求1所述利用次氧化锌制备纳米氧化锌的方法,其特征在于,所述步骤(4)中煅烧时间为1.5~4h。
PCT/CN2023/098526 2022-06-08 2023-06-06 一种利用次氧化锌制备纳米氧化锌的方法 WO2023236935A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210641716.4 2022-06-08
CN202210641716.4A CN114906871B (zh) 2022-06-08 2022-06-08 一种利用次氧化锌制备纳米氧化锌的方法

Publications (1)

Publication Number Publication Date
WO2023236935A1 true WO2023236935A1 (zh) 2023-12-14

Family

ID=82770262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098526 WO2023236935A1 (zh) 2022-06-08 2023-06-06 一种利用次氧化锌制备纳米氧化锌的方法

Country Status (2)

Country Link
CN (1) CN114906871B (zh)
WO (1) WO2023236935A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114906871B (zh) * 2022-06-08 2023-05-26 桂林理工大学 一种利用次氧化锌制备纳米氧化锌的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104058447A (zh) * 2014-06-30 2014-09-24 桂林理工大学 一种以锌渣氧粉为原料制备纳米氧化锌的方法
US20150240327A1 (en) * 2012-09-25 2015-08-27 Sichuan Xinhong Technology Co., Ltd. Method for Producing a High-purity Nanometer Zinc Oxide from Low-grade Zinc Oxide Ore by Ammonia Decarburization
CN106830051A (zh) * 2017-01-19 2017-06-13 红河学院 一种以工业氧化锌为原料制备纳米氧化锌粉体的方法
CN108502915A (zh) * 2018-04-26 2018-09-07 马鞍山钢铁股份有限公司 一种以高锌除尘灰制备纳米氧化锌的方法
CN112209425A (zh) * 2020-10-16 2021-01-12 烟台中科恩吉科创新产业园管理有限公司 一种制备花状氧化锌的方法
CN114906871A (zh) * 2022-06-08 2022-08-16 桂林理工大学 一种利用次氧化锌制备纳米氧化锌的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583503B (zh) * 2011-01-18 2013-07-17 郴州市金贵银业股份有限公司 利用高砷次氧化锌资源氨-铵工艺制取活性氧化锌的方法
CN103121706B (zh) * 2013-03-11 2014-12-31 深圳市危险废物处理站有限公司 一种碱式氯化锌的制备方法
CN104232890A (zh) * 2013-06-14 2014-12-24 无锡市森信精密机械厂 一种低品位氧化锌矿的湿法冶金工艺
CN103482680B (zh) * 2013-08-30 2015-09-09 济源职业技术学院 一种由次氧化锌生产纳米氧化锌的工艺
CN103880063A (zh) * 2014-03-14 2014-06-25 玉门市新蓝天金属再生利用有限公司 湿化学法制取高纯度活性氧化锌
CN105271363B (zh) * 2015-08-14 2017-12-22 南京华狮化工有限公司 一种超细氧化锌粉体的制备方法
CN108793225A (zh) * 2018-09-04 2018-11-13 江西广恒胶化科技有限公司 一种碱式碳酸锌的生产方法
CN110079682A (zh) * 2019-04-08 2019-08-02 徐州市正峰锌业有限公司 一种制备高品位次氧化锌的方法
CN113603131A (zh) * 2021-09-10 2021-11-05 桐乡市思远环保科技有限公司 一种氧化锌的生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150240327A1 (en) * 2012-09-25 2015-08-27 Sichuan Xinhong Technology Co., Ltd. Method for Producing a High-purity Nanometer Zinc Oxide from Low-grade Zinc Oxide Ore by Ammonia Decarburization
CN104058447A (zh) * 2014-06-30 2014-09-24 桂林理工大学 一种以锌渣氧粉为原料制备纳米氧化锌的方法
CN106830051A (zh) * 2017-01-19 2017-06-13 红河学院 一种以工业氧化锌为原料制备纳米氧化锌粉体的方法
CN108502915A (zh) * 2018-04-26 2018-09-07 马鞍山钢铁股份有限公司 一种以高锌除尘灰制备纳米氧化锌的方法
CN112209425A (zh) * 2020-10-16 2021-01-12 烟台中科恩吉科创新产业园管理有限公司 一种制备花状氧化锌的方法
CN114906871A (zh) * 2022-06-08 2022-08-16 桂林理工大学 一种利用次氧化锌制备纳米氧化锌的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN SHA, HUANG BIJIE, LIU SHIQI, LIN XUEYING: "Influence Research of Flue Gas Fly Ash Leach Solution of Coal-fired Boiler on Growth of Beans", JOURNAL OF GREEN SCIENCE AND TECHNOLOGY, no. 24, 31 December 2016 (2016-12-31), pages 9 - 11, XP009550828, ISSN: 1674-9944 *
HE WENHAO E, WANG HAIJUAN, WANG CUICUI, GAO HUAPING : "Leaching of Zinc from Zinc Oxide slag by sodium hydroxide", CHINESE JOURNAL OF ENVIRONMENTAL ENGINEERING, vol. 11, no. 7, 1 July 2017 (2017-07-01), pages 4337 - 4342, XP093113576, DOI: 10.12030/j.cjee.201611201 *
JIANG, XUEXIAN; HE, GUI-XING: "Research on Producing of ZnO Powder From Zinc and Lead Ash", vol. 29, no. 2, 30 June 2010 (2010-06-30), pages 120 - 122, XP009551113, ISSN: 1009-2617, DOI: 10.13355/j.cnki.sfyj.2010.02.001 *

Also Published As

Publication number Publication date
CN114906871B (zh) 2023-05-26
CN114906871A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
US11316208B2 (en) Process for recycling cobalt and nickel from lithium ion batteries
CN103950984B (zh) 利用含钨废磨削料生产钨酸钠溶液的方法及钨酸钠
CN101508471B (zh) 四氧化三钴生产工艺
CN108265178B (zh) 一种钴镍冶金废水渣的处理方法
US9528170B2 (en) Method for producing a high-purity nanometer zinc oxide from steel plant smoke and dust by ammonia decarburization
CN114684801B (zh) 一种利用硫铁矿烧渣制备高纯磷酸铁的方法
CN110921688B (zh) 一种活性氧化镁及其制备方法和应用
WO2023236935A1 (zh) 一种利用次氧化锌制备纳米氧化锌的方法
CN112159897B (zh) 一种镍钴锰浸出液净化的方法
CN113371757B (zh) 一种制备焦锑酸钠和母液再生及循环利用的方法
WO2014047760A1 (zh) 利用电解锌酸浸渣氨法脱碳生产高纯纳米氧化锌的方法
WO2014047762A1 (zh) 利用低品位氧化锌矿氨法脱碳生产高纯纳米氧化锌的方法
WO2019137543A1 (zh) 一种富氧选择性浸出钛精矿制备高纯度TiO2的方法
EP0186370A2 (en) Titanium dioxide pigment production from ilmenite
CN112441621A (zh) 富锰渣的综合利用方法
CN101607721B (zh) 利用橄榄石尾矿制备高纯氢氧化镁及六硅酸镁的方法
CN112725621B (zh) 基于碳酸根固相转换法从废旧锂电池分离镍钴锰的方法
CN108063295B (zh) 从火法回收锂电池产生的炉渣中提取锂的方法
CN109868366B (zh) 一种滤液循环的湿法回收废铅膏制备高纯红丹的方法
CN111732115A (zh) 一种冶金沉淀级氧化镁的制备方法及应用
CN116477591A (zh) 一种废旧磷酸铁锂正极材料综合利用的方法
CN102863011B (zh) 一种利用低品位氧化锌矿氨法生产高纯纳米氧化锌的方法
CN115505740A (zh) 一种采用硝酸盐废水处理赤泥的资源化方法
CN107601582A (zh) 一种快速制备氧化钴的方法
CN113293281A (zh) 一种锂云母浸出锂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819100

Country of ref document: EP

Kind code of ref document: A1