WO2023236534A1 - 选择性还原多杀菌素j的催化剂及其工艺 - Google Patents

选择性还原多杀菌素j的催化剂及其工艺 Download PDF

Info

Publication number
WO2023236534A1
WO2023236534A1 PCT/CN2022/144389 CN2022144389W WO2023236534A1 WO 2023236534 A1 WO2023236534 A1 WO 2023236534A1 CN 2022144389 W CN2022144389 W CN 2022144389W WO 2023236534 A1 WO2023236534 A1 WO 2023236534A1
Authority
WO
WIPO (PCT)
Prior art keywords
spinosad
catalyst
kettle
mixture
spinosyn
Prior art date
Application number
PCT/CN2022/144389
Other languages
English (en)
French (fr)
Inventor
王定军
宋薛
李洪花
张家友
Original Assignee
康纳新型材料(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 康纳新型材料(杭州)有限公司 filed Critical 康纳新型材料(杭州)有限公司
Publication of WO2023236534A1 publication Critical patent/WO2023236534A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • C07H17/08Hetero rings containing eight or more ring members, e.g. erythromycins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to the technical field of spinosyn preparation, and in particular to a catalyst for the selective reduction of spinosad J and a process thereof.
  • the selective reduction is specifically the selective catalytic reduction of the four components of spinosad J in a spinosad J/L mixture.
  • the double bond at positions 5 and 6 on the one-membered ring lactone is not accompanied by the reduction of the 13,14 conjugated double bond on the four-membered ring lactone and spinosyn L.
  • Spinosyns are a family of intracellular secondary metabolites produced by the aerobic Gram-positive soil actinomycete Saccharopolyspora spinosa through aerobic fermentation.
  • the spinosad compound family is structurally a macrolide compound, consisting of a 21-carbon four-membered ring lactone connected to two deoxysugar (trioxymethylrhamnose and fullosamine).
  • the main ingredients in the fermentation product of Saccharopolyspora spinosa are spinosad A and D, which are collectively called spinosad.
  • the fermentation product of Saccharopolyspora spinosa became a mixture mainly containing spinosad J/L.
  • the difference between spinosad J/L is whether the substituent on the 6-position carbon of the four-membered ring lactone is hydrogen or methyl. base.
  • the spinosad J/L mixture needs to be selectively hydrogenated and reduced. Specifically, the double bonds at positions 5 and 6 on the four-membered ring lactone of spinosad J are selectively reduced, but the conjugated double bonds at positions 13 and 14 are not reduced, thereby obtaining 5,6-dihydro-spinosyn J, And spinosad L cannot be reduced.
  • the catalyst Rh/Al 2 O 3 proposed in this patent application has a high dosage of precious metal rhodium, which makes the product production cost too high and is not conducive to the promotion of large-scale application; while the catalyst 5% Pd/C has low selectivity and the reaction time is too long , causing 3′-O-ethyl-spinosyn L to be hydrogenated and the yield to decrease, which is also undesirable.
  • the patent application first ethylates spinosad, and then performs hydrogenation and reduction under the action of a heterogeneous catalyst, resulting in a too long reaction time, which is not conducive to reducing production costs, and the long reaction may cause unforeseen side effects. reaction occurs.
  • this patent application provides a catalyst with higher activity and better selectivity. Moreover, this patent application also provides a process for preparing 3′-O-ethyl-5,6-dihydro-spinosyn J and 3′-O-ethyl-spinosyn L, which is proposed based on this patent application.
  • the catalyst greatly reduces the reaction time, making it a more efficient, greener and more economical process.
  • a catalyst for the selective reduction of spinosyn J in a water-miscible organic solvent is used to selectively catalyze the reduction of 5 and 6 positions on the four-membered ring lactone of spinosyn J in a spinosad J/L mixture. double bonds, and is not accompanied by the reduction of the 13,14 conjugated double bonds on the four-membered ring lactone of spinosad J and the reduction of spinosad L.
  • the catalyst includes active components and carriers. The active component of the catalyst accounts for 1% of the weight of the catalyst.
  • the active component is selected from Pd, Pt, Rh, Ru, Ir, specifically the active component is composed of two metals, one is selected from Pd, Pt or Rh, the other is selected from Pd, Pt, Ru or Ir; or the active component is composed of three or more metals, namely the first active metal, the second active metal and the secondary active metal.
  • the first active metal is selected from any one of Pd, Pt, Rh and the second active metal.
  • the metal is selected from any one of Pd, Pt, Ru, and Ir
  • the secondary active metal is selected from one or more of Pd, Pt, Ru, and Ir.
  • the weight ratio of the first active metal, the second active metal, and the secondary active metal is ( 6 ⁇ 12): (6 ⁇ 13): (1 ⁇ 2).
  • the active component accounts for 3% to 6% of the weight of the catalyst, and the specific surface area of the catalyst carrier is 50m 2 /g to 2000m 2 /g.
  • the carrier is selected from activated carbon, graphite, carbon black, alumina, CaCO 3 , ZrO 2 , TiO 2 , SiO 2 and diatomite.
  • the catalyst carrier is coal carbon, wood carbon, coconut shell carbon or ⁇ -alumina.
  • step 1 mixing of reactants add spinosad J/L mixture, organic solvent and water to the reaction kettle to mix, then add the catalyst as claimed in claim 1, stir and dissolve, spinosad J/L mixture, organic solvent
  • the weight ratio of solvent and water is (10 ⁇ 50): (50 ⁇ 100): (1 ⁇ 5), the weight ratio of catalyst dry weight and spinosad J/L mixture is (1 ⁇ 5): 100
  • step 2 Gas replacement Pour nitrogen into the reaction kettle to replace the air, and then replace the nitrogen with hydrogen
  • Step 3 Hydrogenation reaction React in a hydrogen atmosphere at 0.05MPa ⁇ 0.5MPa and 10°C ⁇ 80°C for 5h ⁇ 10h to complete Reduction of the double bond at positions 5 and 6 of the four-membered ring lactone of Spinosad J.
  • the organic solvent is selected from toluene, ethyl acetate, methanol, ethanol, isopropyl alcohol, tert-butyl methyl ether, tetrahydrofuran, glycol ethers, acetonitrile, acetone, spinosad J/L mixture, organic solvent and water.
  • the weight ratio is (20 ⁇ 30): (70 ⁇ 80): (1 ⁇ 5).
  • the gas replacement in step 2 specifically includes: first replacing the air in the kettle with high-purity nitrogen at least once, and then replacing the nitrogen in the kettle with high-purity hydrogen at least once.
  • the reaction is carried out under the conditions of 0.1MPa to 0.3MPa and 25°C to 50°C.
  • the hydrogenation material of the hydrogenation reaction of step 3 tetrabutylammonium bromide, potassium hydroxide and water are added to the reaction kettle, and the reaction kettle is sealed after full stirring and dissolution; nitrogen is introduced into the reaction kettle, and the air in the kettle is purified at least once. Replacement; add ethyl bromide and raise the temperature to 40°C, use nitrogen to supplement the pressure to 0.3Mpa, adjust the stirring speed to 300r/min, react under these conditions for 5 hours, cool to room temperature, transfer to an enamel kettle, add ether for crystallization , filtered, and dried at 60°C to obtain the final product spinosad ethyl.
  • the spinosyn J/L mixture in the reactant mixing in step 1 is a 3′-O-ethyl-spinosyn J/L mixture.
  • the catalyst of this application has higher conversion rate, selectivity and yield, and lower cost.
  • the catalyst for the selective catalytic reduction of spinosad J includes an active component and a carrier.
  • the mass ratio of the active component to the carrier is (20 ⁇ 0.1): (80 ⁇ 99.9).
  • the active component accounts for 1% of the weight of the catalyst. ⁇ 10%, more preferably 3% ⁇ 6%.
  • the hydrogenation effect is also effective when the loading is greater than 20%, but it will cause the activity per unit metal amount to decrease and increase the cost.
  • the active component of the catalyst accounts for 1% to 10% of the weight of the catalyst.
  • the active component is selected from Pd, Pt, Rh, Ru, and Ir.
  • the active component is composed of two metals, one selected from Pd, Pt, or Rh, and the other One is selected from Pd, Pt, Ru or Ir; the active component is three or more metals, namely a first active metal, a second active metal and a secondary active metal, and the first active metal is selected from Pd, Pt , any one of Rh, the second active metal is selected from any one of Pd, Pt, Ru, and Ir, the secondary active metal is selected from one or more of Pd, Pt, Ru, and Ir, the first active metal, the second active metal
  • the weight ratio to the less active metal is (6 ⁇ 12): (6 ⁇ 13): (1 ⁇ 2).
  • the catalyst carrier is one of activated carbon, graphite, carbon black, alumina, CaCO 3 , ZrO 2 , TiO 2 , SiO 2 , diatomite and other porous carrier materials that can be used for loading.
  • activated carbon includes but is not limited to coal-based carbon, wood carbon, coconut shell carbon, etc.; alumina can be in various crystal forms, but ⁇ -alumina is the best.
  • the catalyst carrier has a specific surface area of 50 m 2 /g to 2000 m 2 /g.
  • the raw material of this application is spinosad J/L mixture
  • the solvent can be selected from any organic solvent that can effectively dissolve spinosad J/L, such as toluene, ethyl acetate, alcohols (methanol, ethanol, isopropyl alcohol), ether (tert-butyl methyl ether, tetrahydrofuran), glycol ethers, acetonitrile, acetone.
  • Ethylation first: Add 200g spinosad J/L mixture, 50g tetrabutylammonium bromide, and 100g potassium hydroxide to the 2L reaction kettle, add 700g water, stir to dissolve, and seal the reaction kettle lid. Pressurize with nitrogen to 0.5Mpa and then release and replace the air in the kettle. Repeat 5 times. Add 30g of ethyl bromide and raise the temperature to 40°C. Use nitrogen to supplement the pressure to 0.3Mpa. Adjust the rotation speed to 300r/min. React under these conditions for 5 hours. Cool to room temperature and transfer to an enamel kettle. Add diethyl ether for crystallization. After filtering The ethylated product is obtained. After drying at 60°C, the dried ethylated product 3'-O-ethyl-spinosyn J/L is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供了一种选择性还原多杀菌素J的催化剂,涉及多杀菌素制备技术领域,催化剂活性组分占催化剂重量的1%~10%,活性组分选自Pd、Pt、Rh、Ru、Ir;活性组分至少包括两种金属,第一种金属选自Pd、Pt或Rh之一,余下金属选自Pd、Pt、Ru、Ir 任意一种或多种。上述催化剂用氢气在0.05MPa~0.5MPa、10℃~80℃的条件下反应5h~10h,可将多杀菌素J/L混合物中多杀菌素J四元环内酯上5,6位双键还原,并且不伴随多杀菌素J四元环内酯上13,14双键和多杀菌素L的还原。催化剂转化率、选择性和收率更高,成本更低。

Description

选择性还原多杀菌素J的催化剂及其工艺 技术领域
本发明涉及多杀菌素制备技术领域,特别涉及一种选择性还原多杀菌素J的催化剂及其工艺,选择性还原具体为多杀菌素J/L混合物中选择性催化还原多杀菌素J的四元环内酯上5,6位双键,并且不伴随多杀菌素J的四元环内酯上13,14共轭双键和多杀菌素L的还原。
背景技术
多杀菌素类化合物家族(spinosyns)是由好氧型革兰氏阳性土壤放线菌刺糖多孢菌(Saccharopolyspora spinosa)经有氧发酵产生的一类胞内次级代谢产物。多杀菌素类化合物家族在结构上属于大环内酯类的化合物,由21碳四元环内酯上接2个脱氧糖(三氧甲基鼠李糖和福乐糖胺)而成。刺糖多孢菌发酵产物中主要成份是多杀菌素A和D,被合称为多杀菌素(spinosad)。
经过菌种改良后,刺糖多孢菌发酵产物变为主要含多杀菌素J/L的混合物,多杀菌素J/L的差别在于四元环内酯6位碳上取代基是氢还是甲基。在生物发酵得到初级产品后,需要对多杀菌素J/L的混合物进行选择性加氢还原。具体的,多杀菌素J的四元环内酯上5,6位双键被选择性还原,13,14共轭双键不被还原,进而得到5,6-二氢-多杀菌素J,并且多杀菌素L不能被还原。
目前选择性还原多杀菌素J/L的催化剂报道较少,具有代表性的为中国专利申请公开号:CN101535330A,名称:选择性还原多杀菌素因子ET-J和ET-L制备多虫菌素,其公开了在水混溶性有机溶剂中,在能够选择性还原3’-O-乙基多杀菌素J的5,6-双键的多相催化剂5%Rh/Al 2O 3、5%Pd/C存在下,用氢气对3′-O-乙基-多杀菌素J/L的混合物进行氢化,直到将3′-O-乙基-多杀菌素J全部转化为3′-O-乙基-5,6-二氢-多杀菌素J。该专利申请提出的催化剂Rh/Al 2O 3,因贵金属铑用量较高,使得产品生产成本过大,不利于推广大规模应用;而催化剂5%Pd/C选择性不高,反应时间过长,导致3′-O-乙基-多杀菌素L亦被加氢,收率降低,这也是不希望看到的。另外该专利申请先对多杀菌素进行乙基化,然后在多相催化剂作用下进行加氢还原,导致该反应时间过长,不利于生产成本降低,以及长时间反应可能会带来不可预见副反应发生。
发明内容
针对现有技术存在的技术问题,为此,本专利申请的目的在于提供一种活性更高、选择性更好的催化剂。并且本专利申请还提供一种制备3′-O-乙基-5,6-二氢-多杀菌素J和3′-O-乙基-多杀菌素L的工艺方法,基于本专利申请提出的催化剂,大幅减少了反应时间,是一种更高效率,更绿色,更经济的工艺。
选择性还原多杀菌素J的催化剂,在水混溶性有机溶剂中,所述催化剂用于多杀菌素J/L混合物中选择性催化还原多杀菌素J的四元环内酯上5,6位双键,并且不伴随多杀菌素J的四元环内酯上13,14共轭双键和多杀菌素L的还原,催化剂包括活性组分和载体,催化剂活性组分占催化剂重量的1%~10%,活性组分选自Pd、Pt、Rh、Ru、Ir,具体为活性组分为两种金属,一种选自Pd、Pt或Rh,另一种选自Pd、Pt、Ru或Ir;或活性组分为三种或三种以上的金属,分别为第一活性金属、第二活性金属和次活性金属,第一活性金属选自Pd、Pt、Rh任意之一、第二活性金属选自Pd、Pt、Ru、Ir任意之一,次活性金属选自Pd、Pt、Ru、Ir一种或多种,第一活性金属、第二活性金属和次活性金属之重量比为(6~12):(6~13):(1~2)。
进一步,所述活性组分占催化剂重量的3%~6%,催化剂载体的比表面积为50m 2/g~2000m 2/g。
进一步,所述载体选自活性炭、石墨、炭黑、氧化铝、CaCO 3、ZrO 2、TiO 2、SiO 2、硅藻土。
进一步,催化剂的载体为煤质碳、木质碳、椰壳碳或γ-氧化铝。
进一步,步骤①反应物混合:将多杀菌素J/L混合物与有机溶剂和水加入反应釜混合,再加入如权利要求1所述的催化剂,搅拌并溶解,多杀菌素J/L混合物、有机溶剂和水之重量比为(10~50):(50~100):(1~5),催化剂干重和多杀菌素J/L混合物之重量比为(1~5):100;步骤②气体置换:向反应釜通入氮气置换空气,后用氢气置换氮气;步骤③氢化反应:在氢气气氛并于0.05MPa~0.5MPa、10℃~80℃的条件下反应5h~10h,即可完成多杀菌素J的四元环内酯上5,6位双键的还原。
进一步,所述有机溶剂选自甲苯、乙酸乙酯、甲醇、乙醇、异丙醇、叔丁基甲醚、四氢呋喃、二醇醚类、乙腈、丙酮,多杀菌素J/L混合物、有机溶剂和水 之重量比为(20~30):(70~80):(1~5)。
进一步,所述步骤②气体置换具体为,先用高纯氮气对釜内空气进行至少一次的置换,后用高纯氢气对釜内氮气进行至少一次的置换。
进一步,所述步骤③氢化反应时,在0.1MPa~0.3MPa,25℃~50℃的条件下反应。
进一步,所述步骤③氢化反应的氢化物料以及四丁基溴化铵、氢氧化钾以及水加入反应釜,充分搅拌溶解后密闭反应釜;向反应釜通入氮气,对釜内空气进行至少一次的置换;加入溴乙烷后升温至40℃,用氮气补充压力至0.3Mpa,搅拌转速调至300r/min,在此条件下反应5h,降至室温,转移到搪瓷釜中,加入乙醚进行结晶,过滤,在60℃烘干后即得到最终产品乙基多杀菌素。
进一步,所述步骤①反应物混合中多杀菌素J/L混合物为3′-O-乙基-多杀菌素J/L混合物。
上述技术方案具有如下优点或有益效果:本申请的催化剂转化率、选择性和收率更高,成本更低。
具体实施方式
下面详细描述实施例,描述的实施例是示例性的,旨在用于解释发明构思。
本专利申请选择性催化还原多杀菌素J的四元环内酯上5,6位双键且不伴随13,14共轭双键的还原,以得到5,6-二氢-多杀菌素J,并且在多杀菌素J氢化过程中多杀菌素L不能被还原。然后对鼠李糖3’位进行乙基化。本专利申请的化学原理如下:
Figure PCTCN2022144389-appb-000001
选择性催化还原多杀菌素J的催化剂包括活性组分和载体,活性组分和载体的质量比为(20~0.1):(80~99.9),优选的,活性组分占催化剂重量的1%~10%,更优选3%~6%,负载量大于20%后加氢效果也是有效的,但是会造成单位金属量的活性下降,增加成本。催化剂活性组分占催化剂重量的1%~10%,活性组分选自Pd、Pt、Rh、Ru、Ir,具体为活性组分为两种金属,一种选自Pd、Pt或Rh,另一种选自Pd、Pt、Ru或Ir;活性组分为三种或三种以上的金属,分别为第一活性金属、第二活性金属和次活性金属,第一活性金属选自Pd、Pt、Rh任意之一、第二活性金属选自Pd、Pt、Ru、Ir任意之一,次活性金属选自Pd、Pt、Ru、Ir一种或多种,第一活性金属、第二活性金属和次活性金属之重量比为(6~12):(6~13):(1~2)。
催化剂载体为活性炭、石墨、炭黑、氧化铝、CaCO 3、ZrO 2、TiO 2、SiO 2、硅藻土及其它可用于负载型的多孔载体材料等中的一种。其中,活性炭包括但不限于煤质碳、木质碳、椰壳碳等;氧化铝可以为多种晶型,但以γ-氧化铝最佳。催化剂载体具有50m 2/g~2000m 2/g的比表面积。
本申请的原料为多杀菌素J/L混合物,溶剂可以选自有效溶解多杀菌素J/L的任何有机溶剂,例如甲苯、乙酸乙酯、醇类(甲醇、乙醇、异丙醇)、醚类(叔丁基甲醚、四氢呋喃)、二醇醚类、乙腈、丙酮。
实施例1以5%Pd/CaCO 3对固体多杀菌素因子多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入220g多杀菌素J/L混合物和800g异丙醇,同时加入40g水,然后向该溶液中加入4.4g(占多杀菌素J/L混合物重量2%)干重5%Pd/CaCO 3,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.15MPa,搅拌下反应7h。过滤旋干后,使用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在90.1%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。
具体乙基化方法:将上述氢化后物料重新倒入反应釜,加入50g四丁基溴化铵,100g氢氧化钾,加入700g水搅拌溶解,密闭反应釜盖。用氮气充压至0.5Mpa然后释放置换釜内空气,重复5次。加入30g溴乙烷后升温至40℃,用氮气补充压力至0.3Mpa,转速调至300r/min,在此条件下反应5h,降至室温,转移到搪瓷釜中,加入乙醚进行结晶,过滤后得到乙基化后产品,在60℃烘干后即得到最终产品。
实施例2以5%Pt/C对固体多杀菌素因子多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入200g多杀菌素J/L混合物和800g丙酮,同时加入16g水然后向该溶液中加入6g(占多杀菌素J/L混合物重量3%)干重5%Pt/C,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.18MPa,搅拌下反应7h。过滤旋干后,使用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在91.5%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。后续乙基化工艺同实施例1。
实施例3以2%Rh3%Ru/TiO 2对固体多杀菌素因子多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入250g多杀菌素J/L混合物和750g异丙醇,同时加入15g水然后向该溶液中加入7.5g(占多杀菌素J/L混合物重量3%)干重 2%Rh3%Ru/TiO 2,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.1MPa,搅拌下反应5h。过滤旋干后,使用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在90.9%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。后续乙基化工艺同实施例1。
实施例4以2%Pd3%Pt/C对固体多杀菌素因子多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入300g多杀菌素J/L混合物和700g乙醇,同时加入21g水然后向该溶液中加入6g(占多杀菌素J/L混合物重量2%)干重2%Pd3%Pt/C,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.15MPa,搅拌下反应9h。过滤旋干后,使用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在92.8%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。后续乙基化工艺同实施例1。
实施例5以2%Rh3%Pd/Al 2O 3对固体多杀菌素因子多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入250g多杀菌素J/L混合物和750g异丙醇,同时加入20g水然后向该溶液中加入5g(占多杀菌素J/L重量2%)干重2%Rh3%Pd/Al 2O 3,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.15MPa,搅拌下反应8h。过滤旋干后,使用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在93.1%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。后续乙基化工艺同实施例1。
实施例6以2%Pd3%Ru/C对固体多杀菌素因子多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入250g多杀菌素J/L混合物和750g异丙醇,同时加入20g水然后向该溶液中加入7.5g(占多杀菌素J/L混合物重量3%)干重2%Pd3%Ru/C,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.2MPa,搅拌下反应10h。过滤旋干后,使 用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在90.4%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。后续乙基化工艺同实施例1。
实施例7以3%Rh3%Pt/CaCO 3对固体多杀菌素因子多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入250g多杀菌素J/L混合物和750g四氢呋喃,同时加入20g水然后向该溶液中加入5g(占多杀菌素J/L混合物重量2%)干重3%Rh3%Pt/CaCO 3,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.25MPa,搅拌下反应7h。过滤旋干后,使用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在91.6%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。后续乙基化工艺同实施例1。
实施例8以2%Rh3%Ru/Al 2O 3对固体多杀菌素因子多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入300g多杀菌素J/L混合物和750g丙酮,同时加入20g水然后向该溶液中加入9g(占多杀菌素J/L混合物重量3%)干重2%Rh3%Ru/Al 2O 3,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.15MPa,搅拌下反应8h。过滤旋干后,使用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在95.1%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。后续乙基化工艺同实施例1。
实施例9以1%Rh2%Ru/C对固体多杀菌素因子多杀多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入250g多杀菌素J/L混合物和750g丙酮,同时加入20g水然后向该溶液中加入5g(占多杀菌素J/L混合物重量2%)干重1%Rh2%Ru/C,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.1MPa,搅拌下反应9h。过滤旋干后,使用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在90.6%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。后续乙基化工艺同实施例1。
实施例10以1%Pd4%Pt/C对固体多杀菌素因子多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入200g多杀菌素J/L混合物和600g甲苯,同时加入20g水然后向该溶液中加入5g(占多杀菌素J/L重量2.5%)干重1%Pd4%Pt/C,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.15MPa,搅拌下反应7h。过滤旋干后,使用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在92.2%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。后续乙基化工艺同实施例1。
实施例11以3%Rh3%Ru/C对固体多杀菌素因子多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入250g多杀菌素J/L混合物和750g异丙醇,同时加入20g水然后向该溶液中加入5g(占多杀菌素J/L混合物重量2%)干重3%Rh3%Ru/C,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.15MPa,搅拌下反应6h。过滤旋干后,使用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在95.6%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。后续乙基化工艺同实施例1。
实施例12以2%Pt2%Ru/C对固体多杀菌素因子多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入250g多杀菌素J/L混合物和700g丙酮,同时加入20g水然后向该溶液中加入6.25g(占多杀菌素J/L混合物重量2.5%)干重2%Pt2%Ru/C,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.15MPa,搅拌下反应8h。过滤旋干后,使用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在93.4%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。后续乙基化工艺同实施例1。
实施例13以1%Pd3%Ir/C对固体多杀菌素因子多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入200g多杀菌素J/L混合物和800g异丙醇,同时加入20g水然后向该溶液中加入5g(占多杀菌素J/L混合物重量2.5%)干重 1%Pd3%Ir/C,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.2MPa,搅拌下反应9h。过滤旋干后,使用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在90.9%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。后续乙基化工艺同实施例1。
实施例14以2%Rh1%Ru/SiO 2对固体多杀菌素因子多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入250g多杀菌素J/L混合物和750g丙酮,同时加入15g水然后向该溶液中加入5g(占多杀菌素J/L混合物重量2%)干重2%Rh1%Ru/SiO 2,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.1MPa,搅拌下反应10h。过滤旋干后,使用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在91.1%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。后续乙基化工艺同实施例1。
实施例15以2%Pt2%Ru0.5%Ir/TiO 2对固体多杀菌素因子多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入250g多杀菌素J/L混合物和750g丙酮,同时加入20g水然后向该溶液中加入7.5g(占多杀菌素J/L混合物重量3%)干重2%Pt2%Ru0.5%Ir/TiO 2,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.15MPa,搅拌下反应10h。过滤旋干后,使用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在89.4%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。后续乙基化工艺同实施例1。
实施例16以2%Pt2%Pd0.5%Ru/C对固体多杀菌素因子多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入250g多杀菌素J/L混合物和750g丙酮,同时加入20g水然后向该溶液中加入7.5g(占多杀菌素J/L混合物重量3%)干重2%Pt2%Pd0.5%Ru/C,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压 至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.2MPa,搅拌下反应9h。过滤旋干后,使用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在87.5%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。后续乙基化工艺同实施例1。
实施例17以2%Pt1%Ru0.2%Ir/C对固体多杀菌素因子多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入200g多杀菌素J/L混合物和800g丙酮,同时加入15g水然后向该溶液中加入6.0g(占多杀菌素J/L混合物重量3%)干重2%Pt1%Ru0.2%Ru/C,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.25MPa,搅拌下反应8h。过滤旋干后,使用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在89.5%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。后续乙基化工艺同实施例1。
实施例18以3%Pd2%Ru0.4%Ir/C对固体多杀菌素因子多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入250g多杀菌素J/L混合物和700g异丙醇,同时加入18g水然后向该溶液中加入5.0g(占多杀菌素J/L混合物重量2%)干重3%Pd2%Ru0.4%Ir/C,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.3MPa,搅拌下反应9h。过滤旋干后,使用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在90.0%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。后续乙基化工艺同实施例1。
实施例19以1%Rh2%Ru0.2%Ir/C对固体多杀菌素因子多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入250g多杀菌素J/L混合物和700g异丙醇,同时加入15g水然后向该溶液中加入5.0g(占多杀菌素J/L混合物重量2%)干重1%Rh2%Ru0.2%Ir/C,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压 至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.15MPa,搅拌下反应10h。过滤旋干后,使用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在89.0%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。后续乙基化工艺同实施例1。
实施例20以1%Rh2%Pt0.2%Ru/C对固体多杀菌素因子多杀菌素J/L混合物进行氢化
向2L反应釜分别依次加入200g多杀菌素J/L混合物和700g丙酮,同时加入15g水然后向该溶液中加入5.0g(占多杀菌素J/L混合物重量2.5%)干重1%Rh2%Pt0.2%Ru/C,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.1MPa,搅拌下反应7h。过滤旋干后,使用液相色谱测试,多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在91.0%以上,从液相色谱图上未见5,6-二氢-多杀菌素L峰,说明多杀菌素L被氢化率为0。后续乙基化工艺同实施例1。
实施例21以2%Pt2%Ru/C对固体多杀菌素因子多杀菌素J/L混合物进行氢化
先乙基化:向2L反应釜加入200g多杀菌素J/L混合物、50g四丁基溴化铵,100g氢氧化钾,加入700g水搅拌溶解,密闭反应釜盖。用氮气充压至0.5Mpa然后释放置换釜内空气,重复5次。加入30g溴乙烷后升温至40℃,用氮气补充压力至0.3Mpa,转速调至300r/min,在此条件下反应5h,降至室温,转移到搪瓷釜中,加入乙醚进行结晶,过滤后得到乙基化后产品,在60℃烘干后即得到烘干后乙基化产品3′-O-乙基-多杀菌素J/L。
向2L反应釜分别依次加入200g上述3′-O-乙基-多杀菌素J/L混合物和800g异丙醇,同时加入40g水,然后向该溶液中加入4g(占多杀菌素J/L混合物重量2%)干重2%Pt2%Ru/C,开启搅拌溶解。拧紧反应釜加料口后用高纯N 2对釜内加压至0.3MPa,然后释放,进行釜内空气置换,重复5次。接着用高纯H 2加压至0.3MPa,然后释放,重复5次。最后用H 2加压至0.1MPa,搅拌下反应10h。过滤旋干后,使用液相色谱测试,3′-O-乙基-多杀菌素J氢化完成,转化率99%,选择性99%,产品收率在88.6%以上,从液相色谱图上未见3′-O-乙基-5,6-二氢-多杀菌素L峰,说明3′-O-乙基-多杀菌素多L被氢化率为0。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例对有经验的人来说是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型,这些变化和改进都落入要求保护的本申请范围内。

Claims (10)

  1. 选择性还原多杀菌素J的催化剂,在水混溶性有机溶剂中,所述催化剂用于多杀菌素J/L混合物中选择性催化还原多杀菌素J的四元环内酯上5,6位双键,并且不伴随多杀菌素J的四元环内酯上13,14共轭双键和多杀菌素L的还原,催化剂包括活性组分和载体,其特征在于:催化剂活性组分占催化剂重量的1%~10%,活性组分选自Pd、Pt、Rh、Ru、Ir;活性组分至少包括两种金属,第一种金属选自Pd、Pt或Rh之一,余下金属选自Pd、Pt、Ru、Ir任意一种或多种。
  2. 根据权利要求1所述的选择性还原多杀菌素J的催化剂,其特征在于:当活性组为两种金属,且第一种金属为Rh时,则活性组分组合与重量比选自1Rh:2Ru、2Rh:3Ru、1Rh:1Ru、2Rh:1Ru、2Rh:3Pd、1Rh:1Pt之一;当活性组分为三种金属时,第一种金属与余下两种金属之重量比为(6~12):(6~13):(1~2)。
  3. 根据权利要求1所述的选择性还原多杀菌素J的催化剂,其特征在于:所述活性组分占催化剂重量的3%~6%,催化剂载体的比表面积为50m 2/g~2000m 2/g。
  4. 根据权利要求3所述的选择性还原多杀菌素J的催化剂,其特征在于:所述载体选自活性炭、石墨、炭黑、氧化铝、CaCO 3、ZrO 2、TiO 2、SiO 2、硅藻土。
  5. 根据权利要求4所述的选择性还原多杀菌素J的催化剂,其特征在于:所述催化剂的载体为煤质碳、木质碳、椰壳碳或γ-氧化铝之一。
  6. 使用如权利要求1所述的催化剂选择性还原多杀菌素J的工艺,其特征在于:步骤①反应物混合:将多杀菌素J/L混合物与有机溶剂和水加入反应釜混合,再加入如权利要求1所述的催化剂,搅拌并溶解,多杀菌素J/L混合物、有机溶剂和水之重量比为(10~50):(50~100):(1~5),催化剂干重和多杀菌素J/L混合物之重量比为(1~5):100;步骤②气体置换:向反应釜通入氮气置换空气,后用氢气置换氮气;步骤③氢化反应:在氢气气氛并于0.05MPa~0.5MPa、10℃~80℃的条件下反应5h~10h,即可完成多杀菌素J的四元环内酯上5,6位双键的还原。
  7. 根据权利要求6所述的选择性还原多杀菌素J的工艺,其特征在于:所述有机溶剂选自甲苯、乙酸乙酯、甲醇、乙醇、异丙醇、叔丁基甲醚、四氢呋喃、二醇醚类、乙腈、丙酮,多杀菌素J/L混合物、有机溶剂和水之重量比为(20~30):(70~80):(1~5)。
  8. 根据权利要求6所述的选择性还原多杀菌素J的工艺,其特征在于:所述步骤②气体置换具体为,先用高纯氮气对釜内空气进行至少一次的置换,后用高纯氢气对釜内氮气进行至少一次的置换。
  9. 根据权利要求6所述的选择性还原多杀菌素J的工艺,其特征在于:所述步骤③氢化反应时,在0.1MPa~0.3MPa,25℃~50℃的条件下反应。
  10. 根据权利要求6所述的选择性还原多杀菌素J的工艺,其特征在于:所述步骤③氢化反应的氢化物料以及四丁基溴化铵、氢氧化钾以及水加入反应釜,充分搅拌溶解后密闭反应釜;向反应釜通入氮气,对釜内空气进行至少一次的置换;加入溴乙烷后升温至40℃,用氮气补充压力至0.3Mpa,搅拌转速调至300r/min,在此条件下反应5h,降至室温,转移到搪瓷釜中,加入乙醚进行结晶,过滤,在60℃烘干后即得到最终产品乙基多杀菌素。
PCT/CN2022/144389 2022-06-10 2022-12-31 选择性还原多杀菌素j的催化剂及其工艺 WO2023236534A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210658057.5A CN114950516B (zh) 2022-06-10 2022-06-10 选择性还原多杀菌素j的催化剂及其工艺
CN202210658057.5 2022-06-10

Publications (1)

Publication Number Publication Date
WO2023236534A1 true WO2023236534A1 (zh) 2023-12-14

Family

ID=82961506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144389 WO2023236534A1 (zh) 2022-06-10 2022-12-31 选择性还原多杀菌素j的催化剂及其工艺

Country Status (2)

Country Link
CN (1) CN114950516B (zh)
WO (1) WO2023236534A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114950516B (zh) * 2022-06-10 2023-06-13 康纳新型材料(杭州)有限公司 选择性还原多杀菌素j的催化剂及其工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043584A2 (en) * 2002-11-11 2004-05-27 Conocophillips Company Novel syngas catalysts and their method of use
CN101535330A (zh) * 2006-11-03 2009-09-16 陶氏益农公司 选择性还原多杀菌素因子et-j和et-l制备多虫菌素
US20150031835A1 (en) * 2013-07-23 2015-01-29 Industrial Technology Research Institute Heterogeneous catalyst and method for selectively hydrogenating copolymer utilizing the same
CN108602846A (zh) * 2016-03-04 2018-09-28 美国陶氏益农公司 用于产生乙基多杀菌素的选择性催化剂
US20180297972A1 (en) * 2015-11-16 2018-10-18 Ube Industries, Ltd METHOD FOR PRODUCING gamma-VALEROLACTONE
CN114950516A (zh) * 2022-06-10 2022-08-30 康纳新型材料(杭州)有限公司 选择性还原多杀菌素j的催化剂及其工艺
CN115010778A (zh) * 2022-06-10 2022-09-06 康纳新型材料(杭州)有限公司 一种乙基多杀菌素的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1233536A (fr) * 1958-01-13 1960-10-12 Engelhard Ind Inc Catalyseur contenant du ruthénium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043584A2 (en) * 2002-11-11 2004-05-27 Conocophillips Company Novel syngas catalysts and their method of use
CN101535330A (zh) * 2006-11-03 2009-09-16 陶氏益农公司 选择性还原多杀菌素因子et-j和et-l制备多虫菌素
US20150031835A1 (en) * 2013-07-23 2015-01-29 Industrial Technology Research Institute Heterogeneous catalyst and method for selectively hydrogenating copolymer utilizing the same
US20180297972A1 (en) * 2015-11-16 2018-10-18 Ube Industries, Ltd METHOD FOR PRODUCING gamma-VALEROLACTONE
CN108602846A (zh) * 2016-03-04 2018-09-28 美国陶氏益农公司 用于产生乙基多杀菌素的选择性催化剂
CN114950516A (zh) * 2022-06-10 2022-08-30 康纳新型材料(杭州)有限公司 选择性还原多杀菌素j的催化剂及其工艺
CN115010778A (zh) * 2022-06-10 2022-09-06 康纳新型材料(杭州)有限公司 一种乙基多杀菌素的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CROUSE GARY D, SPARKS THOMAS C, SCHOONOVER JOSEPH, GIFFORD JAMES, DRIPPS JAMES, BRUCE TIM, LARSON LARRY L, GARLICH JOSEPH, HATTON : "Recent advances in the chemistry of spinosyns", PEST MANAGEMENT SCIENCE, PUBLISHED FOR SCI BY WILEY, HOBOKEN, USA, vol. 57, no. 2, 1 February 2001 (2001-02-01), Hoboken, USA, pages 177 - 185, XP093114285, ISSN: 1526-498X, DOI: 10.1002/1526-4998(200102)57:2<177::AID-PS281>3.0.CO;2-Z *

Also Published As

Publication number Publication date
CN114950516B (zh) 2023-06-13
CN114950516A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN102068986B (zh) 一种呋喃衍生物开环加氢反应的催化剂
AU2007317900B2 (en) Selective reduction of spinosyn factors Et-J and Et-L to spinetoram
WO2023236534A1 (zh) 选择性还原多杀菌素j的催化剂及其工艺
CN102658165B (zh) 乙酸气相加氢制备乙醇的催化剂及其制备方法
CN108623436B (zh) 一种一锅法转化纤维素为生物乙醇的方法
CN109225342A (zh) 用于苯部分加氢的亲水性修饰的钌基催化剂载体、载体修饰方法及催化剂的制备方法和应用
CN107556186A (zh) 一种由葡萄糖二酸制备己二酸的方法
CN108435242A (zh) 用于邻苯二甲酸酯选择性加氢反应的催化剂及其制备方法
CN113559861A (zh) 一种糠醛直接转化为四氢糠醇Cu-Ni双金属催化剂、制备方法及应用
CN106881085A (zh) 对苯二酚加氢的催化剂及制备方法和加氢反应方法
WO2020082199A1 (en) Catalyst for synthesizing oxalate by co coupling reaction, preparation and uses
CN114702434A (zh) 一种四甲基哌啶醇连续化合成方法
CN102675271B (zh) 一种苯酞及其衍生物的连续化制备方法
CN115010778A (zh) 一种乙基多杀菌素的制备方法
CN116440899A (zh) 一种低流失率的贵金属负载型催化剂、制备方法及其应用
CN107089898A (zh) 一种生物质酚类化合物催化加氢合成环己醇类化合物的方法
CN109704918B (zh) 连续催化制备2,6-二叔丁基-4-甲基环己醇的方法
CN110560072A (zh) 一种己二酸酯加氢生产1,6-己二醇的催化剂及其制备方法
CN114192162A (zh) 一种二甲基苄醇氢解催化剂及其制备方法与应用
CN112206772A (zh) 一种合成乙醇酸甲酯催化剂的制备及应用
CN114100653A (zh) 一种氮化物负载钯催化剂及其制备方法和应用
CN111841557A (zh) 一种用于生产1,4-丁炔二醇的催化剂及其制备方法
CN108671916B (zh) 一种用于酯类加氢制乙醇的合金催化剂及其制备方法
CN112979589B (zh) 一种利用糖类化合物降解制备2,5-呋喃二甲醛的方法
CN114539191B (zh) 一种顺酐马来酐加氢和1,4丁二醇脱氢耦合法制备gbl的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945662

Country of ref document: EP

Kind code of ref document: A1