WO2023236341A1 - 草酸二甲酯加氢制乙二醇的催化剂及其制备方法 - Google Patents

草酸二甲酯加氢制乙二醇的催化剂及其制备方法 Download PDF

Info

Publication number
WO2023236341A1
WO2023236341A1 PCT/CN2022/110587 CN2022110587W WO2023236341A1 WO 2023236341 A1 WO2023236341 A1 WO 2023236341A1 CN 2022110587 W CN2022110587 W CN 2022110587W WO 2023236341 A1 WO2023236341 A1 WO 2023236341A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
dimethyl oxalate
hydrogenation
ethylene glycol
preparation
Prior art date
Application number
PCT/CN2022/110587
Other languages
English (en)
French (fr)
Inventor
唐康健
刘佳烙
翁超成
谷林青
潘昱好
于冬雪
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023236341A1 publication Critical patent/WO2023236341A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • C07C31/202Ethylene glycol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a catalyst for hydrogenating dimethyl oxalate to ethylene glycol and a preparation method thereof, and belongs to the technical field of catalysts.
  • Ethylene glycol can be selectively produced by controlling the hydrogenation of dimethyl oxalate.
  • Ethylene glycol is widely used in fields such as freeze retardant, fuel cells and polyester industry. In recent years, the growth rate of domestic ethylene glycol consumption has gradually increased, but most ethylene glycol products are imported from other countries. With the continuous and rapid development of the polyester industry, the demand for ethylene glycol will continue to increase.
  • the reaction pressure of dimethyl oxalate hydrogenation to ethylene glycol reported in the literature (RSC Adv., 2016, 6, 111415) is generally 2.2-3Mpa, and the temperature is above 200°C. At such a high temperature, it is easy to cause the aggregation of copper particles and rapid deactivation of the catalyst. This temperature also reaches the reaction conditions of methanol and carrier silica. Therefore, high temperature poses a great challenge to the stability of the catalyst. Therefore, a dimethyl oxalate hydrogenation catalyst suitable for industrial application should have the characteristics of high catalytic activity under low temperature and low pressure conditions.
  • the main factors that affect the catalytic performance of Cu/SiO 2 are carriers, preparation methods and additives.
  • the type of support not only affects the interaction between active species and the support, but also affects the dispersion of active species. Supports with high surface area and ordered mesoporous structure can increase the dispersion of Cu species, thereby significantly improving the catalyst activity.
  • Methods for preparing Cu/SiO 2 catalysts include ammonia evaporation method, impregnation method, deposition precipitation method, ion exchange method and sol-gel method, etc. However, the ammonia evaporation method has a greater impact on the environment, the deposition and precipitation method has complicated preparation procedures, and the impregnation method has a lower metal content.
  • Simple preparation method for catalysts there is a lack of Cu/SiO 2 with high catalytic activity under low temperature and low pressure conditions. Simple preparation method for catalysts.
  • the present invention provides a preparation method and application of a catalyst for catalyzing the hydrogenation of dimethyl oxalate.
  • the method uses ultrasonic method to combine the soluble metals and The active metal is well dispersed in the precursor solution, and then an oil bath treatment is performed to deposit the metal on the carrier.
  • This method improves the dispersion of metal and metal-carrier interaction, makes up for the shortcomings of low metal loading, improves the catalytic performance of the catalyst, and allows the catalyst to efficiently catalyze the hydrogenation of dimethyl oxalate to ethylene glycol under mild conditions. alcohol.
  • the first object of the present invention is to provide a preparation method of a catalyst for hydrogenation of dimethyl oxalate to ethylene glycol, which includes the following steps:
  • auxiliary metal is Ce, Mo, Ga, Li, Ni, Fe , one or more of Co, La, Zn, and Zr;
  • esters derived from the carrier into the homogeneous solution a of S1, and perform ultrasonic treatment for 0.5h-5h to obtain a homogeneous precursor solution;
  • the esters derived from the carrier are tetrabutyl titanate or ethyl orthosilicate. one or two;
  • the metal additives and active metals are precipitated on the carrier through heating and aging.
  • the ultrasonic oil bath one-pot method has simple preparation steps, high metal dispersion, and high metal loading.
  • the ammonia evaporation method has a greater impact on the environment
  • the deposition and precipitation method has complicated preparation procedures
  • the impregnation method has a lower metal content.
  • step S1 the usage ratio of copper acetylacetonate, the acetylacetonate salt of the auxiliary metal and benzyl alcohol is 5.19g:(1.6-2.0)g:(200-270)ml.
  • the ultrasonic treatment time in step S1 or step S2 is 1 to 2 hours.
  • the temperature of the oil bath in step S3 is 100-220°C.
  • the baking temperature in step S4 is 500°C-1000°C.
  • roasting time in step S4 is 4h-6h.
  • the second object of the present invention is to provide a catalyst for hydrogenation of dimethyl oxalate to ethylene glycol prepared by the preparation method.
  • the third object of the present invention is to provide the application of the catalyst for hydrogenating dimethyl oxalate to produce ethylene glycol.
  • the hydrogen space velocity is 30ml/min to 600ml/min.
  • the pressure is 0MPa to 2.5MPa and the temperature is 140°C to 180°C.
  • the final catalyst catalyzes the hydrogenation reaction of dimethyl oxalate: the volume ratio of the vaporized dimethyl oxalate methanol solution and hydrogen in the hydrogenation reaction is 1: (80 ⁇ 300).
  • the catalyst was reduced by the following method: setting the hydrogen flow rate to 10 ml/min, the nitrogen flow rate to 90 ml/min, raising the temperature from room temperature to 400°C at a rate of 2°C/min, and continuing with 10% hydrogen Reduction in 90% nitrogen atmosphere and normal pressure for 4 hours.
  • the present invention uses ultrasonic method to disperse the additive soluble metal and active metal well in the precursor solution, and then performs oil bath treatment to deposit the metal on the carrier.
  • This method improves the dispersion of metal and metal-carrier interaction, makes up for the shortcomings of low metal loading, improves the catalytic performance of the catalyst, and allows the catalyst to efficiently catalyze the hydrogenation of dimethyl oxalate to ethylene glycol under mild conditions. alcohol.
  • the ultrasonic oil bath one-pot method has simple preparation steps, high metal dispersion and high metal loading.
  • the ammonia evaporation method has a greater impact on the environment, the deposition and precipitation method has complicated preparation procedures, and the impregnation method has a lower metal content.
  • This embodiment also provides the application of the catalyst prepared above to catalyze the hydrogenation of dimethyl oxalate.
  • the catalyst is used to catalyze the hydrogenation of dimethyl oxalate to prepare ethylene glycol under mild conditions.
  • the method is:
  • the temperature is 140°C to catalyze the hydrogenation reaction of dimethyl oxalate: the volume ratio of the methanol solution of dimethyl oxalate and hydrogen gas after vaporization in the hydrogenation reaction is 1:80.
  • This embodiment also provides the application of the catalyst prepared above to catalyze the hydrogenation of dimethyl oxalate.
  • the catalyst is used to catalyze the hydrogenation of dimethyl oxalate to prepare ethylene glycol under mild conditions.
  • the method is:
  • This embodiment also provides the application of the catalyst prepared above to catalyze the hydrogenation of dimethyl oxalate.
  • the catalyst is used to catalyze the hydrogenation of dimethyl oxalate to prepare ethylene glycol under mild conditions.
  • the method is:
  • This embodiment also provides the application of the catalyst prepared above to catalyze the hydrogenation of dimethyl oxalate.
  • the catalyst is used to catalyze the hydrogenation of dimethyl oxalate to prepare ethylene glycol under mild conditions.
  • the method is:
  • This embodiment also provides the application of the catalyst prepared above to catalyze the hydrogenation of dimethyl oxalate.
  • the catalyst is used to catalyze the hydrogenation of dimethyl oxalate to prepare ethylene glycol under mild conditions.
  • the method is:
  • This embodiment also provides the application of the catalyst prepared above to catalyze the hydrogenation of dimethyl oxalate.
  • the catalyst is used to catalyze the hydrogenation of dimethyl oxalate to prepare ethylene glycol under mild conditions.
  • the method is:
  • the temperature is 176°C to catalyze the hydrogenation reaction of dimethyl oxalate: the volume ratio of the vaporized methanol solution of dimethyl oxalate and hydrogen in the hydrogenation reaction is 1:350.
  • the catalyst prepared in Examples 1 to 6 catalyzes the hydrogenation reaction of dimethyl oxalate.
  • the product is stable after 20 hours of operation.
  • the catalytic performance of the catalyst is measured. The results are shown in Table 1, where DMO is dimethyl oxalate and MG is Methyl glycolate, EG is ethylene glycol, and 1,2-BDO is 1,2-butanediol.
  • the catalyst prepared in the embodiment of the present invention has a conversion rate of >99% and a target product selectivity of >95% in the oxalate hydrogenation reaction under mild conditions; while the catalysts reported in other patents or literature To achieve the same catalytic performance, the reaction pressure is generally between 2.5 and 3.5MPa, and the reaction temperature is generally not lower than 190°C. This shows that the catalyst prepared by the present invention has higher raw material conversion rate and product selectivity under mild reaction conditions, and has obvious advantages in overall catalytic performance.

Abstract

本发明公开了一种草酸二甲酯加氢制乙二醇的催化剂及其制备方法,本发明使用超声的方法将助剂可溶性金属和活性金属良好的分散在前驱体溶液中,然后进行油浴处理,将金属沉积在载体上。该方法提高了金属的分散度和金属-载体相互作用,并且弥补了金属负载量低的不足,提高了催化剂的催化性能,使得催化剂在温和条件下能高效催化草酸二甲酯加氢制乙二醇。相比其他的方法,该超声油浴一锅法制备步骤简单,且金属分散度高,金属负载量高。

Description

草酸二甲酯加氢制乙二醇的催化剂及其制备方法 技术领域
本发明涉及一种草酸二甲酯加氢制乙二醇的催化剂及其制备方法,属于催化剂技术领域。
背景技术
通过控制草酸二甲酯加氢可以选择性的制备乙二醇,乙二醇广泛应用于阻冻剂、燃料电池和聚酯工业等领域。近几年,国内乙二醇消费增长率逐步攀升,然而大部分的乙二醇产品是从其他国家进口而来。聚酯工业的不断快速发展,对乙二醇的需求会持续增加。
传统制备乙二醇路线有基于石油路线的环氧乙烷水合法以及基于煤和天然气路线的C1合成法。C1路线合成乙二醇是CO氧化偶联生成草酸二甲酯,草酸二甲酯再催化加氢合成乙二醇。设计和制备高效草酸二甲酯加氢催化剂是实现煤制乙二醇工业化关键。虽然石油路线技术已经成熟,但是对石油的依赖很大,而我国的能源结构恰好又是富煤、贫油、少气的特点。因此煤制乙二醇成为了可行的替代方案,我国在世界上率先实现了全套“煤制乙二醇”(CO偶联合成草酸二甲酯和进一步催化加氢合成乙二醇)技术路线和工业化应用。草酸二甲酯加氢制备乙二醇是煤制乙二醇的重要步骤,草酸二甲酯加氢是一个串联反应,第一步加氢得到乙醇酸甲酯(MG),进一步加氢得到乙二醇(EG),深度加氢能得到乙醇(EtOH)。
草酸二甲酯加氢催化剂主要有Ru基均相催化剂和Cu基非均相催化剂,其中,无Cr的Cu基催化剂(Cu/SiO 2)是研究重点。研究认为,草酸二甲酯加氢机理是Cu 0与Cu +的协同作用,Cu 0是催化剂上的活性位点,活化H 2;Cu +起亲电子的L酸作用,激化C=O键提高草酸二甲酯中酯基的反应。催化剂失活的主要原因是产物乙醇酸甲酯在催化剂表面较难脱附以及反应过程中催化剂烧结。
文献中报道(RSC Adv.,2016,6,111415)的草酸二甲酯加氢制乙二醇反应压力一般在2.2-3Mpa,温度为200℃以上。而如此高温下容易导致铜颗粒的聚集造成催化剂快速失活,该温度也达到了甲醇和载体二氧化硅的反应条件。因此高温对催化剂的稳定性具有较大的挑战。因此适合工业应用的草酸二甲酯加氢催化剂应具备在低温、低压条件下有较高催化活性的特点。
影响Cu/SiO 2催化性能的主要有载体、制备方法和助剂。载体类型不仅影响活性物种与载体之间的相互作用,而且影响活性物种分散度,具有高表面积和有序介孔结构的载体能够提高Cu物种分散度,从而显著提高催化剂活性。制备Cu/SiO 2催化剂的方法有蒸氨法、浸渍法、沉积沉淀法、离子交换法和溶胶凝胶法等。但是蒸氨法对环境造成较大的影响,沉积沉淀法制备程序复杂,而浸渍法负载的金属含量较低,目前缺少一种具备在低温、低压条件下有较高催化活性的Cu/SiO 2催化剂的简单制备方法。
发明内容
为解决现有合成技术中存在的过程复杂、负载量低的问题,本发明提供一种催化草酸二甲酯加氢的催化剂的制备方法及应用,该方法使用超声的方法将助剂可溶性金属和活性金属良好的分散在前驱体溶液中,然后进行油浴处理,将金属沉积在载体上。该方法提高了金属的分散度和金属-载体相互作用,并且弥补了金属负载量低的不足,提高了催化剂的催化性能,使得催化剂在温和条件下能高效催化草酸二甲酯加氢制乙二醇。
本发明的第一个目的是提供一种草酸二甲酯加氢制乙二醇的催化剂的制备方法,包括如下步骤:
S1、将乙酰丙酮铜和助剂金属的乙酰丙酮盐溶解于苯甲醇中,超声处理0.5h-3h得到均相溶液a;所述的助剂金属为Ce、Mo、Ga、Li、Ni、Fe、Co、La、Zn、Zr中的一种或多种;
S2、将载体来源的酯类加入S1的均相溶液a中,超声处理0.5h-5h小时得到均相前驱体溶液;载体来源的酯类为钛酸四丁酯或正硅酸乙酯中的一种或两种;
S3、将S2中得到的均相前驱体溶液放置在50℃-250℃的油浴中进行1h-6h的蒸发沉积,得到褐色固体;
S4、将S3中蒸发沉积得到的褐色固体进行粉碎,然后在温度为300℃~1000℃的条件进行焙烧2h-8h,得到草酸二甲酯加氢制乙二醇的催化剂。
在本发明蒸发沉积时,通过加热老化,将金属助剂及活性金属沉降在载体上。
相比其他的方法,该超声油浴一锅法制备步骤简单,且金属分散度高,金属负载量高。例如蒸氨法对环境造成较大的影响,沉积沉淀法制备程序复杂,而浸渍法负载的金属含量较低。
进一步地,S1步骤中,乙酰丙酮铜、助剂金属的乙酰丙酮盐和苯甲醇的用量比为5.19g:(1.6-2.0)g:(200-270)ml。
进一步地,S1步骤或S2步骤中的超声处理时间为1~2h。
进一步地,S3步骤中的油浴的温度为100~220℃。
进一步地,S4步骤中焙烧的温度为500℃-1000℃。
进一步地,S4步骤中焙烧的时间为4h-6h。
本发明的第二个目的是提供所述的制备方法制备得到的草酸二甲酯加氢制乙二醇的催化剂。
本发明的第三个目的是提供所述的草酸二甲酯加氢制乙二醇的催化剂的应用。
进一步地,所述的应用包括如下步骤:
将含有5~15%的草酸二甲酯甲醇溶液汽化后与氢气混合,氢气空速为30ml/min~600ml/min,在压力为0MPa~2.5MPa,温度为140℃~180℃下,采用还原后的催化剂催化草酸二甲酯加氢反应:加氢反应中汽化后的草酸二甲酯甲醇溶液和氢气的体积比为1:(80~300)。
进一步地,所述的催化剂通过如下方法进行还原:设置氢气流速为10ml/min,氮气流速为90ml/min,以2℃/min的速度将温度从室温升温至400℃,继续在10%的氢气90%的氮气气氛中、常压下还原4h。
本发明的有益效果是:
1、本发明使用超声的方法将助剂可溶性金属和活性金属良好的分散在前驱体溶液中,然后进行油浴处理,将金属沉积在载体上。该方法提高了金属的分散度和金属-载体相互作用,并且弥补了金属负载量低的不足,提高了催化剂的催化性能,使得催化剂在温和条件下能高效催化草酸二甲酯加氢制乙二醇。
2、相比其他的方法,该超声油浴一锅法制备步骤简单,且金属分散度高,金属负载量高。而蒸氨法对环境造成较大的影响,沉积沉淀法制备程序复杂,而浸渍法负载的金属含量较低。
具体实施方式
下面结合具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1:
本实施例的催化草酸二甲酯加氢的催化剂的制备方法,该方法为:
S1、将乙酰丙酮铜和其他助剂金属的乙酰丙酮盐(乙酰丙酮镧)溶解于苯甲醇中,然后超声处理0.5h得到均相溶液;所述乙酰丙酮铜、其他金属的乙酰丙酮盐(乙酰丙酮镧)和苯甲醇用量比为5.19g:1.73g:200ml。
S2、将载体的来源的酯类(钛酸四丁酯)加入S1中,然后再超声1h得到混合的均相前 驱体溶液。金属活性组分和助剂很好的分散在载体溶剂中。
S3、将S2中得到的均相前驱体溶液放置在80℃的油浴中进行4h的蒸发沉积。通过加热老化,将金属助剂及活性金属沉降在载体上。
S4、将S3中蒸发沉积得到的褐色固体进行研磨,然后在温度为400℃的条件进行焙烧8h,得到草酸二甲酯加氢的催化剂。
本实施例还提供了上述制备的催化草酸二甲酯加氢的催化剂的应用,所述催化剂用于温和条件下催化草酸二甲酯加氢制备乙二醇,该方法为:
将所述催化剂置于固定床反应器中,设置氢气流速为10ml/min,氮气流速为90ml/min,以2℃/min的速度将温度从室温升温至400℃,继续在10%的氢气90%的氮气气氛中、常压下还原4h,还原结束后,将温度控制为140℃,然后将10%的草酸二甲酯甲醇溶液汽化后与氢气混合,氢气空速为30ml/min,在压力为0MPa,温度为140℃下催化草酸二甲酯加氢反应:加氢反应中汽化后的草酸二甲酯的甲醇溶液和氢气的体积比为1:80。
实施例2:
本实施例的催化草酸二甲酯加氢的催化剂的制备方法,该方法为:
S1、将乙酰丙酮铜和其他助剂金属的乙酰丙酮盐(乙酰丙酮锌)溶解于苯甲醇中,然后超声处理1h得到均相溶液;所述乙酰丙酮铜、其他金属的乙酰丙酮盐(乙酰丙酮锌)和苯甲醇用量比为5.19g:1.89g:230ml。
S2、将载体的来源的酯类(钛酸四丁酯)加入S1中,然后再超声1.5h得到混合的均相前驱体溶液。金属活性组分和助剂很好的分散在载体溶剂中。
S3、将S2中得到的均相前驱体溶液放置在100℃的油浴中进行3.5h的蒸发沉积。通过加热老化,将金属助剂及活性金属沉降在载体上。
S4、将S3中蒸发沉积得到的褐色固体进行研磨,然后在温度为600℃的条件进行焙烧5h,得到草酸二甲酯加氢的催化剂。
本实施例还提供了上述制备的催化草酸二甲酯加氢的催化剂的应用,所述催化剂用于温和条件下催化草酸二甲酯加氢制备乙二醇,该方法为:
将所述催化剂置于固定床反应器中,设置氢气流速为10ml/min,氮气流速为90ml/min,以2℃/min的速度将温度从室温升温至400℃,继续在10%的氢气90%的氮气气氛中、常压下还原4h,还原结束后,将温度控制为165℃,然后将10%的草酸二甲酯甲醇溶液汽化后与氢气混合,氢气空速为80ml/min,在压力为1MPa,温度为165℃下催化草酸二甲酯加氢反应:加氢反应中汽化后的草酸二甲酯的甲醇溶液和氢气的体积比为1:100。
实施例3:
本实施例的催化草酸二甲酯加氢的催化剂的制备方法,该方法为:
S1、将乙酰丙酮铜和其他助剂金属的乙酰丙酮盐(乙酰丙酮镍)溶解于苯甲醇中,然后超声处理1.5h得到均相溶液;所述乙酰丙酮铜、其他金属的乙酰丙酮盐(乙酰丙酮镍)和苯甲醇用量比为5.19g:1.65g:240ml。
S2、将载体的来源的酯类(硅酸四乙酯)加入S1中,然后再超声2h得到混合的均相前驱体溶液。金属活性组分和助剂很好的分散在载体溶剂中。
S3、将S2中得到的均相前驱体溶液放置在120℃的油浴中进行3h的蒸发沉积。通过加热老化,将金属助剂及活性金属沉降在载体上。
S4、将S3中蒸发沉积得到的褐色固体进行研磨,然后在温度为750℃的条件进行焙烧5h,得到草酸二甲酯加氢的催化剂。
本实施例还提供了上述制备的催化草酸二甲酯加氢的催化剂的应用,所述催化剂用于温和条件下催化草酸二甲酯加氢制备乙二醇,该方法为:
将所述催化剂置于固定床反应器中,设置氢气流速为10ml/min,氮气流速为90ml/min,以2℃/min的速度将温度从室温升温至400℃,继续在10%的氢气90%的氮气气氛中、常压下还原4h,还原结束后,将温度控制为170℃,然后将10%的草酸二甲酯甲醇溶液汽化后与氢气混合,氢气空速为100ml/min,在压力为1..5MPa,温度为170℃下催化草酸二甲酯加氢反应:加氢反应中汽化后的草酸二甲酯的甲醇溶液和氢气的体积比为1:120。
实施例4:
本实施例的催化草酸二甲酯加氢的催化剂的制备方法,该方法为:
S1、将乙酰丙酮铜和其他助剂金属的乙酰丙酮盐(乙酰丙酮镍)溶解于苯甲醇中,然后超声处理1.5h得到均相溶液;所述乙酰丙酮铜、其他金属的乙酰丙酮盐(乙酰丙酮镍)和苯甲醇用量比为5.19g:1.79g:200ml。
S2、将载体的来源的酯类(硅酸四乙酯)加入S1中,然后再超声2.5h得到混合的均相前驱体溶液。金属活性组分和助剂很好的分散在载体溶剂中。
S3、将S2中得到的均相前驱体溶液放置在190℃的油浴中进行2.5h的蒸发沉积。通过加热老化,将金属助剂及活性金属沉降在载体上。
S4、将S3中蒸发沉积得到的褐色固体进行研磨,然后在温度800℃的条件进行焙烧4h,得到草酸二甲酯加氢的催化剂。
本实施例还提供了上述制备的催化草酸二甲酯加氢的催化剂的应用,所述催化剂用于温和条件下催化草酸二甲酯加氢制备乙二醇,该方法为:
将所述催化剂置于固定床反应器中,设置氢气流速为10ml/min,氮气流速为90ml/min,以2℃/min的速度将温度从室温升温至400℃,继续在10%的氢气90%的氮气气氛中、常压下还原4h,还原结束后,将温度控制为175℃,然后将10%的草酸二甲酯甲醇溶液汽化后与氢气混合,氢气空速为250ml/min,在压力为1.9MPa,温度为175℃下催化草酸二甲酯加氢反应:加氢反应中汽化后的草酸二甲酯的甲醇溶液和氢气的体积比为1:150。
实施例5:
本实施例的催化草酸二甲酯加氢的催化剂的制备方法,该方法为:
S1、将乙酰丙酮铜和其他助剂金属的乙酰丙酮盐(乙酰丙酮镍)溶解于苯甲醇中,然后超声处理1.5h得到均相溶液;所述乙酰丙酮铜、其他金属的乙酰丙酮盐(乙酰丙酮镍)和苯甲醇用量比为5.19g:1.67g:250ml。
S2、将载体的来源的酯类(硅酸四乙酯)加入S1中,然后再超声3h得到混合的均相前驱体溶液。金属活性组分和助剂很好的分散在载体溶剂中。
S3、将S2中得到的均相前驱体溶液放置在200℃的油浴中进行2h的蒸发沉积。通过加热老化,将金属助剂及活性金属沉降在载体上。
S4、将S3中蒸发沉积得到的褐色固体进行研磨,然后在温度为850℃的条件进行焙烧3.5h,得到草酸二甲酯加氢的催化剂。
本实施例还提供了上述制备的催化草酸二甲酯加氢的催化剂的应用,所述催化剂用于温和条件下催化草酸二甲酯加氢制备乙二醇,该方法为:
将所述催化剂置于固定床反应器中,设置氢气流速为10ml/min,氮气流速为90ml/min,以2℃/min的速度将温度从室温升温至400℃,继续在10%的氢气90%的氮气气氛中、常压下还原4h,还原结束后,将温度控制为180℃,然后将10%的草酸二甲酯甲醇溶液汽化后与氢气混合,氢气空速为100ml/min,在压力为2.1MPa,温度为180℃下催化草酸二甲酯加氢反应:加氢反应中汽化后的草酸二甲酯的甲醇溶液和氢气的体积比为1:300。
实施例6:
本实施例的催化草酸二甲酯加氢的催化剂的制备方法,该方法为:
S1、将乙酰丙酮铜和其他助剂金属的乙酰丙酮盐(乙酰丙酮镍)溶解于苯甲醇中,然后 超声处理3.5h得到均相溶液;所述乙酰丙酮铜、其他金属的乙酰丙酮盐(乙酰丙酮镍)和苯甲醇用量比为5.19g:1.98g:250ml。
S2、将载体的来源的酯类(硅酸四乙酯)加入S1中,然后再超声3.5h得到混合的均相前驱体溶液。金属活性组分和助剂很好的分散在载体溶剂中。
S3、将S2中得到的均相前驱体溶液放置在230℃的油浴中进行2h的蒸发沉积。通过加热老化,将金属助剂及活性金属沉降在载体上。
S4、将S3中蒸发沉积得到的褐色固体进行研磨,然后在温度为900℃的条件进行焙烧2h,得到草酸二甲酯加氢的催化剂。
本实施例还提供了上述制备的催化草酸二甲酯加氢的催化剂的应用,所述催化剂用于温和条件下催化草酸二甲酯加氢制备乙二醇,该方法为:
将所述催化剂置于固定床反应器中,设置氢气流速为10ml/min,氮气流速为90ml/min,以2℃/min的速度将温度从室温升温至400℃,继续在10%的氢气90%的氮气气氛中、常压下还原4h,还原结束后,将温度控制为176℃,然后将10%的草酸二甲酯甲醇溶液汽化后与氢气混合,氢气空速为100ml/min,在压力为2.3MPa,温度为176℃下催化草酸二甲酯加氢反应:加氢反应中汽化后的草酸二甲酯的甲醇溶液和氢气的体积比为1:350。
实施例7:
本实施例为实施例1~6制备的催化剂催化草酸二甲酯加氢反应,运行20小时后产物稳定,测得催化剂的催化性能,结果见表1,其中DMO为草酸二甲酯,MG为乙醇酸甲酯,EG为乙二醇,1,2-BDO为1,2-丁二醇。
表1实施例1~实施例6制备的催化剂的催化性能
Figure PCTCN2022110587-appb-000001
从表1分析可以看出,本发明实施例制备的催化剂在草酸酯加氢反应中,在温和条件下转化率>99%,目标产物选择性>95%;而其他专利或者文献报道的催化剂达到相同的催化 性能,反应压力一般在2.5~3.5MPa,反应温度一般不会低于190℃。这说明本发明所制备的催化剂在温和的反应条件下原料的转化率和产物的选择性更高,整体催化性能具有明显的优势。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种草酸二甲酯加氢制乙二醇的催化剂的制备方法,其特征在于,包括如下步骤:
    S1、将乙酰丙酮铜和助剂金属的乙酰丙酮盐溶解于苯甲醇中,超声处理0.5h-3h得到均相溶液a;所述的助剂金属为Ce、Mo、Ga、Li、Ni、Fe、Co、La、Zn、Zr中的一种或多种;
    S2、将载体来源的酯类加入S1的均相溶液a中,超声处理0.5h-5h小时得到均相前驱体溶液;载体来源的酯类为钛酸四丁酯或正硅酸乙酯中的一种或两种;
    S3、将S2中得到的均相前驱体溶液放置在50℃-250℃的油浴中进行1h-6h的蒸发沉积,得到褐色固体;
    S4、将S3中蒸发沉积得到的褐色固体进行粉碎,然后在温度为300℃~1000℃的条件进行焙烧2h-8h,得到草酸二甲酯加氢制乙二醇的催化剂。
  2. 根据权利要求1所述的制备方法,其特征在于,S1步骤中,乙酰丙酮铜、助剂金属的乙酰丙酮盐和苯甲醇的用量比为5.19g:(1.6-2.0)g:(200-270)ml。
  3. 根据权利要求1所述的制备方法,其特征在于,S1步骤或S2步骤中的超声处理时间为1~2h。
  4. 根据权利要求1所述的制备方法,其特征在于,S3步骤中的油浴的温度为100~220℃。
  5. 根据权利要求1所述的制备方法,其特征在于,S4步骤中焙烧的温度为500℃~1000℃。
  6. 根据权利要求1所述的制备方法,其特征在于,S4步骤中焙烧的时间为4h~6h。
  7. 一种权利要求1~6任一项所述的制备方法制备得到的草酸二甲酯加氢制乙二醇的催化剂。
  8. 权利要求7所述的草酸二甲酯加氢制乙二醇的催化剂的应用。
  9. 根据权利要求8所述的应用,其特征在于,所述的应用包括如下步骤:
    将含有5~15%的草酸二甲酯甲醇溶液汽化后与氢气混合,氢气空速为30ml/min~600ml/min,在压力为0MPa~2.5MPa,温度为140℃~180℃下,采用还原后的催化剂催化草酸二甲酯加氢反应:加氢反应中汽化后的草酸二甲酯甲醇溶液和氢气的体积比为1:(80~300)。
  10. 根据权利要求9所述的应用,其特征在于,所述的催化剂通过如下方法进行 还原:设置氢气流速为5~15ml/min,氮气流速为85~95ml/min,以1~5℃/min的速度将温度从20~30℃升温至350~450℃,继续在氢气和氮气气氛中、常压下还原3~5h。
PCT/CN2022/110587 2022-06-09 2022-08-05 草酸二甲酯加氢制乙二醇的催化剂及其制备方法 WO2023236341A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210646809.6A CN114950454B (zh) 2022-06-09 2022-06-09 草酸二甲酯加氢制乙二醇的催化剂及其制备方法
CN202210646809.6 2022-06-09

Publications (1)

Publication Number Publication Date
WO2023236341A1 true WO2023236341A1 (zh) 2023-12-14

Family

ID=82962460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110587 WO2023236341A1 (zh) 2022-06-09 2022-08-05 草酸二甲酯加氢制乙二醇的催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN114950454B (zh)
WO (1) WO2023236341A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102336666A (zh) * 2011-07-08 2012-02-01 上海华谊(集团)公司 一种草酸二甲酯加氢合成乙醇酸甲酯和乙二醇的制备方法
CN106540701A (zh) * 2015-09-18 2017-03-29 中国石油天然气股份有限公司 一种草酸酯加氢催化剂及其制备方法
JP2017171599A (ja) * 2016-03-23 2017-09-28 高化学技術株式会社 固体触媒、及びその固体触媒を用いたエチレングリコールの製造方法
CN109433205A (zh) * 2018-11-28 2019-03-08 中触媒新材料股份有限公司 一种草酸二甲酯加氢的铜基催化剂及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102336666A (zh) * 2011-07-08 2012-02-01 上海华谊(集团)公司 一种草酸二甲酯加氢合成乙醇酸甲酯和乙二醇的制备方法
CN106540701A (zh) * 2015-09-18 2017-03-29 中国石油天然气股份有限公司 一种草酸酯加氢催化剂及其制备方法
JP2017171599A (ja) * 2016-03-23 2017-09-28 高化学技術株式会社 固体触媒、及びその固体触媒を用いたエチレングリコールの製造方法
CN109433205A (zh) * 2018-11-28 2019-03-08 中触媒新材料股份有限公司 一种草酸二甲酯加氢的铜基催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN114950454A (zh) 2022-08-30
CN114950454B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
CN111774050B (zh) 催化草酸二甲酯加氢的负载型催化剂制备方法及其应用
CN101920200B (zh) 一种长寿命钴基费托合成催化剂的制备方法
CN110102313B (zh) 一种限域结构钌镍核壳双金属纳米催化剂的制备及其催化对苯二甲酸二甲酯选择加氢的应用
CN110975938A (zh) 一种用于二氧化碳加氢制甲醇的催化剂及其制备方法
WO2016179974A1 (zh) 一种纤维素两步法制备乙醇和正丙醇的方法
CN101767006A (zh) 催化氢解甘油制备低碳数脂肪醇的催化剂及制备方法
CN111389404A (zh) 一种氧化铈负载镍催化剂的制备方法及其用途
CN113289632B (zh) 一种用于草酸二甲酯加氢制乙醇的催化剂及其制备方法和应用
CN106180751B (zh) 一种纳米铂镍合金及其制备与应用
CN106914246A (zh) 顺酐液相加氢合成γ‑丁内酯的负载镍催化剂及制备方法和应用
CN111111675A (zh) 一种Ni-CeO2催化剂的制备方法
CN114602495A (zh) 一种丙烷脱氢Pt催化剂的制备方法
CN103331158A (zh) 一种醋酸加氢制乙醇的催化剂及制备方法
CN113842914B (zh) 一种二氧化碳合成甲醇的催化剂及其制备方法和应用
CN102908957A (zh) 一种费托合成方法
CN106810419B (zh) 用于醋酸加氢制备乙醇催化剂中的石墨烯负载金属复合物及其制备方法
CN107376936B (zh) 一种铂-钴/凹凸棒石催化剂及其制备方法和应用
CN108404961B (zh) 醋酸加氢制乙醇含氮二氧化硅空心球负载铂锡催化剂及制备
WO2023236341A1 (zh) 草酸二甲酯加氢制乙二醇的催化剂及其制备方法
CN112246273B (zh) 一种用于二氧化碳转化制备低碳醇的催化剂、制备方法及应用
CN112264032B (zh) 一种用于催化糠醛加氢脱氧制备2-甲基呋喃的催化剂
CN113663682A (zh) 一种非负载介孔加氢脱氧催化剂及其制备和应用
WO2016180000A1 (zh) 一种纤维素两步法制备乙二醇和1,2-丙二醇的方法
CN105170156B (zh) 类气凝胶结构的镍基甲烷干重整催化剂的制备方法
CN102441391B (zh) 一种钴基费托合成催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945475

Country of ref document: EP

Kind code of ref document: A1