WO2023236151A1 - 一种钛酸锶钡固溶体纳米立方晶及其制备方法与应用 - Google Patents

一种钛酸锶钡固溶体纳米立方晶及其制备方法与应用 Download PDF

Info

Publication number
WO2023236151A1
WO2023236151A1 PCT/CN2022/097930 CN2022097930W WO2023236151A1 WO 2023236151 A1 WO2023236151 A1 WO 2023236151A1 CN 2022097930 W CN2022097930 W CN 2022097930W WO 2023236151 A1 WO2023236151 A1 WO 2023236151A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid solution
nanocubic
strontium
crystal
barium titanate
Prior art date
Application number
PCT/CN2022/097930
Other languages
English (en)
French (fr)
Inventor
路建美
李娜君
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to PCT/CN2022/097930 priority Critical patent/WO2023236151A1/zh
Publication of WO2023236151A1 publication Critical patent/WO2023236151A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium

Definitions

  • the invention relates to the technical field of nano piezoelectric materials and piezoelectric catalysis, and specifically relates to a preparation method of strontium barium titanate solid solution nano cubic crystals and its application in piezoelectric catalysis to remove organic pollutants in water.
  • Piezoelectric materials such as the classic barium titanate (BaTiO 3 ) and lead zirconate titanate (Pb(Zr,Ti)O 3 ) piezoelectric ceramics, have been widely used in traditional fields such as sensors, transducers and capacitors. .
  • the "piezoelectric catalysis" effect of piezoelectric semiconductor materials has attracted more and more attention from researchers.
  • piezoelectric catalysis can achieve in-situ generation of active species through the coupling of piezoelectric effects and electrochemical reactions.
  • environmental pollution problems pose a great threat to human health and ecosystems. Therefore, the use of piezoelectric catalysis to degrade organic pollutants provides a new and promising strategy for environmental remediation.
  • the prior art also discloses vanadium-doped strontium titanate nanofibers.
  • the preparation method includes the following steps: electrospinning the vanadium-doped strontium titanate electrospinning precursor solution to obtain a fiber membrane; and then calcining the fiber membrane to obtain a vanadium-doped nanofiber.
  • Hybrid strontium titanate nanofibers; the vanadium-doped strontium titanate electrospinning precursor solution includes vanadium salts, strontium salts, titanium salts, polymers, and solvents.
  • the purpose of the present invention is to provide a strontium barium titanate solid solution nanocubic crystal piezoelectric material and a preparation method thereof to construct a piezoelectric catalytic material with high voltage electrical properties, and the piezoelectric material can achieve water response under simple ultrasonic vibration. Effective removal of low to medium concentration refractory phenolic pollutants.
  • the present invention adopts a sol precipitation method to obtain a highly dispersed strontium barium titanate solid solution nanocubic crystal (Sr x Ba 1-x TiO 3 ) sol in a triethylene glycol solvent through the hydrolysis of tetrabutyl titanate; Deionized water is added to the nanocubic crystal sol to obtain barium strontium titanate nanocubic crystal precipitation.
  • strontium hydroxide, barium hydroxide, tetrabutyl titanate, ammonia and polyvinylpyrrolidone (K30) are added into a flask containing triethylene glycol solvent, and then stirred regularly at 130-160°C for 60-120 min, after the reaction is completed, cool the flask to room temperature to obtain a yellow and transparent strontium barium titanate solid solution nanocubic crystal (Sr x Ba 1-x TiO 3 ) sol, x:1-x is 2 to 9:1.
  • This invention adjusts the microscopic crystal structure of the new piezoelectric material strontium titanate, introduces another metal element (barium element) into its A position, and constructs a continuous solid solution of strontium titanate-barium titanate to improve the piezoelectricity of the catalyst. Enhance its piezoelectric catalytic activity. Compared with strontium titanate, strontium barium titanate solid solution nanocatalytic materials have higher piezoelectric properties. The present invention realizes the change rule of piezoelectric catalytic activity of solid solution piezoelectric material by adjusting the molar ratio of strontium titanate and barium titanate.
  • the Sr 0.8 Ba 0.2 TiO 3 solid solution nanocubic crystals of the present invention show excellent piezoelectric catalytic activity under the condition of simple ultrasonic vibration. A is almost completely degraded, and its catalytic performance far exceeds that of existing strontium titanate composite catalysts.
  • strontium barium titanate solid solution nanocubic crystal piezoelectric material (Sr Cubic shape, smaller particle size and higher monodispersity; not only provide more active sites for catalytic reactions, but also have a larger piezoelectric constant, which is conducive to the further formation of electron-hole pairs in the piezoelectric catalysis process. separation.
  • the raw materials used are cheap and easy to obtain; and it is carried out under mild conditions without high pressure or protection. gas; the introduction of barium titanate (which has a high piezoelectric coefficient) greatly improves the piezoelectric properties of strontium titanate.
  • the present invention uses Ba 2+ to replace Sr 2+ to construct a SrTiO 3 -BaTiO 3 solid solution that can adjust the piezoelectricity of the catalyst.
  • the strain gradient can break the inversion symmetry, induce piezoelectric polarization through the flexoelectric effect, and further improve the catalyst.
  • the piezoelectric catalytic activity opens the door to its piezoelectric catalytic research.
  • the raw materials involved in the present invention are all commercially available products, and the specific preparation operations and experimental methods are all existing technologies.
  • Example 1 Preparation of Sr 0.6 Ba 0.4 TiO 3 solid solution nanocubic crystals: 4.8 mmol Sr(OH) 2 ⁇ 8H 2 O, 3.2 mmol Ba(OH) 2 ⁇ 8H 2 O, 8 mmol Ti(OBu) 4 , Add 4 mL ammonia water (25-28wt%) and 0.37 g polyvinylpyrrolidone (K30) into 20 mL triethylene glycol solvent; then stir regularly at 160°C (reflux) for 2 hours; after the reaction is completed, cool to room temperature naturally. A yellow and transparent sol is formed, and deionized water is used to precipitate the sol. After conventional centrifugation, the solid solution nanocubic crystal precipitate obtained is washed with ethanol and deionized water, and finally dried at 60 o C for 12 hours to obtain Sr 0.6 Ba 0.4 TiO 3. Solid solution nanocubic crystal powder.
  • FIG. 1 is a transmission electron microscope image of the strontium barium titanate solid solution nanocubic crystal piezoelectric material;
  • Figure 2 is the X-ray diffraction pattern of the strontium barium titanate solid solution nanocubic crystal piezoelectric material.
  • Example 3 Preparation of Sr 0.9 Ba 0.1 TiO 3 solid solution nanocubic crystals: 7.2 mmol Sr(OH) 2 ⁇ 8H 2 O, 0.8 mmol Ba(OH) 2 ⁇ 8H 2 O, 8 mmol Ti(OBu) 4 , Add 4 mL ammonia water (25-28%) and 0.37 g polyvinylpyrrolidone (K30) into 20 mL triethylene glycol solvent; then stir regularly at 160°C (reflux) for 2 hours; after the reaction is completed, cool to room temperature naturally. A yellow and transparent sol is formed, and then deionized water is used to precipitate the sol. After conventional centrifugation, the obtained solid solution nanocubic crystal precipitate is washed with ethanol and deionized water, and finally dried at 60 o C for 12 hours to obtain Sr 0.9 Ba 0.1 TiO 3. Solid solution nanocubic crystal powder.
  • Example 4 Catalytic performance test experiment of strontium barium titanate solid solution nanocubic crystal piezoelectric material: Weigh 18 mg of the powder sample in the above Example 2 and add it to 30 mL of bisphenol A (10 mg/L) aqueous solution. The suspension was stirred in the dark for 60 min to achieve adsorption-desorption equilibrium, and then transferred to an ultrasonic cleaner with an ultrasonic output power of 300 W. Use a circulating cooling water system to stabilize the temperature of the piezoelectric catalytic system at 25 ° C. Take out 1 mL of suspension for sampling every 4 minutes. After centrifugal filtration, the degradation efficiency of organic pollutants was monitored by measuring the peak area of the sample solution on high performance liquid chromatography.
  • Figure 3 is a piezoelectric catalytic degradation curve of bisphenol A.
  • the Sr 0.8 Ba 0.2 TiO 3 solid solution nanocubic crystals showed excellent piezoelectric catalytic activity, and bisphenol A was almost completely degraded within 16 minutes.
  • the same method was used to test the piezoelectric catalytic materials of other examples. After ultrasonic for 16 minutes, the residual rate of bisphenol A in the aqueous solution was: 22% in Example 1, 7% in Example 3, 20% of SrTiO 3 nanocubic crystals, and 20% of BaTiO 3 Nanocubic crystal 8%.
  • the degradation rate constant of Sr 0.8 Ba 0.2 TiO 3 solid solution nanocubic crystals is 0.2393 min -1
  • Example 1 is 0.1040 min -1
  • SrTiO 3 nanocubic crystals are 0.1066 min -1
  • BaTiO 3 is 0.1671 min -1 .
  • Example 2 The triethylene glycol solvent in Example 2 was replaced with ethylene glycol. The other methods were the same.
  • the Sr 0.8 Ba 0.2 TiO 3 solid solution nanocubic crystals were subjected to the same piezoelectric catalytic degradation test as mentioned above. After ultrasonic treatment for 16 minutes, the aqueous solution was The residual rate of bisphenol A reaches 30%.
  • Example 2 The polyvinylpyrrolidone in Example 2 is omitted, and the remaining methods are the same.
  • the Sr 0.8 Ba 0.2 TiO 3 solid solution nanocubic crystals are subjected to the same piezoelectric catalytic degradation test as mentioned above. After ultrasonic treatment for 16 minutes, the residual rate of bisphenol A in the aqueous solution Reached 28%.
  • Example 4 Replace bisphenol A in Example 4 with phenol.
  • the other methods are the same.
  • the Sr 0.8 Ba 0.2 TiO 3 solid solution nanocubic crystals are subjected to the same piezoelectric catalytic degradation test as mentioned above. After ultrasonic for 16 minutes, the residual rates of phenol in the aqueous solution are respectively 36%.
  • the catalyst of the present invention has excellent cycle performance. See Figure 4, which is the result of four catalytic degradations of bisphenol A by Sr 0.8 Ba 0.2 TiO 3 solid solution nanocubic crystals.
  • the invention discloses a preparation method of barium strontium titanate solid solution nanocubic crystals and its application in piezoelectric catalytic removal of organic pollutants in water.
  • a new piezoelectric catalytic material of strontium barium titanate solid solution nanocubic crystals was obtained through a simple rapid sol precipitation method.
  • the strontium barium titanate solid solution nanocubic crystal prepared by the invention has the advantages of small grain size, large specific surface area, high monodispersity, etc., increases a larger active surface for catalytic reaction, and its size effect can enhance the piezoelectricity of the material. properties and further improve the piezoelectric catalytic performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种钛酸锶钡固溶体纳米立方晶及其制备方法与应用,采用溶胶沉淀法,通过钛酸四丁酯的水解,在三乙二醇溶剂中得到高度分散的钛酸锶钡固溶体纳米立方晶溶胶;再通过将去离子水添加到纳米立方晶溶胶中,获得钛酸锶钡纳米立方晶沉淀。用钡替换锶构造固溶体可调节催化剂的压电性,采用应变梯度能够打破反演对称性,通过挠曲电效应诱导出压电极化,进一步改善催化剂的压电催化活性,与现有改性钛酸锶催化剂相比,在单纯超声振动的条件下,固溶体纳米立方晶表现出出色的压电催化活性,在16min内双酚A几乎被降解完全,催化性能远超过现有钛酸锶复合催化剂。

Description

一种钛酸锶钡固溶体纳米立方晶及其制备方法与应用 技术领域
本发明涉及纳米压电材料及压电催化技术领域,具体涉及一种钛酸锶钡固溶体纳米立方晶的制备方法及其压电催化去除水体中有机污染物的应用。
背景技术
压电材料,例如经典的钛酸钡(BaTiO 3)和锆钛酸铅(Pb(Zr,Ti)O 3)压电陶瓷,已在传感器、换能器和电容器等传统领域得到了广泛的应用。近年来,压电半导体材料的“压电催化”作用引起了研究者们越来越多的关注。压电催化作为一种新兴的先进氧化技术,可以通过压电效应和电化学反应的耦合作用实现活性物种的原位生成。而如今环境污染问题对人类健康和生态系统构成了极大的威胁,因此,利用压电催化降解有机污染物为环境修复提供了一种的新的极具前途的策略。
随着对压电催化的深入研究,迄今为止,已经发现了许多具有非中心对称结构的压电催化半导体材料,包括具有钙钛矿结构的BaTiO 3和(Bi 0.5Na 0.5)TiO 3、铋层状结构的Bi 2WO 6和BiFeO 3、钨青铜结构的Na 0.5K 0.5NbO 3、以及最近常报道的二维过渡金属二卤化物(TMDs)。钛酸锶(SrTiO 3)纳米晶体,在室温下具有中心对称的钙钛矿结构,由于其在高温下出色的热稳定性以及较高的介电常数,从上世纪以来一直受到人们的广泛关注。现有技术公开了一种铑掺杂钛酸锶反蛋白石材料及其制备方法与其在去除有机污染物中的应用;通过垂直沉积法将单分散的聚苯乙烯微球自组装在FTO玻璃具有导电性的一面,制备三维有序的光子晶体蛋白石模板;将三维有序的光子晶体蛋白石模板浸入含有铑源、钛源、锶源的溶液中,再通过煅烧制备铑掺杂钛酸锶反蛋白石材料;将铑掺杂钛酸锶反蛋白石材料加入含有污染物的水中,然后光照和/或超声处理,完成水中污染物的去除。现有技术还公开了钒掺杂钛酸锶纳米纤维,其制备方法包括以下步骤:将钒掺杂钛酸锶静电纺丝前驱体溶液进行静电纺得到纤维膜;再煅烧纤维膜,得到钒掺杂钛酸锶纳米纤维;钒掺杂钛酸锶静电纺丝前驱体溶液包括钒盐、锶盐、钛盐、高聚物、溶剂。然而,现有技术公开的这些催化剂在单独压电条件下,对有机污染物的去除能力还需提升。
技术问题
本发明的目的是提供一种钛酸锶钡固溶体纳米立方晶压电材料及其制备方法,构建具有高压电性能的压电催化材料,并且该压电材料可在单纯超声振动下实现对水体中低浓度难降解酚类污染物的有效去除。
技术解决方案
为了达到上述目的,本发明采用如下具体技术方案:一种钛酸锶钡固溶体纳米立方晶压电材料(Sr xBa 1-xTiO 3),其制备方法包括以下步骤:将钛酸锶钡固溶体纳米立方晶(Sr xBa 1-xTiO 3)溶胶与水混合,再离心分离,得到钛酸锶钡固溶体纳米立方晶;所述钛酸锶钡固溶体纳米立方晶(Sr xBa 1-xTiO 3)溶胶包括锶盐、钡盐、钛酸酯、氨水、分散剂以及醇溶剂。
一种压电催化去除水体中有机污染物的方法,包括以下步骤:将钛酸锶钡固溶体纳米立方晶加入到含有污染物的水中,吸附搅拌,然后进行超声处理,完成水体中有机污染物的去除。
本发明采用溶胶沉淀法,通过钛酸四丁酯的水解,在三乙二醇溶剂中得到高度分散的钛酸锶钡固溶体纳米立方晶(Sr xBa 1-xTiO 3)溶胶;再通过将去离子水添加到纳米立方晶溶胶中,获得钛酸锶钡纳米立方晶沉淀。
本发明中,锶盐、钡盐、钛酸酯、分散剂以及醇溶剂分别为Sr(OH) 2·8H 2O、Ba(OH) 2·8H 2O、Ti(OBu) 4、聚乙烯吡咯烷酮、三乙二醇;优选的,Sr 2+和Ba 2+的摩尔比为2~9∶1,优选为4:1,Sr 2+和Ba 2+的摩尔总数与Ti 4+的摩尔数一致;Ti(OBu) 4、氨水、聚乙烯吡咯烷酮、三乙二醇的用量比例为8 mmol∶3~5 mL∶0.3~0.5 g∶15~25 mL。
本发明中,将氢氧化锶、氢氧化钡、钛酸四丁酯、氨水和聚乙烯吡咯烷酮(K30)添加进含有三乙二醇溶剂的烧瓶中,然后于130~160℃常规搅拌60~120 min,反应结束后,将烧瓶冷却至室温,即得到黄色透明的钛酸锶钡固溶体纳米立方晶(Sr xBa 1-xTiO 3)溶胶,x∶1-x为2~9∶1。
本发明中,将得到的钛酸锶钡固溶体纳米立方晶(Sr xBa 1-xTiO 3)溶胶用去离子水洗涤,离心分离后,用乙醇和去离子水洗涤所得到的固溶体纳米立方晶沉淀,在60~80 oC下干燥即可得到钛酸锶钡固溶体纳米立方晶粉末。
本发明中,污染物可为双酚A、苯酚、2,4-二氯苯酚、罗丹明B,优选超声处理功率为150~300 W;本发明在超声处理污染物时,无需光照即可表现优异的催化活性,实际使用时,也可在有光的环境中进行。
本发明通过对新型压电材料钛酸锶进行微观晶体结构调节,在其A位引入另外一种金属元素(钡元素),构建钛酸锶-钛酸钡连续固溶体,提升催化剂的压电性,增强其压电催化活性。与钛酸锶相比,钛酸锶钡固溶体纳米催化材料具有较高的压电性能。本发明通过调变钛酸锶和钛酸钡的摩尔比,实现固溶体压电材料压电催化活性的变化规律。特别的,与现有改性钛酸锶催化剂相比,本发明在单纯超声振动的条件下,Sr 0.8Ba 0.2TiO 3固溶体纳米立方晶表现出出色的压电催化活性,在16 min内双酚A几乎被降解完全,催化性能远超过现有钛酸锶复合催化剂。
有益效果
1. 本发明公开的钛酸锶钡固溶体纳米立方晶压电材料(Sr xBa 1-xTiO 3)由于其表面附有聚乙烯吡咯烷酮和三乙二醇的表面涂层,具有更为规则的立方体形状、更小的粒径和更高的单分散性;不仅为催化反应提供更多的活性位点,而且具有较大的压电常数,有利于压电催化过程中电子空穴对的进一步分离。
2. 本发明公开的钛酸锶钡固溶体纳米立方晶压电材料(Sr xBa 1-xTiO 3)的制备方法中,所用原料均廉价易得;并且在温和条件下进行,无需高压或保护气;钛酸钡(具有高的压电系数)的引入极大地提升了钛酸锶的压电性能。
3. 本发明公开的钛酸锶钡固溶体纳米立方晶压电材料(Sr xBa 1-xTiO 3)因其优异的压电性能,可在单纯超声振动条件下,无需光能或外加过硫酸盐,将压电材料内部激发的载流子迅速迁移分离至材料的表面,连续生成的活性物种促进了催化反应的进行,这种增强的催化活性可高效降解水体中的酚类污染物。因此,本发明所制备的材料简单易得,可有效利用自然界中广泛存在的机械能,处理水体中的有机污染物,有利于进一步的实际应用。
附图说明
图1为钛酸锶钡固溶体纳米立方晶压电材料(Sr xBa 1-xTiO 3)的透射电镜图。
图2为钛酸锶钡固溶体纳米立方晶压电材料(Sr xBa 1-xTiO 3)的X射线衍射图。
图3为钛酸锶钡固溶体纳米立方晶压电材料(Sr xBa 1-xTiO 3)对双酚A有机污染物的压电催化去除效果图。
本发明的实施方式
本发明用Ba 2+替换Sr 2+构造SrTiO 3-BaTiO 3固溶体可调节催化剂的压电性,采用应变梯度能够打破反演对称性,通过挠曲电效应诱导出压电极化,进一步改善催化剂的的压电催化活性,为其压电催化研究打开了大门。本发明涉及的原料都是市售产品,具体制备操作以及实验方法都为现有技术。
实施例一:Sr 0.6Ba 0.4TiO 3固溶体纳米立方晶的制备:将4.8 mmol Sr(OH) 2·8H 2O、3.2 mmol Ba(OH) 2·8H 2O、8 mmol Ti(OBu) 4、4 mL 氨水(25-28wt%)和0.37 g 聚乙烯吡咯烷酮(K30)添加进20 mL三乙二醇溶剂中;然后于160℃(回流)常规搅拌2小时;反应结束后,自然冷却至室温,形成黄色透明的溶胶,再用去离子水沉淀溶胶,常规离心分离后,用乙醇和去离子水洗涤所得到的固溶体纳米立方晶沉淀,最后在60 oC下干燥12小时得到Sr 0.6Ba 0.4TiO 3固溶体纳米立方晶粉末。
实施例二:Sr 0.8Ba 0.2TiO 3固溶体纳米立方晶的制备:将6.4 mmol Sr(OH) 2·8H 2O、1.6 mmol Ba(OH) 2·8H 2O、8 mmol Ti(OBu) 4、4 mL 氨水(25-28 %)和0.37 g 聚乙烯吡咯烷酮(K30)添加进20 mL三乙二醇溶剂中;然后于160℃(回流)常规搅拌2小时;反应结束后,自然冷却至室温,形成黄色透明的溶胶,再用去离子水沉淀溶胶,常规离心分离后,用乙醇和去离子水洗涤所得到的固溶体纳米立方晶沉淀,最后在60 oC下干燥12小时得到Sr 0.8Ba 0.2TiO 3固溶体纳米立方晶粉末。图1为钛酸锶钡固溶体纳米立方晶压电材料的透射电镜图;图2为钛酸锶钡固溶体纳米立方晶压电材料的X射线衍射图。
实施例三:Sr 0.9Ba 0.1TiO 3固溶体纳米立方晶的制备:将7.2 mmol Sr(OH) 2·8H 2O、0.8 mmol Ba(OH) 2·8H 2O、8 mmol Ti(OBu) 4、4 mL 氨水(25-28 %)和0.37 g 聚乙烯吡咯烷酮(K30)添加进20 mL三乙二醇溶剂中;然后于160℃(回流)常规搅拌2小时;反应结束后,自然冷却至室温,形成黄色透明的溶胶,再用去离子水沉淀溶胶,常规离心分离后,用乙醇和去离子水洗涤所得到的固溶体纳米立方晶沉淀,最后在60 oC下干燥12小时得到Sr 0.9Ba 0.1TiO 3固溶体纳米立方晶粉末。
对比例:钛酸锶纳米立方晶压电材料(SrTiO 3)的制备:将8 mmol Sr(OH) 2·8H 2O、8 mmol Ti(OBu) 4、4 mL 氨水(25-28 %)和0.37 g 聚乙烯吡咯烷酮(K30)添加进20 mL三乙二醇溶剂中;然后于160℃(回流)常规搅拌2小时;反应结束后,自然冷却至室温,形成黄色透明的溶胶,再用去离子水沉淀溶胶,常规离心分离后,用乙醇和去离子水洗涤所得到的纳米立方晶沉淀,最后在60 oC下干燥12小时得到SrTiO 3纳米立方晶粉末。
在常规搅拌下混合10 mL 0.2 M Ba(NO 3) 2、10 mL 2.5 M NaOH 水溶液、10 mL包含2 mmol Ti(OBu) 4的正丁醇和10 mL包含5 mL油酸的正丁醇溶液,然后于135℃反应18 h,反应完成后,自然冷却至室温,通过常规离心去除过量的油酸。然后将离心分离得到的纳米晶体粉末用乙醇和水洗涤,最终分散在甲苯中,可得到稳定的乳状胶体溶液,离心洗涤后再分散在甲苯中;然后向胶体溶液中加入1 mL 二乙胺,在室温下静置24 h,最后,通过离心收集BaTiO 3纳米立方晶,再用乙醇/水洗涤对其进行纯化,在真空烘箱中干燥12 h 后最终获得BaTiO 3纳米立方晶粉末。
实施例四:钛酸锶钡固溶体纳米立方晶压电材料的催化性能测试实验:称取18 mg上述实施例二中的粉末样品,添加到30 mL双酚A(10 mg/L)水溶液中。将悬浮液在黑暗中搅拌60 min以达到吸附-解吸平衡,随后转移至超声清洗器中,超声输出功率300 W。使用循环冷却水系统将压电催化系统的温度稳定在25 oC。每隔4 min取出1 mL悬浮液进行采样。离心过滤后,通过在高效液相色谱上测量样品溶液的出峰面积来监测有机污染物的降解效率。附图 3为双酚A的压电催化降解曲线图。从图 3中可以看出,在单纯超声振动的条件下,Sr 0.8Ba 0.2TiO 3固溶体纳米立方晶表现出出色的压电催化活性,在16 min内双酚A几乎被降解完全。同样的方法测试其他实施例的压电催化材料,超声16 min后,水溶液中双酚A的残留率为:实施例一22 %,实施例三7%,SrTiO 3纳米立方晶20 %,BaTiO 3纳米立方晶8%。另外,经过常规计算,Sr 0.8Ba 0.2TiO 3固溶体纳米立方晶的降解速率常数为0.2393 min -1,实施例一为0.1040 min -1,SrTiO 3纳米立方晶为0.1066 min -1,BaTiO 3为0.1671 min -1
将实施例二中的三乙二醇溶剂更换为乙二醇,其余方法一样,将Sr 0.8Ba 0.2TiO 3固溶体纳米立方晶经过上述同样的压电催化降解测试,超声处理16 min后,水溶液中双酚A的残留率达到30%。
将实施例二中的聚乙烯吡咯烷酮省略,其余方法一样,将Sr 0.8Ba 0.2TiO 3固溶体纳米立方晶经过上述同样的压电催化降解测试,超声处理16 min后,水溶液中双酚A的残留率达到28 %。
将实施例四中的双酚A更换为苯酚,其余方法一样,将Sr 0.8Ba 0.2TiO 3固溶体纳米立方晶经过上述同样的压电催化降解测试,超声16 min后,水溶液中苯酚的残留率分别36 %。
另外,本发明催化剂具有优异的循环性能,参见图4,为Sr 0.8Ba 0.2TiO 3固溶体纳米立方晶四次催化降解双酚A的结果。
本发明公开了一种钛酸锶钡固溶体纳米立方晶的制备方法及其压电催化去除水体中有机污染物的应用。通过简便的快速溶胶沉淀法得到一种钛酸锶钡固溶体纳米立方晶新型压电催化材料。本发明制备的钛酸锶钡固溶体纳米立方晶具有小晶粒尺寸、大比表面积、高单分散性等优点,为催化反应提高了较大的活性表面,并且其尺寸效应能够增强材料的压电性,进一步提高压电催化性能,所制备的钛酸锶钡连续固溶体极大发挥了铁电材料钛酸钡的高压电性能以及半导体氧化物钛酸锶的低成本和高稳定性。因此,具有高压电性的钛酸锶钡固溶体纳米立方晶在超声波驱动下能够高效降解水体中的有机污染物。

Claims (10)

  1. 一种钛酸锶钡固溶体纳米立方晶,其特征在于,所述钛酸锶钡固溶体纳米立方晶的制备方法包括以下步骤:将钛酸锶钡固溶体纳米立方晶溶胶与水混合,再离心分离,得到钛酸锶钡固溶体纳米立方晶;所述钛酸锶钡固溶体纳米立方晶溶胶包括锶盐、钡盐、钛酸酯、氨水、分散剂以及醇溶剂。
  2. 根据权利要求1所述钛酸锶钡固溶体纳米立方晶,其特征在于,锶盐、钡盐、钛酸酯、分散剂以及醇溶剂分别为Sr(OH) 2·8H 2O、Ba(OH) 2·8H 2O、Ti(OBu) 4、聚乙烯吡咯烷酮、三乙二醇。
  3. 根据权利要求2所述钛酸锶钡固溶体纳米立方晶,其特征在于,Sr 2+和Ba 2+的摩尔比为2~9∶1;Sr 2+和Ba 2+的摩尔总数与Ti 4+的摩尔数一致。
  4. 根据权利要求2所述钛酸锶钡固溶体纳米立方晶,其特征在于,将氢氧化锶、氢氧化钡、钛酸四丁酯、氨水、聚乙烯吡咯烷酮和三乙二醇于130~160℃搅拌60~120 min,得到钛酸锶钡固溶体纳米立方晶溶胶。
  5. 一种压电催化去除水体中有机污染物的方法,其特征在于,包括以下步骤:将权利要求1所述钛酸锶钡固溶体纳米立方晶加入到含有污染物的水中,然后进行超声处理,完成水体中有机污染物的去除。
  6. 根据权利要求5所述压电催化去除水体中有机污染物的方法,其特征在于,污染物可为双酚A、苯酚、2,4-二氯苯酚、罗丹明B。
  7. 根据权利要求5所述压电催化去除水体中有机污染物的方法,其特征在于,超声处理功率为150~300 W。
  8. 权利要求1所述钛酸锶钡固溶体纳米立方晶的制备方法,其特征在于,包括以下步骤:将钛酸锶钡固溶体纳米立方晶溶胶与水混合,再离心分离,得到钛酸锶钡固溶体纳米立方晶;所述钛酸锶钡固溶体纳米立方晶溶胶包括锶盐、钡盐、钛酸酯、氨水、分散剂以及醇溶剂。
  9. 权利要求1所述钛酸锶钡固溶体纳米立方晶去除污染物中的应用。
  10. 根据权利要求8所述的应用,其特征在于,污染物可为双酚A、苯酚、2,4-二氯苯酚、罗丹明B。
PCT/CN2022/097930 2022-06-09 2022-06-09 一种钛酸锶钡固溶体纳米立方晶及其制备方法与应用 WO2023236151A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/097930 WO2023236151A1 (zh) 2022-06-09 2022-06-09 一种钛酸锶钡固溶体纳米立方晶及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/097930 WO2023236151A1 (zh) 2022-06-09 2022-06-09 一种钛酸锶钡固溶体纳米立方晶及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2023236151A1 true WO2023236151A1 (zh) 2023-12-14

Family

ID=89117278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097930 WO2023236151A1 (zh) 2022-06-09 2022-06-09 一种钛酸锶钡固溶体纳米立方晶及其制备方法与应用

Country Status (1)

Country Link
WO (1) WO2023236151A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298679A (ja) * 2004-04-12 2005-10-27 Fuji Photo Film Co Ltd 希土類ホウ酸塩の製造方法
JP2007022857A (ja) * 2005-07-19 2007-02-01 Konoshima Chemical Co Ltd 板状チタン酸金属化合物およびその製造方法
US20100051903A1 (en) * 2008-08-28 2010-03-04 Seo-Yong Cho Method of aligning nanorods and related compositions
CN103613125A (zh) * 2013-11-05 2014-03-05 清华大学 一种超细钛酸盐纳米粉体及其制备方法
CN114505068A (zh) * 2022-03-03 2022-05-17 中山大学 一种压电催化剂及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298679A (ja) * 2004-04-12 2005-10-27 Fuji Photo Film Co Ltd 希土類ホウ酸塩の製造方法
JP2007022857A (ja) * 2005-07-19 2007-02-01 Konoshima Chemical Co Ltd 板状チタン酸金属化合物およびその製造方法
US20100051903A1 (en) * 2008-08-28 2010-03-04 Seo-Yong Cho Method of aligning nanorods and related compositions
CN103613125A (zh) * 2013-11-05 2014-03-05 清华大学 一种超细钛酸盐纳米粉体及其制备方法
CN114505068A (zh) * 2022-03-03 2022-05-17 中山大学 一种压电催化剂及其制备方法与应用

Similar Documents

Publication Publication Date Title
Kallawar et al. Bismuth titanate based photocatalysts for degradation of persistent organic compounds in wastewater: A comprehensive review on synthesis methods, performance as photocatalyst and challenges
Eskandari et al. Preparation of a new magnetic and photo-catalyst CoFe2O4–SrTiO3 perovskite nanocomposite for photo-degradation of toxic dyes under short time visible irradiation
Yin et al. Synthesis and photocatalytic properties of fibrous titania prepared from protonic layered tetratitanate precursor in supercritical alcohols
Yang et al. Formation mechanism of CaTiO3 hollow crystals with different microstructures
CN101559979B (zh) 一种超细锐钛矿相二氧化钛纳米棒的制备方法
CN100490967C (zh) 一种硅酸铋粉体光催化剂的制备方法
Sharma et al. Effect of Ce on piezo/photocatalytic effects of Ba0. 9Ca0. 1CexTi1-xO3 ceramics for dye/pharmaceutical waste water treatment
CN1258479C (zh) 一种钛氧化物纳米管及其制备方法
Zhou et al. Rh-Doped SrTiO 3 inverse opal with piezoelectric effect for enhanced visible-light-driven photodegradation of bisphenol A
Xu et al. Synthesis of hexagonal BaTa2O6 nanorods and influence of defects on the photocatalytic activity
CN111996618B (zh) 钒掺杂钛酸锶纳米纤维及其制备方法与应用
CN102658111B (zh) 层层自组装法制备氧化锌/硅藻土纳米复合材料的方法
CN101147859A (zh) 一种介孔钛酸铋光催化剂的制备方法
WO2021068905A1 (zh) 铑掺杂钛酸锶反蛋白石材料及其制备方法与其在压电协同光催化去除有机污染物中的应用
Wang et al. Sonocatalysis and sono-photocatalysis in CaCu3Ti4O12 ceramics
CN102153289A (zh) 一种片状二氧化钛阵列薄膜及制备方法
CN100509146C (zh) 一种介孔钛酸钡光催化剂的制备方法
Huan et al. Enhanced ferro-photocatalytic performance for ANbO3 (A= Na, K) nanoparticles
Ji et al. Improving charge separation efficiency and piezo-photodegradation properties in Na0. 5Bi0. 5TiO3 via lattice engineering
Liu et al. Fabrication and photocatalytic properties of flexible BiOI/SiO2 hybrid membrane by electrospinning method
CN111389421B (zh) 一种二维层状氯氧铋和钛铌酸盐复合光催化材料的制备方法与应用
WO2023236151A1 (zh) 一种钛酸锶钡固溶体纳米立方晶及其制备方法与应用
WO2021082338A1 (zh) 金属氧化物的制备方法
Xu et al. Hydrothermal synthesis and characterisation of potassium/sodium titanate nanofibres at different temperatures
CN113499765B (zh) 一种可涂敷于磁性微型机器人表面的复合压电光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945296

Country of ref document: EP

Kind code of ref document: A1