CN100509146C - 一种介孔钛酸钡光催化剂的制备方法 - Google Patents

一种介孔钛酸钡光催化剂的制备方法 Download PDF

Info

Publication number
CN100509146C
CN100509146C CNB2007101662199A CN200710166219A CN100509146C CN 100509146 C CN100509146 C CN 100509146C CN B2007101662199 A CNB2007101662199 A CN B2007101662199A CN 200710166219 A CN200710166219 A CN 200710166219A CN 100509146 C CN100509146 C CN 100509146C
Authority
CN
China
Prior art keywords
barium
titanate
preparation
barium titanate
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2007101662199A
Other languages
English (en)
Other versions
CN101147858A (zh
Inventor
牛军峰
殷立峰
沈珍瑶
蒋国翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Normal University
Original Assignee
Beijing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Normal University filed Critical Beijing Normal University
Priority to CNB2007101662199A priority Critical patent/CN100509146C/zh
Publication of CN101147858A publication Critical patent/CN101147858A/zh
Application granted granted Critical
Publication of CN100509146C publication Critical patent/CN100509146C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

本发明属于环境保护领域,具体为一种新型的用于降解有机污染物的介孔钛酸钡光催化剂及其制备方法。本发明利用氯化钡和钛酸酯为主要原料,嵌段共聚体表面活性剂为结构导向剂,采用硝酸为水解催化剂用水热合成法制备钛钡复合凝胶。该凝胶经干燥、粉碎、高温焙烧晶化后,即得到具有光催化活性的介孔钛酸钡材料。它是由介孔和纳米级颗粒构筑的团聚体,比表面积在62~153平方米/克之间。该催化剂形态规整,比表面积大,有介观孔道可提高其降解有机物的能力;此外,其团聚体颗粒度较大,在水体净化等应用领域中比常见的纳米级别的光催化剂更易分离回收,具有更好的工业化前景。

Description

一种介孔钛酸钡光催化剂的制备方法
技术领域
本发明属于环境保护领域,具体为一种用于光催化降解有机污染物的介孔钛酸钡光催化剂及其制备方法。
背景技术
自1972年发现氧化钛的光催化作用以来,全球对光催化材料的制备及其光催化性能的研究已取得了很大进展。在紫外光或可见光照射下,氧化钛体现出了较高的光催化降解有机物及光解水制氢能力。但由于目前应用较多的氧化钛粉体颗粒度较小,将其用于水体净化时,不易从水体中分离回收;而且氧化钛的带隙较宽,只能吸收波长小于386.5nm的紫外光,如果用紫外灯作为光催化光源,会造成大量的能源浪费。
研究结果表明,钙钛矿型氧化物也是一类光催化剂,在紫外光或可见光照射下同样能产生光生电子和光生空穴,进而与吸附在催化剂表面的H2O、O2等反应生成·OH、·O2H、·O2-等活性物种,因此钙钛矿型氧化物也可有效地降解有机物分子,因而其作为光催化剂进行光降解有机物的研究日益受到重视。钛酸钡是一种典型的具有钙钛矿结构的电子陶瓷材料,具有高的介电常数、优良的铁电、压电、耐压和绝缘性能,广泛用于制作高电容率电容器和各种敏感元件,具有广泛的用途。钛酸钡在室温下是四边形的晶体结构,高于居里点(125℃)后是立方体钙钛矿结构,这种结构的材料具有作为光催化剂的潜力。文献“Photodegradation ofphenol and 4-chlorophenol by BaO-Li2O-TiO2 catalysts E.Leyvaa,E.Moctezuma,M.G.Ruíz,L.Torres-Martínez Catalysis Today 40(1998)367~376”评价了掺锂钛酸钡作为光催化剂降解苯酚的能力,但所得催化剂为纳米粉体,仍然无法解决催化剂与被净化水体的分离难题。
近十年来,介孔材料合成技术的迅速崛起给多相催化带来了新的机遇,也赋予催化材料新的性质和功能,因而大大拓宽了催化材料的应用领域。介孔材料具有粒径小、比表面积大、粒径孔径分布均匀、孔排列有序等突出特点,适宜用作催化剂和载体。将钙钛矿型钛酸钡制成带介孔结构的粒子,可获得高比表面积的催化材料。介孔结构的存在有利于反应物和产物分子的扩散,从而克服了体相分子受传质限制的缺点。因此,可以预测介孔结构的钙钛矿型钛酸钡可能被用于室内空气净化以及消除水体中有机污染物等方面,而采用模板合成法则有可能成功地制备出介孔钙钛矿钛酸钡。
发明内容
本发明的目的是提出一种用于降解有机污染物的具有光催化活性、大比表面积和大颗粒直径的介孔钛酸钡光催化剂及其制备方法。该光催化剂不但保持了纳米钛酸钡粉体的催化活性,而且容易分离回收。
本发明提出的用于降解有机污染物的介孔钛酸钡光催化剂,具有独特的介孔结构,比表面积在92~153平方米/克,孔径约为2.2纳米,由钙钛矿晶型的钛酸钡纳米晶粒(见附图1)团聚堆积而成颗粒尺寸为5~30微米的团聚体。该介孔光催化剂的微观结构见附图2。
本发明的介孔钛酸钡光催化剂的制备方法,包括水热合成过程和后处理过程,利用氯化钡和钛酸酯为原料,嵌段共聚体表面活性剂为结构导向剂,采用硝酸为水解催化剂,用水热合成法制得的钛钡复合氧化物凝胶,在380~550℃下焙烧脱除嵌段共聚体表面活性剂后,得到介孔钛酸钡光催化剂。
该介孔钛酸钡光催化剂采用水热法合成,其中钛的来源为钛酸酯,钡的来源为氯化钡,合成时各组份的摩尔比为氯化钡:钛酸酯:水:嵌段共聚体表面活性剂=1:5~7:556:0.14~0.175。
本发明提出的用于降解有机污染物的介孔钛酸钡光催化剂的具体制备方法如下:
在浓度为80~100克/升的嵌段共聚体的水溶液中加入氯化钡使之与水的质量比为1:41,不断搅拌至完全溶解,逐滴加入3摩尔/升的硝酸,调节pH值为2~4,将摩尔比为钡:钛为1:5~1:7的钛酸酯逐滴加入到上述溶液中,不断搅拌得到复合溶胶。该复合溶胶随后在室温下陈化3小时,后转移至高压釜内在140~160℃下密封晶化12~36小时后,取出凝胶化复合氧化物,过滤,洗涤,在100~120℃下干燥脱水,干凝胶于380~550℃保温3小时高温焙烧,脱除结构导向剂,并使钛酸钡晶化,即得介孔钛酸钡光催化剂。
本发明中,所用钛酸酯为钛酸四丁酯、钛酸异丙酯之一种;结构导向剂为嵌段共聚体表面活性剂P123、F108、P103之一种。其中,P123的分子式为PEO20-PPO70-PEO20,分子量为5750克/摩尔;F108的分子式为PEO132-PPO50-PEO132,分子量为15500克/摩尔;P103的分子式为PEO17-PPO60-PEO17,分子量为4950克/摩尔。
本发明在晶化过程前以硝酸作为溶剂和水解酸催化剂,调节pH值使之更容易得到均匀的复合氧化物溶胶。对本发明提供的光催化剂的活性可用如下方法测试:
准确称取0.05~0.2克介孔钛酸钡光催化剂,然后将其加入到100毫升浓度为10~30毫克/升的有机物水溶液中,在超声波作用下制成悬浮液,在氙灯(模拟太阳光谱,500瓦)照射下进行反应。每20分钟取样4毫升,催化剂以高速离心去除。剩余溶液的紫外-可见光谱在紫外分光光度计(Varian,Cary50型)上进行分析。降解率(%)=剩余有机物浓度/初始有机物浓度)×100。
本发明提供的光催化剂具有如下优点:
1.由钙钛矿晶型的纳米颗粒团聚而成直径为5~30微米的团聚颗粒,并堆积形成介观孔道结构,其比表面积为62~153平方米/克。
2.以氙灯为光源,无需外加氧化剂和助剂,可有效降解有机污染物。
3.催化剂的催化活性可用于多种有机物的光催化降解反应中,具有较好的工业应用前景。
4.该催化剂反应制备工艺简单,反应条件温和,对反应装置要求低,适应性强。
附图说明
图1为介孔钛酸钡光催化剂的大角度X射线衍射谱图;
图2为介孔钛酸钡光催化剂在不同分辨率下的扫描电子显微镜图像;
图3为用本发明方法制备的介孔钛酸钡光催化剂的吸收光谱;
图4、5为在使用本发明的介孔钛酸钡光催化剂光催化降解丫啶橙、中性红染料的过程中,其水溶液的紫外-可见光吸收光谱随光照射时间的变化。
具体实施方式
实施例1
16克P123嵌段共聚体表面活性剂溶解于200毫升水中形成80克/升的水溶液。加入4.88克氯化钡,不断搅拌至完全溶解,逐滴加入3摩尔/升的硝酸调节pH值为2,然后缓慢加入47.66克钛酸四丁酯(Ti(OC4H9)4),此时钡:钛摩尔比为1:7。急速搅拌形成均匀的溶胶,陈化3小时后移至高压釜中,在150℃下晶化24小时,取出沉淀、过滤、洗涤,在100℃下蒸发烘干,得到前驱体粉末。所得前驱体粉末在550℃的温度下,空气气氛中焙烧3小时,即得到介孔钛酸钡光催化剂,记为1#样品。该样品(下同)在氮气吸附脱附比表面积孔分布测定仪上(SSA-4000系列全自动孔隙及比表面分析仪,北京彼奥德电子技术有限公司)进行比表面积和孔径分布测定,其比表面积为62平方米/克,孔道直径约为1.7纳米。
实施例2
17.4克P123嵌段共聚体表面活性剂溶解于200毫升水中,形成87克/升的水溶液。加入4.88克氯化钡,不断搅拌至完全溶解,逐滴加入3摩尔/升的硝酸调节pH值为3,然后缓慢加入34.29克钛酸异丙酯,此时钡∶钛摩尔比为1:7。急速搅拌形成均匀的溶胶,陈化3小时后移至高压釜中,在140℃下晶化24小时,取出沉淀、过滤、洗涤,在120℃下蒸发烘干,得到前驱体粉末。所得前驱体粉末在380℃的温度下,空气气氛中焙烧3小时,即得到介孔钛酸钡光催化剂,记为2#样品。其比表面积为153平方米/克,孔道直径约为1.2纳米。
实施例3
16.2克F108嵌段共聚体表面活性剂溶解于200毫升水中,形成81克/升的水溶液。加入4.88克氯化钡,不断搅拌至完全溶解,逐滴加入3摩尔/升的硝酸调节pH值为2.5,然后缓慢加入30.04克钛酸四丁酯,此时钡:钛摩尔比为1:5。急速搅拌形成均匀的溶胶,陈化3小时后移至高压釜中,在150℃下晶化32小时,取出沉淀、过滤、洗涤,在110℃下蒸发烘干,得到前驱体粉末。所得前驱体粉末在450℃的温度下,空气气氛中焙烧3小时,即得到介孔钛酸钡光催化剂,记为3#样品。其比表面积为95平方米/克,孔道直径约为1.6纳米。
实施例4
20克P103嵌段共聚体表面活性剂溶解于200毫升水中,形成100克/升的水溶液。加入4.88克氯化钡,不断搅拌至完全溶解,逐滴加入3摩尔/升的硝酸调节pH值为4,然后缓慢加入40.85克钛酸四丁酯,此时钡:钛摩尔比为1:6。急速搅拌形成均匀的溶胶,陈化3小时后移至高压釜中,在160℃下晶化36小时,取出沉淀、过滤、洗涤,在100℃下蒸发烘干,得到前驱体粉末。所得前驱体粉末在550℃的温度下,空气气氛中焙烧3小时,即得到介孔钛酸钡光催化剂,记为4#样品。其比表面积为65平方米/克,孔道直径约为1.7纳米。
将上述催化剂分别应用于不同的光催化反应中,活性结果实例如下:
反应1:称取0.05克1#样品,将其加入到100毫升浓度为15毫克/升的甲基橙水溶液中,在超声作用下制成悬浊液,磁力搅拌,在氙灯(模拟太阳光谱,500瓦)照射下进行反应,每20分钟取样4毫升,高速离心分离,取上层清液在紫外-可见光谱仪(Varian,cary50)上进行分析。
反应2:称取0.1克2#样品,将其加入到100毫升10毫克/升的甲基橙水溶液中进行反应,余者同反应1。
反应3:称取0.2克1#样品,将其加入到100毫升30毫克/升的溴甲酚绿水溶液中进行反应,余者同反应1。
反应4:称取0.2克3#样品,将其加入到100毫升10毫克/升的溴甲酚绿水溶液中进行反应,余者同反应1。
反应5:称取0.15克4#样品,将其加入到100毫升10毫克/升的丫啶橙水溶液中进行反应,余者同反应1。
反应6:称取0.2克1#样品,将其加入到100毫升20毫克/升的丫啶橙水溶液中进行反应,余者同反应1。
反应7:称取0.1克1#样品,将其加入到100毫升20毫克/升的中性红水溶液中进行反应,余者同反应1。
表1为详细的实验结果。
表1
 
反应 样品号 反应时间(小时) 有机物降解率
1 #1 3 63%
2 #2 2.5 89%
3 #1 2 22%
4 #3 3 46%
5 #4 0.5 55%
6 #1 1.3 98%
7 #1 1.0 83%

Claims (5)

1.一种介孔钛酸钡光催化剂的制备方法,包括水热合成过程和后处理过程,其特征在于:利用氯化钡和钛酸酯为原料,嵌段共聚体表面活性剂为结构导向剂,采用硝酸为水解催化剂,用水热合成法制得的钛钡复合氧化物凝胶,焙烧脱除嵌段共聚体表面活性剂后,得到介孔钛酸钡光催化剂。
2.如权利要求1所述的光催化剂的制备方法,其中钛钡复合氧化物凝胶是由三步法制备的:
(a)在浓度为80~100克/升的嵌段共聚体表面活性剂的水溶液中加入氯化钡使之与溶液中水的质量比为1:41,并不断搅拌至其完全溶解;
(b)逐滴加入3摩尔/升的硝酸,调节pH值为2~4;
(c)将摩尔比为钡:钛为1:5~1:7的钛酸酯逐滴加入到上述(b)溶液中,不断搅拌得到复合溶胶;该复合溶胶随后在室温下陈化3小时后,转移至高压釜内140℃~160℃下密封晶化24~36小时,取出的白色沉淀经洗涤、过滤,在100~120℃下烘干,即得钛钡复合氧化物凝胶。
3.如权利要求1或2所述的光催化剂的制备方法,其中所述的钛酸酯为钛酸四丁酯或钛酸异丙酯。
4.如权利要求1或2所述的光催化剂的制备方法,其中所述的嵌段共聚体表面活性剂为P123、F108或P103,三者均为聚氧乙烯-聚氧丙烯-聚氧乙烯嵌段聚醚。
5.如权利要求1所述的光催化剂的制备方法,其中钛钡复合氧化物凝胶于380~550℃保温3小时高温焙烧,脱除嵌段共聚体表面活性剂,并使钛酸钡进一步晶化。
CNB2007101662199A 2007-11-08 2007-11-08 一种介孔钛酸钡光催化剂的制备方法 Expired - Fee Related CN100509146C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007101662199A CN100509146C (zh) 2007-11-08 2007-11-08 一种介孔钛酸钡光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007101662199A CN100509146C (zh) 2007-11-08 2007-11-08 一种介孔钛酸钡光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN101147858A CN101147858A (zh) 2008-03-26
CN100509146C true CN100509146C (zh) 2009-07-08

Family

ID=39248625

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007101662199A Expired - Fee Related CN100509146C (zh) 2007-11-08 2007-11-08 一种介孔钛酸钡光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN100509146C (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102327772B (zh) * 2010-11-01 2013-04-03 华东理工大学 一种复合金属介孔氧化物的制备方法及应用
JP5375838B2 (ja) * 2011-01-05 2013-12-25 株式会社村田製作所 ペロブスカイト型複合酸化物粉末の製造方法
CN102847529B (zh) * 2012-02-09 2014-06-25 江苏大学 一种石墨烯/钛酸盐纳米复合可见光催化剂及其制备方法
CN103977798B (zh) * 2014-06-04 2016-01-20 山东大学 一种氧化银/钛酸钡超声光催化剂及其制备方法
CN104445381A (zh) * 2014-11-25 2015-03-25 辽宁大学 一种介孔多元金属氧化物的制备方法
CN105797707A (zh) * 2016-04-14 2016-07-27 沈阳理工大学 一种制备介孔钛酸镧锌光催化剂的方法
CN105944710A (zh) * 2016-05-20 2016-09-21 沈阳理工大学 一种石英砂负载钛酸镧光催化剂及其制备方法
CN114433057B (zh) * 2020-10-31 2023-09-01 中国石油化工股份有限公司 一种固体酸催化剂及制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A facile route for synthesis of mesoporous bariumtitanate crystallites. R.Z.Hou etc.Microporous and Mesoporous Materials,Vol.110 . 2007
A facile route for synthesis of mesoporous bariumtitanate crystallites. R.Z.Hou etc.Microporous and Mesoporous Materials,Vol.110 . 2007 *
水热法制备钕掺杂BaTiO3粉体及其介电性能研究. 何英等.佛山陶瓷,第3期. 2007
水热法制备钕掺杂BaTiO3粉体及其介电性能研究. 何英等.佛山陶瓷,第3期. 2007 *

Also Published As

Publication number Publication date
CN101147858A (zh) 2008-03-26

Similar Documents

Publication Publication Date Title
CN100509146C (zh) 一种介孔钛酸钡光催化剂的制备方法
Bahrami et al. Effect of the supported ZnO on clinoptilolite nano-particles in the photodecolorization of semi-real sample bromothymol blue aqueous solution
Liu et al. β-Bi2O3 and Er3+ doped β-Bi2O3 single crystalline nanosheets with exposed reactive {0 0 1} facets and enhanced photocatalytic performance
Shojaie et al. La3+ and Zr4+ co-doped anatase nano TiO2 by sol-microwave method
Tavakoli-Azar et al. Improving the photocatalytic performance of a perovskite ZnTiO3 through ZnTiO3@ S nanocomposites for degradation of Crystal violet and Rhodamine B pollutants under sunlight
Sayılkan Improved photocatalytic activity of Sn4+-doped and undoped TiO2 thin film coated stainless steel under UV-and VIS-irradiation
CN100509149C (zh) 一种介孔钛酸铋光催化剂的制备方法
ES2725153T3 (es) Método de producción de polvo fotocatalítico que comprende dióxido de titanio y dióxido de manganeso activo bajo ultravioleta y luz visible
Wang et al. A dual chelating sol–gel synthesis of BaTiO3 nanoparticles with effective photocatalytic activity for removing humic acid from water
Han et al. Spinel CuB2O4 (B= Fe, Cr, and Al) oxides for selective adsorption of Congo red and photocatalytic removal of antibiotics
Adak et al. Ferroelectric and photocatalytic behavior of Mn-and Ce-doped BaTiO3 nanoceramics prepared by chemical route
Shen et al. Low temperature hydrothermal synthesis of SrTiO 3 nanoparticles without alkali and their effective photocatalytic activity
Ahmed et al. Co doped ZrO2 nanoparticles: an efficient visible light triggered photocatalyst with enhanced structural, optical and dielectric characteristics
Ghorai Synthesis of spherical mesoporous titania modified iron-niobate nanoclusters for photocatalytic reduction of 4-nitrophenol
Amouhadi et al. Photodegradation and mineralization of metronidazole by a novel quadripartite SnO2@ TiO2/ZrTiO4/ZrO2 photocatalyst: comprehensive photocatalyst characterization and kinetic study
Liu et al. Mesoporous cobalt-intercalated layered tetratitanate for efficient visible-light photocatalysis
Wei et al. Synthesis of hierarchically structured ZnO spheres by facile methods and their photocatalytic deNOx properties
Boscaro et al. C, N-doped TiO2 monoliths with hierarchical macro-/mesoporosity for water treatment under visible light
CN104069848B (zh) 一种醇热法制备纯相钛酸铋与氧化钛复合材料的方法
Tryba et al. Influence of TiO2 structure on its photocatalytic activity towards acetaldehyde decomposition
Szołdra et al. Effect of sol composition on the properties of TiO2 powders obtained by the sol-gel method
Zarrabi et al. Enhanced sono-dispersion of Bi5O7I and Bi2ClHO3 oxides over ZnO used as nanophotocatalyst in solar-light-driven removal of methylene blue from water
Khalil et al. Formation and textural characterization of size-controlled LaFeO3 perovskite nanoparticles for efficient photocatalytic degradation of organic pollutants
ZM et al. Adsorption and photocatalysis performance of Bi4Ti3O12 nanoparticles synthesized via a polyacrylamide gel route
Yahya et al. Effects of the citric acid addition on the morphology, surface area, and photocatalytic activity of LaFeO3 nanoparticles prepared by glucose-based gel combustion methods

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090708

Termination date: 20091208