WO2023233627A1 - 感光基板の現像方法、フォトマスクの作成方法、及び電子デバイスの製造方法 - Google Patents

感光基板の現像方法、フォトマスクの作成方法、及び電子デバイスの製造方法 Download PDF

Info

Publication number
WO2023233627A1
WO2023233627A1 PCT/JP2022/022503 JP2022022503W WO2023233627A1 WO 2023233627 A1 WO2023233627 A1 WO 2023233627A1 JP 2022022503 W JP2022022503 W JP 2022022503W WO 2023233627 A1 WO2023233627 A1 WO 2023233627A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
photosensitive substrate
test
pattern
test wafer
Prior art date
Application number
PCT/JP2022/022503
Other languages
English (en)
French (fr)
Inventor
光一 藤井
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to PCT/JP2022/022503 priority Critical patent/WO2023233627A1/ja
Publication of WO2023233627A1 publication Critical patent/WO2023233627A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present disclosure relates to a method for developing a photosensitive substrate, a method for creating a photomask, and a method for manufacturing an electronic device.
  • a KrF excimer laser device that outputs a laser beam with a wavelength of about 248 nm and an ArF excimer laser device that outputs a laser beam with a wavelength of about 193 nm are used.
  • the spectral line width of the spontaneous oscillation light of the KrF excimer laser device and the ArF excimer laser device is as wide as 350 to 400 pm. Therefore, if the projection lens is made of a material that transmits ultraviolet light such as KrF and ArF laser light, chromatic aberration may occur. As a result, resolution may be reduced. Therefore, it is necessary to narrow the spectral linewidth of the laser beam output from the gas laser device until the chromatic aberration becomes negligible. Therefore, in order to narrow the spectral line width, a line narrowing module (LNM) including a narrowing element (etalon, grating, etc.) is installed in the laser resonator of a gas laser device. There is. A gas laser device whose spectral linewidth is narrowed is called a band-narrowed laser device.
  • LNM line narrowing module
  • a method for manufacturing a photosensitive substrate includes scanning each of a plurality of scan fields included in a photosensitive substrate in a first direction with a pulsed laser beam including a plurality of center wavelengths through a photomask. heating the photosensitive substrate exposed to light in each of a plurality of scan fields so that a temperature distribution has a temperature gradient in a second direction intersecting the first direction on the surface of the photosensitive substrate; After heating the photosensitive substrate, a developer is supplied to the surface of the photosensitive substrate to perform development.
  • a method for creating a photomask used in photolithography using pulsed laser light including a plurality of center wavelengths includes performing a second test using pulsed laser light through a second test mask.
  • the wafer is exposed to light by scanning it in a first direction, and the temperature is applied in a second direction intersecting the first direction on the surface of the second test wafer in each of a plurality of scan fields included in the second test wafer.
  • the wafer pattern of the developed second test wafer is measured by supplying a developing solution to the surface of the second test wafer, which is heated so as to have a temperature distribution with a gradient, and is divided into a plurality of segments aligned in the second direction.
  • the method includes creating a correction mask pattern for creating a photomask based on the correction mask pattern, and creating a photomask based on the correction mask pattern.
  • a method for manufacturing an electronic device includes: generating pulsed laser light including a plurality of center wavelengths by a laser device; outputting the pulsed laser light to an exposure device; , scanning and exposing each of a plurality of scan fields included in the photosensitive substrate in a first direction with pulsed laser light through a photomask; and exposing the exposed photosensitive substrate to light in each of the plurality of scan fields. heating the surface of the substrate to create a temperature distribution with a temperature gradient in a second direction intersecting the first direction; and after heating the photosensitive substrate, supplying a developer to the surface of the photosensitive substrate. and performing development.
  • FIG. 1 schematically shows the configuration of an exposure system in a comparative example.
  • FIG. 2 is a flowchart showing a process for forming a resist pattern on a photosensitive substrate in a comparative example.
  • FIG. 3 is a flowchart showing details of the process of baking the photosensitive substrate after exposure and supplying a developer.
  • FIG. 4 schematically shows the configuration of the laser device.
  • FIG. 5 shows a photosensitive substrate exposed by an exposure device.
  • FIG. 6 is a diagram illustrating how the position of the scan field of the photosensitive substrate changes with respect to the position of the beam cross section of the pulsed laser beam.
  • FIG. 7 is a diagram illustrating how the position of the scan field of the photosensitive substrate changes with respect to the position of the beam cross section of the pulsed laser beam.
  • FIG. 8 is a diagram illustrating how the position of the scan field of the photosensitive substrate changes with respect to the position of the beam cross section of the pulsed laser beam.
  • FIG. 9 is a graph showing periodic wavelength changes.
  • FIG. 10 shows an integrated spectrum of pulsed laser light that includes a plurality of center wavelengths.
  • FIG. 11 shows an example in which a wafer pattern different from the target pattern is formed due to the optical proximity effect when the target pattern is directly used as a mask pattern.
  • FIG. 12 shows an example in which a wafer pattern close to the target pattern is formed when a corrected mask pattern subjected to optical proximity correction is used.
  • FIG. 13 is a conceptual diagram of model-based OPC in a comparative example.
  • FIG. 14 is a flowchart of model-based OPC.
  • FIG. 15 shows the data structure of the measurement wafer pattern.
  • FIG. 16 is a flowchart showing details of the process of creating a model function group.
  • FIG. 17 shows the concept of off-axis chromatic aberration that occurs when a photosensitive substrate is exposed to pulsed laser light that includes a plurality of center wavelengths.
  • FIG. 18 shows how the contrast of an optical image formed on a photosensitive substrate is reduced due to off-axis chromatic aberration.
  • FIG. 19 shows locations where dimensions are measured for calculating line edge roughness.
  • FIG. 20 is a flowchart showing the process of forming a resist pattern on a photosensitive substrate in the first embodiment.
  • FIG. 21 is a flowchart showing details of a process of baking a photosensitive substrate after exposure with a set temperature distribution and supplying a developer.
  • FIG. 22 is a flowchart showing details of processing for setting temperature distribution for post-exposure baking.
  • FIG. 23 is a flowchart showing the details of the process of baking the imax number of PEB test wafers after exposure and supplying a developer.
  • FIG. 24 shows a PEB test wafer and the temperature set for post-exposure baking the PEB test wafer.
  • FIG. 25 is a flowchart showing details of the process of measuring the wafer pattern of the developed imax number of PEB test wafers.
  • FIG. 26 conceptually shows a region of the scan field in which line edge roughness and critical dimension are measured.
  • FIG. 27 shows a table summarizing the average values.
  • FIG. 28 is a flowchart showing details of the process of setting the temperature distribution based on the measurement results.
  • FIG. 29 shows an example of the temperature distribution in the X-axis direction set in the first embodiment.
  • FIG. 30 shows an example of the temperature distribution in the Y-axis direction set in the first embodiment.
  • FIG. 31 shows a first example of the temperature distribution set in the first embodiment.
  • FIG. 32 shows a second example of the temperature distribution set in the first embodiment.
  • FIG. 33 is a flowchart showing the process of forming a resist pattern on a photosensitive substrate in the second embodiment.
  • FIG. 34 is a flowchart showing details of the process of S13 in the second embodiment.
  • FIG. 35 is a flowchart showing details of the process of S15 in the second embodiment.
  • FIG. 36 is a conceptual diagram of divided model-based OPC in the second embodiment.
  • FIG. 37 shows a plurality of divided areas included in the scan field of the test wafer.
  • FIG. 38 is a flowchart of divided model-based OPC.
  • FIG. 39 shows the data structure of the measurement wafer pattern.
  • FIG. 40 is a flowchart showing details of the process of creating a model function group.
  • FIG. 41 shows an example of a model function group.
  • FIG. 1 schematically shows the configuration of an exposure system in a comparative example.
  • a comparative example of the present disclosure is a form that the applicant recognizes as being known only by the applicant, and is not a publicly known example that the applicant admits.
  • the exposure system includes a laser device 100, an exposure device 200, and a developing device 300. In FIG. 1, a laser device 100 is shown in a simplified manner.
  • the laser device 100 includes a laser control processor 130.
  • the laser control processor 130 is a processing device that includes a memory 132 in which a control program is stored, and a CPU (central processing unit) 131 that executes the control program.
  • Laser control processor 130 is specifically configured or programmed to perform the various operations included in this disclosure.
  • Laser device 100 is configured to output pulsed laser light toward exposure device 200 .
  • the exposure apparatus 200 includes an illumination optical system 201, a projection optical system 202, and an exposure control processor 210.
  • Illumination optical system 201 illuminates a mask pattern of a photomask (not shown) placed on mask stage MS with pulsed laser light incident from laser device 100.
  • the projection optical system 202 reduces and projects the pulsed laser light that has passed through the photomask, and forms an image on a workpiece (not shown) placed on the workpiece table WT.
  • the workpiece is a photosensitive substrate such as a semiconductor wafer coated with a resist film.
  • the exposure control processor 210 is a processing device that includes a memory 212 that stores a control program, and a CPU 211 that executes the control program. Exposure control processor 210 is specifically configured or programmed to perform various processes included in this disclosure. The exposure control processor 210 controls the exposure apparatus 200 and transmits and receives various parameters and signals to and from the laser control processor 130.
  • the developing device 300 includes a wafer moving unit 301, a processing unit 302, a measuring unit 303, and a development control processor 310.
  • the wafer moving unit 301 is a device that transfers a photosensitive substrate to and from the exposure apparatus 200 and moves the photosensitive substrate within the developing apparatus 300.
  • the processing unit 302 performs coating of a resist film on a photosensitive substrate, post-exposure baking (PEB) of the photosensitive substrate exposed inside the exposure apparatus 200, supplying a developer, cleaning, drying, post-development baking (PDB), etc. It is a device that performs The post-exposure bake and the post-development bake are performed by heating the photosensitive substrate using a hot plate (not shown) included in the processing unit 302.
  • PEB post-exposure baking
  • PDB post-development baking
  • a plurality of processing units 302 may be included in one developing device 300, and processing by each processing unit 302 may be performed in parallel.
  • the measurement unit 303 is a device such as a CD-SEM that measures a pattern formed on a photosensitive substrate by exposure and development.
  • the measurement unit 303 may be included in the developing device 300 or may be provided separately from the developing device 300.
  • the development control processor 310 is a processing device that includes a memory 312 that stores a control program, and a CPU 311 that executes the control program. Development control processor 310 is specifically configured or programmed to perform various processes included in this disclosure.
  • the exposure control processor 210 transmits various parameters including the target long wavelength ⁇ L, the target short wavelength ⁇ S, and a voltage command value, and a trigger signal to the laser control processor 130.
  • Laser control processor 130 controls laser device 100 according to these parameters and signals.
  • Exposure control processor 210 synchronously moves mask stage MS and workpiece table WT in parallel in opposite directions. As a result, the workpiece is exposed to pulsed laser light that reflects the mask pattern. A mask pattern is transferred onto a photosensitive substrate by such photolithography. After that, an electronic device can be manufactured through a plurality of steps.
  • FIG. 2 is a flowchart showing the process of forming a resist pattern on a photosensitive substrate in a comparative example. Although FIG. 2 mainly shows the processing of the developing device 300, it also partially includes the processing of the exposure device 200.
  • the development control processor 310 controls the processing unit 302 to form a resist film on the semiconductor wafer to form a photosensitive substrate.
  • the exposure control processor 210 controls each part of the exposure apparatus 200 to expose the photosensitive substrate with pulsed laser light including a plurality of center wavelengths via a photomask.
  • the development control processor 310 controls the processing unit 302 to bake the photosensitive substrate after exposure and supply a developer to the surface of the photosensitive substrate.
  • a developer for example, acid generated in the exposed portions of the resist film acts as a catalyst during post-exposure baking and promotes chemical reactions in the resist film. Through this chemical reaction, the positive resist changes from alkali-insoluble to alkali-soluble, and the negative resist changes from alkali-soluble to alkali-insoluble. Then, the alkali-soluble portion is removed by an alkaline developer. Details of S5 will be described later with reference to FIG.
  • the development control processor 310 controls the processing unit 302 to wash, dry, and post-development bake the developed photosensitive substrate.
  • the development control processor 310 controls the measurement unit 303 to measure the photosensitive substrate baked after development as necessary. After S7, the processing of this flowchart ends.
  • FIG. 3 is a flowchart showing details of the process of baking the photosensitive substrate after exposure and supplying a developer.
  • the process shown in FIG. 3 corresponds to the subroutine of S5 in FIG.
  • the development control processor 310 determines whether to change the temperature setting of the hot plate.
  • the temperature of the hot plate is determined by the mask pattern, type of resist, exposure conditions, etc.
  • the development control processor 310 reads a new temperature setting and changes the temperature setting in S52.
  • the development control processor 310 brings the temperature of the hot plate closer to the set temperature in S53.
  • the processing unit 302 is controlled to heat the photosensitive substrate for a predetermined period of time.
  • the development control processor 310 controls the processing unit 302 to supply a developer to the surface of the photosensitive substrate. After S54, the development control processor 310 ends the process of this flowchart and returns to the process shown in FIG.
  • FIG. 4 schematically shows the configuration of the laser device 100.
  • V, H, and Z axes are shown.
  • the laser device 100 is shown as viewed in the ⁇ V direction, the exposure device 200 is shown in a simplified manner, and the developing device 300 is not shown.
  • the laser device 100 includes a laser chamber 10, a pulse power module (PPM) 13, a band narrowing module 14, an output coupling mirror 15, and a monitor module 17.
  • PPM pulse power module
  • the band narrowing module 14 and the output coupling mirror 15 constitute an optical resonator.
  • the laser chamber 10 is placed in the optical path of the optical resonator.
  • the laser chamber 10 is provided with windows 10a and 10b.
  • the laser chamber 10 includes inside thereof a discharge electrode 11a and a discharge electrode (not shown) that is paired with the discharge electrode 11a.
  • a discharge electrode (not shown) is positioned so as to overlap the discharge electrode 11a in the V-axis direction.
  • the laser chamber 10 is filled with a laser gas containing, for example, argon gas or krypton gas as a rare gas, fluorine gas as a halogen gas, and neon gas as a buffer gas.
  • the pulse power module 13 includes a switch (not shown) and is connected to a charger (not shown).
  • Band narrowing module 14 includes prisms 41 to 43, a grating 53, and a mirror 63. Details of the band narrowing module 14 will be described later.
  • the output coupling mirror 15 is composed of a partially reflecting mirror.
  • a beam splitter 16 is arranged in the optical path of the pulsed laser beam output from the output coupling mirror 15 to transmit a part of the pulsed laser beam with high transmittance and reflect the other part.
  • a monitor module 17 is arranged in the optical path of the pulsed laser beam reflected by the beam splitter 16.
  • the laser control processor 130 acquires various parameters including the target long wavelength ⁇ L, the target short wavelength ⁇ S, and the voltage command value from the exposure control processor 210. Laser control processor 130 sends a control signal to band narrowing module 14 based on target long wavelength ⁇ L and target short wavelength ⁇ S.
  • the laser control processor 130 receives a trigger signal from the exposure control processor 210.
  • Laser control processor 130 transmits an oscillation trigger signal to pulse power module 13 based on the trigger signal.
  • the switch included in the pulse power module 13 is turned on when receiving an oscillation trigger signal from the laser control processor 130. When the switch is turned on, the pulse power module 13 generates a pulsed high voltage from the electrical energy charged in the charger, and applies this high voltage to the discharge electrode 11a.
  • the light generated within the laser chamber 10 is emitted to the outside of the laser chamber 10 via windows 10a and 10b.
  • the light emitted from the window 10a enters the band narrowing module 14.
  • the band-narrowing module 14 Of the light incident on the band-narrowing module 14 , light around a desired wavelength is reflected by the band-narrowing module 14 and returned to the laser chamber 10 .
  • the output coupling mirror 15 transmits and outputs a part of the light emitted from the window 10b, and reflects the other part and returns it to the laser chamber 10.
  • the light emitted from the laser chamber 10 travels back and forth between the band narrowing module 14 and the output coupling mirror 15.
  • This light is amplified each time it passes through the discharge space within the laser chamber 10.
  • the band is narrowed, and the light has a steep wavelength distribution with a part of the wavelength range selected by the band-narrowing module 14 as the center wavelength.
  • the light thus lased and narrow-banded is output from the output coupling mirror 15 as a pulsed laser light.
  • the monitor module 17 measures the center wavelength of the pulsed laser beam and transmits the measured wavelength to the laser control processor 130.
  • the laser control processor 130 performs feedback control of the band narrowing module 14 based on the measurement wavelength.
  • the pulsed laser light transmitted through the beam splitter 16 enters the exposure apparatus 200.
  • the prisms 41 to 43 are arranged in the optical path of the light beam emitted from the window 10a in order from the smallest number.
  • the prisms 41 to 43 are arranged such that the surfaces of the prisms 41 to 43 through which the light beams enter and exit are all parallel to the V axis.
  • the prism 43 is rotatable around an axis parallel to the V-axis by a rotation stage 143.
  • the mirror 63 is placed in the optical path of the light beam that has passed through the prisms 41 to 43.
  • the mirror 63 is arranged so that the surface that reflects the light beam is parallel to the V-axis, and can be rotated by a rotation stage 163 around an axis parallel to the V-axis.
  • the grating 53 is placed in the optical path of the light beam reflected by the mirror 63.
  • the direction of the grooves of the grating 53 is parallel to the V axis.
  • the light beam emitted from the window 10a is changed in its propagation direction by each of the prisms 41 to 43 within a plane parallel to the HZ plane, which is a plane perpendicular to the V-axis, and is changed to a direction parallel to the HZ plane.
  • the beam width can be expanded within the plane.
  • the light beams transmitted through the prisms 41 to 43 are reflected by the mirror 63 and enter the grating 53.
  • the light beam incident on the grating 53 is reflected by the plurality of grooves of the grating 53 and is diffracted in a direction according to the wavelength of the light.
  • the grating 53 is arranged in a Littrow arrangement such that the incident angle of the light beam incident on the grating 53 from the mirror 63 matches the diffraction angle of the diffracted light of a desired wavelength.
  • the mirror 63 and prisms 41 to 43 reduce the beam width of the light beam returned from the grating 53 in a plane parallel to the HZ plane, and return the light beam to the inside of the laser chamber 10 via the window 10a. .
  • the laser control processor 130 controls the rotation stages 143 and 163 via a driver (not shown). According to the rotation angles of the rotation stages 143 and 163, the angle of incidence of the light beam incident on the grating 53 changes, and the wavelength selected by the band narrowing module 14 changes.
  • Rotation stage 143 is mainly used for coarse adjustment
  • rotation stage 163 is mainly used for fine adjustment.
  • the laser control processor 130 controls the rotation stage 163 based on the target long wavelength ⁇ L and target short wavelength ⁇ S received from the exposure control processor 210 so that the attitude of the mirror 63 changes periodically for each pulse. .
  • the center wavelength of the pulsed laser beam changes periodically between the target long wavelength ⁇ L and the target short wavelength ⁇ S for each plurality of pulses. In this way, the laser device 100 can perform laser oscillation at multiple wavelengths.
  • the focal length of the exposure apparatus 200 depends on the wavelength of the pulsed laser light.
  • the pulsed laser light that is oscillated at multiple wavelengths and enters the exposure apparatus 200 can be imaged at multiple different positions in the direction of the optical path axis of the pulsed laser light, so it is possible to substantially increase the depth of focus. can. For example, even when exposing a thick resist film, imaging performance in the thickness direction of the resist film can be maintained. Alternatively, the resist profile indicating the cross-sectional shape of the developed resist film can be adjusted.
  • FIG. 5 shows a photosensitive substrate exposed by exposure apparatus 200.
  • the photosensitive substrate is, for example, a single crystal silicon plate having an approximately disk shape. Exposure of the photosensitive substrate is performed for each section such as scan fields SF1 and SF2.
  • Each of the scan fields SF1 and SF2 is an area where some semiconductor chips among a large number of semiconductor chips formed on the photosensitive substrate are formed, and a reticle pattern of one reticle is transferred in one scan. corresponds to the area where The numbers included in the symbols SF1 and SF2 indicate the exposure order. When explaining the exposure order without specifying it, it will be simply written as SF without adding a number.
  • the photosensitive substrate is moved so that the first scan field SF1 is irradiated with pulsed laser light, and the first scan field SF1 is exposed.
  • the photosensitive substrate is moved so that the second scan field SF2 is irradiated with the pulsed laser light, and the second scan field SF2 is exposed.
  • the other scan fields SF are also sequentially exposed, and when the last scan field SFkmax is exposed, the exposure of that photosensitive substrate ends.
  • the Y-axis direction corresponds to the first direction in the present disclosure
  • the X-axis direction corresponds to the second direction in the present disclosure.
  • pulsed laser light When exposing one scan field SF, pulsed laser light is continuously output at a predetermined repetition frequency. Continuous output of pulsed laser light at a predetermined repetition frequency is called burst output.
  • burst output When moving the exposure position from one scan field SF to another scan field SF, the output of the pulsed laser light is stopped. Therefore, burst output is repeated multiple times to expose one photosensitive substrate.
  • the width of the scan field SF in the X-axis direction corresponds to the width of the beam cross section B of the pulsed laser light in the X-axis direction at the position of the workpiece table WT (see FIG. 1).
  • the width of the scan field SF in the Y-axis direction is larger than the width W of the beam cross section B of the pulsed laser light in the Y-axis direction at the position of the workpiece table WT.
  • the procedure of scanning and exposing each scan field SF in the Y-axis direction with a pulsed laser beam is performed in the order of FIGS. 6, 7, and 8.
  • the workpiece is moved so that the end SFy+ of the scan field SF in the +Y direction is located a predetermined distance apart in the -Y direction from the position of the end By- of the beam cross section B in the -Y direction.
  • Table WT is positioned.
  • the workpiece table WT is accelerated in the +Y direction so that the velocity Vy is reached by the time the +Y direction end SFy+ of the scan field SF coincides with the position of the ⁇ Y direction end By ⁇ of the beam cross section B. .
  • FIG. 6 the workpiece table WT is accelerated in the +Y direction so that the velocity Vy is reached by the time the +Y direction end SFy+ of the scan field SF coincides with the position of the ⁇ Y direction end By ⁇ of the beam cross section B.
  • the scan field SF is exposed while moving the workpiece table WT in the +Y direction so that the position of the scan field SF moves in a uniform linear motion at a speed Vy with respect to the position of the beam cross section B.
  • Ru As shown in FIG. 8, when the workpiece table WT is moved until the -Y-direction end SFy- of the scan field SF passes the position of the +Y-direction end By+ of the beam section B, the scan of the scan field SF is finish.
  • the number Ns of irradiation pulses of the pulsed laser light irradiated to any one location in the scan field SF is the same as the number of pulses of the pulsed laser light generated in the required time Ts, and is as follows.
  • Ns F ⁇ Ts
  • F is the repetition frequency of the pulsed laser beam.
  • the number of irradiation pulses Ns is also referred to as the number of N slit pulses.
  • FIG. 9 is a graph showing periodic wavelength change.
  • the horizontal axis indicates time t
  • the vertical axis indicates wavelength ⁇ .
  • Each of the small circles shown in FIG. 9 indicates the time t when the pulsed laser light is output and the center wavelength at that time.
  • the center wavelength changes periodically between the target long wavelength ⁇ L and the target short wavelength ⁇ S.
  • N be the number of pulses for one period of wavelength change.
  • FIG. 10 shows an integrated spectrum of pulsed laser light that includes multiple center wavelengths.
  • the integrated spectrum shown in FIG. 10 corresponds to the integrated spectrum for one period of wavelength change shown in FIG. 9.
  • the horizontal axis shows the wavelength ⁇
  • the vertical axis shows the light intensity I.
  • the broken line indicates the spectrum of pulsed laser light for each pulse, and the center wavelength of each may match the peak wavelength.
  • the number Ns of irradiation pulses of the pulsed laser light irradiated to any one location in the scan field SF is a multiple of the number N of pulses for one period of wavelength change.
  • any part of the scan field SF is irradiated with pulsed laser light having the same integrated spectrum and the number of irradiation pulses Ns. Thereby, there is little variation in exposure results depending on the irradiation position, and high-quality electronic devices can be manufactured.
  • Optical proximity correction 1.6.1 Overview
  • OPC optical proximity correction
  • FIG. 11 shows an example in which a wafer pattern R1 different from the target pattern G is formed due to the optical proximity effect when the target pattern G is used as it is as a mask pattern. For example, effects such as corner portions included in the target pattern G being rounded in the wafer pattern R1, or convex portions included in the target pattern G receding in the wafer pattern R1 are observed.
  • FIG. 12 shows an example in which a wafer pattern R2 close to the target pattern G is formed when a corrected mask pattern F subjected to optical proximity correction is used.
  • the correction mask pattern F may, for example, add an overhang to a convex corner of the target pattern G, further recess a concave corner of the target pattern G, or add an auxiliary pattern SRAF (sub-resolution assist feature). This includes modifications such as adding . Thereby, a wafer pattern R2 having a shape close to the target pattern G can be obtained.
  • optical proximity effect correction it is possible not only to correct the optical proximity effect, but also to correct the difference between the mask pattern and the wafer pattern that occurs during resist film development and other semiconductor processes.
  • model-based OPC Two types of optical proximity effect correction are known: model-based OPC and rule-based OPC.
  • model-based OPC will be explained as an example.
  • Model-based OPC In model-based OPC, a group of model functions M is created based on the results of an exposure simulation performed for each characteristic shape included in the target pattern G and the actual exposure results. Using this model function group M, a corrected mask pattern F for obtaining a wafer pattern equivalent to the target pattern G is created. Model-based OPC is mainly used in linewidth generations smaller than 130 nm.
  • FIG. 13 is a conceptual diagram of model-based OPC in a comparative example.
  • an OPC test mask including a test mask pattern E is created based on the target pattern G.
  • the OPC test wafer is exposed using an OPC test mask, and the patterned OPC test wafer is measured to obtain a measurement wafer pattern D.
  • a model function group M for predicting actual exposure results from the results of exposure simulation.
  • an OPC recipe P which is a program for creating a correction mask pattern F from a target pattern G.
  • a corrected mask pattern F is created.
  • exposing the photosensitive substrate using the corrected mask pattern F a wafer pattern close to the target pattern G can be obtained.
  • FIG. 14 is a flowchart of model-based OPC.
  • the processing shown in FIG. 14 is performed by a processor such as the exposure control processor 210, for example.
  • the processor may be included in another device such as a mask manufacturing device (not shown) or a server (not shown) connected to the plurality of exposure devices 200, and the configuration of such a processor may be the same as that of the exposure control processor 210.
  • a processor such as the exposure control processor 210
  • the processor may be included in another device such as a mask manufacturing device (not shown) or a server (not shown) connected to the plurality of exposure devices 200, and the configuration of such a processor may be the same as that of the exposure control processor 210.
  • the amount of calculation becomes enormous, it is more advantageous to increase the processing capacity of the processor included in the server than to increase the processing capacity of the exposure control processors 210 included in the plurality of exposure apparatuses 200 individually.
  • the processor obtains the target pattern G.
  • the target pattern G is a target wafer pattern of a photosensitive substrate designed by a semiconductor chip designer, and is provided in a data format called, for example, GDS (Graphic Data System) or OASIS (Open Artwork System Interchange Standard).
  • the target pattern G may be a pattern after etching when etching the photosensitive substrate, or a pattern of a resist film developed after exposure when etching is not performed.
  • the processor sets exposure conditions based on the target pattern G.
  • the exposure conditions include setting conditions of the exposure apparatus 200, such as the shape of the illumination light source by the illumination optical system 201 (see FIG. 1), the presence or absence of polarized illumination, and the numerical aperture of the projection optical system 202. Further, for example, the exposure conditions include the type of resist film, the presence or absence and type of an antireflection film, resist stack information, the thickness of the resist film, coating conditions for the resist film, and development conditions.
  • the processor creates a test mask pattern E based on the target pattern G. Specifically, characteristic shapes included in the target pattern G are extracted, one or more dimensional conditions are set for each shape, and the test mask pattern E is set. According to the test mask pattern E, an OPC test mask is created by the mask manufacturing device.
  • the exposure apparatus 200 exposes the OPC test wafer by scanning the OPC test wafer through the OPC test mask.
  • the OPC test wafer is a substrate for test exposure on which a resist film is applied under the same conditions as the photosensitive substrate.
  • the OPC test mask corresponds to a second test mask in the present disclosure
  • the OPC test wafer corresponds to a second test wafer in the present disclosure.
  • the processor controls the processing unit 302 to post-exposure bake the OPC test wafer in the development device 300 and supply a developer to the surface of the OPC test wafer. Further, the developed photosensitive substrate is washed, dried, and baked after development, and if etching is performed, an etching device (not shown) performs etching to pattern the OPC test wafer.
  • the processor measures the wafer pattern of the OPC test wafer using a measuring device such as a CD-SEM (not shown), and obtains a measured wafer pattern D representing the measurement result.
  • FIG. 15 shows the data structure of the measurement wafer pattern D.
  • the measurement wafer pattern D includes p dimensions measured for each of the m shapes 1 to m. For example, dimensions D 11 to D 1p are measured for shape 1, dimensions D 21 to D 2p are measured for shape 2, and dimensions D m1 to D mp are measured for shape m. However, the values of p in shapes 1 to m may be different from each other, and the value of p may be 1 or 2 or more.
  • the average value for each shape and size is calculated from the measurement results for the multiple scan fields SF, and the measured wafer pattern is Let it be D.
  • the processor creates a model function group M based on the test mask pattern E and the measurement wafer pattern D.
  • FIG. 16 is a flowchart showing details of the process of creating the model function group M. The process shown in FIG. 16 corresponds to the subroutine of S260 in FIG.
  • the processor uses the test mask pattern E to perform a single wavelength exposure simulation. Fourier's imaging theory is used in the exposure simulation.
  • the processor initializes the model function group M.
  • the model function group M includes, for example, k functions M 1 to M k .
  • Each of the functions M 1 to M k includes a plurality of coefficients.
  • the function M 1 includes i coefficients c 11 to c 1i
  • the function M k includes i coefficients c k1 to c ki .
  • the values of i in the functions M 1 to M k may be different from each other.
  • the processor performs predictive calculation of the wafer pattern by applying the exposure simulation results to the model function group M.
  • Prediction calculations include four arithmetic operations and convolution integrals.
  • the processor determines whether the result of the predictive calculation matches the measurement wafer pattern D. Even if the result of the predictive calculation does not completely match the measured wafer pattern D, it can be determined that the result of the predictive calculation matches the measured wafer pattern D if a predetermined condition is satisfied. If the result of the predictive calculation matches the measured wafer pattern D (S266: YES), the processor terminates the process of this flowchart by using the model function group M used in S265 as the created model function group M, and The process returns to step 14. If the result of the predictive calculation does not match the measured wafer pattern D (S266: NO), the processor advances the process to S267.
  • the processor updates the model function group M by changing the coefficients included in the model function group M and making other corrections.
  • the updated model function group M includes, for example, k' functions M 1 to M k' .
  • the value of k' indicating the number of functions M 1 to M k' may be different from the number of functions M 1 to M k included in the model function group M used in S265.
  • the coefficients c' 11 to c' k'i included in the functions M 1 to M k' may also be different from the coefficients c 11 to c ki included in the model function group M used in S265.
  • the processor After S267, the processor returns the process to S265 and updates the model function group M until the result of the prediction calculation matches the measured wafer pattern D.
  • the processor creates an OPC recipe P based on the model function group M.
  • the OPC recipe P includes, for example, a definition of the model function group M, measurement points and measurement directions of dimensions D 11 to D mp shown in FIG. 15, and descriptions regarding mask pattern correction rules.
  • the processor executes the OPC recipe P using the target pattern G to create a corrected mask pattern F.
  • the correction mask pattern F is also provided in the GDS or OASIS data format.
  • the mask manufacturing apparatus creates a photomask based on the corrected mask pattern F, and ends the process of this flowchart.
  • FIG. 17 shows the concept of off-axis chromatic aberration CA that occurs when a photosensitive substrate is exposed to pulsed laser light that includes a plurality of center wavelengths.
  • the optical path of the projection optical system 202 in the mask pattern of the mask placed on the mask stage MS is The portions located on the axis A are imaged at different positions in the depth direction of the photosensitive substrate placed on the workpiece table WT. This is called axial chromatic aberration.
  • portions of the mask pattern located away from the optical path axis A are imaged at different positions not only in the depth direction of the photosensitive substrate but also in the surface direction of the photosensitive substrate. This is called off-axis chromatic aberration CA.
  • FIG. 18 shows how the contrast of an optical image formed on a photosensitive substrate is reduced due to off-axis chromatic aberration.
  • the horizontal axis in FIG. 18 indicates the distance in the X-axis direction from the position 0 of the optical path axis A, and the vertical axis indicates the light intensity I.
  • the light intensity distribution shown by the solid line that combines the lights of those wavelengths becomes a long distribution in the X-axis direction.
  • the critical dimension CD2 at a position away from the optical path axis A is larger than the critical dimension CD1 at position 0 on the optical path axis A. Further, at a position away from the optical path axis A, the slope of the light intensity I near the threshold value Ith becomes gentle. As a result, the contrast of the optical image formed on the photosensitive substrate decreases at a position away from the optical path axis A.
  • FIG. 19 shows locations where dimensions are measured for calculating line edge roughness.
  • the line edge roughness is evaluated, for example, by the root mean square (RMS) of the deviation from the ideal center line CL to the edge, and the larger the variation, the larger the value. Therefore, it is desirable that the line edge roughness be small.
  • the line edge roughness may be evaluated using the pattern width instead of the deviation from the ideal center line CL to the edge, and may be evaluated using the standard deviation instead of the root mean square.
  • LWR line width roughness
  • the embodiments described below are related to suppressing deterioration of line edge roughness caused by lateral chromatic aberration when exposing using multiple wavelengths.
  • FIG. 20 is a flowchart showing the process of forming a resist pattern on a photosensitive substrate in the first embodiment. Although FIG. 20 mainly shows the processing of the developing device 300, it also partially includes the processing of the exposure device 200.
  • the development control processor 310 sets a temperature distribution for post-exposure baking.
  • the temperature distribution for post-exposure baking has a temperature gradient in the X-axis direction in each scan field SF. Details of the process of S1a will be described later with reference to FIG. 22. S3 and S4 following S1a are the same as those described with reference to FIG.
  • the development control processor 310 controls the processing unit 302 to bake the photosensitive substrate after exposure with a set temperature distribution and to supply a developer to the surface of the photosensitive substrate. Details of S5a will be described later with reference to FIG. 21. S6 and S7 following S5a are the same as those described with reference to FIG.
  • FIG. 21 is a flowchart showing the details of the process of baking the photosensitive substrate after exposure with a set temperature distribution and supplying a developer.
  • the process shown in FIG. 21 corresponds to the subroutine S5a in FIG. 20, except that instead of setting the temperature of the entire hot plate, a temperature distribution with a temperature gradient in the X-axis direction is set. This is the same as that described with reference to FIG.
  • FIG. 22 is a flowchart showing details of the process of setting the temperature distribution for post-exposure baking.
  • the process shown in FIG. 22 corresponds to the subroutine S1a in FIG. 20.
  • the temperature distribution for post-exposure baking may be set in advance according to a combination of the mask pattern, resist type, exposure conditions, etc., and necessary setting data may be read out in S5a.
  • the exposure control processor 210 exposes the imax number of PEB test wafers with pulsed laser light including a plurality of center wavelengths through the PEB test mask in S11.
  • the PEB test mask may be one specially designed to set the temperature distribution for post-exposure baking, or may be similar to the photomask used in S4 of FIG. 20.
  • Each of the imax PEB test wafers is similar to the photosensitive substrate used in S4 of FIG. 20, and each of the plurality of scan fields SF is scanned in the Y-axis direction by the exposure apparatus 200.
  • the imax number of sheets may be, for example, within the range of 3 or more and 10 or less.
  • the PEB test mask corresponds to the first test mask in the present disclosure
  • the PEB test wafer corresponds to the first test wafer in the present disclosure.
  • the development control processor 310 controls the processing unit 302 to bake each of the imax number of PEB test wafers after exposure and to supply a developer to the surface of the PEB test wafer. Details of S12 will be described later with reference to FIG. 23.
  • the development control processor 310 controls the measurement unit 303 to measure the wafer pattern of the developed imax number of PEB test wafers. Details of S13 will be described later with reference to FIG. 25.
  • the development control processor 310 sets the temperature distribution based on the measurement results. Details of S15 will be described later with reference to FIG. After S15, the development control processor 310 ends the process of this flowchart and returns to the process shown in FIG. 20.
  • FIG. 23 is a flowchart showing the details of the process of baking the imax number of PEB test wafers after exposure and supplying a developer.
  • the process shown in FIG. 23 corresponds to the subroutine of S12 in FIG. 22.
  • the development control processor 310 sets a counter i to 1 for counting the imax number of PEB test wafers.
  • imax PEB test wafers are heated at different temperatures T1 to Timax. Let the temperature of the hot plate for heating the i-th PEB test wafer WFi be the i-th temperature Ti.
  • the temperatures T1 to Timax are set at predetermined temperature intervals around the nominal temperature Tnom.
  • the nominal temperature Tnom is an optimal temperature for post-exposure baking that is derived without considering lateral chromatic aberration, and corresponds to the reference temperature in the present disclosure.
  • the predetermined temperature interval is, for example, 2° C. or more and 10° C. or less.
  • the development control processor 310 sets the temperature of the hot plate to the i-th temperature Ti.
  • the development control processor 310 controls the hot plate to have a uniform temperature distribution of temperature Ti, and controls the processing unit 320 to heat the i-th PEB test wafer WFi for a predetermined period of time.
  • the development control processor 310 controls the processing unit 320 to supply a developer to the surface of the i-th PEB test wafer WFi.
  • the development control processor 310 determines whether the value of the counter i has reached imax. If the value of the counter i has not reached imax (S125: NO), the development control processor 310 adds 1 to the value of the counter i in S126, and returns the process to S122. This allows the next PEB test wafer to be post-exposure baked at a different temperature Ti and developed. If the value of the counter i reaches imax (S125: YES), the development control processor 310 ends the process of this flowchart and returns to the process shown in FIG. 22.
  • FIG. 24 shows the PEB test wafers WF1 to WF4 and the temperature Ti set for post-exposure baking of the PEB test wafers WF1 to WF4. As temperature Ti, only one value is set for one PEB test wafer WFi.
  • FIG. 25 is a flowchart showing details of the process of measuring the wafer pattern of the developed imax number of PEB test wafers. The process shown in FIG. 25 corresponds to the subroutine of S13 in FIG. 22.
  • the development control processor 310 sets a counter i to 1 for counting the imax number of PEB test wafers.
  • the development control processor 310 controls the wafer movement unit 301 to set the i-th PEB test wafer WFi on the measurement unit 303.
  • the development control processor 310 sets a counter k to 1 for counting the scan field SF.
  • the development control processor 310 controls the measurement unit 303 to measure the line edge roughness LERcik and critical dimension CDcik at the center in the X-axis direction of the k-th scan field SFk of the i-th PEB test wafer WFi.
  • the development control processor 310 controls the measurement unit 303 to measure the line edge roughness LERpik and critical dimension CDpik at the end in the X-axis direction of the k-th scan field SFk of the i-th PEB test wafer WFi.
  • the position of the end of the scan field SFk in the X-axis direction corresponds to the first position in the present disclosure.
  • the development control processor 310 determines whether the value of the counter k has reached kmax. If the value of the counter k has not reached kmax (S136: NO), the development control processor 310 adds 1 to the value of the counter k in S137, and returns the process to S134. If the value of the counter k reaches kmax (S136: YES), the development control processor 310 advances the process to S138.
  • the development control processor 310 calculates and stores the average values LERci, CDci, LERpi, and CDpi of the measurement results for each PEB test wafer WFi and each position in the scan field using the following equations.
  • LERci Avg(LERcik)
  • CDci Avg(CDcik)
  • LERpi Avg(LERpik)
  • CDpi Avg(CDpik)
  • Avg(Xik) is the average value of kmax values of Xik.
  • the development control processor 310 determines whether the value of the counter i has reached imax. If the value of the counter i has not reached imax (S139: NO), the development control processor 310 adds 1 to the value of the counter i in S140, and returns the process to S132. If the value of the counter i reaches imax (S139: YES), the development control processor 310 advances the process to S141.
  • the development control processor 310 calculates the average value of the line edge roughness LERcik at the center in the X-axis direction of the scan field SF included in the PEB test wafers exposed and baked at the nominal temperature Tnom among the imax number of PEB test wafers. Identify LERci as reference LERc. After S141, the development control processor 310 ends the process of this flowchart and returns to the process shown in FIG. 22.
  • FIG. 26 conceptually shows a region in which line edge roughness LERcik and LERpik and critical dimensions CDcik and CDpik of the k-th scan field SFk are measured.
  • Line edge roughness LERcik and critical dimension CDcik are obtained from the measurement result at the center of the k-th scan field SFk in the X-axis direction
  • line edge roughness LERpik is obtained from the measurement result at the end of the k-th scan field SFk in the X-axis direction.
  • critical dimension CDpik are obtained.
  • FIG. 27 shows a table summarizing the average values LERci, CDci, LERpi, and CDpi.
  • a temperature Ti is set for each PEB test wafer WFi. It is assumed that the temperature Ti includes the nominal temperature Tnom. Average values LERci, CDci, LERpi, and CDpi of the measurement results are calculated for each PEB test wafer WFi and for each position within the scan field.
  • FIG. 28 is a flowchart showing details of the process of setting the temperature distribution based on the measurement results.
  • the process shown in FIG. 28 corresponds to the subroutine of S15 in FIG. 22.
  • the development control processor 310 sets a counter i to 1 for counting the imax number of PEB test wafers.
  • the development control processor 310 determines whether the average value LERpi of the line edge roughness LERpik at the end in the X-axis direction of the i-th PEB test wafer WFi is within an allowable range. When the difference between the average value LERpi and the reference LERc is less than or equal to the threshold value, it is determined that the average value LERpi is within the allowable range. In S153, the development control processor 310 determines whether the average value CDpi of the critical dimension CDpik at the end in the X-axis direction of the i-th PEB test wafer WFi is within an allowable range.
  • the development control processor 310 adds 1 to the value of the counter i in S154, and returns the process to S152. If both the average value LERpi and the average value CDpi are within the allowable range (S152 and S153: YES), the development control processor 310 advances the process to S155.
  • the development control processor 310 sets the temperature Tc of the center of all scan fields SF in the X-axis direction to the nominal temperature Tnom.
  • the development control processor 310 sets the temperature Tp of the end portion in the X-axis direction of all scan fields SF to the temperature Ti. After S156, the development control processor 310 ends the process of this flowchart and returns to the process shown in FIG. 22.
  • the reference LERc becomes the average value LERc4. If the difference between the average value LERc4 and the average value LERp2 is less than or equal to the threshold value, and the average value CDp2 is within the allowable range, it is determined that both the average value LERpi and the average value CDpi are within the allowable range, and X
  • the temperature Tp of the axial end portion is set to temperature T2.
  • FIG. 29 shows an example of the temperature distribution in the X-axis direction set in the first embodiment.
  • the horizontal axis in FIG. 29 indicates the position in the X-axis direction within the scan field SF, and the vertical axis indicates the temperature.
  • Temperature Tc is set at the center c in the X-axis direction
  • temperature Tp is set at the end p in the X-axis direction
  • the temperature distribution in the X-axis direction is set so that
  • the diffusion length of the acid that serves as the catalyst changes, and the speed of the chemical reaction using the acid as a catalyst also changes.
  • line edge roughness can be adjusted and the quality of the pattern formed on the photosensitive substrate can be improved.
  • FIG. 30 shows an example of the temperature distribution in the Y-axis direction set in the first embodiment.
  • the horizontal axis in FIG. 30 indicates the position in the Y-axis direction within the scan field SF, and the vertical axis indicates the temperature.
  • a constant temperature Tc is set regardless of the position in the Y-axis direction
  • a constant temperature Tp is set regardless of the position in the Y-axis direction. Note that the expression that the temperature is constant regardless of the position in the Y-axis direction is not limited to the case where the temperature distribution of the photosensitive substrate in the Y-axis direction is uniform, but also includes the case where the target temperature is uniform.
  • the temperature distribution in each scan field SF is such that the temperature gradient in the Y-axis direction is smaller than the temperature gradient in the X-axis direction.
  • FIG. 31 shows a first example of the temperature distribution set in the first embodiment.
  • a plurality of scan fields SF are arranged in a rectangular grid. That is, the boundaries of the scan field SF intersect in a cross shape at the corners of the scan field SF. Rectangular grids include square grids.
  • a temperature Tc at the center in the X-axis direction and a temperature Tp at the ends in the X-axis direction are set, and a gentle temperature gradient is created between the center in the X-axis direction and the ends in the X-axis direction.
  • Ru is
  • FIG. 32 shows a second example of the temperature distribution set in the first embodiment.
  • a plurality of scan fields SF are arranged row by row, shifted in the X-axis direction.
  • a temperature Tc at the center in the X-axis direction and a temperature Tp at the ends in the X-axis direction are set, and a gentle temperature gradient is created between the center in the X-axis direction and the ends in the X-axis direction.
  • Ru the temperature gradient at the boundary between adjacent scan fields SF in the Y-axis direction becomes large.
  • the temperature distributions in the plurality of scan fields SF are mutually equal.
  • the development control processor 310 separately acquires the arrangement data of the scan field SF on the photosensitive substrate and sets the temperature distribution to match the arrangement data of the scan field SF. May be set.
  • the temperature Tp may be set separately for the end in the +X direction and the end in the -X direction.
  • the method for developing a photosensitive substrate according to the first embodiment includes the following.
  • Each of the plurality of scan fields SF included in the photosensitive substrate is scanned in the Y-axis direction with a pulsed laser beam including a plurality of center wavelengths through a photomask, and the exposed photosensitive substrate is scanned into each of the plurality of scan fields SF.
  • the surface of the photosensitive substrate is heated so as to have a temperature distribution with a temperature gradient in the X-axis direction intersecting the Y-axis direction.
  • a developer is supplied to the surface of the photosensitive substrate to perform development.
  • line edge roughness can be adjusted by creating a temperature gradient in the X-axis direction in the temperature distribution of the post-exposure bake, and the photosensitive substrate The quality of the pattern formed can be improved.
  • the photosensitive substrate is heated so that the temperature distribution in each of the plurality of scan fields SF is such that the temperature gradient in the Y-axis direction is smaller than the temperature gradient in the X-axis direction. Since the shape of the beam cross section B of the pulsed laser light at the position of the workpiece table WT (see FIG. 1) is long in the X-axis direction, lateral chromatic aberration occurs more in the X-axis direction than in the Y-axis direction. Line edge roughness can be appropriately adjusted by increasing the temperature gradient in the X-axis direction and performing post-exposure baking with a temperature distribution depending on the position in the X-axis direction.
  • the photosensitive substrate is heated so that the temperature distribution is uniform in the Y-axis direction in each of the plurality of scan fields SF.
  • the chromatic aberration of magnification in the Y-axis direction is not large, and even if there is aberration, the scanning is averaged by irradiating one spot multiple times while scanning in the Y-axis direction, so exposure is performed with a uniform temperature distribution in the Y-axis direction.
  • line edge roughness can be adjusted appropriately.
  • the photosensitive substrate is heated so that the temperature distribution is symmetrical about a straight line parallel to the Y-axis direction in each of the plurality of scan fields SF. Since lateral chromatic aberration can occur symmetrically about a straight line parallel to the Y-axis direction, line edge roughness can be appropriately adjusted by performing post-exposure baking with a symmetrical temperature distribution.
  • the temperature distributions are equal in the plurality of scan fields SF. According to this, line edge roughness can be appropriately adjusted when the exposure conditions of a plurality of scan fields SF are the same.
  • a plurality of scan fields SF are arranged in a rectangular grid. According to this, the temperature gradient at the boundary between scan fields SF adjacent in the Y-axis direction can be made gentle, and post-exposure baking can be performed with an appropriate temperature distribution.
  • the photosensitive substrate is heated by a hot plate set to have a temperature gradient in the X-axis direction. According to this, by setting the temperature gradient of the hot plate, the temperature distribution of the post-exposure bake can be appropriately controlled.
  • the method for developing a photosensitive substrate according to the first embodiment further includes the following.
  • the exposed PEB test wafer WFi is heated by scanning each of the plurality of scan fields SF included in the PEB test wafer WFi in the Y-axis direction with a pulsed laser beam including a plurality of center wavelengths through a PEB test mask. .
  • a developer is supplied to the surface of the PEB test wafer WFi to perform development.
  • the wafer pattern of the PEB test wafer WFi is measured.
  • the temperature distribution is set based on the measurement results of the wafer pattern of the PEB test wafer WFi. According to this, by using the measurement results of the wafer pattern, it is possible to appropriately set the temperature distribution.
  • a plurality of PEB test wafers including the PEB test wafer WFi are heated at mutually different temperatures Ti. According to this, an appropriate temperature can be set by using the results of post-exposure baking at different temperatures Ti.
  • each of the plurality of PEB test wafers is heated to have a uniform temperature distribution. According to this, it is possible to accurately control the temperature in the post-exposure bake of the PEB test wafer WFi, so the data showing the relationship between the post-exposure bake temperature and the measurement results of the wafer pattern becomes more accurate, and the temperature distribution settings can be made more accurate. Can be done properly.
  • the average values LERci, CDci, LERpi, and CDpi of the measurement results of the wafer pattern of the PEB test wafer WFi are calculated at each temperature Ti and the position in the X-axis direction at each scan field SF.
  • the temperature distribution in the X-axis direction is set based on the average values LERci, CDci, LERpi, and CDpi. According to this, even if there is slight variation in the measurement results, accurate measurement data can be obtained by using the average values LERci, CDci, LERpi, or CDpi.
  • the measurement result of the wafer pattern of the PEB test wafer WFi includes the average value LERpi of line edge roughness at the end position in the X-axis direction, and the average value LERpi is within the allowable range. to determine the temperature distribution. According to this, since the temperature distribution of the post-exposure bake is set after actually measuring the line edge roughness, the line edge roughness can be improved with high accuracy.
  • the difference between the value LERpi and the average value LERpi at the end position in the X-axis direction is within the allowable range. According to this, by determining the difference from the reference LERc, the line edge roughness at the end portion in the X-axis direction can be made closer to that at the center portion in the X-axis direction.
  • the measurement result of the wafer pattern of the PEB test wafer WFi further includes the average value CDpi of the critical dimension at the end position in the X-axis direction, and the line edge at the end position in the X-axis direction.
  • the temperature distribution is specified so that both the roughness average value LERpi and the critical dimension average value CDpi are within the allowable range. According to this, both line edge roughness and critical dimension can be improved.
  • the first embodiment is similar to the comparative example.
  • FIG. 33 is a flowchart showing the process of forming a resist pattern on a photosensitive substrate in the second embodiment. Although FIG. 33 mainly shows the processing of the developing device 300, it also partially includes the processing of the exposure device 200.
  • the process of setting the temperature distribution in S1a is similar to the process of the first embodiment described with reference to FIGS. 20 and 22.
  • the second embodiment differs from the first embodiment in the following points.
  • FIGS. 34 and 35 Details of the processing in S13 and S15 in the second embodiment are shown in FIGS. 34 and 35, respectively.
  • 34 corresponds to FIG. 25 in the first embodiment
  • FIG. 35 corresponds to FIG. 28 in the first embodiment.
  • the development control processor 310 measures only the line edge roughnesses LERcik and LERpik in S134b and S135b, and calculates average values LERci and LERpi in S138b.
  • the development control processor 310 determines in S152 whether the average value LERpi of line edge roughness is within an allowable range.
  • FIG. 36 is a conceptual diagram of divided model-based OPC in the second embodiment.
  • each of the target pattern G, test mask pattern E, measurement wafer pattern D, model function group M, OPC recipe P, and correction mask pattern F is created for each of the plurality of divided regions #1 to #n.
  • FIG. 37 shows a plurality of divided areas #1 to #n included in the scan field SF of the OPC test wafer.
  • n is an integer of 2 or more, and a plurality of divided regions #1, #2, . .. .. , and #n are arranged in this order. It is desirable that the widths of divided regions #1 to #n in the X-axis direction are equal to each other.
  • the number of divided regions #1 to #n, that is, the value of n, is preferably 3 or more and 15 or less.
  • the measurement wafer pattern D obtained from the scan field SF of the OPC test wafer is divided into measurement wafer patterns D#1 to D#n corresponding to the divided regions #1 to #n.
  • Test mask pattern E is also divided into test mask patterns E#1 to E#n corresponding to divided regions #1 to #n.
  • One scan field SF included in the OPC test wafer corresponds to one scan field SF included in the photosensitive substrate.
  • the target pattern G to be formed on the photosensitive substrate is also divided into target patterns G#1 to G#n corresponding to the divided regions #1 to #n.
  • One scan field SF included in the photosensitive substrate corresponds to an area where the correction mask pattern F of one photomask is transferred in one scan, and has a corresponding relationship with the photomask.
  • the correction mask pattern F is also divided into correction mask patterns F#1 to F#n corresponding to the divided areas #1 to #n.
  • model function groups M#1 to M#n corresponding to divided regions #1 to #n are created, and OPC recipes P#1 to P#n corresponding to divided regions #1 to #n are created. is created.
  • FIG. 38 is a flowchart of divided model-based OPC. The processing shown in FIG. 38 is mainly performed by a processor such as the exposure control processor 210.
  • the processor obtains target patterns G#1 to G#n.
  • target patterns G#1 to G#n are obtained by dividing target pattern G designed by a semiconductor chip designer into divided regions #1 to #n.
  • the process in S220 is similar to the process in model-based OPC described with reference to FIG.
  • test mask patterns E#1 to E#n based on target patterns G#1 to G#n.
  • test mask pattern E#1 is created based on the characteristic shape included in target pattern G#1
  • test mask pattern E#2 is created based on the characteristic shape included in target pattern G#2.
  • different test mask patterns E#1 to E#n may be created depending on the divided regions #1 to #n.
  • common test mask patterns that is, test mask patterns E#1 to E#n including mutually identical pattern shapes, are created based on the characteristic shapes included in the target patterns G#1 to G#n. Good too.
  • OPC test masks are created by the mask manufacturing apparatus according to test mask patterns E#1 to E#n.
  • the exposure apparatus 200 exposes the OPC test wafer by scanning the OPC test wafer through the OPC test mask. Exposure of the OPC test wafer is performed with light of multiple wavelengths used to expose the photosensitive substrate.
  • the processor controls the processing unit 302 to post-expose and bake the OPC test wafer with the temperature distribution set in S1a of FIG. 33 and to supply a developer to the surface of the OPC test wafer. Further, the developed photosensitive substrate is washed, dried, and baked after development, and if etching is performed, an etching device (not shown) performs etching to pattern the OPC test wafer.
  • the processor measures the wafer pattern of the OPC test wafer and obtains measured wafer patterns D#1 to D#n indicating measurement results in the plurality of divided regions #1 to #n.
  • FIG. 39 shows the data structure of measurement wafer patterns D#1 to D#n.
  • Each of measurement wafer patterns D#1 to D#n includes p dimensions measured for each of m shapes 1 to m.
  • model function groups M#1 to M#n based on test mask patterns E#1 to E#n and measurement wafer patterns D#1 to D#n.
  • model function group M#1 is created based on test mask pattern E#1 and measurement wafer pattern D#1
  • model function group M#2 is created based on test mask pattern E#2 and measurement wafer pattern D#2. Create.
  • FIG. 40 is a flowchart showing details of the process of creating model function groups M#1 to M#n. The process shown in FIG. 40 corresponds to the subroutine of S260a in FIG. 38.
  • the processor performs exposure simulation using test mask patterns E#1 to E#n.
  • the exposure simulation may be performed using light having a smaller number of center wavelengths than the pulsed laser light that includes a plurality of center wavelengths and scans the OPC test wafer. It is desirable to perform exposure simulation using a single wavelength.
  • the value of counter j is set to the initial value 1.
  • the counter j specifies one of the model function groups M#1 to M#n, and also specifies one of the test mask patterns E#1 to E#n and one of the measurement wafer patterns D#1 to D#n. Identify.
  • the processing in S264a to S267a is similar to the processing in S264 to S267 described with reference to FIG. However, the exposure simulation result using one of the test mask patterns E#1 to E#n specified by counter j and one of the measurement wafer patterns D#1 to D#n specified by counter j, Using this, one of the model function groups M#1 to M#n specified by the counter j is created. If the determination in S266a is YES and one of the model function groups M#1 to M#n is created, the processor advances the process to S268a.
  • the processor determines whether the value of counter j is greater than or equal to n. If the value of counter j is less than n (S268a: NO), the processor adds 1 to the value of counter j in S269a, returns the process to S264a, and sets a model function group M#j for another divided area. do. If the value of counter j is greater than or equal to n, the processor ends the process of this flowchart and returns to the process shown in FIG. 38.
  • FIG. 41 shows an example of model function groups M#1 to M#n.
  • one model function group M#j includes k functions M#j 1 to M#j k .
  • the number of functions M#j 1 to M#j k that is, the value of k, may be different from each other in the model function groups M#1 to M#n.
  • the processor creates OPC recipes P#1 to P#n, respectively, based on the model function groups M#1 to M#n.
  • the processor executes OPC recipes P#1 to P#n using target patterns G#1 to G#n, respectively, to create corrected mask patterns F#1 to F#n, respectively.
  • correction mask pattern F#1 is created based on target pattern G#1 and model function group M#1
  • correction mask pattern F# is created based on target pattern G#2 and model function group M#2. 2 is created.
  • the mask manufacturing apparatus creates a photomask based on the corrected mask patterns F#1 to F#n, and ends the process of this flowchart.
  • the method for creating a photomask according to the second embodiment is a method for creating a photomask used in photolithography using pulsed laser light including a plurality of center wavelengths, and includes the following steps.
  • the OPC test wafer is scanned and exposed in the Y-axis direction with a pulsed laser beam through an OPC test mask, and in each of a plurality of scan fields SF included in the OPC test wafer, a pulse laser beam is scanned and exposed on the surface of the OPC test wafer in the Y-axis direction.
  • the wafer pattern of the developed OPC test wafer was measured by supplying a developer to the surface of the OPC test wafer, which was heated so as to have a temperature distribution with a temperature gradient in the X-axis direction. Measurement wafer patterns D#1 to D#n indicating measurement results in each of divided regions #1 to #n are obtained. Test mask patterns E#1 to E#n formed on the OPC test mask, measurement wafer patterns D#1 to D#n, and target patterns G#1 to G#n which are target wafer patterns of the photosensitive substrate. Based on this, correction mask patterns F#1 to F#n for creating a photomask are created. A photomask is created based on the corrected mask patterns F#1 to F#n.
  • the temperature distribution of the post-exposure bake is set so that both the line edge roughness and the critical dimension are within the allowable range, but both the line edge roughness and the critical dimension are within the allowable range. It may not be possible to obtain a solution.
  • the second embodiment while adjusting the line edge roughness by the temperature distribution of the post-exposure bake, it is possible to adjust the critical dimension by OPC for each divided region #1 to #n.
  • the method for creating a photomask according to the second embodiment further includes the following.
  • the exposed PEB test wafer WFi is heated by scanning each of the plurality of scan fields SF included in the PEB test wafer WFi in the Y-axis direction with a pulsed laser beam including a plurality of center wavelengths through a PEB test mask. .
  • a developer is supplied to the surface of the PEB test wafer WFi to perform development.
  • the wafer pattern of the PEB test wafer WFi is measured.
  • the temperature distribution is set based on the measurement results of the wafer pattern of the PEB test wafer WFi. According to this, the temperature distribution for post-exposure baking of the OPC test wafer can be set based on the measurement results of the wafer pattern of the PEB test wafer WFi, so the OPC test wafer can be created with high accuracy.
  • the temperature distribution is such that the average value LERpi of line edge roughness at the position of the end in the X-axis direction away from the center in the X-axis direction in each scan field SF is within the allowable range. is specified, and correction mask patterns F#1 to F#n are created so that the critical dimension at the end position in the X-axis direction falls within the allowable range. According to this, both the line edge roughness and the critical dimension at the end position in the X-axis direction can be improved.
  • the method for developing a photosensitive substrate according to the second embodiment includes the following.
  • a photomask is created by the above-described manufacturing method including OPC taking into account off-axis chromatic aberration.
  • the photosensitive substrate is scanned in the Y-axis direction with pulsed laser light including a plurality of center wavelengths through a photomask, and the exposed photosensitive substrate is heated to have a set temperature distribution.
  • a developer is supplied to the surface of the photosensitive substrate to perform development. According to this, a pattern on the photosensitive substrate can be formed with high precision.
  • model-based OPC is executed for each divided area #1 to #n
  • present disclosure is not limited to this, and for example, rule-based OPC is executed for each divided area #1 to #n. may also be executed.
  • second embodiment is similar to the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

感光基板の製造方法は、フォトマスクを介して複数の中心波長が含まれるパルスレーザ光で感光基板に含まれる複数のスキャンフィールドの各々を第1の方向にスキャンして露光された感光基板を、複数のスキャンフィールドの各々において感光基板の面上で第1の方向と交差する第2の方向に温度勾配をもつ温度分布となるように加熱することと、感光基板を加熱した後、感光基板の表面に現像液を供給して現像を行うことと、を含む。

Description

感光基板の現像方法、フォトマスクの作成方法、及び電子デバイスの製造方法
 本開示は、感光基板の現像方法、フォトマスクの作成方法、及び電子デバイスの製造方法に関する。
 近年、半導体露光装置においては、半導体集積回路の微細化及び高集積化につれて、解像力の向上が要請されている。このため、露光用光源から放出される光の短波長化が進められている。例えば、露光用のガスレーザ装置としては、波長約248nmのレーザ光を出力するKrFエキシマレーザ装置、ならびに波長約193nmのレーザ光を出力するArFエキシマレーザ装置が用いられる。
 KrFエキシマレーザ装置及びArFエキシマレーザ装置の自然発振光のスペクトル線幅は、350~400pmと広い。そのため、KrF及びArFレーザ光のような紫外線を透過させる材料で投影レンズを構成すると、色収差が発生してしまう場合がある。その結果、解像力が低下し得る。そこで、ガスレーザ装置から出力されるレーザ光のスペクトル線幅を、色収差が無視できる程度となるまで狭帯域化する必要がある。そのため、ガスレーザ装置のレーザ共振器内には、スペクトル線幅を狭帯域化するために、狭帯域化素子(エタロンやグレーティング等)を含む狭帯域化モジュール(Line Narrowing Module:LNM)が備えられる場合がある。スペクトル線幅が狭帯域化されるガスレーザ装置を狭帯域化レーザ装置という。
米国特許第5968691号明細書
概要
 本開示の1つの観点において、感光基板の製造方法は、フォトマスクを介して複数の中心波長が含まれるパルスレーザ光で感光基板に含まれる複数のスキャンフィールドの各々を第1の方向にスキャンして露光された感光基板を、複数のスキャンフィールドの各々において感光基板の面上で第1の方向と交差する第2の方向に温度勾配をもつ温度分布となるように加熱することと、感光基板を加熱した後、感光基板の表面に現像液を供給して現像を行うことと、を含む。
 本開示の1つの観点において、複数の中心波長が含まれるパルスレーザ光を用いたフォトリソグラフィに使用されるフォトマスクの作成方法は、第2のテストマスクを介してパルスレーザ光で第2のテストウエハを第1の方向にスキャンして露光され、第2のテストウエハに含まれる複数のスキャンフィールドの各々において第2のテストウエハの面上で第1の方向と交差する第2の方向に温度勾配をもつ温度分布となるように加熱された第2のテストウエハの表面に現像液を供給して現像された第2のテストウエハのウエハパターンを計測し、第2の方向に並ぶ複数の分割領域の各々における計測結果を示す計測ウエハパターンを取得することと、第2のテストマスクに形成されたテストマスクパターンと、計測ウエハパターンと、感光基板の目標とするウエハパターンである目標パターンと、に基づいて、フォトマスクを作成するための補正マスクパターンを作成することと、補正マスクパターンに基づいてフォトマスクを作成することと、を含む。
 本開示の1つの観点において、電子デバイスの製造方法は、レーザ装置によって複数の中心波長が含まれるパルスレーザ光を生成することと、パルスレーザ光を露光装置に出力することと、露光装置内で、フォトマスクを介してパルスレーザ光で感光基板に含まれる複数のスキャンフィールドの各々を第1の方向にスキャンして露光することと、露光された感光基板を、複数のスキャンフィールドの各々において感光基板の面上で第1の方向と交差する第2の方向に温度勾配をもつ温度分布となるように加熱することと、感光基板を加熱した後、感光基板の表面に現像液を供給して現像を行うことと、を含む。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、比較例における露光システムの構成を概略的に示す。 図2は、比較例において感光基板上にレジストパターンを形成する処理を示すフローチャートである。 図3は、感光基板を露光後ベークし、現像液を供給する処理の詳細を示すフローチャートである。 図4は、レーザ装置の構成を概略的に示す。 図5は、露光装置によって露光される感光基板を示す。 図6は、パルスレーザ光のビーム断面の位置に対して感光基板のスキャンフィールドの位置が変化する様子を説明する図である。 図7は、パルスレーザ光のビーム断面の位置に対して感光基板のスキャンフィールドの位置が変化する様子を説明する図である。 図8は、パルスレーザ光のビーム断面の位置に対して感光基板のスキャンフィールドの位置が変化する様子を説明する図である。 図9は、周期的な波長変化を示すグラフである。 図10は、複数の中心波長が含まれるパルスレーザ光の積算スペクトルを示す。 図11は、目標パターンをそのままマスクパターンとして用いた場合に、光近接効果によって目標パターンと異なるウエハパターンが形成された例を示す。 図12は、光近接効果補正が行われた補正マスクパターンを用いた場合に、目標パターンに近いウエハパターンが形成された例を示す。 図13は、比較例におけるモデルベースOPCの概念図である。 図14は、モデルベースOPCのフローチャートである。 図15は、計測ウエハパターンのデータ構造を示す。 図16は、モデル関数群を作成する処理の詳細を示すフローチャートである。 図17は、複数の中心波長が含まれるパルスレーザ光で感光基板を露光する場合に発生する軸外色収差の概念を示す。 図18は、感光基板に形成される光学像のコントラストが軸外色収差により低下する様子を示す。 図19は、ラインエッジラフネスを計算するための寸法の計測箇所を示す。 図20は、第1の実施形態において感光基板上にレジストパターンを形成する処理を示すフローチャートである。 図21は、設定された温度分布で感光基板を露光後ベークし、現像液を供給する処理の詳細を示すフローチャートである。 図22は、露光後ベークするための温度分布を設定する処理の詳細を示すフローチャートである。 図23は、imax枚のPEBテストウエハをそれぞれ露光後ベークし、現像液を供給する処理の詳細を示すフローチャートである。 図24は、PEBテストウエハと、PEBテストウエハを露光後ベークするために設定される温度と、を示す。 図25は、現像されたimax枚のPEBテストウエハのウエハパターンを計測する処理の詳細を示すフローチャートである。 図26は、スキャンフィールドのうちのラインエッジラフネス及びクリティカルディメンジョンが計測される領域を概念的に示す。 図27は、平均値をまとめた表を示す。 図28は、計測結果に基づいて温度分布を設定する処理の詳細を示すフローチャートである。 図29は、第1の実施形態において設定されるX軸方向の温度分布の例を示す。 図30は、第1の実施形態において設定されるY軸方向の温度分布の例を示す。 図31は、第1の実施形態において設定される温度分布の第1の例を示す。 図32は、第1の実施形態において設定される温度分布の第2の例を示す。 図33は、第2の実施形態において感光基板上にレジストパターンを形成する処理を示すフローチャートである。 図34は、第2の実施形態におけるS13の処理の詳細を示すフローチャートである。 図35は、第2の実施形態におけるS15の処理の詳細を示すフローチャートである。 図36は、第2の実施形態における分割モデルベースOPCの概念図である。 図37は、テストウエハのスキャンフィールドに含まれる複数の分割領域を示す。 図38は、分割モデルベースOPCのフローチャートである。 図39は、計測ウエハパターンのデータ構造を示す。 図40は、モデル関数群を作成する処理の詳細を示すフローチャートである。 図41は、モデル関数群の例を示す。
実施形態
<内容>
1.比較例
 1.1 露光システム
  1.1.1 構成
  1.1.2 動作
 1.2 レーザ装置100
  1.2.1 構成
  1.2.2 動作
 1.3 狭帯域化モジュール14
  1.3.1 構成
  1.3.2 動作
 1.4 スキャン露光
 1.5 周期的な波長変化及び積算スペクトル
 1.6 光近接効果補正(OPC)
  1.6.1 概要
  1.6.2 モデルベースOPC
 1.7 比較例の課題
2.露光後ベークの温度分布によるLERの制御
 2.1 動作
  2.1.1 露光後ベーク
  2.1.2 温度分布の設定
 2.2 作用
3.露光後ベークの温度分布とOPCとの組み合わせ
 3.1 動作
 3.2 作用
4.その他
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.比較例
 1.1 露光システム
 図1は、比較例における露光システムの構成を概略的に示す。本開示の比較例とは、出願人のみによって知られていると出願人が認識している形態であって、出願人が自認している公知例ではない。
 露光システムは、レーザ装置100と、露光装置200と、現像装置300と、を含む。図1においてはレーザ装置100が簡略化して示されている。
 レーザ装置100は、レーザ制御プロセッサ130を含む。レーザ制御プロセッサ130は、制御プログラムが記憶されたメモリ132と、制御プログラムを実行するCPU(central processing unit)131と、を含む処理装置である。レーザ制御プロセッサ130は本開示に含まれる各種処理を実行するために特別に構成又はプログラムされている。レーザ装置100は、パルスレーザ光を露光装置200に向けて出力するように構成されている。
  1.1.1 構成
 図1に示されるように、露光装置200は、照明光学系201と、投影光学系202と、露光制御プロセッサ210と、を含む。
 照明光学系201は、レーザ装置100から入射したパルスレーザ光によって、マスクステージMS上に配置された図示しないフォトマスクのマスクパターンを照明する。
 投影光学系202は、フォトマスクを透過したパルスレーザ光を縮小投影して、ワークピーステーブルWT上に配置された図示しないワークピースに結像させる。ワークピースはレジスト膜が塗布された半導体ウエハ等の感光基板である。
 露光制御プロセッサ210は、制御プログラムが記憶されたメモリ212と、制御プログラムを実行するCPU211と、を含む処理装置である。露光制御プロセッサ210は本開示に含まれる各種処理を実行するために特別に構成又はプログラムされている。露光制御プロセッサ210は、露光装置200の制御を統括するとともに、レーザ制御プロセッサ130との間で各種パラメータ及び各種信号を送受信する。
 現像装置300は、ウエハ移動ユニット301と、処理ユニット302と、計測ユニット303と、現像制御プロセッサ310と、を含む。
 ウエハ移動ユニット301は、露光装置200との間での感光基板の受け渡し、及び現像装置300の内部での感光基板の移動を行う装置である。
 処理ユニット302は、感光基板へのレジスト膜の塗布、露光装置200の内部で露光された感光基板の露光後ベーク(PEB)、現像液の供給、洗浄、乾燥、現像後ベーク(PDB)等を行う装置である。露光後ベーク及び現像後ベークは、処理ユニット302に含まれる図示しないホットプレートによって感光基板を加熱することにより行われる。1つの現像装置300の中に複数の処理ユニット302が含まれ、それぞれの処理ユニット302による処理が並行して行われてもよい。
 計測ユニット303は、露光及び現像により感光基板に形成されたパターンを計測するCD-SEM等の装置である。計測ユニット303は、現像装置300に含まれるものでもよいし、現像装置300とは別に設けられるものでもよい。
 現像制御プロセッサ310は、制御プログラムが記憶されたメモリ312と、制御プログラムを実行するCPU311と、を含む処理装置である。現像制御プロセッサ310は本開示に含まれる各種処理を実行するために特別に構成又はプログラムされている。
  1.1.2 動作
 露光制御プロセッサ210は、目標長波長λL及び目標短波長λSと電圧指令値とを含む各種パラメータと、トリガ信号と、をレーザ制御プロセッサ130に送信する。レーザ制御プロセッサ130は、これらのパラメータ及び信号に従ってレーザ装置100を制御する。
 露光制御プロセッサ210は、マスクステージMSとワークピーステーブルWTとを同期して互いに逆方向に平行移動させる。これにより、マスクパターンを反映したパルスレーザ光でワークピースが露光される。
 このようなフォトリソグラフィによって感光基板にマスクパターンが転写される。その後、複数の工程を経ることで電子デバイスを製造することができる。
 図2は、比較例において感光基板上にレジストパターンを形成する処理を示すフローチャートである。図2は主に現像装置300の処理を示すが、一部に露光装置200の処理を含む。
 S3において、現像制御プロセッサ310は、半導体ウエハにレジスト膜を成膜して感光基板とするよう処理ユニット302を制御する。
 S4において、露光制御プロセッサ210は、フォトマスクを介して複数の中心波長が含まれるパルスレーザ光で感光基板を露光するよう、露光装置200の各部を制御する。
 S5において、現像制御プロセッサ310は、感光基板を露光後ベークし、感光基板の表面に現像液を供給するよう処理ユニット302を制御する。例えば、レジスト膜内の露光された部分に生成された酸が、露光後ベーク時には触媒となってレジスト膜の化学反応を促進する。この化学反応によって、ポジ型レジストはアルカリ不溶からアルカリ可溶に変化し、ネガ型レジストはアルカリ可溶からアルカリ不溶に変化する。そして、アルカリ可溶部分がアルカリ性の現像液によって除去される。S5の詳細については図3を参照しながら後述する。
 S6において、現像制御プロセッサ310は、現像された感光基板の洗浄、乾燥、及び現像後ベークを行うよう処理ユニット302を制御する。
 S7において、現像制御プロセッサ310は、現像後ベークされた感光基板の計測を必要に応じて行うよう計測ユニット303を制御する。
 S7の後、本フローチャートの処理は終了する。
 図3は、感光基板を露光後ベークし、現像液を供給する処理の詳細を示すフローチャートである。図3に示される処理は、図2のS5のサブルーチンに相当する。
 S51において、現像制御プロセッサ310は、ホットプレートの温度設定を変更するか否かを判定する。ホットプレートの温度は、マスクパターン、レジストの種類、露光条件等によって決められる。
 ホットプレートの温度設定を変更する場合(S51:YES)、現像制御プロセッサ310は、S52において新たな温度設定を読み出して温度設定を変更する。
 ホットプレートの温度設定を変更しない場合(S51:NO)、あるいは、ホットプレートの温度設定を変更(S52)した後、現像制御プロセッサ310は、S53において、ホットプレートの温度を設定された温度に近づけて感光基板を所定時間加熱するよう処理ユニット302を制御する。
 S54において、現像制御プロセッサ310は、感光基板の表面に現像液を供給するよう処理ユニット302を制御する。
 S54の後、現像制御プロセッサ310は本フローチャートの処理を終了し、図2に示される処理に戻る。
 1.2 レーザ装置100
  1.2.1 構成
 図4は、レーザ装置100の構成を概略的に示す。図4に、互いに垂直なV軸、H軸、及びZ軸が示されている。図4においては、-V方向に見たレーザ装置100が示され、露光装置200は簡略化して示されており、現像装置300の図示は省略されている。
 レーザ装置100は、レーザ制御プロセッサ130の他に、レーザチャンバ10と、パルスパワーモジュール(PPM)13と、狭帯域化モジュール14と、出力結合ミラー15と、モニタモジュール17と、を含む。狭帯域化モジュール14及び出力結合ミラー15は光共振器を構成する。
 レーザチャンバ10は、光共振器の光路に配置されている。レーザチャンバ10にはウインドウ10a及び10bが設けられている。
 レーザチャンバ10は、放電電極11a及びこれと対をなす図示しない放電電極を内部に備えている。図示しない放電電極は、V軸の方向において放電電極11aと重なるように位置している。レーザチャンバ10には、例えばレアガスとしてアルゴンガス又はクリプトンガス、ハロゲンガスとしてフッ素ガス、バッファガスとしてネオンガス等を含むレーザガスが封入される。
 パルスパワーモジュール13は、図示しないスイッチを含むとともに、図示しない充電器に接続されている。
 狭帯域化モジュール14は、プリズム41~43と、グレーティング53と、ミラー63と、を含む。狭帯域化モジュール14の詳細については後述する。
 出力結合ミラー15は、部分反射ミラーで構成されている。
 出力結合ミラー15から出力されたパルスレーザ光の光路に、パルスレーザ光の一部を高い透過率で透過させ、他の一部を反射するビームスプリッタ16が配置されている。ビームスプリッタ16によって反射されたパルスレーザ光の光路に、モニタモジュール17が配置されている。
  1.2.2 動作
 レーザ制御プロセッサ130は、露光制御プロセッサ210から目標長波長λL及び目標短波長λSと、電圧指令値と、を含む各種パラメータを取得する。レーザ制御プロセッサ130は、目標長波長λL及び目標短波長λSに基づいて狭帯域化モジュール14に制御信号を送信する。
 レーザ制御プロセッサ130は、露光制御プロセッサ210からトリガ信号を受信する。レーザ制御プロセッサ130は、トリガ信号に基づく発振トリガ信号をパルスパワーモジュール13に送信する。パルスパワーモジュール13に含まれるスイッチは、レーザ制御プロセッサ130から発振トリガ信号を受信するとオン状態となる。パルスパワーモジュール13は、スイッチがオン状態となると、充電器に充電された電気エネルギーからパルス状の高電圧を生成し、この高電圧を放電電極11aに印加する。
 放電電極11aに高電圧が印加されると、放電電極11a及び図示しない放電電極の間の放電空間に放電が起こる。この放電のエネルギーにより、レーザチャンバ10内のレーザガスが励起されて高エネルギー準位に移行する。励起されたレーザガスが、その後、低エネルギー準位に移行するとき、そのエネルギー準位差に応じた波長の光を放出する。
 レーザチャンバ10内で発生した光は、ウインドウ10a及び10bを介してレーザチャンバ10の外部に出射する。ウインドウ10aから出射した光は、狭帯域化モジュール14に入射する。狭帯域化モジュール14に入射した光のうちの所望波長付近の光が、狭帯域化モジュール14によって折り返されてレーザチャンバ10に戻される。
 出力結合ミラー15は、ウインドウ10bから出射した光のうちの一部を透過させて出力し、他の一部を反射してレーザチャンバ10に戻す。
 このようにして、レーザチャンバ10から出射した光は、狭帯域化モジュール14と出力結合ミラー15との間で往復する。この光は、レーザチャンバ10内の放電空間を通過する度に増幅される。また、この光は、狭帯域化モジュール14によって折り返される度に狭帯域化され、狭帯域化モジュール14による選択波長の範囲の一部を中心波長とした急峻な波長分布を有する光となる。こうしてレーザ発振し狭帯域化された光が、出力結合ミラー15からパルスレーザ光として出力される。
 モニタモジュール17は、パルスレーザ光の中心波長を計測し、計測波長をレーザ制御プロセッサ130に送信する。レーザ制御プロセッサ130は、計測波長に基づいて狭帯域化モジュール14をフィードバック制御する。
 ビームスプリッタ16を透過したパルスレーザ光は、露光装置200へ入射する。
 1.3 狭帯域化モジュール14
  1.3.1 構成
 プリズム41~43は、ウインドウ10aから出射した光ビームの光路にこれらの番号の小さい方から順に配置されている。プリズム41~43は、光ビームが入出射するプリズム41~43の表面がいずれもV軸に平行となるように配置されている。プリズム43は、回転ステージ143によってV軸に平行な軸周りに回転可能となっている。
 ミラー63は、プリズム41~43を透過した光ビームの光路に配置されている。ミラー63は、光ビームを反射する表面がV軸に平行となるように配置されており、回転ステージ163によってV軸に平行な軸周りに回転可能となっている。
 グレーティング53は、ミラー63によって反射された光ビームの光路に配置されている。グレーティング53の溝の方向は、V軸に平行である。
  1.3.2 動作
 ウインドウ10aから出射した光ビームは、プリズム41~43の各々によって、V軸に垂直な面であるHZ面に平行な面内で進行方向を変えられ、HZ面に平行な面内でビーム幅を拡大させられる。
 プリズム41~43を透過した光ビームは、ミラー63によって反射されてグレーティング53に入射する。
 グレーティング53に入射した光ビームは、グレーティング53の複数の溝によって反射されるとともに、光の波長に応じた方向に回折させられる。グレーティング53は、ミラー63からグレーティング53に入射する光ビームの入射角と、所望波長の回折光の回折角と、が一致するようにリトロー配置とされる。
 ミラー63及びプリズム41~43は、グレーティング53から戻された光ビームのビーム幅をHZ面に平行な面内で縮小させるとともに、その光ビームを、ウインドウ10aを介してレーザチャンバ10の内部に戻す。
 レーザ制御プロセッサ130は、図示しないドライバを介して回転ステージ143及び163を制御する。回転ステージ143及び163の回転角度に応じて、グレーティング53に入射する光ビームの入射角が変化し、狭帯域化モジュール14によって選択される波長が変化する。回転ステージ143は主に粗調整に使用され、回転ステージ163は主に微調整に使用される。
 レーザ制御プロセッサ130は、露光制御プロセッサ210から受信した目標長波長λL及び目標短波長λSに基づいて、ミラー63の姿勢が複数のパルスごとに周期的に変化するように、回転ステージ163を制御する。これにより、パルスレーザ光の中心波長が複数のパルスごとに目標長波長λLと目標短波長λSとの間で周期的に変化する。このように、レーザ装置100は複数波長でレーザ発振を行うことができる。
 露光装置200における焦点距離は、パルスレーザ光の波長に依存する。複数波長でレーザ発振して露光装置200に入射したパルスレーザ光は、パルスレーザ光の光路軸の方向において複数の異なる位置で結像することができるので、実質的に焦点深度を大きくすることができる。例えば、膜厚の大きいレジスト膜を露光する場合でも、レジスト膜の厚み方向での結像性能を維持し得る。あるいは、現像されたレジスト膜の断面形状を示すレジストプロファイルを調整し得る。
 1.4 スキャン露光
 図5は、露光装置200によって露光される感光基板を示す。感光基板は、例えば、ほぼ円板形を有する単結晶シリコンの板である。感光基板の露光は、スキャンフィールドSF1、SF2等の区画ごとに行われる。スキャンフィールドSF1、SF2の各々は、感光基板に形成される多数の半導体チップのうちのいくつかの半導体チップが形成される領域であって、1枚のレチクルのレチクルパターンが1回のスキャンで転写される領域に相当する。符号SF1、SF2に含まれる数字は露光順を示す。露光順を特定せずに説明する場合は数字を付さず単にSFと表記する。
 まず、1つめのスキャンフィールドSF1にパルスレーザ光が照射されるように感光基板が移動されて、1つめのスキャンフィールドSF1が露光される。
 次に、2つめのスキャンフィールドSF2にパルスレーザ光が照射されるように感光基板が移動されて、2つめのスキャンフィールドSF2が露光される。
 その他のスキャンフィールドSFも順次露光され、最後のスキャンフィールドSFkmaxが露光されるとその感光基板の露光が終了する。
 図6~図8は、パルスレーザ光のビーム断面Bの位置に対して感光基板のスキャンフィールドSFの位置が変化する様子を示す。スキャンフィールドSFの位置が変化する方向をY軸方向とし、Y軸方向に垂直な方向をX軸方向とする。Y軸方向は本開示における第1の方向に相当し、X軸方向は本開示における第2の方向に相当する。
 1つのスキャンフィールドSFを露光するときはパルスレーザ光が所定の繰り返し周波数で連続して出力される。パルスレーザ光を所定の繰り返し周波数で連続して出力することをバースト出力という。1つのスキャンフィールドSFから他のスキャンフィールドSFに露光位置を移動させるときはパルスレーザ光の出力を休止する。従って、1つの感光基板を露光するために、バースト出力が複数回にわたって繰り返される。
 スキャンフィールドSFのX軸方向の幅は、ワークピーステーブルWT(図1参照)の位置におけるパルスレーザ光のビーム断面BのX軸方向の幅に相当する。スキャンフィールドSFのY軸方向の幅は、ワークピーステーブルWTの位置におけるパルスレーザ光のビーム断面BのY軸方向の幅Wより大きい。
 パルスレーザ光によりスキャンフィールドSFの各々をY軸方向にスキャンして露光する手順は、図6、図7、図8の順で行われる。まず、図6に示されるように、ビーム断面Bの-Y方向の端By-の位置に対してスキャンフィールドSFの+Y方向の端SFy+が-Y方向に所定距離離れて位置するようにワークピーステーブルWTが位置決めされる。そして、ビーム断面Bの-Y方向の端By-の位置に対してスキャンフィールドSFの+Y方向の端SFy+が一致するまでに速度Vyとなるように、ワークピーステーブルWTが+Y方向に加速される。図7に示されるように、ビーム断面Bの位置に対してスキャンフィールドSFの位置が速度Vyで等速直線運動するようにワークピーステーブルWTを+Y方向に移動しながら、スキャンフィールドSFが露光される。図8に示されるように、ビーム断面Bの+Y方向の端By+の位置をスキャンフィールドSFの-Y方向の端SFy-が通過するまでワークピーステーブルWTが移動されたら、スキャンフィールドSFのスキャンが終了する。
 このように、ビーム断面Bの位置に対してスキャンフィールドSFが移動しながら露光が行われる。スキャンフィールドSFを基準にすると、パルスレーザ光によって-Y方向にスキャンするということもできる。
 パルスレーザ光のビーム断面Bの幅Wに相当する距離をスキャンフィールドSFが速度Vyで移動するための所要時間Tsは、以下の通りである。
   Ts=W/Vy
 スキャンフィールドSFのうちの任意の1箇所に照射されるパルスレーザ光の照射パルス数Nsは、所要時間Tsにおいて生成されるパルスレーザ光のパルス数と同一であり、以下の通りである。
   Ns=F・Ts
ここで、Fはパルスレーザ光の繰返し周波数である。
照射パルス数Nsは、Nスリットパルス数ともいう。
 ここでは電子デバイスを製造するための感光基板に含まれるスキャンフィールドSFについて説明したが、後述のPEBテストウエハ及びOPCテストウエハに含まれるスキャンフィールドSFについても同様である。
 1.5 周期的な波長変化及び積算スペクトル
 図9は、周期的な波長変化を示すグラフである。図9において、横軸は時間tを示し、縦軸は波長λを示す。図9に示される小円の各々は、パルスレーザ光が出力されるときの時間tと、そのときの中心波長と、を示す。
 図9に示される例では、目標長波長λLと目標短波長λSとの間で、中心波長が周期的に変化する。波長変化の1周期分のパルス数をNとする。波長変化の周期Tは以下の式で与えられる。
   T=N/F
 図10は、複数の中心波長が含まれるパルスレーザ光の積算スペクトルを示す。図10に示される積算スペクトルは、図9に示される波長変化の1周期分の積算スペクトルに相当する。図10において、横軸は波長λを示し、縦軸は光強度Iを示す。破線は1パルスごとのパルスレーザ光のスペクトルを示し、それぞれの中心波長はピーク波長に一致していてもよい。図9に示されるように目標長波長λLと目標短波長λSとの間で多段階に中心波長を変化させることにより、図10に示される積算スペクトルは目標長波長λLと目標短波長λSとの間でほぼ均一な光強度Iを有するフラットトップ状となり得る。
 スキャンフィールドSFのうちの任意の1箇所に照射されるパルスレーザ光の照射パルス数Nsは、波長変化の1周期分のパルス数Nの倍数であることが望ましい。これにより、スキャンフィールドSFのどの部分においても、同じ積算スペクトルを有する照射パルス数Nsのパルスレーザ光が照射されることになる。これにより、照射位置による露光結果のばらつきが少なく、高品質の電子デバイスを製造することができる。
 1.6 光近接効果補正(OPC)
  1.6.1 概要
 フォトリソグラフィにおいて、設計された目標パターンGの寸法が露光光源の波長より小さくなると、目標パターンGをそのままマスクに描画して露光しても、目標パターンGと同等のウエハパターンを得られないことがある。そこで、目標パターンGと同等のウエハパターンを得られるように、予め目標パターンGを補正して補正マスクパターンFを作成することを、光近接効果補正(optical proximity correction;OPC)と呼ぶ。
 図11は、目標パターンGをそのままマスクパターンとして用いた場合に、光近接効果によって目標パターンGと異なるウエハパターンR1が形成された例を示す。例えば、目標パターンGに含まれる角部が、ウエハパターンR1において丸まったり、目標パターンGに含まれる凸状部が、ウエハパターンR1において後退したりといった影響がみられる。
 図12は、光近接効果補正が行われた補正マスクパターンFを用いた場合に、目標パターンGに近いウエハパターンR2が形成された例を示す。補正マスクパターンFは、例えば、目標パターンGにおける凸状の角部に張り出し部を追加したり、目標パターンGにおける凹み状の角部をさらに凹ませたり、補助パターンSRAF(sub-resolution assist feature)を追加したりといった変形を含む。これにより、目標パターンGに近い形状のウエハパターンR2を得ることができる。
 光近接効果補正においては、光近接効果の補正だけでなく、レジスト膜の現像やその他の半導体プロセスにおいて生じるマスクパターンとウエハパターンの違いを一緒に補正することもできる。
 光近接効果補正としては、モデルベースOPC及びルールベースOPCの2種類が知られている。ここでは例としてモデルベースOPCについて説明する。
  1.6.2 モデルベースOPC
 モデルベースOPCにおいては、目標パターンGに含まれる特徴的な形状ごとに行う露光シミュレーションの結果と、実際の露光結果と、に基づいてモデル関数群Mを作成する。このモデル関数群Mを用いて、目標パターンGと同等のウエハパターンを得るための補正マスクパターンFを作成する。モデルベースOPCは、主に130nmより小さい線幅世代で用いられている。
 図13は、比較例におけるモデルベースOPCの概念図である。まず、目標パターンGに基づいてテストマスクパターンEを含むOPCテストマスクを作成する。OPCテストマスクを用いてOPCテストウエハを露光し、パターニングされたOPCテストウエハを計測して計測ウエハパターンDを取得する。
 テストマスクパターンEを用いた露光シミュレーションの結果と、実際の露光結果である計測ウエハパターンDと、に基づいて、露光シミュレーションの結果から実際の露光結果を予測するためのモデル関数群Mを作成する。このモデル関数群Mを用いて、目標パターンGから補正マスクパターンFを作成するためのプログラムであるOPCレシピPを作成する。目標パターンGを用いてOPCレシピPを実行することにより、補正マスクパターンFが作成される。補正マスクパターンFを用いて感光基板を露光することにより、目標パターンGに近いウエハパターンを得ることができる。
 図14は、モデルベースOPCのフローチャートである。図14に示される処理は、例えば、露光制御プロセッサ210などのプロセッサによって行われる。プロセッサは、図示しないマスク製造装置や、複数の露光装置200に接続された図示しないサーバーなどの他の装置に含まれるものでもよく、そのようなプロセッサの構成は露光制御プロセッサ210と同様でよい。計算量が膨大となる場合には、複数の露光装置200に含まれる露光制御プロセッサ210の処理能力を個々に増強するよりも、サーバーに含まれるプロセッサの処理能力を増強する方が有利である。
 S210において、プロセッサは、目標パターンGを取得する。目標パターンGは、半導体チップの設計者が設計した感光基板の目標とするウエハパターンであり、例えばGDS(Graphic Data System)又はOASIS(Open Artwork System Interchange Standard)と呼ばれるデータフォーマットで提供される。目標パターンGは、感光基板のエッチングを行う場合はエッチング後のパターンでもよく、エッチングを行わない場合は露光後に現像されたレジスト膜のパターンでもよい。
 S220において、プロセッサは、目標パターンGに基づいて露光条件を設定する。露光条件は、露光装置200の設定条件、例えば、照明光学系201(図1参照)による照明光源の形状、偏光照明の有無、及び投影光学系202の開口数を含む。また例えば、露光条件は、レジスト膜の種類、反射防止膜の有無及び種類、レジストスタック情報、レジスト膜の膜厚、レジスト膜の塗布条件、及び現像条件を含む。
 S230において、プロセッサは、目標パターンGに基づいてテストマスクパターンEを作成する。具体的には、目標パターンGに含まれる特徴的な形状を抽出し、その形状ごとに1つ又は複数の寸法条件を設定してテストマスクパターンEとする。
 テストマスクパターンEに従って、マスク製造装置によりOPCテストマスクが作成される。
 S240において、露光装置200がOPCテストマスクを介してOPCテストウエハをスキャンすることによりOPCテストウエハを露光する。OPCテストウエハは、感光基板と同じ条件でレジスト膜が塗布されたテスト露光用の基板である。OPCテストマスクは本開示における第2のテストマスクに相当し、OPCテストウエハは、本開示における第2のテストウエハに相当する。
 S242において、プロセッサは、現像装置300においてOPCテストウエハを露光後ベークし、OPCテストウエハの表面に現像液を供給するよう処理ユニット302を制御する。
 さらに、現像された感光基板の洗浄、乾燥、及び現像後ベークを行い、エッチングが行われる場合は図示しないエッチング装置がエッチングを行うことにより、OPCテストウエハをパターニングする。
 S250において、プロセッサは、図示しないCD-SEM等の計測装置によってOPCテストウエハのウエハパターンを計測し、その計測結果を示す計測ウエハパターンDを取得する。
 図15に、計測ウエハパターンDのデータ構造を示す。計測ウエハパターンDは、m個の形状1~mの各々について計測されたp個の寸法を含む。例えば、形状1については寸法D11~D1pが計測され、形状2については寸法D21~D2pが計測され、形状mについては寸法Dm1~Dmpが計測される。但し、形状1~mにおけるpの値は互いに異なっていてもよく、pの値は1でも2以上でもよい。
 OPCテストウエハに含まれる複数のスキャンフィールドSFを1つのOPCテストマスクでテスト露光した場合には、複数のスキャンフィールドSFにおける計測結果から、形状ごと及び寸法ごとの平均値を算出し、計測ウエハパターンDとする。
 図14を再び参照し、S260において、プロセッサは、テストマスクパターンE及び計測ウエハパターンDに基づいてモデル関数群Mを作成する。
 図16は、モデル関数群Mを作成する処理の詳細を示すフローチャートである。図16に示される処理は、図14のS260のサブルーチンに相当する。
 S262において、プロセッサは、テストマスクパターンEを用いて単一波長による露光シミュレーションを行う。露光シミュレーションにおいてはフーリエ(Fourier)の結像理論が用いられる。
 S264において、プロセッサは、モデル関数群Mの初期設定を行う。モデル関数群Mは、例えば、k個の関数M~Mを含む。関数M~Mの各々には複数の係数が含まれる。例えば、関数Mにはi個の係数c11~c1iが含まれ、関数Mにはi個の係数ck1~ckiが含まれる。但し、関数M~Mにおけるiの値は互いに異なっていてもよい。
 S265において、プロセッサは、モデル関数群Mに露光シミュレーション結果を適用することによりウエハパターンの予測演算を行う。予測演算は、四則演算及び畳み込み積分を含む。
 S266において、プロセッサは、予測演算の結果が計測ウエハパターンDと合致するか否かを判定する。予測演算の結果が計測ウエハパターンDと完全に一致しなくても、予め定められた条件を満たせば予測演算の結果が計測ウエハパターンDと合致すると判定することができる。予測演算の結果が計測ウエハパターンDと合致する場合(S266:YES)、プロセッサは、S265で用いられたモデル関数群Mを作成されたモデル関数群Mとして、本フローチャートの処理を終了し、図14に示される処理に戻る。予測演算の結果が計測ウエハパターンDと合致しない場合(S266:NO)、プロセッサは、S267に処理を進める。
 S267において、プロセッサは、モデル関数群Mに含まれる係数の変更やその他の修正を行うことにより、モデル関数群Mを更新する。更新されたモデル関数群Mは、例えば、k'個の関数M~Mk'を含む。関数M~Mk'の数を示すk'の値は、S265で用いられたモデル関数群Mに含まれる関数M~Mの数と異なっていてもよい。関数M~Mk'に含まれる係数c'11~c'k'iも、S265で用いられたモデル関数群Mに含まれる係数c11~ckiと異なっていてもよい。
 S267の後、プロセッサは、S265に処理を戻して、予測演算の結果が計測ウエハパターンDと合致するまでモデル関数群Mを更新する。
 図14を再び参照し、S270において、プロセッサは、モデル関数群Mに基づいてOPCレシピPを作成する。OPCレシピPは、例えば、モデル関数群Mの定義、図15に示される寸法D11~Dmpの計測ポイント及び計測方向、マスクパターンの補正ルールに関する記述を含む。
 S280において、プロセッサは、目標パターンGを用いてOPCレシピPを実行し、補正マスクパターンFを作成する。補正マスクパターンFもGDS又はOASISのデータフォーマットで提供される。
 S310において、マスク製造装置が、補正マスクパターンFに基づいてフォトマスクを作成し、本フローチャートの処理を終了する。
 1.7 比較例の課題
 図17は、複数の中心波長が含まれるパルスレーザ光で感光基板を露光する場合に発生する軸外色収差CAの概念を示す。図17に示されるように、目標長波長λLと目標短波長λSとでは投影光学系202における屈折率が異なるため、マスクステージMSに配置されたマスクのマスクパターンのうちの投影光学系202の光路軸Aに位置する部分は、ワークピーステーブルWTに配置された感光基板の深さ方向に異なる位置で結像する。これを軸上色収差という。これに対し、マスクパターンのうちの光路軸Aから離れて位置する部分は、感光基板の深さ方向だけでなく、感光基板の面方向にも異なる位置で結像する。これを軸外色収差CAという。
 図18は、感光基板に形成される光学像のコントラストが軸外色収差により低下する様子を示す。図18の横軸は光路軸Aの位置0からのX軸方向の距離を示し、縦軸は光強度Iを示す。光路軸Aの位置0においては破線で示される光強度分布を有する複数波長の光がX軸方向の同じ位置に結像するのに対し、光路軸Aから離れた位置においては、異なる波長の光がX軸方向の異なる位置に結像するため、それらの波長の光を合成した実線で示される光強度分布はX軸方向に長い分布となる。閾値Ith以上の光強度Iで感光した部分の幅をクリティカルディメンジョンとすると、光路軸Aの位置0におけるクリティカルディメンジョンCD1よりも、光路軸Aから離れた位置におけるクリティカルディメンジョンCD2が大きくなる。また光路軸Aから離れた位置では、閾値Ith近傍における光強度Iの傾斜が緩やかになる。この結果、光路軸Aから離れた位置では感光基板に形成される光学像のコントラストが低下する。
 コントラストが低下すると、露光後の現像により形成されるパターンのラインエッジラフネス(LER)が悪化することがある。
 図19は、ラインエッジラフネスを計算するための寸法の計測箇所を示す。ラインエッジラフネスは、例えば、理想的な中心線CLからエッジまでのずれの二乗平均平方根(RMS)で評価され、ばらつきが大きいほど大きな値となる。従って、ラインエッジラフネスは小さい方が望ましい。
 ラインエッジラフネスは、理想的な中心線CLからエッジまでのずれで評価する代わりに、パターンの幅で評価されてもよく、二乗平均平方根の代わりに標準偏差で評価されてもよい。パターンの幅で評価される指標をライン幅ラフネス(LWR)と呼ぶこともあるが、これを含めて本明細書ではラインエッジラフネスと総称する。
 以下に説明する実施形態は、複数波長を用いて露光する場合の倍率色収差に起因するラインエッジラフネスの悪化を抑制することに関連している。
2.露光後ベークの温度分布によるLERの制御
 2.1 動作
 図20は、第1の実施形態において感光基板上にレジストパターンを形成する処理を示すフローチャートである。図20は主に現像装置300の処理を示すが、一部に露光装置200の処理を含む。
 S1aにおいて、現像制御プロセッサ310は、露光後ベークするための温度分布を設定する。露光後ベークするための温度分布は、スキャンフィールドSFの各々においてX軸方向に温度勾配をもつ温度分布となる。S1aの処理の詳細については図22を参照しながら後述する。
 S1aの次のS3及びS4については、図2を参照しながら説明したものと同様である。
 S5aにおいて、現像制御プロセッサ310は、設定された温度分布で感光基板を露光後ベークし、感光基板の表面に現像液を供給するよう処理ユニット302を制御する。S5aの詳細については図21を参照しながら後述する。
 S5aの次のS6及びS7については、図2を参照しながら説明したものと同様である。
 2.1.1 露光後ベーク
 図21は、設定された温度分布で感光基板を露光後ベークし、現像液を供給する処理の詳細を示すフローチャートである。図21に示される処理は、図20のS5aのサブルーチンに相当し、ホットプレート全体の温度が設定されている代わりにX軸方向に温度勾配をもつ温度分布が設定されている点の他は、図3を参照しながら説明したものと同様である。
 2.1.2 温度分布の設定
 図22は、露光後ベークするための温度分布を設定する処理の詳細を示すフローチャートである。図22に示される処理は、図20のS1aのサブルーチンに相当する。露光後ベークするための温度分布は、マスクパターン、レジストの種類、露光条件等の組み合わせに応じて予め設定され、S5aにおいて必要な設定データが読み出されるようにしてもよい。
 現像制御プロセッサ310が温度分布を設定する前に、露光制御プロセッサ210が、S11において、PEBテストマスクを介して複数の中心波長が含まれるパルスレーザ光でimax枚のPEBテストウエハを露光するよう、露光装置200の各部を制御する。PEBテストマスクは、露光後ベークするための温度分布を設定するために特別に設計されたものでもよいし、図20のS4で用いられるフォトマスクと同様のものでもよい。imax枚のPEBテストウエハの各々は、図20のS4で用いられる感光基板と同様のものであり、露光装置200によって複数のスキャンフィールドSFの各々がY軸方向にスキャンされる。imax枚は例えば3枚以上10枚以下の範囲内でよい。PEBテストマスクは本開示における第1のテストマスクに相当し、PEBテストウエハは本開示における第1のテストウエハに相当する。
 S12において、現像制御プロセッサ310は、imax枚のPEBテストウエハをそれぞれ露光後ベークし、PEBテストウエハの表面に現像液を供給するよう処理ユニット302を制御する。S12の詳細については図23を参照しながら後述する。
 S13において、現像制御プロセッサ310は、現像されたimax枚のPEBテストウエハのウエハパターンを計測するよう計測ユニット303を制御する。S13の詳細については図25を参照しながら後述する。
 S15において、現像制御プロセッサ310は、計測結果に基づいて温度分布を設定する。S15の詳細については図28を参照しながら後述する。
 S15の後、現像制御プロセッサ310は本フローチャートの処理を終了し、図20に示される処理に戻る。
 図23は、imax枚のPEBテストウエハをそれぞれ露光後ベークし、現像液を供給する処理の詳細を示すフローチャートである。図23に示される処理は、図22のS12のサブルーチンに相当する。
 S121において、現像制御プロセッサ310は、imax枚のPEBテストウエハをカウントするためのカウンタiを1にセットする。imax枚のPEBテストウエハは別々の温度T1~Timaxで加熱される。i番目のPEBテストウエハWFiを加熱するためのホットプレートの温度を、i番目の温度Tiとする。温度T1~Timaxは、ノミナル温度Tnomを中心として、所定温度間隔で設定される温度である。ノミナル温度Tnomは、倍率色収差を考慮せずに導かれる露光後ベークの最適温度であり、本開示における基準温度に相当する。所定温度間隔は、例えば2℃以上10℃以下である。
 S122において、現像制御プロセッサ310は、ホットプレートの温度をi番目の温度Tiに設定する。
 S123において、現像制御プロセッサ310は、ホットプレートを温度Tiの均一な温度分布に制御し、i番目のPEBテストウエハWFiを所定時間加熱するよう処理ユニット320を制御する。
 S124において、現像制御プロセッサ310は、i番目のPEBテストウエハWFiの表面に現像液を供給するよう処理ユニット320を制御する。
 S125において、現像制御プロセッサ310は、カウンタiの値がimaxに達したか否かを判定する。カウンタiの値がimaxに達していない場合(S125:NO)、現像制御プロセッサ310は、S126においてカウンタiの値に1を加算し、S122に処理を戻す。これにより次のPEBテストウエハが別の温度Tiで露光後ベークされ、現像される。
 カウンタiの値がimaxに達した場合(S125:YES)、現像制御プロセッサ310は本フローチャートの処理を終了し、図22に示される処理に戻る。
 図24は、PEBテストウエハWF1~WF4と、PEBテストウエハWF1~WF4を露光後ベークするために設定される温度Tiと、を示す。温度Tiとしては1枚のPEBテストウエハWFiについて1つの値のみ設定される。
 図25は、現像されたimax枚のPEBテストウエハのウエハパターンを計測する処理の詳細を示すフローチャートである。図25に示される処理は、図22のS13のサブルーチンに相当する。
 S131において、現像制御プロセッサ310は、imax枚のPEBテストウエハをカウントするためのカウンタiを1にセットする。
 S132において、現像制御プロセッサ310は、計測ユニット303にi番目のPEBテストウエハWFiをセットするようウエハ移動ユニット301を制御する。
 S133において、現像制御プロセッサ310は、スキャンフィールドSFをカウントするためのカウンタkを1にセットする。
 S134において、現像制御プロセッサ310は、i番目のPEBテストウエハWFiのk番目のスキャンフィールドSFkのX軸方向中心部のラインエッジラフネスLERcik及びクリティカルディメンジョンCDcikを計測するよう計測ユニット303を制御する。
 S135において、現像制御プロセッサ310は、i番目のPEBテストウエハWFiのk番目のスキャンフィールドSFkのX軸方向端部のラインエッジラフネスLERpik及びクリティカルディメンジョンCDpikを計測するよう計測ユニット303を制御する。スキャンフィールドSFkのX軸方向端部の位置は本開示における第1の位置に相当する。
 S136において、現像制御プロセッサ310は、カウンタkの値がkmaxに達したか否かを判定する。カウンタkの値がkmaxに達していない場合(S136:NO)、現像制御プロセッサ310は、S137においてカウンタkの値に1を加算し、S134に処理を戻す。カウンタkの値がkmaxに達した場合(S136:YES)、現像制御プロセッサ310はS138に処理を進める。
 S138において、現像制御プロセッサ310は、PEBテストウエハWFiごと及びスキャンフィールド内の位置ごとに計測結果の平均値LERci、CDci、LERpi、及びCDpiを以下の式により算出して記憶する。
 LERci=Avg(LERcik)
 CDci=Avg(CDcik)
 LERpi=Avg(LERpik)
 CDpi=Avg(CDpik)
ここで、Avg(Xik)はkmax個のXikの値の平均値である。
 S139において、現像制御プロセッサ310は、カウンタiの値がimaxに達したか否かを判定する。カウンタiの値がimaxに達していない場合(S139:NO)、現像制御プロセッサ310は、S140においてカウンタiの値に1を加算し、S132に処理を戻す。カウンタiの値がimaxに達した場合(S139:YES)、現像制御プロセッサ310はS141に処理を進める。
 S141において、現像制御プロセッサ310は、imax枚のPEBテストウエハのうちのノミナル温度Tnomで露光後ベークされたPEBテストウエハに含まれるスキャンフィールドSFのX軸方向中心部のラインエッジラフネスLERcikの平均値LERciを基準LERcとして特定する。
 S141の後、現像制御プロセッサ310は本フローチャートの処理を終了し、図22に示される処理に戻る。
 図26は、k番目のスキャンフィールドSFkのうちのラインエッジラフネスLERcik及びLERpik、及びクリティカルディメンジョンCDcik及びCDpikが計測される領域を概念的に示す。k番目のスキャンフィールドSFkのX軸方向中心部の計測結果から、ラインエッジラフネスLERcik及びクリティカルディメンジョンCDcikが得られ、k番目のスキャンフィールドSFkのX軸方向端部の計測結果から、ラインエッジラフネスLERpik及びクリティカルディメンジョンCDpikが得られる。
 図27は、平均値LERci、CDci、LERpi、及びCDpiをまとめた表を示す。PEBテストウエハWFiごとに温度Tiが設定される。温度Tiはノミナル温度Tnomを含むものとする。PEBテストウエハWFiごと及びスキャンフィールド内の位置ごとに計測結果の平均値LERci、CDci、LERpi、及びCDpiが算出される。
 図28は、計測結果に基づいて温度分布を設定する処理の詳細を示すフローチャートである。図28に示される処理は、図22のS15のサブルーチンに相当する。
 S151において、現像制御プロセッサ310は、imax枚のPEBテストウエハをカウントするためのカウンタiを1にセットする。
 S152において、現像制御プロセッサ310は、i番目のPEBテストウエハWFiのX軸方向端部のラインエッジラフネスLERpikの平均値LERpiが許容範囲内か否かを判定する。平均値LERpiと基準LERcとの差が閾値以下である場合に、平均値LERpiが許容範囲内であると判定される。
 S153において、現像制御プロセッサ310は、i番目のPEBテストウエハWFiのX軸方向端部のクリティカルディメンジョンCDpikの平均値CDpiが許容範囲内か否かを判定する。
 平均値LERpi及び平均値CDpiのうちのいずれかが許容範囲内でない場合(S152又はS153:NO)、現像制御プロセッサ310は、S154においてカウンタiの値に1を加算し、S152に処理を戻す。
 平均値LERpi及び平均値CDpiの両方が許容範囲内である場合(S152及びS153:YES)、現像制御プロセッサ310は、S155に処理を進める。
 S155において、現像制御プロセッサ310は、すべてのスキャンフィールドSFのX軸方向中心部の温度Tcをノミナル温度Tnomに設定する。
 S156において、現像制御プロセッサ310は、すべてのスキャンフィールドSFのX軸方向端部の温度Tpを温度Tiに設定する。
 S156の後、現像制御プロセッサ310は本フローチャートの処理を終了し、図22に示される処理に戻る。
 図27に示される例において、ノミナル温度Tnomが温度T4である場合には基準LERcは平均値LERc4となる。平均値LERc4と平均値LERp2との差が閾値以下であって、且つ、平均値CDp2が許容範囲内であれば、平均値LERpi及び平均値CDpiの両方が許容範囲内であると判定され、X軸方向端部の温度Tpは温度T2に設定される。
 図29は、第1の実施形態において設定されるX軸方向の温度分布の例を示す。図29の横軸はスキャンフィールドSF内におけるX軸方向の位置を示し、縦軸は温度を示す。X軸方向中心部cにおいては温度Tcが設定され、X軸方向端部pにおいては温度Tpが設定され、X軸方向中心部cとX軸方向端部pとの間はなだらかな温度勾配となるようにX軸方向の温度分布が設定される。
 露光後ベークの温度条件により、触媒となる酸の拡散長が変わり、また酸を触媒とした化学反応の速度も変わる。平均値LERpi及び平均値CDpiが許容範囲内となる温度条件を設定することで、ラインエッジラフネスを調整し、感光基板に形成されるパターンの品質を向上することができる。
 ここでは温度Tcが温度Tpより高い場合が示されているが、図28の処理によって最適温度を設定した結果、温度Tcが温度Tpより低い場合があってもよい。
 図30は、第1の実施形態において設定されるY軸方向の温度分布の例を示す。図30の横軸はスキャンフィールドSF内におけるY軸方向の位置を示し、縦軸は温度を示す。X軸方向中心部cにおいてはY軸方向の位置に関わらず一定の温度Tcが設定され、X軸方向端部pにおいてはY軸方向の位置に関わらず一定の温度Tpが設定される。なお、Y軸方向の位置に関わらず温度が一定であるとは、感光基板のY軸方向の温度分布が均一である場合に限らず、目標温度が均一である場合を含む。
 図29及び図30に示されるように、スキャンフィールドSFの各々における温度分布は、Y軸方向の温度勾配がX軸方向の温度勾配より小さい温度分布となる。
 図31は、第1の実施形態において設定される温度分布の第1の例を示す。第1の例においては複数のスキャンフィールドSFが長方形グリッド状に配置されている。すなわち、スキャンフィールドSFの角部においてスキャンフィールドSFの境界線が十字状に交差する。長方形グリッドは正方形グリッドを含む。スキャンフィールドSFの各々において、X軸方向中心部の温度TcとX軸方向端部の温度Tpとが設定され、X軸方向中心部とX軸方向端部との間はなだらかな温度勾配とされる。
 図32は、第1の実施形態において設定される温度分布の第2の例を示す。第2の例においては複数のスキャンフィールドSFが1列ごとにX軸方向にずらして配置されている。スキャンフィールドSFの各々において、X軸方向中心部の温度TcとX軸方向端部の温度Tpとが設定され、X軸方向中心部とX軸方向端部との間はなだらかな温度勾配とされる。第2の例においては、Y軸方向に隣り合うスキャンフィールドSFとの境界における温度勾配が大きくなる。
 図31及び図32のいずれにおいても、複数のスキャンフィールドSFにおける温度分布は互いに等しい。
 図31及び図32のいずれの温度分布を設定する場合でも、現像制御プロセッサ310は感光基板上のスキャンフィールドSFの配置データを別途取得し、スキャンフィールドSFの配置データに適合するように温度分布を設定してもよい。
 また、X軸方向の温度分布がY軸方向に平行な直線を軸として左右対称とされる場合が示されているが、左右対称でなくてもよい。例えば、+X方向の端部と-X方向の端部とで温度Tpを別々に設定してもよい。
 2.2 作用
 (1)第1の実施形態による感光基板の現像方法は、以下のことを含む。
 フォトマスクを介して複数の中心波長が含まれるパルスレーザ光で感光基板に含まれる複数のスキャンフィールドSFの各々をY軸方向にスキャンして露光された感光基板を、複数のスキャンフィールドSFの各々において感光基板の面上でY軸方向と交差するX軸方向に温度勾配をもつ温度分布となるように加熱する。
 感光基板を加熱した後、感光基板の表面に現像液を供給して現像を行う。
 これによれば、複数波長を用いて露光する場合に倍率色収差が発生しても、露光後ベークの温度分布にX軸方向の温度勾配を持たせることで、ラインエッジラフネスを調整し、感光基板に形成されるパターンの品質を向上し得る。
 (2)第1の実施形態においては、感光基板を、複数のスキャンフィールドSFの各々においてY軸方向の温度勾配がX軸方向の温度勾配より小さい温度分布となるように加熱する。
 ワークピーステーブルWT(図1参照)の位置におけるパルスレーザ光のビーム断面Bの形状はX軸方向に長いため、倍率色収差はY軸方向よりもX軸方向に大きく発生する。X軸方向の温度勾配を大きくして、X軸方向の位置に応じた温度分布で露光後ベークを行うことで、ラインエッジラフネスを適切に調整し得る。
 (3)第1の実施形態においては、感光基板を、複数のスキャンフィールドSFの各々においてY軸方向に均一な温度分布となるように加熱する。
 Y軸方向の倍率色収差は大きくなく、また収差があってもY軸方向にスキャンしながら1箇所に複数回照射されることによってスキャン平均化されるため、Y軸方向に均一な温度分布で露光後ベークを行うことで、ラインエッジラフネスを適切に調整し得る。
 (4)第1の実施形態においては、感光基板を、複数のスキャンフィールドSFの各々においてY軸方向に平行な直線を軸として対称な温度分布となるように加熱する。
 倍率色収差はY軸方向に平行な直線を軸として対称に発生し得るため、対称な温度分布で露光後ベークを行うことでラインエッジラフネスを適切に調整し得る。
 (5)第1の実施形態によれば、複数のスキャンフィールドSFにおいて、温度分布が互いに等しい。
 これによれば、複数のスキャンフィールドSFの露光条件が同じである場合にラインエッジラフネスを適切に調整し得る。
 (6)第1の実施形態においては、複数のスキャンフィールドSFが長方形グリッド状に配置されている。
 これによれば、Y軸方向に隣接するスキャンフィールドSFとの境界における温度勾配を緩やかにして、適切な温度分布で露光後ベークを行うことができる。
 (7)第1の実施形態においては、感光基板を、X軸方向に温度勾配をもつように設定されたホットプレートによって加熱する。
 これによれば、ホットプレートの温度勾配を設定することで、露光後ベークの温度分布を適切に制御することができる。
 (8)第1の実施形態による感光基板の現像方法は、以下のことをさらに含む。
 PEBテストマスクを介して複数の中心波長が含まれるパルスレーザ光でPEBテストウエハWFiに含まれる複数のスキャンフィールドSFの各々をY軸方向にスキャンすることにより露光されたPEBテストウエハWFiを加熱する。
 PEBテストウエハWFiを加熱した後、PEBテストウエハWFiの表面に現像液を供給して現像を行う。
 PEBテストウエハWFiを現像した後、PEBテストウエハWFiのウエハパターンを計測する。
 PEBテストウエハWFiのウエハパターンの計測結果に基づいて温度分布を設定する。
 これによれば、ウエハパターンの計測結果を用いることで、温度分布の設定を適切に行うことができる。
 (9)第1の実施形態においては、PEBテストウエハWFiを含む複数のPEBテストウエハを互いに異なる温度Tiで加熱する。
 これによれば、異なる温度Tiによる露光後ベークの結果を用いることで、適切な温度を設定することができる。
 (10)第1の実施形態においては、複数のPEBテストウエハの各々を均一な温度分布となるように加熱する。
 これによれば、PEBテストウエハWFiの露光後ベークにおいて正確な温度制御ができるので、露光後ベークの温度とウエハパターンの計測結果との関係を示すデータがより正確になり、温度分布の設定を適切に行うことができる。
 (11)第1の実施形態においては、PEBテストウエハWFiのウエハパターンの計測結果の平均値LERci、CDci、LERpi、及びCDpiを、温度Tiごと、及びスキャンフィールドSFの各々におけるX軸方向の位置ごとに算出し、平均値LERci、CDci、LERpi、及びCDpiに基づいてX軸方向における温度分布を設定する。
 これによれば、計測結果にわずかなばらつきがあっても、平均値LERci、CDci、LERpi、又はCDpiを用いることで、正確な計測データを得ることができる。
 (12)第1の実施形態においては、PEBテストウエハWFiのウエハパターンの計測結果がスキャンフィールドSFの各々におけるX軸方向中心部から離れたX軸方向端部の位置において許容範囲内となる温度を特定し、特定された温度に基づいて温度分布を設定する。
 これによれば、スキャンフィールドSFにおけるX軸方向の位置に応じて適切な温度分布を設定できる。
 (13)第1の実施形態においては、PEBテストウエハWFiのウエハパターンの計測結果はX軸方向端部の位置におけるラインエッジラフネスの平均値LERpiを含み、平均値LERpiが許容範囲内となるように温度分布を特定する。
 これによれば、ラインエッジラフネスを実際に計測したうえで露光後ベークの温度分布を設定するので、ラインエッジラフネスを精度よく改善することができる。
 (14)第1の実施形態においては、PEBテストウエハWFiをノミナル温度Tnomで加熱して現像した場合のX軸方向中心部における基準LERcと、X軸方向端部の位置におけるラインエッジラフネスの平均値LERpiと、の差が閾値以下である場合に、X軸方向端部の位置における平均値LERpiを許容範囲内とする。
 これによれば、基準LERcとの差を判定することで、X軸方向端部のラインエッジラフネスをX軸方向中心部のものに近づけることができる。
 (15)第1の実施形態においては、PEBテストウエハWFiのウエハパターンの計測結果はX軸方向端部の位置におけるクリティカルディメンジョンの平均値CDpiをさらに含み、X軸方向端部の位置におけるラインエッジラフネスの平均値LERpiとクリティカルディメンジョンの平均値CDpiとの両方が許容範囲内となるように温度分布を特定する。
 これによれば、ラインエッジラフネスとクリティカルディメンジョンとの両方を改善することができる。
 その他の点については、第1の実施形態は比較例と同様である。
3.露光後ベークの温度分布とOPCとの組み合わせ
 3.1 動作
 図33は、第2の実施形態において感光基板上にレジストパターンを形成する処理を示すフローチャートである。図33は主に現像装置300の処理を示すが、一部に露光装置200の処理を含む。
 S1aにおいて温度分布を設定する処理は、図20及び図22を参照しながら説明した第1の実施形態の処理と同様である。但し、第2の実施形態は以下の点で第1の実施形態と異なる。
(a)第1の実施形態においては、図22のS13及び図25のS134、S135、及びS138において、ウエハパターンとしてクリティカルディメンジョンCDcik及びCDpikを計測し、それらの平均値CDci及びCDpiを算出するのに対し、第2の実施形態においては、クリティカルディメンジョンCDcik及びCDpikは計測せず平均値CDci及びCDpiも算出しない。
(b)第1の実施形態においては、図22のS15及び図28のS153において、クリティカルディメンジョンの平均値CDpiが許容範囲内か否かを判定するのに対し、第2の実施形態においては、クリティカルディメンジョンの平均値CDpiが許容範囲内か否かを判定しない。
 第2の実施形態におけるS13及びS15の処理の詳細をそれぞれ図34及び図35に示す。図34は第1の実施形態における図25に対応し、図35は第1の実施形態における図28に対応する。
 図34に示されるように、現像制御プロセッサ310は、S134b及びS135bにおいてラインエッジラフネスLERcik及びLERpikのみ計測し、S138bにおいて平均値LERci及びLERpiを算出する。
 図35に示されるように、現像制御プロセッサ310は、S152においてラインエッジラフネスの平均値LERpiが許容範囲内か否かを判定する。
 図33を再び参照し、S2bにおいて、OPCによるフォトマスクの作成が行われる。OPCが行われることでクリティカルディメンジョンを許容範囲内とすることができる。S2bの詳細については図36~図41を参照しながら後述する。
 S3からS7までの処理は、第1の実施形態と同様である。
 図36は、第2の実施形態における分割モデルベースOPCの概念図である。分割モデルベースOPCは、目標パターンG、テストマスクパターンE、計測ウエハパターンD、モデル関数群M、OPCレシピP、及び補正マスクパターンFの各々が複数の分割領域#1~#nの各々について作成され、分割領域#1~#nの各々についてモデルベースOPCが行われる点で、比較例におけるモデルベースOPCと異なる。
 図37に、OPCテストウエハのスキャンフィールドSFに含まれる複数の分割領域#1~#nを示す。nは2以上の整数であり、OPCテストウエハの面上でX軸方向に、複数の分割領域#1、#2、...、及び#nがこの順で並んでいる。分割領域#1~#nのX軸方向の幅は互いに等しいことが望ましい。分割領域#1~#nの数、すなわちnの値は、3以上、15以下が望ましい。
 図36を再び参照し、OPCテストウエハのスキャンフィールドSFから得られる計測ウエハパターンDは、分割領域#1~#nに対応して計測ウエハパターンD#1~D#nに区分される。
 OPCテストウエハに含まれる1つのスキャンフィールドSFは、1枚のOPCテストマスクに形成されたテストマスクパターンEが1回のスキャンで転写される領域に相当し、OPCテストマスクと対応関係にある。テストマスクパターンEも、分割領域#1~#nに対応してテストマスクパターンE#1~E#nに区分される。
 OPCテストウエハに含まれる1つのスキャンフィールドSFは、感光基板に含まれる1つのスキャンフィールドSFと対応関係にある。感光基板に形成しようとする目標パターンGも、分割領域#1~#nに対応して目標パターンG#1~G#nに区分される。
 感光基板に含まれる1つのスキャンフィールドSFは、1枚のフォトマスクの補正マスクパターンFが1回のスキャンで転写される領域に相当し、フォトマスクと対応関係にある。補正マスクパターンFも、分割領域#1~#nに対応して補正マスクパターンF#1~F#nに区分される。
 分割モデルベースOPCにおいては、分割領域#1~#nに対応するモデル関数群M#1~M#nが作成され、分割領域#1~#nに対応するOPCレシピP#1~P#nが作成される。
 図38は、分割モデルベースOPCのフローチャートである。図38に示される処理は、主に、露光制御プロセッサ210などのプロセッサによって行われる。
 S210aにおいて、プロセッサは、目標パターンG#1~G#nを取得する。例えば、半導体チップの設計者が設計した目標パターンGを分割領域#1~#nに分割することにより、目標パターンG#1~G#nを取得する。
 S220の処理は、図14を参照しながら説明したモデルベースOPCにおける処理と同様である。
 S230aにおいて、プロセッサは、目標パターンG#1~G#nに基づいてテストマスクパターンE#1~E#nを作成する。例えば、目標パターンG#1に含まれる特徴的な形状に基づいてテストマスクパターンE#1を作成し、目標パターンG#2に含まれる特徴的な形状に基づいてテストマスクパターンE#2を作成し、というように、分割領域#1~#nによって異なるテストマスクパターンE#1~E#nを作成してもよい。あるいは、目標パターンG#1~G#nに含まれる特徴的な形状に基づいて、共通のテストマスクパターン、すなわち互いに同一のパターン形状を含むテストマスクパターンE#1~E#nを作成してもよい。
 テストマスクパターンE#1~E#nに従って、マスク製造装置によりOPCテストマスクが作成される。
 S240aにおいて、露光装置200がOPCテストマスクを介してOPCテストウエハをスキャンすることによりOPCテストウエハを露光する。OPCテストウエハの露光は、感光基板の露光に用いられる複数波長の光によって行われる。
 S242aにおいて、プロセッサは、図33のS1aで設定された温度分布でOPCテストウエハを露光後ベークし、OPCテストウエハの表面に現像液を供給するよう処理ユニット302を制御する。
 さらに、現像された感光基板の洗浄、乾燥、及び現像後ベークを行い、エッチングが行われる場合は図示しないエッチング装置がエッチングを行うことにより、OPCテストウエハをパターニングする。
 S250aにおいて、プロセッサは、OPCテストウエハのウエハパターンを計測し、複数の分割領域#1~#nにおける計測結果を示す計測ウエハパターンD#1~D#nを取得する。
 図39に、計測ウエハパターンD#1~D#nのデータ構造を示す。計測ウエハパターンD#1~D#nの各々が、m個の形状1~mの各々について計測されたp個の寸法を含む。
 OPCテストウエハに含まれる複数のスキャンフィールドSFを1つのOPCテストマスクでテスト露光した場合には、複数のスキャンフィールドSFにおける計測結果から、分割領域ごと、形状ごと、及び寸法ごとの平均値を算出し、計測ウエハパターンD#1~D#nとする。
 図38を再び参照し、S260aにおいて、プロセッサは、テストマスクパターンE#1~E#n及び計測ウエハパターンD#1~D#nに基づいてモデル関数群M#1~M#nを作成する。例えば、テストマスクパターンE#1及び計測ウエハパターンD#1に基づいてモデル関数群M#1を作成し、テストマスクパターンE#2及び計測ウエハパターンD#2に基づいてモデル関数群M#2を作成する。
 図40は、モデル関数群M#1~M#nを作成する処理の詳細を示すフローチャートである。図40に示される処理は、図38のS260aのサブルーチンに相当する。
 S262aにおいて、プロセッサは、テストマスクパターンE#1~E#nを用いて露光シミュレーションを行う。露光シミュレーションはOPCテストウエハをスキャンした複数の中心波長を含むパルスレーザ光よりも中心波長の数が少ない光により行ってもよい。露光シミュレーションは単一波長で行うのが望ましい。
 S263aにおいて、カウンタjの値を初期値1にセットする。カウンタjは、モデル関数群M#1~M#nの1つを特定するとともに、テストマスクパターンE#1~E#nの1つ及び計測ウエハパターンD#1~D#nの1つを特定する。
 S264a~S267aの処理は、図16を参照しながら説明したS264~S267の処理と同様である。但し、カウンタjによって特定されるテストマスクパターンE#1~E#nの1つを用いた露光シミュレーション結果と、カウンタjによって特定される計測ウエハパターンD#1~D#nの1つと、を用いて、カウンタjによって特定されるモデル関数群M#1~M#nの1つが作成される。S266aの判定がYESとなってモデル関数群M#1~M#nの1つが作成されると、プロセッサは、S268aに処理を進める。
 S268aにおいて、プロセッサは、カウンタjの値がn以上であるか否かを判定する。カウンタjの値がn未満である場合(S268a:NO)、プロセッサは、S269aにおいてカウンタjの値に1を加算し、S264aに処理を戻して別の分割領域のモデル関数群M#jを設定する。カウンタjの値がn以上である場合、プロセッサは本フローチャートの処理を終了し、図38に示される処理に戻る。
 図41に、モデル関数群M#1~M#nの例を示す。モデル関数群M#1~M#nの1つをjで特定したとき、1つのモデル関数群M#jは、k個の関数M#j~M#jを含む。関数M#j~M#jの数、すなわちkの値は、モデル関数群M#1~M#nにおいて互いに異なっていてもよい。
 図38を再び参照し、S270aにおいて、プロセッサは、モデル関数群M#1~M#nに基づいてそれぞれOPCレシピP#1~P#nを作成する。
 S280aにおいて、プロセッサは、目標パターンG#1~G#nを用いてそれぞれOPCレシピP#1~P#nを実行し、それぞれ補正マスクパターンF#1~F#nを作成する。これにより、例えば、目標パターンG#1及びモデル関数群M#1に基づいて補正マスクパターンF#1が作成され、目標パターンG#2及びモデル関数群M#2に基づいて補正マスクパターンF#2が作成される。
 S310aにおいて、マスク製造装置が、補正マスクパターンF#1~F#nに基づいてフォトマスクを作成し、本フローチャートの処理を終了する。
 3.2 作用
 (16)第2の実施形態によるフォトマスクの作成方法は、複数の中心波長が含まれるパルスレーザ光を用いたフォトリソグラフィに使用されるフォトマスクの作成方法であって、以下のことを含む。
 OPCテストマスクを介してパルスレーザ光でOPCテストウエハをY軸方向にスキャンして露光され、OPCテストウエハに含まれる複数のスキャンフィールドSFの各々においてOPCテストウエハの面上でY軸方向と交差するX軸方向に温度勾配をもつ温度分布となるように加熱されたOPCテストウエハの表面に現像液を供給して現像されたOPCテストウエハのウエハパターンを計測し、X軸方向に並ぶ複数の分割領域#1~#nの各々における計測結果を示す計測ウエハパターンD#1~D#nを取得する。
 OPCテストマスクに形成されたテストマスクパターンE#1~E#nと、計測ウエハパターンD#1~D#nと、感光基板の目標とするウエハパターンである目標パターンG#1~G#nと、に基づいて、フォトマスクを作成するための補正マスクパターンF#1~F#nを作成する。
 補正マスクパターンF#1~F#nに基づいてフォトマスクを作成する。
 これによれば、分割領域#1~#nの各々における計測結果を用いることで、軸外色収差を考慮したOPCを実行して補正マスクパターンF#1~F#nを作成できる。
 第1の実施形態においてはラインエッジラフネスとクリティカルディメンジョンとの両方が許容範囲内となるように露光後ベークの温度分布を設定しているが、ラインエッジラフネスとクリティカルディメンジョンとの両方が許容範囲内となる解が得られないこともあり得る。第2の実施形態によれば、露光後ベークの温度分布によってラインエッジラフネスを調整する一方で、分割領域#1~#nごとのOPCによってクリティカルディメンジョンを調整することができる。
 (17)第2の実施形態によるフォトマスクの作成方法は、以下のことをさらに含む。
 PEBテストマスクを介して複数の中心波長が含まれるパルスレーザ光でPEBテストウエハWFiに含まれる複数のスキャンフィールドSFの各々をY軸方向にスキャンすることにより露光されたPEBテストウエハWFiを加熱する。
 PEBテストウエハWFiを加熱した後、PEBテストウエハWFiの表面に現像液を供給して現像を行う。
 PEBテストウエハWFiを現像した後、PEBテストウエハWFiのウエハパターンを計測する。
 PEBテストウエハWFiのウエハパターンの計測結果に基づいて温度分布を設定する。
 これによれば、OPCテストウエハを露光後ベークするための温度分布をPEBテストウエハWFiのウエハパターンの計測結果に基づいて設定できるので、OPCテストウエハを精度よく作成できる。
 (18)第2の実施形態においては、スキャンフィールドSFの各々におけるX軸方向中心部から離れたX軸方向端部の位置におけるラインエッジラフネスの平均値LERpiが許容範囲内となるように温度分布を特定し、X軸方向端部の位置におけるクリティカルディメンジョンが許容範囲内となるように補正マスクパターンF#1~F#nを作成する。
 これによれば、X軸方向端部の位置におけるラインエッジラフネス及びクリティカルディメンジョンの両方を改善できる。
 (19)第2の実施形態による感光基板の現像方法は、以下のことを含む。
 軸外色収差を考慮したOPCを含む上記の作成方法によりフォトマスクを作成する。
 フォトマスクを介して複数の中心波長が含まれるパルスレーザ光で感光基板をY軸方向にスキャンして露光された感光基板を、設定された温度分布となるように加熱する。
 感光基板を加熱した後、感光基板の表面に現像液を供給して現像を行う。
 これによれば、感光基板上のパターンを高精度に形成することができる。
 第2の実施形態においては分割領域#1~#nごとにモデルベースOPCを実行する場合について説明したが、本開示はこれに限定されず、例えば分割領域#1~#nごとにルールベースOPCを実行するようにしてもよい。
 その他の点については、第2の実施形態は第1の実施形態と同様である。
4.その他
 上記の説明は、制限ではなく単なる例示を意図している。従って、特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかである。また、本開示の実施形態を組み合わせて使用することも当業者には明らかである。
 本明細書及び特許請求の範囲全体で使用される用語は、明記が無い限り「限定的でない」用語と解釈されるべきである。たとえば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、不定冠詞「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。また、「A、B及びCの少なくとも1つ」という用語は、「A」「B」「C」「A+B」「A+C」「B+C」又は「A+B+C」と解釈されるべきである。さらに、それらと「A」「B」「C」以外のものとの組み合わせも含むと解釈されるべきである。

Claims (20)

  1.  フォトマスクを介して複数の中心波長が含まれるパルスレーザ光で感光基板に含まれる複数のスキャンフィールドの各々を第1の方向にスキャンして露光された前記感光基板を、前記複数のスキャンフィールドの各々において前記感光基板の面上で前記第1の方向と交差する第2の方向に温度勾配をもつ温度分布となるように加熱することと、
     前記感光基板を加熱した後、前記感光基板の表面に現像液を供給して現像を行うことと、
    を含む、感光基板の現像方法。
  2.  請求項1に記載の現像方法であって、
     前記感光基板を、前記複数のスキャンフィールドの各々において前記第1の方向の温度勾配が前記第2の方向の温度勾配より小さい前記温度分布となるように加熱する、
    現像方法。
  3.  請求項1に記載の現像方法であって、
     前記感光基板を、前記複数のスキャンフィールドの各々において前記第1の方向に均一な前記温度分布となるように加熱する、
    現像方法。
  4.  請求項1に記載の現像方法であって、
     前記感光基板を、前記複数のスキャンフィールドの各々において前記第1の方向に平行な直線を軸として対称な前記温度分布となるように加熱する、
    現像方法。
  5.  請求項1に記載の現像方法であって、
     前記複数のスキャンフィールドにおいて、前記温度分布が互いに等しい、
    現像方法。
  6.  請求項1に記載の現像方法であって、
     前記複数のスキャンフィールドが長方形グリッド状に配置された、
    現像方法。
  7.  請求項1に記載の現像方法であって、
     前記感光基板を、前記第2の方向に温度勾配をもつように設定されたホットプレートによって加熱する、
    現像方法。
  8.  請求項1に記載の現像方法であって、
     第1のテストマスクを介して前記複数の中心波長が含まれるパルスレーザ光で第1のテストウエハに含まれる複数のスキャンフィールドの各々を前記第1の方向にスキャンすることにより露光された前記第1のテストウエハを加熱することと、
     前記第1のテストウエハを加熱した後、前記第1のテストウエハの表面に現像液を供給して現像を行うことと、
     前記第1のテストウエハを現像した後、前記第1のテストウエハのウエハパターンを計測することと、
     前記第1のテストウエハのウエハパターンの計測結果に基づいて前記温度分布を設定することと、
    をさらに含む、現像方法。
  9.  請求項8に記載の現像方法であって、
     前記第1のテストウエハを含む複数の第1のテストウエハを互いに異なる温度で加熱する、
    現像方法。
  10.  請求項9に記載の現像方法であって、
     前記複数の第1のテストウエハの各々を均一な温度分布となるように加熱する、
    現像方法。
  11.  請求項9に記載の現像方法であって、
     前記第1のテストウエハのウエハパターンの計測結果の平均値を、前記温度ごと、及び前記スキャンフィールドの各々における前記第2の方向の位置ごとに算出し、前記平均値に基づいて前記第2の方向における前記温度分布を設定する、
    現像方法。
  12.  請求項11に記載の現像方法であって、
     前記第1のテストウエハのウエハパターンの計測結果が前記スキャンフィールドの各々における前記第2の方向の中心部から離れた第1の位置において許容範囲内となる前記温度を特定し、特定された前記温度に基づいて前記温度分布を設定する、
    現像方法。
  13.  請求項12に記載の現像方法であって、
     前記第1のテストウエハのウエハパターンの計測結果は前記第1の位置におけるラインエッジラフネスを含み、前記第1の位置におけるラインエッジラフネスが許容範囲内となるように前記温度分布を特定する、
    現像方法。
  14.  請求項13に記載の現像方法であって、
     前記第1のテストウエハを基準温度で加熱して現像した場合の前記第2の方向の中心部におけるラインエッジラフネスと、前記第1の位置におけるラインエッジラフネスと、の差が閾値以下である場合に、前記第1の位置におけるラインエッジラフネスを許容範囲内とする、
    現像方法。
  15.  請求項13に記載の現像方法であって、
     前記第1のテストウエハのウエハパターンの計測結果は前記第1の位置におけるクリティカルディメンジョンをさらに含み、前記第1の位置におけるラインエッジラフネスと前記クリティカルディメンジョンとの両方が許容範囲内となるように前記温度分布を特定する、
    現像方法。
  16.  複数の中心波長が含まれるパルスレーザ光を用いたフォトリソグラフィに使用されるフォトマスクの作成方法であって、
     第2のテストマスクを介してパルスレーザ光で第2のテストウエハを第1の方向にスキャンして露光され、前記第2のテストウエハに含まれる複数のスキャンフィールドの各々において前記第2のテストウエハの面上で前記第1の方向と交差する第2の方向に温度勾配をもつ温度分布となるように加熱された前記第2のテストウエハの表面に現像液を供給して現像された前記第2のテストウエハのウエハパターンを計測し、前記第2の方向に並ぶ複数の分割領域の各々における計測結果を示す計測ウエハパターンを取得することと、
     前記第2のテストマスクに形成されたテストマスクパターンと、前記計測ウエハパターンと、感光基板の目標とするウエハパターンである目標パターンと、に基づいて、前記フォトマスクを作成するための補正マスクパターンを作成することと、
     前記補正マスクパターンに基づいて前記フォトマスクを作成することと、
    を含む、作成方法。
  17.  請求項16に記載の作成方法であって、
     第1のテストマスクを介して前記複数の中心波長が含まれるパルスレーザ光で第1のテストウエハに含まれる複数のスキャンフィールドの各々を前記第1の方向にスキャンすることにより露光された前記第1のテストウエハを加熱することと、
     前記第1のテストウエハを加熱した後、前記第1のテストウエハの表面に現像液を供給して現像を行うことと、
     前記第1のテストウエハを現像した後、前記第1のテストウエハのウエハパターンを計測することと、
     前記第1のテストウエハのウエハパターンの計測結果に基づいて前記温度分布を設定することと、
    をさらに含む、作成方法。
  18.  請求項16に記載の作成方法であって、
     前記スキャンフィールドの各々における前記第2の方向の中心部から離れた第1の位置におけるラインエッジラフネスが許容範囲内となるように前記温度分布を設定し、
     前記第1の位置におけるクリティカルディメンジョンが許容範囲内となるように前記補正マスクパターンを作成する、
    作成方法。
  19.  請求項16に記載の作成方法により前記フォトマスクを作成することと、
     前記フォトマスクを介して複数の中心波長が含まれるパルスレーザ光で前記感光基板を前記第1の方向にスキャンして露光された前記感光基板を、前記温度分布となるように加熱することと、
     前記感光基板を加熱した後、前記感光基板の表面に現像液を供給して現像を行うことと、
    を含む、感光基板の現像方法。
  20.  電子デバイスの製造方法であって、
     レーザ装置によって複数の中心波長が含まれるパルスレーザ光を生成することと、
     前記パルスレーザ光を露光装置に出力することと、
     前記露光装置内で、フォトマスクを介して前記パルスレーザ光で感光基板に含まれる複数のスキャンフィールドの各々を第1の方向にスキャンして露光することと、
     露光された前記感光基板を、前記複数のスキャンフィールドの各々において前記感光基板の面上で前記第1の方向と交差する第2の方向に温度勾配をもつ温度分布となるように加熱することと、
     前記感光基板を加熱した後、前記感光基板の表面に現像液を供給して現像を行うことと、
    を含む、電子デバイスの製造方法。
PCT/JP2022/022503 2022-06-02 2022-06-02 感光基板の現像方法、フォトマスクの作成方法、及び電子デバイスの製造方法 WO2023233627A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022503 WO2023233627A1 (ja) 2022-06-02 2022-06-02 感光基板の現像方法、フォトマスクの作成方法、及び電子デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022503 WO2023233627A1 (ja) 2022-06-02 2022-06-02 感光基板の現像方法、フォトマスクの作成方法、及び電子デバイスの製造方法

Publications (1)

Publication Number Publication Date
WO2023233627A1 true WO2023233627A1 (ja) 2023-12-07

Family

ID=89026123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022503 WO2023233627A1 (ja) 2022-06-02 2022-06-02 感光基板の現像方法、フォトマスクの作成方法、及び電子デバイスの製造方法

Country Status (1)

Country Link
WO (1) WO2023233627A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138158A (ja) * 1998-11-04 2000-05-16 Semiconductor Leading Edge Technologies Inc 基板処理装置
JP2001250756A (ja) * 2000-03-03 2001-09-14 Hitachi Ltd 半導体集積回路装置の製造方法
JP2006135080A (ja) * 2004-11-05 2006-05-25 Toshiba Corp パターン形成方法
JP2008172249A (ja) * 2008-01-15 2008-07-24 Renesas Technology Corp 半導体集積回路装置の製造方法
JP2010003905A (ja) * 2008-06-20 2010-01-07 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138158A (ja) * 1998-11-04 2000-05-16 Semiconductor Leading Edge Technologies Inc 基板処理装置
JP2001250756A (ja) * 2000-03-03 2001-09-14 Hitachi Ltd 半導体集積回路装置の製造方法
JP2006135080A (ja) * 2004-11-05 2006-05-25 Toshiba Corp パターン形成方法
JP2008172249A (ja) * 2008-01-15 2008-07-24 Renesas Technology Corp 半導体集積回路装置の製造方法
JP2010003905A (ja) * 2008-06-20 2010-01-07 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理システム

Similar Documents

Publication Publication Date Title
JP6792572B6 (ja) リソグラフィ方法およびリソグラフィ装置
TWI427878B (zh) 光源之主動光譜控制技術
JP4898419B2 (ja) 露光量のおよびフォーカス位置のオフセット量を求める方法、プログラムおよびデバイス製造方法
JP5264116B2 (ja) 結像特性変動予測方法、露光装置、並びにデバイス製造方法
JP5406437B2 (ja) 露光装置及びデバイス製造方法
JP2006157020A (ja) リソグラフィ投影装置及びそのようなリソグラフィ投影装置を使用したデバイス製造方法
KR101108084B1 (ko) 노광방법 및 컴퓨터 프로그램을 기억한 메모리 매체
JP6422307B2 (ja) 露光方法、露光装置、および物品の製造方法
TWI728483B (zh) 執行和監控微影製程之方法
JP2014143306A (ja) 露光方法、露光装置、それを用いたデバイスの製造方法
KR102300753B1 (ko) 결정방법, 노광방법, 정보 처리장치, 프로그램 및 물품의 제조방법
JP2003068622A (ja) 露光装置及びその制御方法並びにデバイスの製造方法
WO2023233627A1 (ja) 感光基板の現像方法、フォトマスクの作成方法、及び電子デバイスの製造方法
JP2009259870A (ja) 露光装置、測定方法、安定化方法及びデバイスの製造方法
US20240004307A1 (en) Lithographic method
JP2009141154A (ja) 走査露光装置及びデバイス製造方法
WO2023135773A1 (ja) フォトマスクの作成方法、データ作成方法、及び電子デバイスの製造方法
JP2010123755A (ja) 露光装置及びデバイス製造方法
JP7480275B2 (ja) 露光システム、レーザ制御パラメータの作成方法、及び電子デバイスの製造方法
JP7022531B2 (ja) 露光方法、露光装置、および物品の製造方法
JPH09153444A (ja) X線投影露光装置
JPH0963923A (ja) X線投影露光装置
CN115039033A (zh) 曝光系统和电子器件的制造方法
JP2001196293A (ja) 露光装置及びそれを用いたデバイスの製造方法
JP2001244182A (ja) 露光熱による投影光学系の結像特性変動の測定方法及び露光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944908

Country of ref document: EP

Kind code of ref document: A1