JP2009259870A - 露光装置、測定方法、安定化方法及びデバイスの製造方法 - Google Patents

露光装置、測定方法、安定化方法及びデバイスの製造方法 Download PDF

Info

Publication number
JP2009259870A
JP2009259870A JP2008104030A JP2008104030A JP2009259870A JP 2009259870 A JP2009259870 A JP 2009259870A JP 2008104030 A JP2008104030 A JP 2008104030A JP 2008104030 A JP2008104030 A JP 2008104030A JP 2009259870 A JP2009259870 A JP 2009259870A
Authority
JP
Japan
Prior art keywords
optical system
projection optical
wafer
dummy
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008104030A
Other languages
English (en)
Other versions
JP5094517B2 (ja
Inventor
Nobuhiko Yabu
伸彦 籔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008104030A priority Critical patent/JP5094517B2/ja
Priority to US12/416,610 priority patent/US7961295B2/en
Priority to TW98111691A priority patent/TWI403862B/zh
Publication of JP2009259870A publication Critical patent/JP2009259870A/ja
Priority to US13/102,739 priority patent/US9229312B2/en
Application granted granted Critical
Publication of JP5094517B2 publication Critical patent/JP5094517B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • G03B27/42Projection printing apparatus, e.g. enlarger, copying camera for automatic sequential copying of the same original
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70941Stray fields and charges, e.g. stray light, scattered light, flare, transmission loss

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】ウエハステージの大型化や熱変形を招くことなく、ダミー露光の自由度を向上させることができる露光装置を提供する。
【解決手段】レチクルのパターンをウエハに投影する投影光学系を備える露光装置であって、前記ウエハと同一形状を有して互いに異なる反射率を有する複数のダミーウエハから前記投影光学系の像面近傍に配置すべきダミーウエハを選択する選択部と、前記選択部によって選択されたダミーウエハを前記投影光学系の像面近傍に配置する搬送部と、前記搬送部によって前記投影光学系の像面近傍に配置されたダミーウエハに、前記投影光学系を介して光を照射してダミー露光を行うように制御する制御部と、を有することを特徴とする露光装置を提供する。
【選択図】図1

Description

本発明は、露光装置、測定方法、安定化方法及びデバイスの製造方法に関する。
フォトリソグラフィー技術を用いてLSIや超LSIなどの微細な半導体デバイスを製造する際に、従来から投影露光装置が使用されている。投影露光装置は、レチクル(マスク)に形成された回路パターンを投影光学系によってウエハ等の基板に投影して回路パターンを転写する。
近年では、半導体デバイスの微細化への要求が高まるにつれて、投影露光装置には、高い解像力が必要になってきており、露光光の短波長化及び投影光学系の高NA化(投影光学系の開口数(NA)の増大)が進んでいる。但し、解像力を向上させると、焦点深度が小さくなるため、投影光学系の結像面(焦点面)にウエハの表面を合致させるフォーカス精度の向上が必要となる。
また、投影露光装置においては、複数の工程で転写される回路パターンのそれぞれを正確に重ね合わせるアライメント精度も重要な特性の1つである。かかるアライメント精度は、投影光学系の倍率の変動に大きく影響されるため、投影光学系の倍率を所定値(一定値)に維持することが極めて重要となる。
一方、投影光学系においては、露光光が照射されると、露光光のエネルギーの一部を吸収してしまうため、かかる吸収によって発生する熱に起因して温度変化が生じ、投影光学系の光学特性(倍率や収差など)が変化することが知られている。従って、露光光が投影光学系に照射され続けると、投影光学系の光学特性が変動し、フォーカス精度やアライメント精度が低下してしまう(即ち、無視できない程のフォーカス誤差やアライメント誤差が生じてしまう)可能性がある。
そこで、露光光の照射による投影光学系の光学特性の変動を補正する技術が提案されている(特許文献1参照)。特許文献1には、露光光の照射による投影光学系の光学特性の変動(変動量)を、露光量、露光時間、非露光時間などを変数(パラメータ)とするモデル式で算出し、かかる算出結果に基づいて投影光学系の光学特性の変動を補正する技術が開示されている。
上述したモデル式は、投影光学系の光学特性ごとに、投影光学系に固有の係数(補正係数)を有し、かかる補正係数を算出するためには、投影光学系に露光光を実際に照射して光学特性の変動を測定することが必要となる。このような補正係数を算出するためなど、本来の露光(即ち、レチクルのパターンをウエハなどに転写するための露光)以外の目的で行われる投影光学系への露光光の照射を、以下では、「ダミー露光」と称する。
ダミー露光は、補正係数を算出する目的以外にも行われ、例えば、投影光学系の透過率を安定させることを目的として行われる。投影光学系の硝材として一般的に用いられる石英は、露光光(例えば、エキシマレーザー)の照射と休止とを繰り返した場合に、露光光の照射時間及び休止時間によって透過率が急激に変化することが知られている。具体的には、図9に示すように、投影光学系の透過率は、露光光の照射(露光)を開始した直後に一旦減少し、ある時点から増大に転じて、露光光の照射を更に続けるとある値で飽和する。このような透過率の急激な変化を補正することは非常に困難であるため、露光を開始(再開)する前に、数万パルス程度のダミー露光を行って投影光学系の透過率を安定させることが有効となっている(特許文献2参照)。ここで、図9は、露光光の照射時間(露光時間)に対する投影光学系の透過率の変化を示すグラフであって、縦軸に投影光学系の透過率を採用し、横軸に露光光の照射時間を採用している。
ダミー露光における露光光は、本来の露光における露光光と略同一の光路を通過する。従って、ウエハステージにウエハを載置させたまま(即ち、露光位置にウエハを位置させたまま)ダミー露光を行うと、ウエハが感光して製品として使用できなくなるため、ダミー露光における露光光は、ウエハ以外に照射する必要がある。そこで、ダミー露光において露光光が照射される(即ち、ダミー露光用の)被照射体をウエハステージに固設し、ダミー露光を行う場合には、かかる被照射体を露光位置に位置させている。
特公昭63−16725号公報 特開平10−116766号公報
しかしながら、ダミー露光用の被照射体をウエハステージに固設する場合には、かかる被照射体を固設するスペースを確保しなければならないため、ウエハステージの大型化を招いてしまう。
また、補正係数を算出することを目的とするダミー露光においては、本来の露光における投影光学系の光学特性の変動を測定するために、ダミー露光用の被照射体は、実際の製品を製造するためのウエハと同じ反射率を有していることが好ましい。しかし、ダミー露光用の被照射体は、一般的には、ウエハと異なる反射率及び形状を有しているため、ダミー露光における投影光学系の光学特性の変動と本来の露光における投影光学系の光学特性の変動とが異なり、補正係数を高精度に算出することが困難である。これは、ダミー露光用の被照射体からの反射光の強度がウエハからの反射光の強度と異なっていると、本来の露光における光学特性の変動と異なる光学特性の変動が発生してしまうからである。
投影光学系の透過率を安定させることを目的とするダミー露光においては、投影光学系の最終面(最もウエハ側の面)への戻り光が大きいほど、効率よく(即ち、短時間で)投影光学系の透過率を安定させることができる。従って、ダミー露光用の被照射体は、できるだけ高い反射率を有していることが要求される。かかる要求は、補正係数を算出することを目的とするダミー露光における被照射体の反射率への要求と整合していない。
このような問題に対しては、互いに異なる反射率を有する複数のダミー露光用の被照射体をウエハステージに固設することで解決することが可能である。しかし、ダミー露光用の被照射体の数が増加すると、ウエハステージ上に確保しなければならないスペースが更に必要となってしまう。
また、ウエハステージに固設されたダミー露光用の被照射体に対して露光光を長時間照射すると、かかる被照射体を介してウエハステージの温度が上昇し、ウエハステージの機構(ウエハを保持する保持機構など)が熱変形してしまうという問題も生じる。
また、エキシマレーザーなどの露光光に対して耐性を有する材料でダミー露光用の被照射体を構成した場合であっても、露光光を長期間照射すると表面が劣化及び変質するため、被照射体を交換する必要がある。しかし、ダミー露光用の被照射体は、上述したように、ウエハステージに固設されているため、被照射体の交換作業が困難、且つ、面倒である。
本発明は、このような従来技術の課題に鑑みて、ウエハステージの大型化や熱変形を招くことなく、ダミー露光の自由度を向上させることができる露光装置を提供することを例示的目的とする。
上記目的を達成するために、本発明の一側面としての露光装置は、レチクルのパターンをウエハに投影する投影光学系を備える露光装置であって、前記ウエハと同一形状を有して互いに異なる反射率を有する複数のダミーウエハから前記投影光学系の像面近傍に配置すべきダミーウエハを選択する選択部と、前記選択部によって選択されたダミーウエハを前記投影光学系の像面近傍に配置する搬送部と、前記搬送部によって前記投影光学系の像面近傍に配置されたダミーウエハに、前記投影光学系を介して光を照射してダミー露光を行うように制御する制御部と、を有することを特徴とする。
本発明の更なる目的又はその他の側面は、以下、添付図面を参照して説明される好ましい実施形態によって明らかにされるであろう。
本発明によれば、例えば、ウエハステージの大型化や熱変形を招くことなく、ダミー露光の自由度を向上させる露光装置を提供することができる。
以下、添付図面を参照して、本発明の好適な実施の形態について説明する。なお、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。
図1は、本発明の一側面としての露光装置1の構成を示す概略図である。露光装置1は、本実施形態では、ステップ・アンド・スキャン方式でレチクルのパターンをウエハに転写する投影露光装置である。但し、露光装置1は、ステップ・アンド・リピート方式やその他の露光方式も適用することができる。
露光装置1は、光源102と、照明光学系104と、レチクル106を載置するレチクルステージと、投影光学系108と、ウエハ110を載置するウエハステージと、干渉計114と、フォーカス検出部116とを備える。更に、露光装置1は、収納部118と、ダミーウエハ120と、搬送部122と、光源制御部124と、照明制御部126と、投影制御部128と、ステージ制御部130と、主制御部132とを備える。
光源102は、例えば、波長約193nmのArFエキシマレーザーや波長約248nmのKrFエキシマレーザーなどのパルスレーザー光源を使用する。光源102は、例えば、共振器を構成するフロントミラーと、露光光の波長を狭帯化するための回折格子と、プリズムなどで構成される狭帯化モジュールとを有する。更に、光源102は、露光光の波長の安定性及びスペクトル幅をモニタするための分光器やディテクタなどで構成されるモニタモジュールと、シャッタとを有する。
照明光学系104は、光源102からの光(露光光)でレチクル106を照明する光学系である。照明光学系104は、本実施形態では、光源102からの光を所定の形状に整形するビーム整形光学系と、レチクル106を均一な照度分布で照明するために多数の2次光源を形成するオプティカルインテグレータとを含む。更に、照明光学系104は、開口絞り104aと、ハーフミラー104bと、フォトセンサ104cとを含む。
開口絞り104aは、開口径を可変とする円形形状の開口部を有し、照明光学系104の開口数(NA)を任意の値に設定する。ハーフミラー104bは、照明光学系104の光路に配置され、レチクル106を照明する露光光の一部を反射する。フォトセンサ104cは、ハーフミラー104aで反射された露光光の光路に配置され、かかる露光光の強度(エネルギー)を検出する。フォトセンサ104cによって検出されたエネルギーは、光源102のパルス発光ごとに積分を行う積分回路によって1パルスあたりのエネルギーに換算され、照明制御部126を介して、主制御部132に入力される。
レチクル106は、ウエハ110に転写すべきパターン(回路パターン)を有し、レチクルステージに支持及び駆動される。露光装置1は、ステップ・アンド・スキャン方式の露光装置であるため、レチクル106とウエハ110とをスキャンすることによって、レチクル106のパターンをウエハ110に転写する。
投影光学系108は、レチクル106のパターンを、所定の縮小倍率(例えば、1/4)でウエハ110に投影する光学系である。投影光学系108は、レンズなどの複数の光学素子で構成され、瞳面(レチクル106に対するフーリエ変換面)に開口絞り108aを有する。開口絞り108aは、開口径を可変とする円形形状の開口部を有し、投影光学系108の開口数(NA)を任意の値に設定する。
ウエハ110は、レチクル106のパターンが投影(転写)される基板であって、感光剤(レジスト)が塗布されている。但し、ウエハ110は、ガラスプレートやその他の基板に置換することもできる。なお、ウエハ110は、収納部118に収納されており、搬送部122によって取り出されてウエハステージ112に搬送される。
ウエハステージ112は、ウエハ110又はダミーウエハ120を保持し、投影光学系108の光軸の方向(Z方向)及び投影光学系108の光軸に直交する面内(X−Y面内)でウエハ110又はダミーウエハ120を駆動する。
干渉計114は、ウエハステージ112に固定されている反射ミラー112aとの距離を測定して、X−Y面内におけるウエハステージ112の位置を検出する。干渉計114の検出結果は、ステージ制御部130に入力される。
フォーカス検出部116は、ウエハ110に対して光を投光する投光光学系と、ウエハ110で反射された光を受光する受光光学系とを含み、投影光学系108の光軸の方向(Z方向)におけるウエハ110の位置を検出する。なお、投光光学系は、ウエハ110に対して、ウエハ110に塗布されているレジストを感光させない光(非露光光)を投光する。また、受光光学系は、ウエハ110で反射される光に対応して複数の受光素子を有し、かかる受光素子の受光面とウエハ110上の光の反射点とが光学的に共役の関係になるように配置されている。従って、投影光学系108の光軸の方向(Z方向)におけるウエハ110の位置(位置ずれ)は、受光光学系の受光素子に入射する光の位置(位置ずれ)として検出される。
収納部118は、複数のウエハ110、複数のダミーウエハ120及びその他のウエハ状部材を収納して保管するスロットである。
複数のダミーウエハ120は、図2に示すように、基板120aの上に1μm以下の膜厚の光学薄膜120bを形成(蒸着)することで構成され、ウエハ110と略同一形状(略同一寸法)を有し、互いに異なる反射率を有する。従って、ダミーウエハ120を搬送及び保持する専用の搬送機構及び保持機構は必要なく、ウエハ110を搬送及び保持する搬送機構(搬送部122)及び保持機構(ウエハステージ112)によってダミーウエハ120を搬送及び保持することができる。なお、光学薄膜120bは、光源102からの光(露光光)に対して耐性を有する(即ち、露光光の照射に対して劣化及び変質が小さい)材料で構成され、例えば、窒化シリコン(SiN)や酸化シリコン(SiO)などの無機材料で構成される。図2は、ダミーウエハ120の構成を示す概略図である。
搬送部122は、主制御部132に制御され、本来の露光(即ち、レチクル106のパターンをウエハ110に転写するための露光)を行う際には、収納部118に収納されたウエハ110を取り出してウエハステージ112に搬送する。また、搬送部122は、本来の露光以外の目的で投影光学系108に露光光を照射するダミー露光を行う際には、収納部118に収納されたダミーウエハ120を取り出してウエハステージ112に搬送する。従って、搬送部122は、ウエハステージ112と協同して、本来の露光を行う場合にはウエハ110を投影光学系108の像面近傍に配置し、ダミー露光を行う場合にはダミーウエハ120を投影光学系108の像面近傍に配置する。
光源制御部124は、光源102に関連する制御(例えば、光源102のガス交換制御、光源102から射出される光の波長を安定させるための制御、放電印加電圧の制御など)を行う。なお、光源制御部124は、本実施形態では、単独で光源102を制御するのではなく、主制御部132と共同して光源102を制御する。
照明制御部126は、照明光学系104に関連する制御(例えば、開口絞り104aの開口径の制御など)を行う。例えば、照明制御部126は、開口絞り104aの開口径を制御することで、投影光学系108のNAに対する照明光学系104のNAの比であるコヒーレンスファクタ(σ値)を調整する。なお、照明制御部126は、本実施形態では、単独で照明光学系104を制御するのではなく、主制御部132と共同して照明光学系104を制御する。
投影制御部128は、投影光学系108に関連する制御(例えば、開口絞り108aの開口径の制御やレンズの駆動制御など)を行う。例えば、投影制御部128は、空気圧や圧電素子を利用して投影光学系108を構成するレンズ(フィールドレンズなど)を光軸方向に駆動して、投影光学系108の様々な収差や倍率を調整する。なお、投影制御部128は、本実施形態では、単独で投影光学系108を制御するのではなく、主制御部132と共同して投影光学系108を制御する。
ステージ制御部130は、ウエハステージ112に関連する制御(例えば、ウエハステージ112の駆動(走査)制御やウエハステージ112の位置決め制御など)を行う。例えば、ステージ制御部130は、Z方向及びX−Y面内における所定の位置にウエハ110が位置決めされるように、干渉計114の検出結果やフォーカス検出部116の検出結果に基づいてウエハステージ112を制御する。なお、ステージ制御部130は、本実施形態では、単独でウエハステージ112を制御するのではなく、主制御部132と共同してウエハステージ112を制御する。
主制御部132は、露光装置1の全体(動作)を制御する機能を有し、本実施形態では、特に、ダミー露光に関する動作を制御する。例えば、主制御部132は、後述するように、収納部118に収納された複数のダミーウエハ120から投影光学系108の像面近傍に配置すべきダミーウエハを選択する選択部として機能する。また、主制御部132は、投影光学系108の像面近傍に配置されたダミーウエハ120の反射率の変化が許容範囲であるかどうか、又は、ダミーウエハ120に照射された光のエネルギー量が許容範囲であるかどうかを判定する判定部としても機能する。なお、主制御部132は、収納部118に収納されているダミーウエハ120に関する情報(例えば、ダミーウエハの種類や搬送履歴など)を管理して、メモリなどの記憶部に格納している。
ここで、露光光の照射による投影光学系108の光学特性の変動について説明する。本実施形態では、投影光学系108の光学性能として、投影光学系108の収差を例に説明する。なお、投影光学系108の光学特性は、歪曲収差、非点収差、球面収差及びコマ収差などの収差に限定されず、例えば、フォーカス、倍率なども含む。
投影光学系108は、図3に示すように、レチクル106を通過して投影光学系108に照射される(入射する)露光光EL1及び投影光学系108を通過してウエハ110で反射される露光光EL2の影響を受けて、光学特性が変動する。但し、露光光EL1と露光光EL2との強度比は、ウエハ110の表面の反射率に依存し、ウエハ110の表面の反射率は、ウエハ110に塗布されたレジスト(及び反射防止膜)の種類や厚さに依存して変化する。図3は、投影光学系108における露光光の光路を示す図である。
図4は、投影光学系108の収差の変動(経時変化)の一例を示すグラフであって、縦軸に投影光学系108の収差Fを採用し、横軸に時間tを採用している。なお、投影光学系108の収差の変動量ΔFは、投影光学系108の像高ごとに異なる値となるが、図4では、ある1つの像高における投影光学系108の収差の変動を示している。また、投影光学系108の露光前(即ち、投影光学系108に露光光が照射される前)の収差量をF0とする。
図4を参照するに、露光が時間t0から開始されると、投影光学系108の収差は、時間の経過に伴って変動し、時間t1で一定量(飽和量)F1となる。時間t1以降は、露光光が投影光学系108に照射されても、投影光学系108に吸収される熱エネルギーと投影光学系108から放出される熱エネルギーとが平衡状態に達しているため、投影光学系108の収差は飽和量F1から変化しない。そして、露光が時間t2で停止されると、投影光学系108の収差は、時間の経過に伴って初期の状態に戻り、時間t3で露光前の収差量F0になる。
投影光学系108の収差の変動における飽和値F1は、単位光量(単位露光エネルギー)当たりの収差の変動量K、及び、投影光学系108に入射する露光エネルギーQを用いて、以下の式1で表される。なお、投影光学系108に入射する露光エネルギーQは、露光エネルギーを決定するパラメータ(例えば、露光量、走査速度、露光領域の情報など)から算出される。
F1=K×Q ・・・(式1)
ある時間における投影光学系108の収差量をΔFとすると、ある時間から時間Δtだけ露光を行った後の投影光学系108の収差量ΔFk+1は、飽和量F1及び立ち上がり時の時定数TS1を用いて、以下の式2で表されるモデル式で近似される。
ΔFk+1=ΔF+F1×(1−exp(−Δt/TS1)) ・・・(式2)
同様に、ある時間における投影光学系108の収差量をΔFとすると、ある時間から時間Δtだけ露光を停止した後の投影光学系108の収差量ΔFk+1は、立ち下がり時の時定数TS2を用いて、以下の式3で表されるモデル式で近似される。
ΔFk+1=ΔF×exp(−Δt/TS2) ・・・(式3)
なお、時定数TS1及びTS2は、投影光学系108の熱伝達特性における時定数と等価であって、投影光学系108に固有の係数(補正係数)である。
このように、式1乃至3を用いて、投影光学系108の収差の変動をモデル化することで、露光光の照射による投影光学系108の収差の変動を算出することが可能である。但し、投影光学系108の収差の変動をモデル化するために用いる式は、式1乃至3に限定されず、他の式を用いて投影光学系108の収差の変動をモデル化してもよい。
投影光学系108の光学特性の変動(変動量)を算出するモデル式に補正係数として用いられる時定数TS1及びTS2は、投影光学系108の光学特性ごとに異なる値となる。従って、投影光学系108の光学特性ごとに時定数TS1及びTS2を算出する必要がある。
図5を参照して、時定数TS1及びTS2を算出する算出方法について説明する。図5は、投影光学系108の光学特性の変動を示すグラフであって、縦軸には投影光学系108の光学特性の変動量を採用し、横軸に時間を採用している。
図5において、時間t0から時間t10までの間は、投影光学系108に露光光を連続して照射している状態であって、立ち上がり時における投影光学系108の光学特性の変動を示している。時間t10から時間t20までの間は、投影光学系108に露光光を照射しない状態であって、立ち下がり時における投影光学系108の光学特性の変動を示している。
立ち上がり時の時定数TS1を算出する場合、投影光学系108に露光光を連続的に照射して、時間t0から時間t10までの間の任意のタイミングで投影光学系108の光学特性の変動量h1、h2、・・・、h10を測定する。そして、投影光学系108の光学特性の変動量h1、h2、・・・、h10を式2で近似させれば、立ち上がり時の時定数TS1を算出することができる。
同様に、立ち下がり時の時定数TS2を算出する場合、投影光学系108に露光光を照射せずに、時間t10から時間t20までの間の任意のタイミングで投影光学系108の光学特性の変動量c11、c12、・・・、c20を測定する。そして、投影光学系108の光学特性の変動量c11、c12、・・・、c20を式3で近似させれば、立ち下がり時の時定数TS2を算出することができる。
投影光学系108の光学特性の変動(変動量)を表すモデル式に用いられる補正係数(時定数TS1及びTS2)を算出するためには、上述したように、ダミー露光を行いながら、任意のタイミングで投影光学系108の光学特性(の変動)を測定する必要がある。
以下、図6を参照して、本実施形態の露光装置1において、投影光学系108に露光光を照射するダミー露光を行いながら、投影光学系108の光学特性として収差の変動(変動量)を測定する測定方法について説明する。かかる測定方法は、主制御部132が露光装置1の各部を統括的に制御することによって実行される。
なお、本実施形態では、複数のダミーウエハ120が収納部118に収納されており、主制御部132は、収納部118に収納されている複数のダミーウエハ120に関する情報として、図7に示すようなデータベースをメモリなどの記憶部に格納している。図7は、収納部118に収納されている複数のダミーウエハ120に関する情報を表すデータベースの一例を示す図である。
複数のダミーウエハ120(図7では、DW1、DW2、DW3、・・・DWn)に関する情報は、図7に示すように、収納部118において収納されているスロット番号(スロットNo.)、反射率、積算照射エネルギー、限界照射エネルギーなどを含む。複数のダミーウエハ120のそれぞれの反射率は、ウエハ110を露光する露光光(例えば、波長193nmのArFエキシマレーザーに対する)反射率であって、反射率測定装置などで測定してもよいし、光学薄膜120bの厚みや光学定数から算出してもよい。また、複数のダミーウエハ120に関する情報は、ダミーウエハ120に照射される露光光の角度(入射角度)、偏光状態及び波長ごとの反射率であってもよい。積算照射エネルギーは、複数のダミーウエハ120のそれぞれに照射された露光光のエネルギー(エネルギー量)の積算値である。限界照射エネルギーは、複数のダミーウエハ120のそれぞれについての積算照射エネルギー(積算エネルギー量)に対する限界値である。限界照射エネルギーは、複数のダミーウエハ120のそれぞれについて、実験やシミュレーションによる露光光に対する耐久性の評価によって規定される。なお、図7に示す複数のダミーウエハ120に関する情報は一例であって、必要に応じて、他の情報を含んでもよいし、図7に示す情報の一部を削除してもよい。
図6を参照するに、ステップS702では、ダミー露光に関するダミー露光条件及び投影光学系108の収差の測定に関する測定条件を設定する。ダミー露光条件は、投影光学系108に照射する露光光のエネルギー、照射時間及び照射領域、投影光学系108への露光光の照射を停止する停止時間などを含む。また、測定条件は、投影光学系108の収差を測定するタイミング、数及び位置などに加えて、本来の露光における(即ち、ウエハ110を露光する際の)露光光の波長、かかる露光光に対するウエハ110の反射率などを含む。ウエハ110の反射率は、露光光の波長ごと、露光光の入射角度ごとや露光光の偏光状態ごとの反射率を設定してもよい。また、ウエハ110の反射率は、反射率測定装置などで測定してもよいし、ウエハ110に塗布されたレジストや反射防止膜などの光学物性値から算出してもよい。
次に、ステップS704では、収納部118に収納された複数のダミーウエハ120から、ダミー露光で使用するダミーウエハ120を選択する。具体的には、ステップS702で設定された露光光の波長、かかる露光光に対するウエハ110の反射率とダミーウエハ120に関する情報(図7に示すデータベース)とを比較して、ウエハ110の反射率に最も近い反射率を有するダミーウエハ120を選択する。
なお、ウエハ110の反射率が露光光の入射角度ごとに設定され、ダミーウエハ120に関する情報が露光光の入射角度ごとの反射率を含んでいる場合には、ウエハ110と複数のダミーウエハ120のそれぞれとの間で入射角度の反射率差の二乗平均を算出する。そして、反射率差の二乗平均が最小となるダミーウエハ120を選択する。また、ウエハ110の反射率が露光光の偏光状態ごとに設定され、ダミーウエハ120に関する情報が露光光の偏光状態ごとの反射率を含んでいる場合もある。このような場合には、ウエハ110と複数のダミーウエハ120のそれぞれとの間で露光光の偏光状態に対する反射率を評価して、ウエハ110の反射率に最も近い反射率を有するダミーウエハ120を選択する。
収納部118に1つのダミーウエハ120のみが収納されている場合には、ステップS704では、かかる1つのダミーウエハ120を選択する。なお、ステップS704では、後述するように、限界照射エネルギーなどの反射率以外の選択基準を考慮して、ダミー露光で使用するダミーウエハ120を選択してもよい。また、主制御部132がダミーウエハ120を自動的に選択するのではなく、オペレータが任意のダミーウエハ120を選択するようにしてもよい。この場合、ダミーウエハ120に関する情報(図7に示すデータベース)に対応して、複数のダミーウエハ120のそれぞれに識別子を付与しておき、かかる識別子をオペレータが指定することでダミーウエハ120を選択する。
なお、主制御部132のメモリなどの記憶部にダミーウエハ120に関する情報が格納されていない場合には、ダミーウエハ120に関する情報を表す形状的、電気的、磁気的又は光学的な特徴を複数のダミーウエハ120のそれぞれに形成すればよい。これにより、複数のダミーウエハ120のそれぞれに形成された特徴を読み取ることで、ダミーウエハ120を識別(判別)することができる。また、収納部118において、複数のダミーウエハ120の反射率を測定するようにしてもよい。
次に、ステップS706では、ステップS704で選択されたダミーウエハ120を収納部118から取り出してウエハステージ112に搬送し、かかるダミーウエハ120を投影光学系108の像面近傍に配置する。
次に、ステップS708では、投影光学系108の収差を測定する。具体的には、投影光学系108の物体面に収差測定用パターンを配置し、かかる収差測定用パターン及び投影光学系108を通過した光をウエハステージ112上に配置したセンサで検出することで、投影光学系108の収差を測定する。なお、投影光学系108の収差を測定するタイミングで、ウエハステージ112からダミーウエハ120を一旦回収して代わりに収差測定用ウエハを搬送し、かかる収差測定用ウエハを露光することで投影光学系108の収差を測定してもよい。この場合、投影光学系108の収差の測定後、収差測定用ウエハをウエハステージ112から回収して、再びダミーウエハ120をウエハステージ112に搬送して、投影光学系108の像面近傍に配置させる。また、複数のウエハステージを有する露光装置であれば、ダミーウエハ120を保持しているウエハステージとは別のウエハステージに収差測定用ウエハを予め保持させ、投影光学系108の収差を測定するタイミングで2つのウエハステージを交換してもよい。この場合、収差測定用ウエハの搬送及び回収をダミーウエハ120の搬送及び回収と平行して行うことができる。また、投影光学系108の収差を測定する1回のタイミングで、複数の収差測定用ウエハを順次交換しながら露光してもよい。
次に、ステップS710では、ステップS702で設定した測定条件に基づいて、投影光学系108の収差の測定が終了したかどうかを判定する。投影光学系108の収差の測定が終了したと判定された場合には、ステップS718に進む。一方、投影光学系108の収差の測定が終了していないと判定された場合には、ステップS712に進む。
ステップS712では、ステップS702で設定したダミー露光条件に基づいて、ダミー露光を行うかどうかを判定する。ダミー露光を行うと判定された場合には、ステップS714に進む。一方、ダミー露光を行わないと判定された場合には、ステップS716に進む。
ステップS714では、ステップS702で設定したダミー露光条件に基づいて、投影光学系108に露光光を照射してダミー露光を行う。これにより、投影光学系108が加熱され、投影光学系108の収差が変動する。なお、ダミー露光においては、ダミーウエハ120の光学薄膜120bの耐久性を考慮して、ステップ・アンド・リピートを繰り返して露光光を照射することが好ましい。かかる過程は、ウエハ110を露光するときと同一の過程であるが、ダミーウエハ120の交換は行わず、常に、ダミーウエハ120がウエハステージ112に保持された状態で行われる。ステップS714でダミー露光を行った後は、ステップS708に戻って、投影光学系108の収差を測定する。
ステップS716では、ステップS702で設定したダミー露光条件に基づいて、ダミー露光を停止する。これにより、投影光学系108が冷却され、投影光学系108の収差が変動する。ステップS716でダミー露光を停止させた後は、ステップS708に戻って、投影光学系108の収差を測定する。
ステップS718では、ダミーウエハ120をウエハステージ112から回収して収納部118に収納する。
このように、本実施形態では、ウエハ110の反射率に最も近い反射率を有するダミーウエハ120を用いてダミー露光を行うことで、本来の露光における投影光学系108の収差の変動(図4及び図5参照)を測定することができる。従って、式1乃至式3から、時定数TS1及びTS2などの補正係数を高精度に算出することができる。
なお、露光光の形状(有効光源形状)、露光領域の形状などの露光条件を変更して投影光学系108の収差の変動を測定することにより、それぞれの露光条件に対する投影光学系108の収差の変動を算出するモデル式の補正係数を得ることができる。
なお、露光光が長時間照射されると、ダミーウエハ120(の光学薄膜120b)が劣化及び変質し、ダミーウエハ120の反射率が変化してしまう。ダミーウエハ120の反射率が大きく変化すると、本来の露光におけるウエハ110の反射率から大きくずれてしまうため、ダミーウエハ120を交換する必要がある。
そこで、主制御部132は、収納部118に収納されている複数のダミーウエハ120のそれぞれについて、ダミー露光に使用された際のダミーウエハ120の積算照射エネルギーを管理(更新)する。そして、主制御部132は、任意のタイミングで収納部118に収納されている複数のダミーウエハ120のそれぞれについて積算照射エネルギーを判定(評価)する。その結果、限界照射エネルギーを超えているダミーウエハ120が存在した場合には、かかるダミーウエハ120を交換する。
また、複数のダミーウエハ120のそれぞれについて、反射率測定装置を用いて反射率を測定し、かかる測定結果に基づいてダミーウエハ120の交換の必要性を判定してもよい。この場合には、任意のタイミングで収納部118に収納されている複数のダミーウエハ120の対して反射率を測定し、反射率が許容範囲でないダミーウエハ120が存在していれば、かかるダミーウエハ120を交換する。なお、反射率が許容範囲であっても、反射率が大きく変化している場合には、かかるダミーウエハ120を交換したり、主制御部132のメモリなどの記憶部に格納されているダミーウエハ120に関する情報を更新したりすることが好ましい。
但し、ダミーウエハ120の交換は、ダミーウエハ120が収納部118に収納されているときだけではなく、ダミー露光中に行ってもよい。この場合、ダミー露光中において、ダミー露光に使用しているダミーウエハ120の積算照射エネルギーや反射率を取得し、上述した判定によって、ダミーウエハ120を交換する。
なお、上述したように、投影光学系108の硝材として一般的に用いられる石英は、露光光の照射と休止とを繰り返した場合に、露光光の照射時間及び休止時間によって透過率が急激に変化してしまう。
以下では、図8を参照して、本実施形態の露光装置1において、投影光学系108に露光光を照射するダミー露光を行うことで投影光学系108の透過率を安定させる安定化方法について説明する。かかる安定化方法は、主制御部132が露光装置1の各部を統括的に制御することによって実行される。
まず、ステップS802では、収納部118に収納された複数のダミーウエハ120から、ダミー露光で使用するダミーウエハ120を選択する。具体的には、収納部118に収納された複数のダミーウエハ120のうち、最も高い反射率を有するダミーウエハ120を選択する。
次に、ステップS804では、ステップS802で選択されたダミーウエハ120を収納部118から取り出してウエハステージ112に搬送し、かかるダミーウエハ120を投影光学系108の像面近傍に配置する。
次に、ステップS806では、投影光学系108に露光光を照射してダミー露光を行う。なお、ステップS806におけるダミー露光は、本来の露光と同じ過程である必要はないため、投影光学系108の透過率を短時間で安定させたい場合には、最もエネルギーの高い露光光を連続的に照射すればよい。但し、ダミーウエハ120の光学薄膜120bの耐久性を考慮して、ステップ・アンド・リピートを繰り返して露光光を照射してもよい。また、ステップS806におけるダミー露光は、投影光学系108の透過率が安定するまで行う。
投影光学系108の透過率が安定したら、ダミー露光を停止し、ステップS808において、ダミーウエハ120をウエハステージ112から回収して収納部118に収納する。
このように、本実施形態では、収納部118に収納された複数のダミーウエハ120のうち、最も高い反射率を有するダミーウエハ120を用いてダミー露光を行うことで、ダミーウエハ120で反射されて投影光学系108に入射する露光光が増大する。従って、露光光を投影光学系108に効率的に照射することができ、投影光学系108の透過率を短時間で安定させることができる。
なお、上述したように、同じダミーウエハ120を用いてダミー露光を長時間行うと、ダミーウエハ120が加熱され、ダミーウエハ120を介してウエハステージ112の温度が上昇して、ウエハステージ112の機構が熱変形してしまう。
そこで、同じ反射率を有する複数のダミーウエハ120を含むダミーウエハ群を収納部118に収納し、同じ反射率を有する複数のダミーウエハ120を順次交換しながらダミー露光を行う。これにより、露光光の照射によってダミーウエハ120が加熱されたとしても、ウエハステージ112の温度が上昇する前にダミーウエハ120が交換されるため、ウエハステージ112の機構の熱変形を防止することができる。また、露光光の照射によって加熱されたダミーウエハ120は、収納部118において放熱し、次のダミー露光に使用されるまでにダミー露光前の温度にまで戻る。但し、ダミーウエハ120の数が少ない場合、露光光の照射によって加熱されたダミーウエハ120がダミー露光前の温度に戻る前に再度ダミー露光に使用されてしまう。従って、同じ反射率を有するダミーウエハ120は、露光光の照射によって加熱されたダミーウエハ120が収納部118において十分に放熱できるだけの数を用意する必要がある。
このように、露光装置1によれば、ウエハステージ112の大型化や熱変形を招くことなく、ダミー露光の自由度を向上させることができる。例えば、露光装置1は、本来の露光における投影光学系108の光学特性の変動とダミー露光における投影光学系108の光学特性の変動とのずれを低減させ、投影光学系108の光学特性の変動を算出するモデル式の補正係数を高精度に得ることができる。その結果、投影光学系108の光学特性の変動を高精度に算出して、投影光学系108の光学特性を調整することができる。また、露光装置1は、投影光学系108に効率的に露光光を照射して、投影光学系108の透過率を短時間で安定させることができる。従って、露光装置1は、高いスループットで経済性よく高品位なデバイス(半導体デバイス、液晶表示デバイス等)を提供することができる。なお、デバイスは、露光装置1を用いてレジスト(感光剤)が塗布された基板(ウエハ、ガラスプレート等)を露光する工程と、露光された基板を現像する工程と、その他の周知の工程と、を経ることによって製造される。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。
本発明の一側面としての露光装置の構成を示す概略図である。 ダミーウエハの構成を示す概略図である。 図1に示す露光装置の投影光学系における露光光の光路を示す図である。 図1に示す露光装置の投影光学系の収差の変動(経時変化)の一例を示すグラフである。 図1に示す露光装置の投影光学系の光学特性の変動を示すグラフである。 図1に示す露光装置において、投影光学系に露光光を照射するダミー露光を行いながら、投影光学系の光学特性の変動(変動量)を測定する測定方法を説明するためのフローチャートである。 図1に示す露光装置の収納部に収納されている複数のダミーウエハに関する情報を表すデータベースの一例を示す図である。 図1に示す露光装置において、投影光学系に露光光を照射するダミー露光を行うことで投影光学系の透過率を安定させる安定化方法を説明するためのフローチャートである。 露光光の照射時間(露光時間)に対する投影光学系の透過率の変化を示すグラフである。
符号の説明
1 露光装置
102 光源
104 照明光学系
104a 開口絞り
104b ハーフミラー
104c フォトセンサ
106 レチクル
108 投影光学系
108a 開口絞り
110 ウエハ
112 ウエハステージ
112a 反射ミラー
114 干渉計
116 フォーカス検出部
118 収納部
120 ダミーウエハ
120a 基板
120b 光学薄膜
122 搬送部
124 光源制御
126 照明制御部
128 投影制御部
130 ステージ制御部
132 主制御部

Claims (11)

  1. レチクルのパターンをウエハに投影する投影光学系を備える露光装置であって、
    前記ウエハと同一形状を有して互いに異なる反射率を有する複数のダミーウエハから前記投影光学系の像面近傍に配置すべきダミーウエハを選択する選択部と、
    前記選択部によって選択されたダミーウエハを前記投影光学系の像面近傍に配置する搬送部と、
    前記搬送部によって前記投影光学系の像面近傍に配置されたダミーウエハに、前記投影光学系を介して光を照射してダミー露光を行うように制御する制御部と、
    を有することを特徴とする露光装置。
  2. 前記選択部は、前記投影光学系の光学特性の変動を測定するためのダミー露光を行う場合には、前記複数のダミーウエハから前記ウエハの反射率に最も近い反射率を有するダミーウエハを選択することを特徴とする請求項1に記載の露光装置。
  3. 前記投影光学系の光学特性は、フォーカス、倍率、歪曲収差、非点収差、球面収差及びコマ収差のうち少なくとも1つを含むことを特徴とする請求項2に記載の露光装置。
  4. 前記選択部は、前記投影光学系の透過率を安定させるためのダミー露光を行う場合には、前記複数のダミーウエハから最も高い反射率を有するダミーウエハを選択することを特徴とする請求項1に記載の露光装置。
  5. 前記投影光学系の像面近傍に配置されたダミーウエハの反射率の変化が許容範囲であるかどうかを判定する判定部を更に有し、
    前記判定部によって前記投影光学系の像面近傍に配置されたダミーウエハの反射率の変化が許容範囲ではないと判定された場合には、前記投影光学系の像面近傍に配置されたダミーウエハを交換することを特徴とする請求項1乃至4のうちいずれか1項に記載の露光装置。
  6. 前記投影光学系の像面近傍に配置されたダミーウエハに照射された光のエネルギー量が許容範囲であるかどうかを判定する判定部を更に有し、
    前記判定部によって前記投影光学系の像面近傍に配置されたダミーウエハに照射された光のエネルギー量が許容範囲ではないと判定された場合には、前記投影光学系の像面近傍に配置されたダミーウエハを交換することを特徴とする請求項1乃至4のうちいずれか1項に記載の露光装置。
  7. 前記複数のダミーウエハを収納する収納部を更に有することを特徴とする請求項1乃至6のうちいずれか1項に記載の露光装置。
  8. 複数のダミーウエハは、同一の反射率を有するダミーウエハ群を含むことを特徴とする請求項1乃至7のうちいずれか1項に記載の露光装置。
  9. レチクルのパターンをウエハに投影する投影光学系を備える露光装置における前記投影光学系の光学特性の変動を測定する測定方法であって、
    前記ウエハと同一形状を有して互いに異なる反射率を有する複数のダミーウエハから前記ウエハの反射率に最も近い反射率を有するダミーウエハを前記投影光学系の像面近傍に配置する配置ステップと、
    前記配置ステップで配置されたダミーウエハに、前記投影光学系を介して光を照射して、前記投影光学系の光学特性の変動を測定する測定ステップと、
    を有することを特徴とする測定方法。
  10. レチクルのパターンをウエハに投影する投影光学系を備える露光装置における前記投影光学系の透過率を安定させる安定化方法であって、
    前記ウエハと同一形状を有して互いに異なる反射率を有する複数のダミーウエハから最も高い反射率を有するダミーウエハを前記投影光学系の像面近傍に配置する配置ステップと、
    前記投影光学系の透過率が飽和するまで、前記投影光学系を介して前記配置ステップで配置されたダミーウエハに光を照射する照射ステップと、
    を有することを特徴とする安定化方法。
  11. 請求項1乃至8のうちいずれか1項に記載の露光装置を用いてウエハを露光するステップと、
    露光された前記ウエハを現像するステップと、
    を有することを特徴とするデバイスの製造方法。
JP2008104030A 2008-04-11 2008-04-11 露光装置、測定方法、安定化方法及びデバイスの製造方法 Expired - Fee Related JP5094517B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008104030A JP5094517B2 (ja) 2008-04-11 2008-04-11 露光装置、測定方法、安定化方法及びデバイスの製造方法
US12/416,610 US7961295B2 (en) 2008-04-11 2009-04-01 Exposure apparatus, measurement method, stabilization method, and device fabrication method
TW98111691A TWI403862B (zh) 2008-04-11 2009-04-08 曝光設備、測量方法、安定化方法及裝置製造方法
US13/102,739 US9229312B2 (en) 2008-04-11 2011-05-06 Exposure apparatus, measurement method, stabilization method, and device fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008104030A JP5094517B2 (ja) 2008-04-11 2008-04-11 露光装置、測定方法、安定化方法及びデバイスの製造方法

Publications (2)

Publication Number Publication Date
JP2009259870A true JP2009259870A (ja) 2009-11-05
JP5094517B2 JP5094517B2 (ja) 2012-12-12

Family

ID=41163717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008104030A Expired - Fee Related JP5094517B2 (ja) 2008-04-11 2008-04-11 露光装置、測定方法、安定化方法及びデバイスの製造方法

Country Status (3)

Country Link
US (2) US7961295B2 (ja)
JP (1) JP5094517B2 (ja)
TW (1) TWI403862B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510437A (ja) * 2009-11-09 2013-03-21 株式会社ニコン 露光装置、露光方法、露光装置のメンテナンス方法、露光装置の調整方法、及びデバイス製造方法
JP2014183288A (ja) * 2013-03-21 2014-09-29 Toyoda Gosei Co Ltd 半導体基板、半導体基板の製造方法および露光条件の設定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5094517B2 (ja) * 2008-04-11 2012-12-12 キヤノン株式会社 露光装置、測定方法、安定化方法及びデバイスの製造方法
WO2011101187A1 (en) * 2010-02-19 2011-08-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
NL2010166A (en) * 2012-02-22 2013-08-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945604A (ja) * 1995-07-28 1997-02-14 Nec Corp 露光方法及び露光装置
JPH1050789A (ja) * 1996-07-30 1998-02-20 Dainippon Screen Mfg Co Ltd 基板処理装置
JPH10116766A (ja) * 1996-10-11 1998-05-06 Canon Inc 露光装置及びデバイス製造方法
JP2000195786A (ja) * 1998-12-28 2000-07-14 Canon Inc 露光装置、露光方法およびデバイス製造方法
JP2003068627A (ja) * 2001-08-29 2003-03-07 Sony Corp 露光方法及び露光装置
JP2004244182A (ja) * 2003-02-14 2004-09-02 Ricoh Co Ltd 転写紙搬送装置及び画像形成装置
JP2004327647A (ja) * 2003-04-24 2004-11-18 Nikon Corp 露光方法及び露光装置、並びにデバイス製造方法
JP2006041094A (ja) * 2004-07-26 2006-02-09 Nikon Corp 温度計測用工具、該温度計測用工具を利用した露光方法及び露光装置
JP2006278527A (ja) * 2005-03-28 2006-10-12 Toshiba Corp 偏光状態検査方法及び半導体装置の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179834A (ja) 1982-04-14 1983-10-21 Canon Inc 投影露光装置及び方法
US7135676B2 (en) * 2000-06-27 2006-11-14 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
WO2002049065A1 (fr) * 2000-12-12 2002-06-20 Ebara Corporation Dispositif a faisceau d'electrons et procede de production de dispositifs a semi-conducteur utilisant ledit dispositif a faisceau d'electrons
US7060622B2 (en) * 2002-09-27 2006-06-13 Oki Electric Industry Co., Ltd. Method of forming dummy wafer
EP1628330A4 (en) * 2003-05-28 2009-09-16 Nikon Corp EXPOSURE METHOD, EXPOSURE DEVICE, AND DEVICE MANUFACTURING METHOD
WO2006080427A1 (ja) * 2005-01-31 2006-08-03 Nikon Corporation 露光方法、露光装置、及びデバイス製造方法
JP2007317987A (ja) * 2006-05-29 2007-12-06 Sokudo:Kk 基板処理装置および基板処理方法
US7532021B2 (en) * 2006-06-06 2009-05-12 Advanced Inquiry Systems, Inc. Apparatus for translated wafer stand-in tester
TWI383273B (zh) * 2007-11-20 2013-01-21 Asml Netherlands Bv 微影投射裝置之焦點測量方法及微影投射裝置之校準方法
JP5094517B2 (ja) * 2008-04-11 2012-12-12 キヤノン株式会社 露光装置、測定方法、安定化方法及びデバイスの製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945604A (ja) * 1995-07-28 1997-02-14 Nec Corp 露光方法及び露光装置
JPH1050789A (ja) * 1996-07-30 1998-02-20 Dainippon Screen Mfg Co Ltd 基板処理装置
JPH10116766A (ja) * 1996-10-11 1998-05-06 Canon Inc 露光装置及びデバイス製造方法
JP2000195786A (ja) * 1998-12-28 2000-07-14 Canon Inc 露光装置、露光方法およびデバイス製造方法
JP2003068627A (ja) * 2001-08-29 2003-03-07 Sony Corp 露光方法及び露光装置
JP2004244182A (ja) * 2003-02-14 2004-09-02 Ricoh Co Ltd 転写紙搬送装置及び画像形成装置
JP2004327647A (ja) * 2003-04-24 2004-11-18 Nikon Corp 露光方法及び露光装置、並びにデバイス製造方法
JP2006041094A (ja) * 2004-07-26 2006-02-09 Nikon Corp 温度計測用工具、該温度計測用工具を利用した露光方法及び露光装置
JP2006278527A (ja) * 2005-03-28 2006-10-12 Toshiba Corp 偏光状態検査方法及び半導体装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510437A (ja) * 2009-11-09 2013-03-21 株式会社ニコン 露光装置、露光方法、露光装置のメンテナンス方法、露光装置の調整方法、及びデバイス製造方法
US10061214B2 (en) 2009-11-09 2018-08-28 Nikon Corporation Exposure apparatus, exposure method, exposure apparatus maintenance method, exposure apparatus adjustment method and device manufacturing method
JP2014183288A (ja) * 2013-03-21 2014-09-29 Toyoda Gosei Co Ltd 半導体基板、半導体基板の製造方法および露光条件の設定方法

Also Published As

Publication number Publication date
US20090257035A1 (en) 2009-10-15
US7961295B2 (en) 2011-06-14
US9229312B2 (en) 2016-01-05
JP5094517B2 (ja) 2012-12-12
TWI403862B (zh) 2013-08-01
TW201007365A (en) 2010-02-16
US20110212394A1 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
KR101823725B1 (ko) 노광 장치 및 디바이스의 제조 방법
JP5264116B2 (ja) 結像特性変動予測方法、露光装置、並びにデバイス製造方法
JP6039932B2 (ja) 露光装置、露光方法及び物品の製造方法
JP5406437B2 (ja) 露光装置及びデバイス製造方法
JP2002015997A (ja) リソグラフィ投影装置の作動方法
US9513564B2 (en) Exposure method, exposure apparatus, and device manufacturing method
US7385672B2 (en) Exposure apparatus and method
US9891525B2 (en) Exposure method, exposure apparatus, and article manufacturing method
US20140233007A1 (en) Method of calculating amount of fluctuation of imaging characteristic of projection optical system, exposure apparatus, and method of fabricating device
JP5094517B2 (ja) 露光装置、測定方法、安定化方法及びデバイスの製造方法
CN108931890B (zh) 决定方法、曝光方法、信息处理装置、介质以及制造方法
US20090231568A1 (en) Method of measuring wavefront error, method of correcting wavefront error, and method of fabricating semiconductor device
JP7022531B2 (ja) 露光方法、露光装置、および物品の製造方法
JP2001244182A (ja) 露光熱による投影光学系の結像特性変動の測定方法及び露光装置
KR101039288B1 (ko) 노광 장치, 측정 방법, 안정화 방법 및 디바이스의 제조 방법
JP2024057976A (ja) 露光装置、露光装置の制御方法、情報処理装置、情報処理方法、および物品製造方法
JP2003045795A (ja) 光学特性計測方法、投影光学系の調整方法及び露光方法、並びに露光装置の製造方法
KR20220163870A (ko) 보정방법 및 물품제조방법
JP2006019561A (ja) 露光方法
JP2009206274A (ja) 光学特性調整方法、露光方法、及びデバイス製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R151 Written notification of patent or utility model registration

Ref document number: 5094517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees