WO2023231627A1 - 电磁加热线圈、加热组件及电子雾化装置 - Google Patents

电磁加热线圈、加热组件及电子雾化装置 Download PDF

Info

Publication number
WO2023231627A1
WO2023231627A1 PCT/CN2023/089226 CN2023089226W WO2023231627A1 WO 2023231627 A1 WO2023231627 A1 WO 2023231627A1 CN 2023089226 W CN2023089226 W CN 2023089226W WO 2023231627 A1 WO2023231627 A1 WO 2023231627A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic heating
heating coil
spiral section
coils
sub
Prior art date
Application number
PCT/CN2023/089226
Other languages
English (en)
French (fr)
Inventor
罗永杰
杨保民
范吉昌
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Publication of WO2023231627A1 publication Critical patent/WO2023231627A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors

Definitions

  • the present application relates to the field of atomization technology, and in particular to an electromagnetic heating coil, heating assembly and electronic atomization device.
  • Aerosol is a colloidal dispersion system formed by small solid or liquid particles dispersed and suspended in a gas medium. Aerosol can be absorbed by the human body through the respiratory system, providing users with a new alternative absorption method. For example, electronic atomization devices that can bake and heat herbal or ointment aerosol-generating substrates to generate aerosols are used in different fields to deliver inhalable aerosols to users, replacing conventional product forms and absorption Way.
  • the electronic atomization device uses a heating component to heat the aerosol-generating substrate to generate aerosol for the user to inhale.
  • the heating components include electromagnetic heating coils and heating elements.
  • the electromagnetic heating coil is energized to generate a magnetic field.
  • the heating element is located in the magnetic field generated by the electromagnetic heating coil and heats up.
  • the aerosol generates a matrix and a heating element. When in contact, the heating element heats and atomizes the aerosol-generating substrate.
  • the application provides an electromagnetic heating coil, the electromagnetic heating coil has multiple turns of coils in the axial direction;
  • the electromagnetic heating coil includes a first spiral section and a second spiral section connected in sequence from one end to the other end in the axial direction; the pitch between any two adjacent turns of the first spiral section is smaller than that of the second spiral section. The pitch between any two adjacent turns of the coil.
  • the pitches between any two adjacent turns of the first spiral section are equal, and the pitches of any two adjacent turns of the second spiral section are equal.
  • the pitch between any two adjacent turns of the first spiral section is selected from 0mm-4mm, and the pitch between any two adjacent turns of the second spiral section is selected from the range of 0.5mm-8mm. .
  • the number of turns of the sub-coils included in the first spiral segment is greater than or equal to the number of turns of the sub-coils included in the second spiral segment. The number of turns of the sub-coil.
  • the electromagnetic heating coil further includes a third spiral segment, and the second spiral segment connects the first spiral segment and the third spiral segment;
  • the pitch between any two adjacent turns of the third spiral section is smaller than the pitch between any two adjacent turns of the second spiral section.
  • the pitches between any two adjacent turns of the third spiral segment are equal.
  • the pitch between any two adjacent turns of the first spiral section is less than or equal to the pitch between any two adjacent turns of the third spiral section.
  • the number of turns of the sub-coils included in the first helical segment is greater than or equal to the number of turns of the sub-coils included in the third helical segment.
  • the pitch between any two adjacent turns of the third spiral segment is selected from 0 mm to 4 mm.
  • the electromagnetic heating coil is formed by at least one wire bundle extending axially spirally, each wire bundle including at least two strands of wires;
  • Each sub-coil included in the electromagnetic heating coil has a first size in the axial direction and a second size in the radial direction, and the first size is larger than the second size.
  • this application provides a heating component, including:
  • the heating element has an accommodating cavity inside it, and the heating element has an opening connected to the accommodating cavity at its upper axial end;
  • the electromagnetic heating coil as mentioned above is set inside the heating body
  • the two ends of the heating element are respectively located on both sides of the middle position of the electromagnetic heating coil; in the axial direction, the first spiral section is located at the upper part of the second spiral section.
  • the electromagnetic heating coil further includes a third spiral segment, and the second spiral segment connects the first spiral segment and the third spiral segment;
  • the pitch between any two adjacent turns of the third spiral section is smaller than the pitch between any two adjacent turns of the second spiral section.
  • the heating component further includes a mounting frame, the electromagnetic heating coil is set outside the mounting frame, and the heating element is located in the mounting frame;
  • the mounting frame has a positioning groove extending spirally along the axial direction, and the electromagnetic heating coil is embedded in the positioning groove.
  • the heating component further includes a magnetic shield, and the magnetic shield is set outside the electromagnetic heating coil.
  • the present application provides an electronic atomization device, including an aerosol-generating matrix and a heating component as described above.
  • the aerosol-generating matrix includes a rod body and a core disposed in the rod body.
  • the aerosol-generating matrix can operably It is accommodated in the accommodation cavity through the opening;
  • the size of the core is smaller than the size of the receiving cavity.
  • the end surface of the core close to the opening is located electrically Inside the magnetic heating coil.
  • the above-mentioned electromagnetic heating coils, heating components and electronic atomization devices are energized to generate a magnetic field.
  • the heating element in the magnetic field generates heat, and the temperature of the heating element facing the first spiral section is determined.
  • Figure 1 is a isometric view of an electronic atomization device provided by an embodiment of the present application.
  • Figure 2 is a cross-sectional view of the electronic atomization device shown in Figure 1;
  • Figure 3 is a cross-sectional view of the heating component of the electronic atomization device shown in Figure 1;
  • Figure 4 is a structural diagram of the partial structure of the electronic atomization device shown in Figure 1;
  • Figure 5 is an isometric view of the electromagnetic heating coil of the electronic atomization device shown in Figure 1;
  • Figure 6 is a cross-sectional view of the electromagnetic heating coil shown in Figure 5;
  • Figure 7 is a cross-sectional view of the electromagnetic heating coil of the electronic atomization device provided by another embodiment of the present application.
  • FIG. 8 is a comparison diagram of the temperature field of the heating element of the electronic atomization device according to another embodiment of the present application and the temperature field of the electronic atomization device in the prior art.
  • 100. Electronic atomization device 200. Heating component; 10. Heating element; 11. Accommodation cavity; 12. Opening; 20. Electromagnetic heating coil; 21. Sub-coil; 22. First spiral section; 23. Second spiral section ; 24. Third spiral section; 30. Mounting frame; 31. Positioning slot; 40. Magnetic shielding piece; H. First size; W. Second size; 300. Aerosol generation matrix; 301. Rod body; 302. Core body.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • the inventor's research found that the root cause of the above problems is that the electromagnetic heating coil used in traditional electronic atomization devices has the same pitch everywhere in the axial direction, so that the heating element is facing the electromagnetic heating coil in the middle of the axial direction. The temperature of the location is higher.
  • the aerosol-generating matrix is atomized by being heated by the heating element. Since the high-temperature position of the heating element is relatively central, the upper part of the core of the aerosol-generating matrix does not have the advantage of being preferentially heated and atomized, resulting in the above-mentioned phenomenon. Problems with slow fogging and small amount of fog.
  • the present application provides an electronic atomization device 100.
  • the electronic atomization device 100 can be used to heat and atomize mosaic, herbal, and synthetic liquid, solid, or pasty aerosol-generating substrates. 300.
  • the electronic atomization device 100 includes a heating component 200.
  • the heating component 200 includes a heating element 10 and an electromagnetic heating coil 20 sleeved outside the heating element 10.
  • the electromagnetic heating coil 20 extends spirally in the axial direction.
  • the heating element 10 is in Radially at least partially opposite the electromagnetic heating coil 20 .
  • the electromagnetic heating coil 20 is energized to generate a magnetic field, and the heating element 10 is in the magnetic field generated by the electromagnetic heating coil 20 and generates heat for heating the aerosol generating substrate 300 .
  • the electromagnetic heating coil 20 has an intermediate position in the axial direction, and the heating element 10 extends to both sides of the central position in the axial direction. That is, the parts on both sides of the intermediate position of the electromagnetic heating coil 20 are correspondingly provided with heating elements. 10.
  • the heating element 10 is provided with an accommodation cavity 11 , and an opening 12 is provided at one end of the heating element 10 in the axial direction to communicate with the accommodation cavity 11 .
  • the aerosol-generating matrix 300 includes a rod body 301 and a core body 302 disposed in the rod body 301 .
  • the aerosol-generating matrix 300 can be accommodated in the accommodation cavity 11 through the opening 12 .
  • the electromagnetic heating coil 20 is energized to generate a magnetic field, and the heating element 10 is in the magnetic field and generates heat. Since the core 302 of the aerosol generating matrix 300 is accommodated in the containing cavity 11, at this time, the heating element 10 transfers heat to the aerosol generating matrix 300.
  • the temperature of the core 302 of the aerosol generating matrix 300 increases and atomizes to form an aerosol.
  • the electromagnetic heating coil 20 protrudes from both ends of the heating element 10 in the axial direction, so that the electromagnetic heating coil 20 is provided with the heating element 10 correspondingly everywhere in the axial direction to reduce energy. of waste.
  • the length of the heating element 10 in the axial direction can also be set to be smaller than the length of the electromagnetic heating coil 20 in the axial direction. In this way, at least one end surface of the heating element 10 in the axial direction is located at the electromagnetic heating coil.
  • the axial size of the core 302 of the aerosol generating matrix 300 is smaller than the size of the accommodation cavity 11. This ensures that the entire core 302 is accommodated in the accommodation cavity 11, and all parts of the core 302 are in contact with the heating element 10. It is heated and atomized by the heating element 10 .
  • the end surface of the core 302 close to the opening 12 is located in the electromagnetic heating coil 20 . It should be understood that in other embodiments, when the aerosol generating matrix 300 is accommodated in the accommodation cavity 11 , the end surface of the core 302 close to the opening 12 may also be flush with the electromagnetic heating coil 20 , which is not limited here.
  • the heating assembly 200 also includes an installation frame 30 , the electromagnetic heating coil 20 is spirally provided outside the installation frame 30 , and the heating element 10 is provided inside the installation frame 30 . In this way, the assembly and fixation of the heating element 10 and the electromagnetic heating coil 20 are facilitated.
  • the mounting bracket 30 has a positioning groove 31 extending spirally along the axial direction.
  • the electromagnetic heating coil 20 is embedded in the positioning groove 31.
  • the positioning groove 31 is a copy groove prepared by imitating the shape of the electromagnetic heating coil 20. , so that the electromagnetic heating coil 20 is firmly fixed on the mounting bracket 30 .
  • the heating assembly 200 further includes a magnetic shield 40 , which is disposed outside the electromagnetic heating coil 20 .
  • the magnetic shield 40 can fix the electromagnetic heating coil 20, and the magnetic shield 40 can prevent the electromagnetic heating coil 20 from radiating electromagnetism to the outside world.
  • the magnetic shield 40 and the electromagnetic heating coil 20 are bonded and fixed.
  • the electromagnetic heating coil 20 has a multi-turn sub-coil 21 in the axial direction.
  • the electromagnetic heating coil 20 is formed by at least one wire bundle spirally extending in the axial direction, and each wire bundle includes at least two strands of wires. That is, each wire bundle includes at least two wires, and each wire bundle is formed by twisting at least two strands (two wires).
  • each turn coil 21 has a first dimension H in the axial direction and a second dimension W in the radial direction.
  • the first dimension H is larger than the second dimension W.
  • each coil 21 in the radial direction is smaller than the size in the axial direction.
  • the cross section of each coil 21 is circular (when the electromagnetic heating coil When the cross section of 20 is circular and the radial size and axial size of each turn coil 21 are equal), it has the following advantages:
  • the size of the electromagnetic heating coil 20 in the radial direction is reduced, thereby reducing the size of the electronic atomization device 100 in the radial direction (lateral space), which is beneficial to the miniaturization of the electronic atomization device 100.
  • the outer circumference is larger, which is more conducive to the heat dissipation of the electromagnetic heating coil 20, reduces the temperature of the electromagnetic heating coil 20 and the loss of the electromagnetic heating coil 20, and improves the efficiency of the electromagnetic heating coil 20. service life.
  • the orthographic projection area of the electromagnetic heating coil 20 on the plane where the heating element 10 is located is larger, which can increase the heating area and improve the uniformity of the magnetic field.
  • the electromagnetic heating coil 20 provided in this embodiment is formed by at least one wire bundle spirally extending along the above-mentioned axial direction, and each wire bundle includes at least two strands of wires.
  • each wire bundle includes at least two strands of wires.
  • the spirally extended metal strip can reduce the AC resistance of the electromagnetic heating coil 20 under high-frequency current and reduce the energy loss of the electronic atomization device 100 itself.
  • the cross-sectional shape of each turn coil 21 is rectangular. Since the length of one set of sides of a rectangle is greater than the length of another set of sides, when the cross-sectional shape of each turn coil 21 is set to be a rectangle, a set of long sides of the rectangle is set along the axial direction, and a set of short sides are set along the radial direction, which can ensure The size of each turn coil 21 in the axial direction is greater than the size in the radial direction, that is, it is ensured that the first size H is greater than the second size W.
  • the cross-sectional shape of each turn coil 21 is elliptical. Since the ellipse has a long axis and a short axis, when the cross-sectional shape of each turn coil 21 is set to be elliptical, the long axis is set along the axial direction and the short axis is set along the radial direction, which can ensure that each turn coil 2121 is in an elliptical shape.
  • the dimension in the axial direction is larger than the dimension in the radial direction, that is, it is ensured that the first dimension H is larger than the second dimension W.
  • each turn coil 21 is not limited to the above-mentioned rectangular and elliptical shapes, and can be set as needed.
  • the electromagnetic heating coil 20 is formed by a wire bundle extending spirally along the axial direction.
  • Each wire bundle includes 15-300 wires, and the diameter of each wire is 0.02mm-0.5mm.
  • each wire bundle includes 100 wires, and the diameter of each wire is 0.1 mm.
  • the electromagnetic heating coil 20 is composed of multiple wire bundles extending spirally along the axial direction.
  • Each wire bundle includes 15-300 wires, and the diameter of each wire is 0.02mm-0.5mm.
  • the electromagnetic heating coil 20 It is composed of three wire bundles extending spirally along the axial direction.
  • Each wire bundle includes 100 strands of wires, and the diameter of each wire is 0.1mm.
  • the electromagnetic heating coil 20 is formed by two wire bundles extending spirally along the axial direction. Each wire bundle includes 150 wires, and the diameter of each wire is 0.05 mm.
  • the electromagnetic heating coil 20 includes a first spiral section 22 and a second spiral section 23 connected in sequence from one end to the other end in the axial direction.
  • the pitch between any two adjacent coils 21 of the first spiral section 22 is smaller than the pitch between any two adjacent coils 21 of the second spiral section 23 .
  • the axial direction of the electromagnetic heating coil 20 is the up-down direction in FIG. 2
  • the radial direction is the left-right direction in FIG. 2 .
  • the opening 12 is provided at the upper end of the heating element 10 , and the aerosol generating matrix 300 is inserted into the accommodating cavity 11 from top to bottom. At this time, the core 302 of the aerosol generating matrix 300 is accommodated in the accommodating cavity 11 .
  • the first spiral section 22 is provided at the upper end of the second spiral section 23 .
  • the pitch between any two adjacent coils 21 of the first spiral section 22 is smaller than the pitch between any two adjacent coils 21 of the second spiral section 23, compared with the prior art medium-pitch arrangement,
  • the electromagnetic heating coil 20 When the electromagnetic heating coil 20 is energized, the magnetic induction intensity of the electromagnetic heating coil 20 changes, so that the temperature of the upper part of the heating element 10 facing the electromagnetic heating coil 20 is increased, and the temperature of the upper part of the core 302 accommodated in the accommodation cavity 11 is increased.
  • the heating speed increases the fogging speed and fogging amount of the first puff of the electronic atomization device 100, and improves the puffing taste.
  • the pitch between the two adjacent sub-coils 21 is the axial distance between the two adjacent sub-coils 21 .
  • the pitches between any two adjacent coils 21 of the first spiral section 22 are equal, and the pitches between any two adjacent coils 21 of the second spiral section 23 are equal. In this way, the preparation of the electromagnetic heating coil 20 is facilitated. It should be understood that in other embodiments, the pitches between each two adjacent coils 21 included in the first spiral segment 22 may also be set to be unequal or partially equal, and the pitches included in the second spiral segment 23 may be set to be unequal or partially equal. The pitches between each two adjacent turns of the coils 21 are not equal, or are partially equal.
  • the number of turns of the sub-coil 21 included in the first spiral section 22 is greater than or equal to the number of turns of the sub-coil 21 included in the second spiral section 23, so as to further improve the axial stability of the upper part of the electric heating element 10. temperature.
  • the number of turns of the sub-coil 21 included in the first spiral section 22 can also be set to be smaller than the number of turns of the sub-coil 21 included in the second spiral section 23 .
  • the pitch between any two adjacent coils 21 of the first spiral section 22 is selected from 0mm-4mm.
  • the second spiral section 23 The pitch between any two adjacent turns of coils 21 is selected from 0.5mm-8mm. It should be noted here that the pitch between two adjacent sub-coils 21 of the first spiral section 22 and the pitch between two adjacent sub-coils 21 of the second spiral section 23 are not specifically limited and can be determined as needed. choose.
  • the electromagnetic heating coil 20 further includes a third spiral section 24 , and the second spiral section 23 connects the first spiral section and the third spiral section 24 .
  • the pitch between any two adjacent coils 21 of the third spiral section 24 is smaller than the pitch between any two adjacent coils 21 of the second spiral section 23 .
  • the pitch between any two adjacent coils 21 of the first spiral section 22 and the pitch between any two adjacent coils 21 of the third spiral section 24 are smaller than any phase of the second spiral section 23 Compared with the electromagnetic heating coil 20 with a medium pitch in the prior art, the pitch between two adjacent turns of the coils 21 changes when energized, so that the heating element 10 faces the upper part of the electromagnetic heating coil 20 The temperature is increased, and the temperature difference between the middle and lower parts of the heating element 10 in the axial direction is reduced, and the amount of mist attenuates more slowly during the suction process, thereby improving the uniformity of the mist amount during the suction process.
  • pitches between any two adjacent coils 21 of the third spiral section 24 are equal to facilitate the preparation of the electromagnetic heating coil 20 . It should be understood that in other embodiments, the pitches between each two adjacent turns of the coils 21 included in the third spiral section 24 can also be set to be unequal or partially equal.
  • the pitch between any two adjacent coils 21 of the first spiral section 22 is less than or equal to the pitch between any two adjacent coils 21 of the third spiral section 24 .
  • the number of turns of the sub-coil 21 included in the first spiral section 22 is greater than or equal to the number of turns of the sub-coil 21 included in the third spiral section 24, so as to further increase the axial stability of the electric heating element 10. temperature.
  • the number of turns of the sub-coil 21 included in the first spiral section 22 can also be set to be smaller than the number of turns of the sub-coil 21 included in the third spiral section 24 .
  • the pitch between any two adjacent turns of the third spiral section 24 is selected from 0 mm to 4 mm. It should be noted here that the pitch between two adjacent sub-turn coils 21 of the third spiral section 24 is not specifically limited and can be selected according to needs.
  • the size of the electromagnetic heating coil 20 in the axial direction is 18 mm, and the length of the core body 302 is 20 mm.
  • the core body 302 is entirely accommodated in the accommodation cavity 11 of the heating element 10, and the upper end surface of the core body 302 is higher than the electromagnetic heating coil 20. End face 3mm.
  • the size of each turn coil 21 in the axial direction is 1.6 mm.
  • the three circles in Figure 8 represent the high temperature field, the medium temperature field and the low temperature field theoretically formed by the heating element 20 from top to bottom.
  • the electromagnetic heating coil 20 is a uniformly wound coil, that is, the pitch between each two adjacent sub-coils 21 of the electromagnetic heating coil 20 is equal.
  • the center of the theoretical high temperature field of the heating element 10 is at the axial center of the electromagnetic heating coil 20 , that is, 6 mm below the upper end surface of the core 302 .
  • the electromagnetic heating coil 20 includes a first spiral section 22 and a second spiral section 23.
  • the first spiral section 22 has an axial dimension of 8 mm
  • the second spiral section 23 has an axial dimension of 10 mm.
  • the first spiral section 22 includes five turns of coils 21, and the distance between two adjacent turns of the coils 21 in the first spiral section 22 in the axial direction is 0.
  • the second spiral section 23 includes three turns of coils 21. The axial distance between each two adjacent turns of the coils 21 of the second spiral section 23 is equal and close to 2 mm.
  • the center of the theoretical high temperature field of the heating element 10 is located above the axial center of the electromagnetic heating coil 20 , that is, 3 mm below the upper end surface of the core 302 .
  • the use of the electromagnetic heating coil 20 provided in the embodiment of the present application can increase the temperature of the upper part of the heating element 10, thereby ensuring that the electronic atomization device 100 fogs quickly in the first puff and has good suction. experience.
  • Another embodiment of the present application also provides a heating component 200 included in the above-mentioned electronic atomization device 100.
  • the electromagnetic heating coil 20 has a multi-turn sub-coil 21 in the axial direction, and includes a first spiral section 22 and a second spiral section 23 connected in sequence from one end to the other end in the axial direction. Any adjacent sections of the first spiral section 22 The pitch between two coils 21 is smaller than the pitch between any two adjacent coils 21 of the second spiral section 23 .
  • the heating element 10 in the magnetic field when electricity is applied to generate a magnetic field, the heating element 10 in the magnetic field generates heat, and the temperature of the heating element 10 facing the first spiral section 22 is increased, so that the aerosol can be generated as a matrix
  • the end of the core 302 of 300 that is close to the user's suction end heats up quickly, so that the electronic atomization device 100 fogs up quickly and improves the user experience.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)

Abstract

一种电磁加热线圈(20)、加热组件(200)及电子雾化装置(100),电磁加热线圈(20)在轴向上自一端到另一端包括依次相连的第一螺旋段(22)与第二螺旋段(23),第一螺旋段(22)的任意相邻两匝子线圈(21)之间的螺距小于第二螺旋段(23)的任意相邻两匝子线圈(21)之间的螺距。相对于目前螺距均匀的电磁加热线圈,通电产生磁场时,处于磁场中的发热体(10)发热,发热体(10)正对第一螺旋段(22)的温度得以提高,以便气溶胶生成基质(300)的芯体(302)接近用户抽吸端的一端升温较快,从而使电子雾化装置(100)起雾快,提升用户体验。

Description

电磁加热线圈、加热组件及电子雾化装置
交叉引用
本申请引用于2022年06月02日递交的名称为“电磁加热线圈、加热组件及电子雾化装置”的第202210620960.2号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及雾化技术领域,特别是涉及一种电磁加热线圈、加热组件及电子雾化装置。
背景技术
气溶胶是一种由固体或液体小质点分散并悬浮在气体介质中形成的胶体分散体系,气溶胶可通过呼吸系统被人体吸收,为用户提供一种新型的替代吸收方式。例如,可对草本类或膏类的气溶胶生成基质烘烤加热而产生气溶胶的电子雾化装置,应用于不同领域中,为用户递送可供吸入的气溶胶,替代常规的产品形态及吸收方式。
电子雾化装置利用加热组件对气溶胶生成基质进行加热,以产生供用户吸食的气溶胶。而针对采用电磁加热方式的电子雾化装置,其加热组件包括电磁加热线圈及发热体,电磁加热线圈通电产生磁场,发热体位于电磁加热线圈产生的磁场中而升温,气溶胶生成基质与发热体接触,发热体将气溶胶生成基质加热雾化。
但是,传统采用电磁加热方式的电子雾化装置,存在起雾慢的问题,给用户造成了不好的使用体验。
发明内容
基于此,有必要针对采用传统的电子雾化装置起雾慢的问题,提供一种能够加快起雾速度的电磁加热线圈、加热组件及电子雾化装置。
第一方面,本申请提供了一种电磁加热线圈,电磁加热线圈在轴向上具有多匝子线圈;
其中,电磁加热线圈在轴向上自一端到另一端包括依次相连的第一螺旋段与第二螺旋段;第一螺旋段的任意相邻两匝子线圈之间的螺距小于第二螺旋段的任意相邻两匝子线圈之间的螺距。
在一些实施例中,第一螺旋段的任意相邻两匝子线圈之间的螺距相等,第二螺旋段的任意相邻两匝子线圈之间的螺距相等。
在一些实施例中,第一螺旋段的任意相邻两匝子线圈之间的螺距选自0mm-4mm,第二螺旋段的任意相邻两匝子线圈之间的螺距选自0.5mm-8mm。
在一些实施例中,第一螺旋段所包括的子线圈的匝数,大于或等于第二螺旋段所包括 的子线圈的匝数。
在一些实施例中,电磁加热线圈还包括第三螺旋段,第二螺旋段连接第一螺旋段与第三螺旋段;
第三螺旋段的任意相邻两匝子线圈之间的螺距小于第二螺旋段的任意相邻两匝子线圈之间的螺距。
在一些实施例中,第三螺旋段的任意相邻两匝子线圈之间的螺距相等。
在一些实施例中,第一螺旋段的任意相邻两匝子线圈之间的螺距小于或等于第三螺旋段的任意相邻两匝子线圈之间的螺距。
在一些实施例中,第一螺旋段所包括的子线圈的匝数,大于或等于第三螺旋段所包括的子线圈的匝数。
在一些实施例中,第三螺旋段的任意相邻两匝子线圈之间的螺距选自0mm-4mm。
在一些实施例中,电磁加热线圈通过至少一束导线束沿轴向螺旋延伸而成,每束导线束包括至少两股导线;
电磁加热线圈所包括的每匝子线圈在轴向上具有第一尺寸,在径向上具有第二尺寸,第一尺寸大于第二尺寸。
第二方面,本申请提供一种加热组件,包括:
发热体,其内开设有一容纳腔,发热体在轴向的上端开设有与容纳腔连通的开口;
如上所述的电磁加热线圈,套设于发热体外;
其中,在轴向上,发热体的两端分别位于电磁加热线圈的中间位置的两侧;在轴向上,第一螺旋段位于第二螺旋段的上部。
在一些实施例中,电磁加热线圈还包括第三螺旋段,第二螺旋段连接第一螺旋段与第三螺旋段;
第三螺旋段的任意相邻两匝子线圈之间的螺距小于第二螺旋段的任意相邻两匝子线圈之间的螺距。
在一些实施例中,加热组件还包括安装架,电磁加热线圈套设于安装架外,发热体设于安装架内;
安装架具有沿轴向螺旋延伸的定位槽,电磁加热线圈嵌设于定位槽中。
在一些实施例中,加热组件还包括磁屏蔽件,磁屏蔽件套设于电磁加热线圈外。
第三方面,本申请提供一种电子雾化装置,包括气溶胶生成基质及如上所述的加热组件,气溶胶生成基质包括杆体和设于杆体内的芯体,气溶胶生成基质能够可操作地经开口容纳于容纳腔内;
在轴向上,芯体的尺寸小于容纳腔的尺寸。
在一些实施例中,当气溶胶生成基质容纳于容纳腔内时,芯体靠近开口的端面位于电 磁加热线圈内。
上述电磁加热线圈、加热组件及电子雾化装置,相对于现有技术中螺距均匀的电磁加热线圈,通电产生磁场时,处于磁场中的发热体发热,发热体正对第一螺旋段的温度得以提高,以使气溶胶生成基质的芯体靠近用户抽吸端的一端升温较快,从而使电子雾化装置起雾快,提升用户体验。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一实施例提供的电子雾化装置的轴测图;
图2为图1中所示的电子雾化装置的剖视图;
图3为图1中所示的电子雾化装置的发热组件的剖视图;
图4为图1中所示的电子雾化装置的局部结构的结构图;
图5为图1中所示的电子雾化装置的电磁加热线圈的轴测图;
图6为图5中所示的电磁加热线圈的剖视图;
图7为本申请另一实施例提供的电子雾化装置的电磁加热线圈的剖视图;
图8为本申请提供的另一实施例的电子雾化装置的发热体的温度场与现有技术中电子雾化装置的温度场的对比图。
100、电子雾化装置;200、加热组件;10、发热体;11、容纳腔;12、开口;20、电磁加热线圈;21、子线圈;22、第一螺旋段;23、第二螺旋段;24、第三螺旋段;30、安装架;31、定位槽;40、磁屏蔽件;H、第一尺寸;W、第二尺寸;300、气溶胶生成基质;301、杆体;302、芯体。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有” 以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
正如背景技术中所述,传统采用电磁加热方式的电子雾化装置,存在起雾慢的问题,给用户带来了不好的使用体验。
发明人研究发现,出现上述问题的根本原因在于:传统的电子雾化装置,所采用的电磁加热线圈,在轴向上各处的螺距相等,使得发热体正对电磁加热线圈在轴向上中间位置的部分的温度较高。而气溶胶生成基质通过发热体加热而雾化,由于发热体的高温位置相对靠中,导致气溶胶生成基质的芯体的上部并不具有被优先升温而雾化的优势,从而导致出现上述第一口起雾慢及雾量小的问题。
基于上述问题,参阅图1,本申请提供一种电子雾化装置100,电子雾化装置100可用于加热雾化花叶类、草本类、合成类的液态、固态或膏状的气溶胶生成基质300。
参阅图2,电子雾化装置100包括加热组件200,加热组件200包括发热体10及套接于发热体10外的电磁加热线圈20,电磁加热线圈20在轴向上螺旋延伸,发热体10在径向上与电磁加热线圈20至少部分相对。电磁加热线圈20通电产生磁场,发热体10处于电磁加热线圈20所产生的磁场中而发热,以用于加热气溶胶生成基质300。具体地,电磁加热线圈20在轴向上具有一中间位置,发热体10在轴向上延伸至中心位置的两侧,即为电磁加热线圈20处于中间位置两侧的部分均对应设有发热体10。
参阅图2及图3,发热体10内设有一容纳腔11,发热体10在轴向上的一端开设有与容纳腔11连通的开口12。气溶胶生成基质300包括杆体301和设于杆体301内的芯体302,气溶胶生成基质300能够经开口12容纳于容纳腔11中。电磁加热线圈20通电产生磁场,发热体10处于上述磁场中而发热,由于气溶胶生成基质300的芯体302容纳于容纳腔11中,此时,发热体10将热量传递至气溶胶生成基质300的芯体302,气溶胶生成基质300的芯体302温度升高而雾化形成气溶胶。
一实施例中,在轴向上,发热体10的两端均突伸出电磁加热线圈20,以使电磁加热线圈20在轴向上的各处均对应设有发热体10,以减小能量的浪费。当然,在另一些实施例中,也可以设置发热体10在轴向上的长度小于电磁加热线圈20在轴向上的长度,这样,发热体10在轴向上的至少一端面位于电磁加热线圈20内。
气溶胶生成基质300的芯体302在轴向上的尺寸,小于容纳腔11的尺寸,这样,保证整个芯体302容纳于容纳腔11中,芯体302的各部分均与发热体10接触而被发热体10加热雾化。
具体地,当气溶胶生成基质300容纳于容纳腔11内时,芯体302靠近开口12的端面位于电磁加热线圈20内。应当理解的是,在另一些实施例中,当气溶胶生成基质300容纳于容纳腔11内时,芯体302靠近开口12的端面也可以与电磁加热线圈20平齐,在此不作限定。
加热组件200还包括安装架30,电磁加热线圈20螺旋设于安装架30外,发热体10设于安装架30内。如此,便于发热体10与电磁加热线圈20的装配与固定。
参阅图4,安装架30具有沿轴向螺旋延伸的定位槽31,电磁加热线圈20嵌设于定位槽31中,具体地,定位槽31为仿制电磁加热线圈20的形状而制备的仿形槽,以便于电磁加热线圈20牢固固定于安装架30上。
参阅图3,加热组件200还包括磁屏蔽件40,磁屏蔽件40设于电磁加热线圈20外。一方面,磁屏蔽件40能够对电磁加热线圈20进行固定,磁屏蔽件40能够避免电磁加热线圈20向外界辐射电磁。具体地,磁屏蔽件40与电磁加热线圈20粘结固定。
参阅图5,电磁加热线圈20在轴向上具有多匝子线圈21,具体地,电磁加热线圈20通过至少一束导线束在轴向螺旋延伸而成,每束导线束包括至少两股导线,即为,每束导线束包括至少两根导线,每束导线束通过至少两股(两根)导线绞合而成。
参阅图6,每匝子线圈21在轴向上具有第一尺寸H,在径向上具有第二尺寸W,第一尺寸H大于第二尺寸W。
上述电磁加热线圈20,每匝子线圈21在径向上的尺寸小于在轴向上的尺寸,相对于现有技术中电磁加热线圈20的每匝子线圈21的截面为圆形(当电磁加热线圈20的截面为圆形时,每匝子线圈21的径向尺寸和轴向尺寸相等)的情况,具有如下优势:
1、减小了电磁加热线圈20在径向上的尺寸,从而减小了电子雾化装置100在径向上(横向空间)的尺寸,利于电子雾化装置100的小型化。
2、在整个电磁加热线圈20直径相同的情况下,外围周长较大,更加利于电磁加热线圈20的散热,降低电磁加热线圈20的温度和电磁加热线圈20损耗,提高了电磁加热线圈20的使用寿命。
3、在整个电磁加热线圈20直径相同的情况下,电磁加热线圈20在发热体10所在平面的正投影的投影面积较大,能够增加加热面积和提高磁场的均匀性。
同时,本实施例提供的电磁加热线圈20,通过至少一束导线束沿上述轴向螺旋延伸而成,且每束导线束包括至少两股导线,相对于现有技术中电磁加热线圈20通过扁平状的金属带材螺旋延伸而成的情况,能够减小电磁加热线圈20在高频电流下的交流电阻,降低电子雾化装置100自身能量的损耗。
一实施例中,每匝子线圈21的截面形状为长方形。由于长方形一组边的长度大于另一组边的长度,当设置每匝子线圈21的截面形状为长方形时,使长方形的一组长边沿轴向设置,一组短边沿径向设置,能够保证每匝子线圈21在轴向上的尺寸大于在径向上的尺寸,也即为保证第一尺寸H大于第二尺寸W。
另一实施例中,每匝子线圈21的截面形状为椭圆形。由于椭圆形具有一长轴和一短轴,当设置每匝子线圈21的截面形状为椭圆形时,使长轴沿轴向设置,短轴沿径向设置,能够保证每匝子线圈2121在轴向上的尺寸大于在径向上的尺寸,也即为保证第一尺寸H大于第二尺寸W。
可以理解的是,在另一些实施例中,每匝子线圈21的截面形状不局限于上述长方形和椭圆形,能够根据需要进行设定。
一实施例中,电磁加热线圈20由一束导线束沿沿轴向螺旋延伸而成,每束导线束包括导线的数量为15股-300股,每股导线的直径为0.02mm-0.5mm。具体地,每束导线束包括100股导线,每股导线的直径为0.1mm。在制备电磁加热线圈20时,首先将100股直径为0.1mm的导线绞合在一起形成一束导线束,再通过专门的设备将导线束压成需要的形状,最后将该导线束沿轴向螺旋延伸形成电磁加热线圈20。
另一实施例中,电磁加热线圈20由多束导线束沿轴向螺旋延伸而成,每束导线束包括导线的数量为15股-300股,每股导线的直径为0.02mm-0.5mm。具体地,电磁加热线圈20 由三束导线束沿轴向螺旋延伸而成,每束导线束包括100股导线,每股导线的直径为0.1mm。在制备电磁加热线圈20时,首先将100股直径为0.1mm的导线绞合在一起形成一束导线束,再将三束导线绞合在一起,并通过专门的设备将绞合在一起的导线束压成需要的形状,最后将压合成特定形状的三束导线束沿轴向螺旋延伸形成电磁加热线圈20。
当然,其他一些实施例中,对于电磁加热线圈20所包括的导线束的数量、每束导线束所包括的导线的股数以及每股导线的直径均不作具体限定。如在一些实施例中,电磁加热线圈20由两束导线束沿轴向螺旋延伸而成,每束导线束包括150股导线,每股导线的直径为0.05mm。
继续参阅图6,电磁加热线圈20在轴向上自一端到另一端包括依次相连的第一螺旋段22与第二螺旋段23。第一螺旋段22的任意相邻两匝子线圈21之间的螺距小于第二螺旋段23的任意相邻两匝子线圈21之间的螺距。
参阅图2,以图2中方向为例,电磁加热线圈20的轴向即为图2中的上下方向,径向即为图2中的左右方向。
开口12设于发热体10的上端,气溶胶生成基质300自上而下插入容纳腔11中,此时,气溶胶生成基质300的芯体302容纳于容纳腔11内。第一螺旋段22设于第二螺旋段23的上端。
这样,由于第一螺旋段22的任意相邻两匝子线圈21之间的螺距小于第二螺旋段23的任意相邻两匝子线圈21之间的螺距,相对于现有技术中等螺距设置的电磁加热线圈20,在通电时,电磁加热线圈20的磁感应强度发生改变,从而使得发热体10正对电磁加热线圈20上部的温度得以提高,则提高容纳于容纳腔11中芯体302的上部的升温速度,从而提高了电子雾化装置100第一口的起雾速度及起雾量,提升抽吸口感。
在此需要说明的是,上述相邻两匝子线圈21之间的螺距即为相邻两个子线圈21之间的轴向距离。
进一步,参阅图5及图6,第一螺旋段22的任意相邻两匝子线圈21之间的螺距相等,第二螺旋段23的任意相邻两匝子线圈21之间的螺距相等。这样,便于电磁加热线圈20的制备。应当理解的是,在另一些实施例中,还可以设置第一螺旋段22所包括的每相邻两匝子线圈21之间的螺距不等,或者部分相等,设置第二螺旋段23所包括的每相邻两匝子线圈21之间的螺距不等,或者部分相等。
一实施例中,第一螺旋段22所包括的子线圈21的匝数大于或等于第二螺旋段23所包括的子线圈21的匝数,以进一步提高电发热体10在轴向上上部的温度。当然,在另一些实施例中,也可以设置第一螺旋段22所包括的子线圈21的匝数小于第二螺旋段23所包括的子线圈21的匝数。
第一螺旋段22任意相邻两匝子线圈21之间的螺距选自0mm-4mm,第二螺旋段23 的任意相邻两匝子线圈21之间的螺距选自0.5mm-8mm。在此需要说明的是,对于第一螺旋段22的相邻两匝子线圈21之间的螺距及第二螺旋段23的相邻两匝子线圈21之间的螺距不作具体限定,可以依据需要选择。
一实施例中,参阅图7,电磁加热线圈20还包括第三螺旋段24,第二螺旋段23连接第一螺旋与第三螺旋段24。第三螺旋段24的任意相邻两匝子线圈21之间的螺距小于第二螺旋段23的任意相邻两匝子线圈21之间的螺距。
这样,由于第一螺旋段22的任意相邻两匝子线圈21之间的螺距及第三螺旋段24的任意相邻两匝子线圈21之间的螺距均小于第二螺旋段23的任意相邻两匝子线圈21之间的螺距,相对于现有技术中等螺距设置的电磁加热线圈20,在通电时,电磁加热线圈20的磁感应强度发生改变,使得发热体10正对电磁加热线圈20上部的温度得以提高,且在发热体10在轴向上中下各部分的温度差值减小,抽吸过程中雾量的衰减较慢,提高在抽吸过程中的雾量均匀性。
第三螺旋段24的任意相邻两匝子线圈21之间的螺距相等,以便于电磁加热线圈20的制备。应当理解的是,在另一些实施例中,还可以设置第三螺旋段24所包括的每相邻两匝子线圈21之间的螺距不等,或者部分相等,
进一步,第一螺旋段22任意相邻两匝子线圈21之间的螺距小于或等于第三螺旋段24的任意相邻两匝子线圈21之间的螺距。当然,在另一些实施例中,也可以设置第一螺旋段22任意相邻两匝子线圈21之间的螺距大于第三螺旋段24的任意相邻两匝子线圈21之间的螺距,或者第一螺旋段22的部分相邻两匝子线圈21之间的螺距大于第三螺旋段24的部分相邻两匝子线圈21之间的螺距。
一实施例中,第一螺旋段22所包括的子线圈21的匝数,大于或等于第三螺旋段24所包括的子线圈21的匝数,以进一步提高电发热体10在轴向上上部的温度。当然,在另一些实施例中,也可以设置第一螺旋段22所包括的子线圈21的匝数,小于第三螺旋段24所包括的子线圈21的匝数。
第三螺旋段24的任意相邻两匝线圈之间的螺距选自0mm-4mm。在此需要说明的是,对于第三螺旋段24的相邻两匝子线圈21之间的螺距不作具体限定,可以依据需要选择。
为了更清楚地理解本申请,下面以一实施例与一对比例相对比,以进行说明。
在实施例和对比例中均设置:
电磁加热线圈20在轴向上的尺寸为18mm,芯体302的长度为20mm,芯体302全部容纳于发热体10的容纳腔11中,且芯体302的上端面高出电磁加热线圈20上端面3mm。每匝子线圈21在轴向上的尺寸为1.6mm。
参阅图8,图8中三个圆圈,从上自下依次代表发热体20理论上形成的高温场、中温场和低温场。
对比例中:电磁加热线圈20为均匀绕制线圈,即为电磁加热线圈20的每相邻两个子线圈21之间的螺距相等。
由图8可知,对比例中,发热体10的理论高温场的中心在电磁加热线圈20轴向的中心位置,即为在距离芯体302的上端面靠下6mm处。
实施例中:电磁加热线圈20包括第一螺旋段22和第二螺旋段23,第一螺旋段22在轴向上的尺寸为8mm,第二螺旋段23在轴向上的尺寸为10mm。第一螺旋段22包括5匝子线圈21,第一螺旋段22的每相邻两匝子线圈21在轴向上的间距为0。第二螺旋段23包括3匝子线圈21,第二螺旋段23的每相邻两匝子线圈21在轴向上的间距相等,且均接近2mm。
由图8可知,实施例中,发热体10的理论高温场的中心在电磁加热线圈20轴向的中心位置靠上,即为在距离芯体302的上端面靠下3mm。
经过上述对比可以发现,采用本申请实施例中提供的电磁加热线圈20,能够使发热体10上部的温度得以提高,从而能够保证电子雾化装置100第一口起雾快,具有良好的抽吸体验。
本申请另一实施例还提供一种上述电子雾化装置100所包括的加热组件200。
本申请又一实施例还提供一种上述加热组件200所包括的电磁加热线圈20。电磁加热线圈20在轴向上具有多匝子线圈21,且在轴向上自一端到另一端包括依次相连的第一螺旋段22和第二螺旋段23,第一螺旋段22的任意相邻两匝子线圈21之间的螺距小于第二螺旋段23的任意相邻两匝子线圈21之间的螺距。这样,相对于现有技术中螺距均匀的电磁加热线圈20,通电产生磁场时,处于磁场中的发热体10发热,发热体10正对第一螺旋段22的温度得以提高,以便气溶胶生成基质300的芯体302接近用户抽吸端的一端升温较快,从而使电子雾化装置100起雾快,提升用户体验。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (16)

  1. 一种电磁加热线圈,用于电子雾化装置,所述电磁加热线圈在轴向上具有多匝子线圈;
    其中,所述电磁加热线圈在所述轴向上自一端到另一端包括依次相连的第一螺旋段与第二螺旋段;所述第一螺旋段的任意相邻两匝所述子线圈之间的螺距小于所述第二螺旋段的任意相邻两匝所述子线圈之间的螺距。
  2. 根据权利要求1所述的电磁加热线圈,其中,所述第一螺旋段的任意相邻两匝所述子线圈之间的螺距相等,所述第二螺旋段的任意相邻两匝所述子线圈之间的螺距相等。
  3. 根据权利要求1或2所述的电磁加热线圈,其中,所述第一螺旋段的任意相邻两匝所述子线圈之间的螺距选自0mm-4mm,所述第二螺旋段的任意相邻两匝所述子线圈之间的螺距选自0.5mm-8mm。
  4. 根据权利要求1-3任意一项所述的电磁加热线圈,其中,所述第一螺旋段所包括的所述子线圈的匝数,大于或等于所述第二螺旋段所包括的所述子线圈的匝数。
  5. 根据权利要求1-4任意一项所述的电磁加热线圈,其中,所述电磁加热线圈还包括第三螺旋段,所述第二螺旋段连接所述第一螺旋段与所述第三螺旋段;
    所述第三螺旋段的任意相邻两匝所述子线圈之间的螺距小于所述第二螺旋段的任意相邻两匝所述子线圈之间的螺距。
  6. 根据权利要求5所述的电磁加热线圈,其中,所述第三螺旋段的任意相邻两匝所述子线圈之间的螺距相等。
  7. 根据权利要求5或6所述的电磁加热线圈,其中,所述第一螺旋段的任意相邻两匝所述子线圈之间的螺距小于或等于所述第三螺旋段的任意相邻两匝所述子线圈之间的螺距。
  8. 根据权利要求5-7任意一项所述的电磁加热线圈,其中,所述第一螺旋段所包括的所述子线圈的匝数,大于或等于所述第三螺旋段所包括的所述子线圈的匝数。
  9. 根据权利要求5-8任意一项所述的电磁加热线圈,其中,所述第三螺旋段的任意相邻两匝所述子线圈之间的螺距选自0mm-4mm。
  10. 根据权利要求1-9任意一项所述的电磁加热线圈,其中,所述电磁加热线圈通过至少一束导线束沿所述轴向螺旋延伸而成,每束所述导线束包括至少两股导线;
    所述电磁加热线圈所包括的每匝所述子线圈在所述轴向上具有第一尺寸,在径向上具有第二尺寸,所述第一尺寸大于所述第二尺寸。
  11. 一种加热组件,包括:
    发热体,其内开设有一容纳腔,所述发热体在所述轴向的上端开设有与所述容纳腔连通的开口;
    如权利要求1-10任意一项所述的电磁加热线圈,套设于所述发热体外;
    其中,在所述轴向上,所述发热体的两端分别位于所述电磁加热线圈的中间位置的两侧;在所述轴向上,所述第一螺旋段位于所述第二螺旋段的上部。
  12. 根据权利要求11所述的加热组件,其中,所述电磁加热线圈还包括第三螺旋段,所述第二螺旋段连接所述第一螺旋段与所述第三螺旋段;
    所述第三螺旋段的任意相邻两匝所述子线圈之间的螺距小于所述第二螺旋段的任意相邻两匝所述子线圈之间的螺距。
  13. 根据权利要求11或12所述的加热组件,其中,所述加热组件还包括安装架,所述电磁加热线圈套设于所述安装架外,所述发热体设于所述安装架内;
    所述安装架具有沿所述轴向螺旋延伸的定位槽,所述电磁加热线圈嵌设于所述定位槽中。
  14. 根据权利要求11-13任意一项所述的加热组件,其中,所述加热组件还包括磁屏蔽件,所述磁屏蔽件套设于所述电磁加热线圈外。
  15. 一种电子雾化装置,包括气溶胶生成基质及如权利要求11-14任意一项所述的加热组件,所述气溶胶生成基质包括杆体和设于所述杆体内的芯体,所述气溶胶生成基质能够可操作地经所述开口容纳于所述容纳腔内;
    在所述轴向上,所述芯体的尺寸小于所述容纳腔的尺寸。
  16. 根据权利要求15所述的电子雾化装置,其中,当所述气溶胶生成基质容纳于所述容纳腔内时,所述芯体靠近所述开口的端面位于所述电磁加热线圈内。
PCT/CN2023/089226 2022-06-02 2023-04-19 电磁加热线圈、加热组件及电子雾化装置 WO2023231627A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210620960.2 2022-06-02
CN202210620960.2A CN114983024A (zh) 2022-06-02 2022-06-02 电磁加热线圈、加热组件及电子雾化装置

Publications (1)

Publication Number Publication Date
WO2023231627A1 true WO2023231627A1 (zh) 2023-12-07

Family

ID=83030255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089226 WO2023231627A1 (zh) 2022-06-02 2023-04-19 电磁加热线圈、加热组件及电子雾化装置

Country Status (5)

Country Link
EP (1) EP4287769A1 (zh)
JP (1) JP2023178217A (zh)
KR (1) KR20230167704A (zh)
CN (1) CN114983024A (zh)
WO (1) WO2023231627A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117802577A (zh) * 2023-12-29 2024-04-02 研微(江苏)半导体科技有限公司 半导体外延生长设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114983024A (zh) * 2022-06-02 2022-09-02 深圳麦克韦尔科技有限公司 电磁加热线圈、加热组件及电子雾化装置
CN217695285U (zh) * 2022-06-02 2022-11-01 深圳麦克韦尔科技有限公司 电磁加热线圈、加热组件及电子雾化装置
CN114931679A (zh) * 2022-06-30 2022-08-23 深圳麦克韦尔科技有限公司 加热机构及电子雾化装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202037288A (zh) * 2019-03-11 2020-10-16 英商尼可創業貿易有限公司 氣溶膠供給裝置
CN112004433A (zh) * 2018-05-17 2020-11-27 菲利普莫里斯生产公司 具有改进的电感器线圈的气溶胶生成装置
CN212233104U (zh) * 2020-03-26 2020-12-29 深圳麦克韦尔科技有限公司 气溶胶发生装置及其电磁加热组件
US20210244103A1 (en) * 2019-07-04 2021-08-12 Philip Morris Products S.A. Inductive heating arrangement comprising a temperature sensor
CN214127022U (zh) * 2020-08-21 2021-09-07 深圳麦克韦尔科技有限公司 一种电磁感应雾化组件及电磁感应雾化装置
CN113853128A (zh) * 2019-03-11 2021-12-28 尼科创业贸易有限公司 气溶胶供应装置
WO2022079050A1 (en) * 2020-10-16 2022-04-21 Nicoventures Trading Limited Aerosol provision device heating system
CN114983024A (zh) * 2022-06-02 2022-09-02 深圳麦克韦尔科技有限公司 电磁加热线圈、加热组件及电子雾化装置
CN218650275U (zh) * 2022-06-02 2023-03-21 深圳麦克韦尔科技有限公司 电磁加热线圈、加热组件及电子雾化装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200077703A1 (en) * 2018-09-11 2020-03-12 Rai Strategic Holdings, Inc. Wicking element for aerosol delivery device
CN113662279A (zh) * 2021-08-27 2021-11-19 武汉理工大学 加热不燃烧烟草制品的电磁感应式加热烟具

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112004433A (zh) * 2018-05-17 2020-11-27 菲利普莫里斯生产公司 具有改进的电感器线圈的气溶胶生成装置
TW202037288A (zh) * 2019-03-11 2020-10-16 英商尼可創業貿易有限公司 氣溶膠供給裝置
CN113853128A (zh) * 2019-03-11 2021-12-28 尼科创业贸易有限公司 气溶胶供应装置
US20210244103A1 (en) * 2019-07-04 2021-08-12 Philip Morris Products S.A. Inductive heating arrangement comprising a temperature sensor
CN212233104U (zh) * 2020-03-26 2020-12-29 深圳麦克韦尔科技有限公司 气溶胶发生装置及其电磁加热组件
CN214127022U (zh) * 2020-08-21 2021-09-07 深圳麦克韦尔科技有限公司 一种电磁感应雾化组件及电磁感应雾化装置
WO2022079050A1 (en) * 2020-10-16 2022-04-21 Nicoventures Trading Limited Aerosol provision device heating system
CN114983024A (zh) * 2022-06-02 2022-09-02 深圳麦克韦尔科技有限公司 电磁加热线圈、加热组件及电子雾化装置
CN218650275U (zh) * 2022-06-02 2023-03-21 深圳麦克韦尔科技有限公司 电磁加热线圈、加热组件及电子雾化装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117802577A (zh) * 2023-12-29 2024-04-02 研微(江苏)半导体科技有限公司 半导体外延生长设备

Also Published As

Publication number Publication date
EP4287769A1 (en) 2023-12-06
CN114983024A (zh) 2022-09-02
KR20230167704A (ko) 2023-12-11
JP2023178217A (ja) 2023-12-14

Similar Documents

Publication Publication Date Title
WO2023231627A1 (zh) 电磁加热线圈、加热组件及电子雾化装置
CN218650275U (zh) 电磁加热线圈、加热组件及电子雾化装置
CN207754554U (zh) 一种加热装置及烟具
CN212233104U (zh) 气溶胶发生装置及其电磁加热组件
WO2023000855A1 (zh) 加热器件及电子雾化装置
WO2023231626A1 (zh) 电磁加热线圈、加热组件及电子雾化装置
JP2024054394A (ja) エアロゾル供給デバイス
WO2024001772A1 (zh) 加热机构及电子雾化装置
TW202108024A (zh) 氣溶膠產生系統、氣溶膠產生裝置、及氣溶膠產生製品
JP2023505823A (ja) マルチワイヤ誘導コイルを備えた誘導加熱エアロゾル発生装置
JP2024000501A (ja) エアロゾル発生装置及びその加熱モジュール
CN216088890U (zh) 加热器件及电子雾化装置
CN218129487U (zh) 加热机构及电子雾化装置
CN212014445U (zh) 发热丝、雾化组件和电子烟
JP2023172914A (ja) 空気中間層を備えたコイル巻線及びエアロゾル生成装置
US20220408824A1 (en) Aerosol Generating System
JP2020515008A (ja) 点火コイルワイヤ
WO2024093759A1 (zh) 电子雾化装置、感应线圈及其方法
CN116437513A (zh) 一种电磁感应线圈、电磁感应装置及卷烟加热烟具
CN218869429U (zh) 一种电子烟加热线圈模组
CN218921711U (zh) 电子雾化装置
CN218245689U (zh) 一种电子烟及其雾化装置
RU2800502C1 (ru) Изделие, образующее аэрозоль
CN218474097U (zh) 电子雾化装置
CN217609585U (zh) 一种发热装置和雾化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814813

Country of ref document: EP

Kind code of ref document: A1