WO2023231510A1 - 转子组件、永磁同步电机、电动压缩机、空调系统和车辆 - Google Patents

转子组件、永磁同步电机、电动压缩机、空调系统和车辆 Download PDF

Info

Publication number
WO2023231510A1
WO2023231510A1 PCT/CN2023/081975 CN2023081975W WO2023231510A1 WO 2023231510 A1 WO2023231510 A1 WO 2023231510A1 CN 2023081975 W CN2023081975 W CN 2023081975W WO 2023231510 A1 WO2023231510 A1 WO 2023231510A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rivet
riveting
balance weight
rotor assembly
Prior art date
Application number
PCT/CN2023/081975
Other languages
English (en)
French (fr)
Inventor
孙国伟
赵东亮
杨开成
Original Assignee
安徽威灵汽车部件有限公司
广东威灵汽车部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221359709.7U external-priority patent/CN218124419U/zh
Priority claimed from CN202210615605.6A external-priority patent/CN117200482A/zh
Priority claimed from CN202221359939.3U external-priority patent/CN218124420U/zh
Priority claimed from CN202210629322.7A external-priority patent/CN117200483A/zh
Application filed by 安徽威灵汽车部件有限公司, 广东威灵汽车部件有限公司 filed Critical 安徽威灵汽车部件有限公司
Publication of WO2023231510A1 publication Critical patent/WO2023231510A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/04Balancing means

Definitions

  • This application relates to the technical field of electrical equipment manufacturing, and in particular to a rotor assembly, a permanent magnet synchronous motor, an electric compressor, an air conditioning system and a vehicle.
  • permanent magnet synchronous motors have simple structure, high efficiency and high motor power density, and are widely used in the field of electric compressors.
  • an electric compressor When an electric compressor is installed on a vehicle, especially a four-wheel drive or hybrid vehicle, there are relatively high requirements for the electric compressor's resistance to vibration and impact, usually 10g-50g, where g is the standard gravity acceleration.
  • the temperature of the rotor part When the electric compressor is working, the temperature of the rotor part will change within a wide range. Due to temperature changes, various parts of the rotor will expand or contract. Since the balance block, end plate, riveting pin, and rotor core are made of different The materials have inconsistent thermal expansion coefficients, so the fastening structure formed at normal temperature will have tiny gaps at extreme temperatures. When a gap occurs, under the impact of high-intensity vibration and the action of residual stress, the flange part of the riveting pin will fail and then break, causing rotor damage and compressor failure. There is room for improvement.
  • the present disclosure aims to solve one of the technical problems in the related art, at least to a certain extent.
  • the first purpose of the present disclosure is to propose a rotor assembly that improves the riveting process by optimizing the matching structure between the rotor rivets and the balance block, thereby greatly improving the structural stability of the rotor assembly and enhancing electric power. Compressor reliability.
  • the rotor assembly includes: a rotor body, the rotor body includes a rotor core, an end plate and a balance weight; the rotor core is embedded with permanent magnets; both axial sides of the rotor core are Each end is provided with the end plate, and at least one side of the end plate facing away from the rotor core is provided with the balance block; a rotor rivet, the rotor rivet is axially penetrated through the rotor body, In order to fix the rotor body as a whole, the rotor rivet includes a rod portion and a head and a riveting portion located at both ends of the rod length; wherein at least one of the balance weights is a first balance weight, and the first There is a rivet hole on the balance weight.
  • the rivet hole includes a first hole section used to cooperate with the rod part and a second hole section used to cooperate with the rivet part.
  • the second hole section is relative to the
  • the first hole section is in the form of an enlarged hole, and the second hole section is filled with at least part of the riveted portion.
  • the cross-sectional area of the second hole section gradually increases in a direction away from the first hole section.
  • the riveted portion fills the second hole section.
  • the riveted portion includes a sunken portion located within the second hole section, and an exposed portion located outside the second hole section to protrude from the surface of the first balance weight. department.
  • the diameter of the rod portion is D
  • the maximum diameter of the riveted portion is D0, where 1.2D ⁇ D0 ⁇ 2D.
  • the hardness of the rotor rivet meets: HRB50-HRB200.
  • the riveted part is a solid structure without holes, and the tensile strength ⁇ of the rotor rivet satisfies; 0.2 ⁇ M ⁇ r ⁇ (n/D) 2 /225 ⁇ 0.7 ⁇ , r is the distance between the central axis of the rod and the central axis of the rotor core, M is the mass of the balance mass, n is the maximum rotation speed of the rotor assembly, and D is the The diameter of the stem.
  • the number of magnetic poles of the rotor body is A
  • the number of rotor rivets is B
  • B ⁇ A-2 is B
  • the rotor rivet is provided at a position between two adjacent magnetic poles of the rotor body.
  • each rotor rivet there are a plurality of rotor rivets spaced apart along the circumferential direction of the rotor core, and the riveting portion of each rotor rivet is located on the axis of the rotor core. To the same side.
  • the outer radius of the rotor core is R, 0.5 ⁇ r/R ⁇ 0.9.
  • the diameter D of the rod portion ranges from 3 mm to 6 mm.
  • the mass of the heavier one of the two balance masses is M.
  • At least one of the balance weights is a third balance weight
  • the third balance weight is provided with the riveting portion
  • the radial width W of the third balance weight is greater than 2D.
  • the thickness of the end plate sandwiched between the balance weight provided with the riveting portion and the rotor core is greater than or equal to 0.8 mm.
  • the volume of the riveted part is not smaller than the volume of the head, and/or the diameter of the riveted part is not smaller than the diameter of the head.
  • This application also proposes a permanent magnet synchronous motor.
  • the permanent magnet synchronous motor includes a stator assembly and a rotor assembly.
  • the rotor assembly is rotatable relative to the stator assembly, and the rotor assembly is the rotor assembly described in any of the above embodiments.
  • This application also proposes an electric compressor.
  • An electric compressor includes a compression component and a driving component.
  • the driving component drives the compression component to perform compression work.
  • the driving component includes the permanent magnet synchronous motor described in the above embodiment.
  • This application also proposes an air conditioning system.
  • An air conditioning system includes the electric compressor of the above embodiment.
  • This application also proposes a vehicle.
  • a vehicle according to an embodiment of the present application includes a vehicle body and an air conditioning system mounted on the vehicle body.
  • the air conditioning system is the air conditioning system described in the above embodiment.
  • the vehicle, the air conditioning system, the electric compressor, the permanent magnet synchronous motor, and the above-mentioned rotor assembly have the same advantages over the existing technology, and will not be described again here.
  • Figure 1 is a schematic structural diagram of a rotor assembly according to an embodiment of the present application.
  • Figure 2 is a top view of the rotor assembly according to the embodiment of the present application.
  • Figure 3 is a cross-sectional view along A-A in Figure 2;
  • Figure 4 is an enlarged view of B in Figure 3;
  • Figure 5 is a schematic structural diagram of the rotor rivets before riveting according to some embodiments of the present application.
  • Figure 6 is a schematic structural diagram of the rotor rivet after riveting according to an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of the rotor rivet after riveting according to an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of the rotor rivet after riveting according to an embodiment of the present application (another state);
  • Figure 9 is a schematic structural diagram of an electric compressor according to an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a vehicle according to some embodiments of the present application.
  • Figure 11 is a cross-sectional view of a rotor assembly according to some embodiments of the present application.
  • Figure 12 is a schematic structural diagram of a rotor core according to some embodiments of the present application.
  • Figure 13 is a cross-sectional view of a rotor assembly according to some embodiments of the present application.
  • Figure 14 is a schematic diagram of a rotor rivet before processing according to some embodiments of the present application.
  • Figure 15 is a schematic diagram of a rotor rivet after processing according to some embodiments of the present application.
  • Figure 16 is a top view of a balance weight according to some embodiments of the present application.
  • Figure 17 is a top view of an end plate according to some embodiments of the present application.
  • Figure 18 is a schematic diagram of the optimal position of the riveting point of the rotor core according to some embodiments of the present application.
  • Figure 19 is a schematic diagram of the positions of the balance weight and the rotor core according to some embodiments of the present application (when r/R is less than 0.5);
  • Figure 20 is a schematic diagram of the positions of the balance weight and the rotor core according to some embodiments of the present application (when r/R is close to 0.7);
  • Figure 21 is a schematic diagram of the positions of the balance weight and the rotor core according to some embodiments of the present application (when r/R is greater than 0.7);
  • Figure 22 is a schematic diagram of the height and cross-sectional area of the balance weight changing with the r/R ratio according to some embodiments of the present application;
  • Figure 23 shows the changes of the direct-axis inductance Ld and the quadrature-axis inductance Lq of the rotor assembly with the diameter of the riveting pin according to some embodiments of the present application;
  • Figure 24 is a schematic diagram of the magnetic field line distribution of the rotor assembly according to some embodiments of the present application (rivet hole diameter is 4.2mm);
  • Figure 25 is a schematic diagram of the magnetic field line distribution of the rotor assembly according to some embodiments of the present application (rivet hole diameter is 5.2mm);
  • Figure 26 is a schematic diagram of the magnetic field line distribution of the rotor assembly according to some embodiments of the present application (rivet hole diameter is 6 mm).
  • Vehicle 1000 electric compressor 100, rotor assembly 1, rotor body 11, rotor core 111, end plate 112, balance weight 113, first hole section 1131, second hole section 1132, magnetic pole 114, rivet hole a, rivet buckle Point b, rotor rivet 12, rod portion 121, head 122, riveted portion 123, sunken portion 1231, exposed portion 1232, drive shaft 2, compression component 3, high-pressure housing 41, high-pressure chamber 411, refrigerant discharge port 412, Low-pressure housing 42 , low-pressure chamber 421 , refrigerant inlet 422 , bracket 43 , cover 44 , electronic control component 5 , air conditioning system 200 , and vehicle body 300 .
  • the rotor assembly 1 includes: a rotor body 11 and a rotor rivet 12 .
  • the rotor assembly 1 is used to be installed and matched with the stator assembly, so that when the permanent magnet synchronous motor is energized and running, the rotor assembly 1 can rotate relative to the stator assembly to output driving force, perform air compression or perform other types of driving functions.
  • the rotor body 11 includes a rotor core 111, an end plate 112 and a balance weight 113.
  • the rotor core 111 is embedded with permanent magnets.
  • the permanent magnet can be installed in the magnet slot to achieve installation and fixation with the rotor core 111.
  • the rotor core 111 is installed in the stator assembly and sleeved outside the drive shaft 2 of the electric compressor 100. In this way, when the electric compressor 100 is running, the windings of the stator assembly are energized and generate a magnetic field that acts on the permanent magnet.
  • the magnet drives the rotor core 111 to rotate, thereby driving the drive shaft 2 to output driving force.
  • End plates 112 are respectively provided at both axial ends of the rotor core 111 , that is, there are two end plates 112 , and the two end plates 112 are respectively provided at both ends of the rotor core 111 to contact the end surfaces of the rotor core 111 . combination, wherein a balance weight 113 is provided on the side of at least one end plate 112 away from the rotor core 111 . As shown in FIG. 3 , a balance weight 113 can be provided correspondingly to one end plate 112 , or a balance weight 113 can be provided on opposite sides of the two end plates 112 . The number of the balance weights 113 can be determined according to actual needs. Flexible setup.
  • the rotor rivets 12 are inserted through the rotor body 11 along the axial direction to fix the rotor body 11 as a whole.
  • the rotor core 111 , the end plate 112 and the balance block 113 are all provided with hollow hole structures, so that the rotor rivets 12 can penetrate the rotor core 111 , the end plate 112 and the balance block 113 at the same time, thereby making the rotor body 11
  • the various parts of the rotor core 111 are connected as a whole to ensure that the rotor core 111, the end plate 112 and the balance weight 113 are relatively fixed in the axial direction of the rotor body 11, so as to avoid the occurrence of the end plate 112 and the balance weight during the rotation of the rotor core 111.
  • 113 is relatively separated from the rotor core 111, which improves the structural stability of the rotor body 11.
  • the rotor rivet 12 includes a stem portion 121 , a head portion 122 and a riveting portion 123 .
  • the head portion 122 and the riveting portion 123 are located at both ends of the stem portion 121 in the length direction.
  • the head 122 is connected to the upper end of the rod 121
  • the riveting part 123 is connected to the lower end of the rod 121 .
  • the rotor rivet 12 includes a head 122 and a rod when initially formed.
  • the riveting part 123 is processed through a riveting process, so that the head 122 and the riveting part 123 play a limiting role at both ends of the rotor body 11, thereby achieving It has an axial limiting effect on various components of the rotor body 11 .
  • At least one balance weight 113 is a first balance weight with a rivet hole a on the first balance weight.
  • the rivet hole a includes a first hole section 1131 and a second hole section 1132, wherein the first hole section 1131 is used to connect with the rod part. 121, the second hole section 1132 is used to cooperate with the riveting section 123, and the second hole section 1132 is in an expanded hole shape relative to the first hole section 1131, and the second hole section 1132 is filled with at least part of the riveting section 123.
  • the balance weight 113 of the rotor body 11 in this application may be provided as one as shown in FIG. 3 , or may be provided as two. When there is one balance weight 113 , the balance weight 113 may be the first balance weight. When there are two balance weights 113 , one of the balance weights 113 or both balance blocks 113 may be the first balance weight. A balance weight.
  • the second balance weight may also have rivet holes, but the shape of the rivet holes on the second balance weight may be different from the shape of the rivet holes on the first balance weight.
  • the rivet holes on the second balance weight do not need to include hole sections in the form of enlarged holes.
  • a plurality of rotor rivets 12 are penetrated through the rivet holes on the second balance weight, and the partial rod sections 121 of these rotor rivets 12 are located on the second balance weight.
  • the heads 122 of these rotor rivets 12 are stopped on the outer end surface of the second balance weight.
  • the application is not limited to this. If there are two balance weights 113 located on both sides of the rotor body 11 in the axial direction, and the directions of all rotor rivets 12 are different, so that each balance weight 113 is used for riveting corresponding When the riveting portion 123 of the rotor rivet 12 is used, the two balance weights 113 can both be the first balance weight.
  • the first balance weight is provided with two structural hole sections, and when it is installed and riveted, the rod portion 121 can be penetrated through the first hole section 1131 and the second hole section 1132, and then during the execution During the riveting process, pressure is applied to an end of the rod portion 121 away from the head 122 to form the riveted portion 123 , and at least part of the riveted portion 123 is located within the second hole section 1132 .
  • the second hole section 1132 is set in an expanded hole shape relative to the first hole section 1131, so that the inner diameter of the second hole section 1132 is larger than the inner diameter of the first hole section 1131, so that the riveting portion 123 is located in the second hole section 1132
  • the diameter of the mating surface of the riveting section 123 and the second hole section 1132 is larger than the mating diameter of the first hole section 1131 and the rod section 121, which increases the diameter of the riveting section and the second hole section 1132.
  • the mating surface between them further improves the connection stability between the rotor rivet 12 and the rotor body 11 .
  • the riveting part 123 and the rod part 121 are made of the same material, that is, they do not need to be processed and formed from different materials, which is beneficial to reducing processing steps and processing costs, and is conducive to large-scale production.
  • the connection part between the riveting part 123 and the rod part 121 can be located in the second hole section 1132, and the riveting part will not completely protrude like in the conventional design.
  • the inner peripheral wall of the second hole section 1132 can play a role in supporting and reinforcing at least part of the riveted part 123, which is more conducive to preventing the riveted part 123 from being relative to the riveted part 123.
  • the rod portion 121 has a problem of breakage, which improves the structural quality of the riveted portion 123 and improves the installation stability of the rotor assembly 1 .
  • part of the riveting part 123 can be located in the second hole section 1132, or the riveting section 123 can be completely located in the second hole section 1132.
  • the structural design is flexible and optional, which is convenient for adjusting the riveting depth.
  • the riveted parts of the rotor rivets are mostly located on the end plate side of the rotor body and are not provided on the balance block. Among them, some of them are matched with the riveted parts on the balance block, and the rivets need to be designed to be thicker. As a result, the riveted part completely protrudes from the balance block after riveting, or there is a problem of structural fatigue due to the low hardness of the balance block, causing the rotor body to become loose.
  • the rivet hole a on the first balance weight is arranged to include a first hole section 1131 and a second hole section 1132 to cooperate with the rod part 121 and the riveting part 123 of the rotor rivet 12, which is not only beneficial to increasing the The large riveting depth is not easy to loosen, ensuring the stability of the riveting, and there will be no problem of the riveted part 123 breaking relative to the rod part 121, which is conducive to improving the structural reliability of the rotor rivet 12, and will not cause the riveted part 123 to be excessively Problem protruding from the first balance weight.
  • the first hole section 1131 and the second hole section 1132 with different hole diameters are provided to achieve respective cooperation with the stem portion 121 and the riveting portion 123 of the rotor rivet 12, which is beneficial to increasing the riveting depth. , improve the stability of the riveting, and ensure that the structure of the riveting part 123 is effectively supported by the outer peripheral wall of the second hole section 1132, preventing the riveting part 123 from breaking relative to the rod part 121, and improving the structural safety of the rotor rivet 12 , improve the reliability of the rotor assembly 1.
  • the rotor assembly 1 of the embodiment of the present application improves the riveting process by optimizing the matching structure between the rotor rivet 12 and the balance block 113, and does not cause the rotor rivet to become damaged when the rotor rivet 12 and the balance block 113 cooperate at extreme temperatures. 12.
  • the problem of structural breakage occurs in the riveting part 123, which improves the structural stability of the rotor rivet 12 and improves the safety and reliability of the rotor assembly 1 and the permanent magnet synchronous motor with it.
  • some solutions set the material of the balance weight allocated to the riveting part of the rivet to a softer material than the rivet, to prevent fatigue dents at the contact surface between the riveting part and the balance weight during the riveting process, and to reduce the tightening strength. decrease, thus improving the problem of riveting failure.
  • the use of softer materials such as brass at the riveting position reduces the design freedom and increases the cost; and in other solutions, the ratio is intervened between the rivet head and the balance weight.
  • Rivet materials are made of harder material to prevent the rivet head from denting due to fatigue, thereby maintaining fastening strength.
  • intervening a material harder than the rivet material between the rivet head and the balance block makes the riveting process and production process more complicated. There is room for improvement.
  • the rotor assembly 1 of the embodiment of the present application does not need to change the material hardness, and can effectively avoid the occurrence of the above series of technical problems.
  • the cross-sectional area of the second hole section 1132 gradually increases along the direction away from the first hole section 1131 , such as both the first hole section 1131 and the second hole section 1132 are provided. It is a circular hole structure, and the first hole section 1131 is a hole structure with a constant cross-sectional area, and the second hole section 1132 is set as a hole structure with a variable cross-section, that is, the size of the inner diameter at each position along the length direction of the first hole section 1131 Remaining constant, the size of the inner diameter of the second hole section 1132 at various positions along the length direction gradually changes.
  • the second hole section 1132 is connected to the right side of the first hole section 1131, and the first hole section 1131 penetrates to the left end surface of the first balance weight, and the second hole section 1132 penetrates to the first balance weight.
  • the cross-sectional area gradually increases from left to right to form a flare-like structure on the right side of the first hole section 1131 .
  • the cross-sectional area of the second hole section 1132 increases linearly, that is, the second hole section 1132 is configured as a horizontal funnel-shaped structure.
  • the second hole section 1132 is configured as a horizontal funnel-shaped structure.
  • the riveting portion 123 and the second hole section 1132 have a larger mating surface, especially a larger cross-sectional area than the mating surface of the first hole section 1131 and the rod portion 121 , so that the second hole section 1132 and the riveted
  • the fit of the part 123 is more compact, which is beneficial to improving the riveting effect between the riveting part 123 and the first balance weight, and under the support of the inner peripheral wall of the second hole section 1132 and the riveting part 123, the relative relationship between the riveting part 123 can be greatly reduced.
  • the reliability of the rotor rivet 12 is improved.
  • the riveting portion 123 fills the second hole segment 1132 , that is, the length of the riveting portion 123 along the axial direction of the rotor rivet 12 is greater than or equal to the depth of the second hole segment 1132 along the thickness direction of the first balance weight.
  • the riveted portion 123 can be completely extended into the second hole section 1132, and the outer surface of the riveted portion 123 is flush with the outer surface of the first balance weight, forming the riveted portion 123 in the second hole section. 1132 embedded structure, in this way, when the electric compressor 100 is running, the riveted part 123 will not protrude out of the first balance block and contact the structure outside the first balance weight to cause impact, which is beneficial to improving the safety of the riveted part 123 At the same time, the outer peripheral wall of the first balance block is relatively flat and will not cause structural abruptness.
  • the corresponding length of the riveting part 123 is greater than the depth of the second hole section 1132.
  • the left end of the riveting part 123 connected to the rod part 121 is located in the second hole section 1132, and the right end part of the riveting part 123 is located in the second hole section 1132. Outside the second hole section 1132.
  • the part of the riveting portion 123 protruding from the second hole section 1132 can be used as a reserved section, so that during the riveting process, the riveting head will not contact the first balance weight, or the pre-set portion
  • the remaining section protrudes outside the second hole section 1132 so that when the rotor assembly 1 is used for a long time and a large gap appears between the riveting part 123 and the inner peripheral wall of the second hole section 1132, the rotor assembly 1 can be riveted again. This allows the reserved section to be further riveted, thereby filling the gap between the riveting part 123 and the second hole section 1132, thereby improving the stability of the riveting.
  • the riveting part 123 includes a sunken part 1231 and an exposed part 1232, wherein the sunken part 1231 is located in the second hole section 1132 and the exposed part 1232 is located on the surface of the first balance weight.
  • the sunken part 1231 and the exposed part 1232 are formed by the rotor rivet 12 during the riveting process.
  • the rod part 121 can be turned away from the head.
  • One end of the part 122 is riveted, so that the end of the rod part 121 forms the sunken part 1231 in the second hole section 1132 first, and with the further processing of the riveting head, the rod part 121 is in the first balance weight.
  • the exposed portion 1232 is formed on the surface of the first balance weight, and the exposed portion 1232 is suitable for pressing the surface of the first balance weight. As shown in Figures 6-8, during actual processing, the exposed portion 1232 can be processed into different shapes.
  • the sunken portion 1231 can be tightly squeezed and fitted with the inner peripheral wall of the second hole portion 1132 in the second hole portion 1132, which is beneficial to improving the riveting portion. 123 and the second hole section 1132.
  • the exposed part 1232 and the surface of the first balance weight also form a tight squeeze fit structure, increasing the fit between the riveted part 123 and the surface of the first balance weight. degree, thereby improving the matching stability between the first balance weight and the riveting part 123.
  • the rotor rivet 12 can not only be limited by the sunken portion 1231 and the inner peripheral wall of the second hole section 1132 on one side of the first balance weight, And the exposed portion 1232 can be used to limit the position with the surface of the first balance weight, that is, the riveting portion 123 and the first balance weight form a two-layer limiting fit, which is beneficial to improving the positioning stability between the riveting portion 123 and the first balance weight. properties and improve riveting reliability.
  • the diameter of the rod 121 is D
  • the maximum diameter of the riveted part 123 is D0, where 1.2D ⁇ D0 ⁇ 2D, that is, the maximum diameter of the riveted part 123 is larger than the rod.
  • the riveting part 123 can have a larger matching depth and matching area with the second hole section 1132, thereby improving the riveting stability and ensuring the rotor
  • the riveting quality of the rivet 12; and the radial size of the riveting part 123 will not be too large, and the riveting part 123 will not protrude too much outside the second hole section 1132, saving material and preventing the riveting part 123 from protruding after riveting.
  • the outer radius of the rotor core 111 causes other quality problems and improves the rationality of the structural design.
  • the arrangement of the riveting portion 123 can take into account the effects of riveting quality and material saving.
  • the number of magnetic poles of the rotor body 11 is A
  • the number of rotor rivets 12 is B, where B ⁇ A-2. That is, the number of rotor rivets 12 is less than or equal to the number of magnetic poles of the rotor body 11 -2. If the number of magnetic poles is set to 8, the number of rotor rivets 12 is 6 or 4.
  • the number of the rotor rivets 12 can be reduced to the greatest extent while ensuring the riveting quality, and the number of the rotor rivets 12 can be reduced. Set up costs, reduce material costs, and reduce processing technology costs. Of course, the number of rotor rivets 12 cannot be set too small, such as one, to ensure that the rotor assembly 1 can be effectively limited and fixed by the rotor rivets 12 at multiple different positions in the circumferential direction.
  • the outer radius of the rotor core 111 is R
  • the diameter of the cylindrical surface that is coaxial with the rotor core 111 and passes through the central axis of the rotor rivet 12 is r (or, in other words, r is The distance between the central axis of the rod and the central axis of the rotor core) satisfies 0.4 ⁇ r/R ⁇ 0.9, such as r/R is set to 0.6, 0.7 or 0.8.
  • the position of the rotor rivet 12 on the rotor core 111 can be further away from the outer peripheral wall of the rotor core 111, thus maintaining Enough safe distance.
  • the distance between the hole structure on the rotor core 111 for inserting the rotor rivet 12 and the outer peripheral wall of the rotor core 111 is small, resulting in the rotor
  • the outer peripheral wall of the iron core 111 has a smaller structural strength at the position corresponding to the rotor rivet 12. That is, when the rotor iron core 111 is used for a long time and rotates frequently at high speed, the rotor rivet 12 will have a greater impact on the hole structure of the rotor iron core 111.
  • the diameter D of the rod portion 121 ranges from 3 mm to 6 mm, for example, the diameter of the rod portion 121 is 4 mm or 5 mm.
  • the rod part 121 is used to cooperate with the rivet hole a, and the gap between the rod part 121 and the inner wall of the rivet hole a is 0.1 mm to 0.2 mm. That is, the aperture of the rivet hole a increases with the diameter of the rod part. 121 changes in diameter so that the two can be installed and matched within a reasonable fit clearance range.
  • rotor rivets 12 there are a plurality of rotor rivets 12 , and the plurality of rotor rivets 12 are spaced apart along the circumferential direction of the rotor core 111 , so that the rotor core 111 and the end plate 112 can be at multiple positions in the circumferential direction.
  • the rotor rivets 12 are used for connection and fixation, thereby greatly improving the structural stability and reliability of the rotor body 11 .
  • the spacing between the plurality of rotor rivets 12 in the circumferential direction of the rotor iron core 111 can be relatively balanced.
  • there are four rotor iron cores 111 and the four rotor rivets 12 are evenly spaced in the circumferential direction of the rotor iron core 111 .
  • the circumferential angle between two adjacent rotor rivets 12 is 90°. This can make the installation forces of the four rotor rivets 12 on various components of the rotor body 11 in the circumferential direction more balanced, and avoid local occurrences.
  • the problem is that the positional connection force is too small or the local connection force is too large.
  • the riveting portions 123 of each rotor rivet 12 are located on the same axial side of the rotor core 111 . That is to say, when multiple rotor rivets 12 are connected and matched with the rotor body 11 , multiple rotors can be connected.
  • the rivets 12 are installed from the same axial side of the rotor core 111 so that the heads 122 of the plurality of rotor rivets 12 are located on the first side of the rotor core 111 and the riveting portions 123 of the plurality of rotor rivets 12 are located on the first side of the rotor core 111 .
  • the second side of the rotor core 111 As shown in FIG. 3 , the head 122 of each rotor rivet 12 is located on the left end surface of the rotor core 111 , and the riveting portion 123 is located on the right end surface of the rotor core 111 .
  • the radial width W of the first balance weight is greater than 2D, and D is the diameter of the stem portion 121 , that is, the radial width W of the first balance weight is greater than twice the diameter of the stem portion 121 . Therefore, in the first When a balance weight cooperates with the rod part 121, a pin hole needs to be provided in the first balance weight, and the gap between the rod part 121 and the inner wall of the rivet hole a is 0.1 mm to 0.2 mm. Therefore, the diameter of the first balance weight is Setting the lateral width within the above range can prevent the pin hole from being too large in size on the first balance block, thereby affecting the structural strength of the first balance block, and ensuring the structural stability of the first balance block.
  • the structural state of the rotor rivet 12 and the first balance mass will not have an excessive impact during the riveting forming process of the rivet portion 123, that is, it will not cause
  • the first balance weight had an obvious structural fracture problem.
  • the thickness of the end plate 112 sandwiched between the first balance weight and the rotor core 111 is greater than or equal to 0.8 mm. That is, during actual setting, the thickness of the end plate 112 located between the first balance weight and the rotor core 111 is set to at least 0.8 mm, such as 1 mm, or 1.1 mm.
  • the thickness of the end plate 112 can effectively ensure the structural strength of the end plate 112 itself, avoid the problem of serious deformation of the end plate 112 during the riveting process of the rotor rivet 12, and ensure The riveting quality is good, and it is beneficial to reduce the natural frequency dispersion of the rotor assembly 1.
  • the thickness of the end plate 112 should not be set too large, and the thickness of the end plate 112 needs to be set within a reasonable cost range.
  • the thickness of the end plate 112 sandwiched between the first balance weight and the rotor core 111 is greater than or equal to 0.8 mm. That is, during actual setting, the thickness of the end plate 112 located between the first balance weight and the rotor core 111 is set to at least 0.8 mm, such as 1 mm, or 1.1 mm.
  • the thickness of the end plate 112 can effectively ensure the structural strength of the end plate 112 itself, avoid the problem of serious deformation of the end plate 112 during the riveting process of the rotor rivet 12, and ensure The riveting quality is good, and it is beneficial to reduce the natural frequency dispersion of the rotor assembly 1.
  • the thickness of the end plate 112 should not be set too large, and the thickness of the end plate 112 needs to be set within a reasonable cost range.
  • the volume of the riveting part 123 is not less than the volume of the head 122. In this way, the structural strength and torsion resistance of the riveting part 123 are greater, which is not only conducive to the realization of riveting molding, but also makes the riveting part 123 to the third When a balance weight is riveted, it is less likely that the riveted portion 123 will break or the structure will deform, thereby improving the structural safety of the rotor rivet 12 .
  • the rivet portion 123 when the rivet portion 123 is pressed against the side of the first balance weight to limit the position, the rivet portion 123 can play a good limiting role, and there will be no problem of the rivet portion 123 detaching from the first balance weight. Improve the reliability of riveting limit.
  • the diameter of the riveting portion 123 is not smaller than the diameter of the head 122 , that is, the cross-sectional area of the riveting portion 123 is greater than the cross-sectional area of the head 122 .
  • the anti-twisting ability of the riveted part 123 can also be increased, that is, the anti-torsion ability can be enhanced to prevent the problem of misalignment and fracture of the riveted part 123 relative to the rod part 121 during the rotation of the rotor assembly 1, and improve the safety of the structural design. sex.
  • the diameter of the riveting part 123 is larger than the diameter of the head 122, so that the riveting part 123 has a larger limiting surface than the head 122, and the limiting effect is better.
  • the force of the rivet portion 123 is maximum at this time.
  • the volume and/or diameter of the riveting part 123 in this application is set to be larger than the head 122, which can make the riveting part 123 less likely to break under greater pressure.
  • the riveting part 123 is riveted. The quality requirements are also lower, which is more conducive to reducing riveting equipment and processing costs.
  • the hardness of the rotor rivet 12 satisfies: HRB50-HRB200, for example, the hardness of the rotor rivet 12 is HRB70, HRB70150. Setting the hardness of the rotor rivet 12 within the above range not only prevents the hardness from being too small, but also ensures the riveting effect of the rotor rivet 12 on the rotor assembly 1, improves the riveting quality, and prevents the problem of serious deformation of the head 122 during the riveting process; In addition, excessive hardness can be avoided, which is conducive to reducing the riveting time of the rotor rivet 12 during the riveting process and improving the riveting efficiency.
  • This application also proposes a permanent magnet synchronous motor.
  • the permanent magnet synchronous motor includes a stator assembly and a rotor assembly 1, wherein the rotor assembly 1 is rotatable relative to the stator assembly, and the rotor assembly 1 is the rotor assembly 1 described in any of the above embodiments.
  • the stator assembly includes a stator core and windings.
  • the rotor assembly 1 is disposed inside the stator core, and the rotor assembly 1 can rotate within the stator core.
  • this permanent magnet synchronous motor by arranging the rotor assembly 1 of the above embodiment, uses the first hole section 1131 and the second hole section 1132 of different hole diameters to achieve respective cooperation with the rod portion 121 and the riveting portion 123 of the rotor rivet 12 , which is conducive to increasing the riveting depth and improving the stability of the riveting, and can ensure that the structure of the riveting part 123 is effectively supported by the outer peripheral wall of the second hole section 1132, preventing the riveting part 123 from breaking relative to the rod part 121, and improving the rotor
  • the structural safety of the rivets 12 improves the reliability of the rotor assembly 1 and ensures the working stability of the permanent magnet synchronous motor.
  • This application also proposes an electric compressor 100.
  • the electric compressor 100 includes a compression component 3 and a driving component, wherein the driving component drives the compression component 3 to perform compression work, and the driving component includes the permanent magnet of the above embodiment.
  • the magnetic synchronous motor, the compression component 3 and the driving component are all located in the casing component of the electric compressor 100.
  • the casing component includes a high-pressure casing 41, a low-pressure casing 42 and is installed between the high-pressure casing 41 and the low-pressure casing 42. Bracket 43.
  • the low-pressure housing 42 is installed on the left side of the bracket 43 and defines a low-pressure chamber 421 for driving components with the bracket 43.
  • the low-pressure housing 42 is provided with a refrigerant inlet 422, and the high-pressure housing 41 is installed on the bracket.
  • the right side of 43 and the bracket 43 define a high-pressure chamber 411 for installing the compression component 3.
  • the high-pressure housing 41 is provided with a refrigerant discharge port 412.
  • a cover plate 44 is connected to the side of the low-voltage housing 42 away from the high-voltage housing 41.
  • An installation space is defined between the cover plate 44 and the low-voltage housing 42, and the electronic control component 5 is disposed in the installation space. , the electronic control component 5 is used to control the operating status of the permanent magnet synchronous motor.
  • the electric compressor 100 is equipped with the permanent magnet synchronous motor of the above embodiment, so that the electric compressor 100 can have a stable working state, ensuring that the driving component can accurately and reliably drive the compression component 3 to operate, and achieving stable high-pressure refrigerant supply. output.
  • This application also proposes an air conditioning system 200.
  • the air conditioning system 200 is provided with the electric compressor 100 of the above embodiment.
  • the electric compressor 100 can make the heat exchange function of the air conditioning system 200 more stable, and help ensure that the air conditioning system 200 can accurately and timely adjust the temperature state in the space.
  • This application also proposes a vehicle 1000 .
  • the vehicle 1000 includes a vehicle body 300 and an air conditioning system 200 mounted on the vehicle body.
  • the vehicle's air conditioning system 200 is the air conditioning system 200 in the above embodiment, and by setting the above
  • the air-conditioning system 200 performs airflow heat exchange for the internal space of the vehicle body 300, so that the temperature of the space within the vehicle body 300 can accurately meet the user's temperature requirements and improve the user's riding experience.
  • a rotor assembly 1 includes: a rotor body 11 and a rotor rivet 12.
  • the rotor assembly 1 is used to be installed and matched with the stator assembly, so that when the permanent magnet synchronous motor is energized and running, the rotor assembly 1 can rotate relative to the stator assembly to output driving force, perform air compression or perform other types of driving functions.
  • the rotor body 11 includes a rotor core 111, an end plate 112 and a balance weight 113.
  • the rotor core 111 is embedded with permanent magnets. There are magnet slots, and the permanent magnets can be installed in the magnet slots to achieve installation and fixation with the rotor core 111.
  • the rotor core 111 is installed in the stator assembly and sleeved outside the drive shaft 2 of the electric compressor 100. In this way, when the electric compressor 100 is running, the windings of the stator assembly are energized and generate a magnetic field that acts on the permanent magnet.
  • the magnet drives the rotor core 111 to rotate, thereby driving the drive shaft 2 to output driving force.
  • the rotor core 111 is a laminated structure of silicon steel sheets, and rivet points b need to be provided on the core to perform form-locking between the layers.
  • the locking positions are evenly distributed in the circumferential direction of the rotor core 111, such as located in an area close to the middle part in the radial direction of the rotor.
  • the area enclosed by the dotted line is the distribution area of rivet point b.
  • the number of riveting points b can be set to 4 or 8. Due to the existence of the gap between the rivet points b, 2 "rivet points b" cannot completely fix the position on the plane. At least 3 are needed, so the optimal number is 4.
  • the final setting of rivet point b is as shown in Figure 18.
  • End plates 112 are respectively provided at both axial ends of the rotor core 111 , that is, there are two end plates 112 , and the two end plates 112 are respectively provided at both ends of the rotor core 111 to contact the end surfaces of the rotor core 111 . combination, wherein a balance weight 113 is provided on the side of at least one end plate 112 away from the rotor core 111 . As shown in Figure 11, a balance weight 113 can be provided correspondingly to one end plate 112, or as shown in Figure 13, a balance weight 113 can also be provided on the opposite sides of the two end plates 112. The number of the balance weights 113 can be Flexibly set according to actual needs.
  • the rotor rivets 12 are inserted through the rotor body 11 along the axial direction to fix the rotor body 11 as a whole.
  • the rotor core 111 , the end plate 112 and the balance weight 113 are all provided with hollow rivet holes a so that the rotor rivets 12 can penetrate the rotor core 111 and the end plate 112 at the same time. and balance weight 113, thereby connecting various parts of the rotor body 11 into a whole, ensuring that the rotor core 111, end plate 112 and balance mass 113 are relatively fixed in the axial direction of the rotor body 11, and preventing the rotor core 111 from rotating.
  • the end plate 112, the balance weight 113 and the rotor core 111 are relatively separated, thereby improving the structural stability of the rotor body 11.
  • the rotor rivet 12 includes a stem portion 121 , a head portion 122 and a riveting portion 123 .
  • the head portion 122 and the riveting portion 123 are located at both ends of the stem portion 121 in the length direction.
  • the head 122 is connected to the upper end of the rod 121
  • the riveting part 123 is connected to the lower end of the rod 121.
  • the rotor rivet 12 includes the head 122 and the rod 121 when initially formed.
  • the riveting part 123 is processed through a riveting process, so that the head 122 and the riveting part 123 play a position limiting role at both ends of the rotor body 11, thereby achieving the purpose of tightening the rotor body.
  • the axial limiting function of each component of 11. Therefore, the rotor rivet 12 is provided to penetrate the rotor body 11, so that each structural member of the rotor body 11 can be fixedly installed between the head 122 and the riveting portion 123 of the rotor rivet 12, preventing the rotor body 11, the end plate 112 and the balance.
  • the blocks 113 are relatively separated along the axial direction of the rotor body 11 .
  • the riveted part 123 is a non-porous solid structure, that is, the riveted part 123 in this application has no hollow area, so that the overall structural strength of the riveted part 123 is greater, and problems such as twisting and deformation in the hollow area of the riveted part 123 are avoided. , improve the structural stability of the rotor rivet 12 and ensure the riveting quality.
  • the tensile strength ⁇ of the rotor rivet 12 0.2 ⁇ M ⁇ r ⁇ (n/D) 2 /225 ⁇ 0.7 ⁇
  • r is the distance between the central axis of the rod 121 and the central axis of the rotor core 111 distance
  • M is the mass of the balance weight 113
  • n is the maximum rotation speed of the rotor assembly 1
  • D is the diameter of the rod portion 121.
  • M ⁇ r ⁇ (n/D) 2 /225 is the shear stress experienced by the rotor rivet 12 after being installed on the rotor body 11, and it can be determined by setting the shear stress and the relationship between the rotor rivet 12 and the rotor rivet 12.
  • the relationship between the tensile strengths can control the shear stress between 0.2 times and 0.7 of the tensile strength, such as setting it to 0.4 times, or setting it to 0.6 times, so that the rotor rivets 12 are in each position of the rotor body 11 After the structural parts are inserted, even if the rotor assembly 1 maintains a high speed during the operation of the electric compressor 100, the rotor rivets 12 can still maintain a good structural condition, that is, the problem of structural breakage of the rotor rivet 12 is not easy to occur, and meets the requirements of use. need.
  • the layout performance of the rotor assembly 1 is greatly optimized, and the rotor is ensured
  • the structural strength of the rivets 12 during use can well avoid the problem that the rotor rivets 12 are easy to break, and makes the structure of the rotor assembly 1 more compact and reliable, ensuring the quality of riveting.
  • the rotor assembly 1 optimizes the relationship between the tensile strength of each structural component and the rotor rivet 12 to ensure that after the rotor rivet 12 is penetrated into the rotor core 111, the rotor rivet 12 and the rotor core 111 As well as the riveting quality of the balance plate, it can stably connect various components of the rotor body 11, so that when the cooling output demand of the electric compressor 100 is large and the rotor core 111 rotates at high speed, the riveting portion 123 can still Maintaining a good structural condition ensures that the electric compressor 100 has stable and large cooling capacity output, and improves the working stability of the electric compressor 100 .
  • the mass of the heavier one of the two balance masses 113 is M, that is, 0.2 ⁇ M ⁇ r ⁇ (n/D) 2 /225 ⁇ 0.7 ⁇ where M is the mass of the heavier one of the two balance masses 113 . Therefore, the structural strength of the rotor rivet 12 during use can be better ensured, and the problem that the rotor rivet 12 is easily broken can be better avoided.
  • the number of magnetic poles 114 of the rotor body 11 is A
  • the number of rotor rivets 12 is B, where B ⁇ A. That is, the number of rotor rivets 12 is less than or equal to the number of magnetic poles 114 of the rotor body 11 . For example, if the number of magnetic poles 114 is set to 8, the number of rotor rivets 12 is 8, 6 or 4.
  • the number of the rotor rivets 12 can be minimized while ensuring the riveting quality, reducing the installation cost of the rotor rivets 12 and reducing the material. cost, and reduce processing technology costs.
  • the number of rotor rivets 12 cannot be set too small, such as one, to ensure that the rotor assembly 1 can be effectively limited and fixed by the rotor rivets 12 at multiple different positions in the circumferential direction.
  • B ⁇ A-2 that is, the number of rotor rivets 12 is less than or equal to the number of magnetic poles 114 of the rotor body 11 -2.
  • the number of magnetic poles 114 is set to 8
  • the number of rotor rivets 12 is 6 or 4. Therefore, after the rotor rivets 12 and the rotor body 11 are matched, the number of the rotor rivets 12 can not only ensure the riveting quality, but also help reduce the installation cost of the rotor rivets 12 .
  • the rotor rivet 12 is disposed between two adjacent magnetic poles 114 of the rotor body 11 so that the arrangement of the rotor rivet 12 will not affect the magnetic poles 114 of the rotor body 11 and improve the rationality of the structural arrangement. sex.
  • the plurality of rotor rivets 12 are spaced apart along the circumferential direction of the rotor core 111 .
  • the number of magnetic poles 114 of the rotor body 11 is set to eight, and the number of rotor rivets 12 is set to four.
  • the number of rotor rivets 12 is smaller than the number of magnetic poles 114 of the rotor body 11 , and in practice When arranged, the eight magnetic poles 114 can be evenly spaced along the circumferential direction of the rotor body 11, and at the same time, the four rotor rivets 12 can also be evenly spaced apart in the circumferential direction of the rotor body 11, that is, two adjacent rotors The circumferential angle between the rivets 12 is 90°. This allows the installation forces of the four rotor rivets 12 on the various components of the rotor body 11 to be balanced in the circumferential direction and avoids excessively small or localized connection forces at local locations. The problem of excessive connection force.
  • the four rotor rivets 12 are evenly spaced and intersected between the eight magnetic poles 114, and the magnet slots of the rotor core 111 are approximately distributed in a "V" shape.
  • the magnetic poles of the rotor body 11 can be 114 are evenly distributed in the circumferential direction, and the number of rotor rivets 12 is also set relatively evenly to balance the driving force of the rotor body 11 at various positions in the circumferential direction and balance the riveting effect.
  • each rotor rivet 12 is located on the same axial side of the rotor core 111 . That is to say, when the plurality of rotor rivets 12 are connected and matched with the rotor body 11 , the plurality of rotor rivets 12 can be removed from the rotor.
  • the core 111 is installed on the same side in the axial direction, so that the heads 122 of the plurality of rotor rivets 12 are located on the first side of the rotor core 111 , and the riveting portions 123 of the plurality of rotor rivets 12 are located on the rotor core 111 the second side. As shown in FIG. 11 , the head 122 of each rotor rivet 12 is located on the left end surface of the rotor core 111 , and the riveting portion 123 is located on the right end surface of the rotor core 111 .
  • the outer radius of the rotor core 111 is R, 0.5 ⁇ r/R ⁇ 0.9, and r is the center axis of the rod 121 and the center axis of the rotor core 111.
  • the distance between them that is, the ratio of the distance between the central axis of the rod portion 121 and the central axis of the rotor core 111 to the outer radius of the rotor core 111 is greater than 0.5 and less than 0.9, such as set to 0.6, 0.7 or 0.8.
  • the balance mass 113 and The distance between the fixed bearing positions of the compressor is limited.
  • the height of the balance weight 113 exceeds 12 mm, the axial length of the compressor needs to be increased, and the corresponding volume and weight increase accordingly.
  • the ratio of r/R is limited to the range of 0.6 to 0.9, which can not only ensure that the height of the balance mass 113 is small enough, but also ensure that the balance mass 113 has a large enough radial width and enough space.
  • the riveted part 123 is placed after being riveted.
  • the position of the rotor rivet 12 can be set between the magnetic poles 114 and circumferentially spaced from the position of the rivet point b.
  • the number of rotor rivets 12 can not only meet the assembly requirements of the rotor assembly 1, but also be arranged symmetrically, and the degree of symmetry of the entire rotor magnetic circuit will also be improved.
  • the diameter D of the rod portion 121 ranges from 3 mm to 6 mm, for example, the diameter of the rod portion 121 is 4 mm or 5 mm.
  • the rod part 121 is used to cooperate with the rivet hole a, and the gap between the rod part 121 and the inner wall of the rivet hole a is 0.1 mm to 0.2 mm. That is, the aperture of the rivet hole a increases with the diameter of the rod part. 121 changes in diameter so that the two can be installed and matched within a reasonable fit clearance range.
  • the rivet hole a when the diameter of the rivet hole a changes, the direction of the magnetic field lines, reluctance and inductance of the motor's magnetic circuit will change accordingly, which is reflected in the motor control, which is the value of the vertical and horizontal axis inductance.
  • the ratio of r/R when the ratio of r/R is close to 0.7, the rivet hole a is located in the middle of the two magnetic poles 114.
  • the material of the riveting pin can be No. 10 cold heading steel or similar grades, and the magnetic permeability is lower than silicon steel or the magnetic resistance of air. The conductivity is similar. At this time, the reluctance in the direction of the rotor's quadrature axis magnetic circuit increases.
  • the value of the quadrature axis inductance will decrease, and the value of the direct axis inductance will not change much. Therefore, the difference in the quadrature axis inductance will increase with the riveting pin. The variation in diameter is also reduced.
  • At least one balance weight 113 is a third balance weight, that is, the balance weight 113 of the rotor body 11 in this application can be set to one as shown in Figure 11, or can also be set to two as shown in Figure 13. indivual.
  • the balance weight 113 can be used as the third balance weight.
  • one of the balance weights 113 or both balance blocks 113 can be used as the third balance weight. Balance block.
  • a riveting portion 123 is provided on the third balance weight. That is, after the rotor rivet 12 is inserted into the rotor body 11, one end of the rod portion 121 away from the head 122 extends to an end of the third balance weight away from the end plate 112. side, at this time, the end of the rod part 121 can be riveted by a riveting head, so that the end of the rod part 121 is processed into a riveted part 123, and the riveted part 123 is limited and pressed against the surface of the third balance weight. , thereby achieving the position-limiting fixation of the third balance weight, the end plate 112 and the rotor core 111 .
  • the diameter of the rod part 121 is D
  • the maximum diameter of the riveted part 123 is D0, where 1.2D ⁇ D0 ⁇ 2D, that is, the maximum diameter of the riveted part 123 is greater than 1.2 times the diameter of the rod part 121 and less than 2 times the diameter of the rod 121, for example, D0 is set to 1.4 D, 1.6 D or 1.7 D.
  • the riveting part 123 can have a larger matching depth and matching area with the second hole section, improving the riveting stability and ensuring the rotor rivet 12 riveting quality; and the radial size of the riveted part 123 will not be too large, and the riveted part 123 will not protrude too much outside the second hole section, saving material and preventing the riveted part 123 from protruding from the rotor iron after riveting.
  • the outer radius of the core 111 creates other quality problems and improves the rationality of the structural design.
  • the arrangement of the riveting portion 123 can take into account the effects of riveting quality and material saving.
  • the radial width W of the third balance mass is greater than 2D, that is, the radial width of the third balance mass is greater than twice the diameter of the rod portion 121 . Therefore, in the third balance When the block is matched with the rod part 121, a pin hole needs to be provided in the third balance weight, and the gap between the rod part 121 and the inner wall of the rivet hole a is 0.1 mm to 0.2 mm. Therefore, the radial width of the third balance weight Setting it within the above range can prevent the pin hole from being too large in size on the third balance weight, thereby affecting the structural strength of the third balance weight, and ensuring the structural stability of the third balance weight.
  • the structural state of the rotor rivet 12 and the third balance mass will not have an excessive impact during the riveting forming process of the rivet portion 123, that is, it will not cause
  • the third balance weight had an obvious structural fracture problem.
  • the thickness of the end plate 112 sandwiched between the third balance weight and the rotor core 111 is greater than or equal to 0.8 mm. That is, in actual setting, the thickness of the end plate 112 located between the third balance weight and the rotor core 111 is set to at least 0.8 mm, such as 1 mm, or 1.1 mm.
  • the thickness of the end plate 112 can effectively ensure the structural strength of the end plate 112 itself, avoid the problem of serious deformation of the end plate 112 during the riveting process of the rotor rivet 12, and ensure The riveting quality is good, and it is beneficial to reduce the natural frequency dispersion of the rotor assembly 1.
  • the thickness of the end plate 112 should not be set too large, and the thickness of the end plate 112 needs to be set within a reasonable cost range.
  • the volume of the riveting part 123 is not less than the volume of the head 122. In this way, the structural strength and torsion resistance of the riveting part 123 are greater, which is not only conducive to the realization of riveting molding, but also makes the riveting part 123 to the third When the three balance weights are riveted, it is less likely that the riveted portion 123 will break or the structure will deform, thereby improving the structural safety of the rotor rivet 12 .
  • the riveting portion 123 when the riveting portion 123 is pressed against the side of the third balance weight to limit the position, the riveting portion 123 can play a good limiting role, and the problem of the riveting portion 123 detaching from the third balance weight will not occur. Improve the reliability of riveting limit.
  • the diameter of the riveting portion 123 is not smaller than the diameter of the head 122 , that is, the cross-sectional area of the riveting portion 123 is greater than the cross-sectional area of the head 122 .
  • the anti-twisting ability of the riveted part 123 can also be increased, that is, the anti-torsion ability can be enhanced to prevent the problem of misalignment and fracture of the riveted part 123 relative to the rod part 121 during the rotation of the rotor assembly 1, and improve the safety of the structural design. sex.
  • the diameter of the riveting part 123 is larger than the diameter of the head 122, so that the riveting part 123 has a larger limiting surface than the head 122, and the limiting effect is better.
  • the force of the rivet portion 123 is maximum at this time.
  • the volume and/or diameter of the riveting part 123 in this application is set to be larger than the head 122, which can make the riveting part 123 less likely to break under greater pressure.
  • the riveting part 123 is riveted. The quality requirements are also lower, which is more conducive to reducing riveting equipment and processing costs.
  • the hardness of the rotor rivet 12 satisfies: HRB50-HRB200, for example, the hardness of the rotor rivet 12 is HRB70, HRB70150. Setting the hardness of the rotor rivet 12 within the above range not only prevents the hardness from being too small, but also ensures the riveting effect of the rotor rivet 12 on the rotor assembly 1, improves the riveting quality, and prevents the problem of serious deformation of the head 122 during the riveting process; In addition, excessive hardness can be avoided, which is conducive to reducing the riveting time of the rotor rivet 12 during the riveting process and improving the riveting efficiency.
  • This application also proposes a permanent magnet synchronous motor.
  • the permanent magnet synchronous motor includes a stator assembly and a rotor assembly 1, wherein the rotor assembly 1 is rotatable relative to the stator assembly, and the rotor assembly 1 is the rotor assembly 1 described in any of the above embodiments.
  • the stator assembly includes a stator core and windings.
  • the rotor assembly 1 is disposed inside the stator core, and the rotor assembly 1 can rotate within the stator core.
  • this permanent magnet synchronous motor greatly optimizes the layout performance of the rotor assembly 1 and ensures that the rotor rivets 12 are
  • the structural strength in use can well avoid the problem that the rotor rivet 12 is easy to break, and makes the structure of the rotor assembly 1 more compact and reliable, ensuring the riveting quality and improving the operating stability of the permanent magnet synchronous motor.
  • This application also proposes an electric compressor 100.
  • the electric compressor 100 includes a compression component 3 and a driving component, wherein the driving component drives the compression component 3 to perform compression work, and the driving component includes the permanent magnet of the above embodiment.
  • the magnetic synchronous motor, the compression component 3 and the driving component are all located in the casing component of the electric compressor 100.
  • the casing component includes a high-pressure casing 41, a low-pressure casing 42 and is installed between the high-pressure casing 41 and the low-pressure casing 42. Bracket 43.
  • the low-pressure housing 42 is installed on the left side of the bracket 43 and defines a low-pressure chamber 421 for driving components with the bracket 43.
  • the low-pressure housing 42 is provided with a refrigerant inlet 422, and the high-pressure housing 41 is installed on the bracket.
  • the right side of 43 and the bracket 43 define a high-pressure chamber 411 for installing the compression component 3.
  • the high-pressure housing 41 is provided with a refrigerant discharge port 412.
  • a cover plate 44 is connected to the side of the low-voltage housing 42 away from the high-voltage housing 41.
  • An installation space is defined between the cover plate 44 and the low-voltage housing 42, and the electronic control component 5 is provided in the installation space. , the electronic control component 5 is used to control the operating status of the permanent magnet synchronous motor.
  • the electric compressor 100 is equipped with the permanent magnet synchronous motor of the above embodiment, so that the electric compressor 100 can have a stable working state, ensuring that the driving component can accurately and reliably drive the compression component 3 to operate, and achieving stable high-pressure refrigerant supply. output.
  • This application also proposes an air conditioning system 200.
  • the air conditioning system 200 is provided with the electric compressor 100 of the above embodiment.
  • the electric compressor 100 can make the heat exchange function of the air conditioning system 200 more stable, and help ensure that the air conditioning system 200 can accurately and timely adjust the temperature state in the space.
  • This application also proposes a vehicle 1000 .
  • the vehicle 1000 includes a vehicle body 300 and an air conditioning system 200 mounted on the vehicle body 300.
  • the air conditioning system 200 of the vehicle 1000 is the air conditioning system 200 in the above embodiment, and through The above-mentioned air conditioning system 200 is configured to perform air flow heat exchange for the internal space of the car body 300, so that the temperature of the space within the car body 300 can accurately meet the user's temperature requirements and improve the user's riding experience.
  • the vehicle 1000 described in this application may be a new energy vehicle.
  • the new energy vehicle may be a pure electric vehicle with a motor as the main driving force.
  • the new energy vehicle may It can also be a hybrid vehicle using an internal combustion engine and an electric motor as main driving forces simultaneously.
  • the internal combustion engine and motor that provide driving power for new energy vehicles mentioned in the above embodiments can use gasoline, diesel, hydrogen, etc. as fuel, and the way to provide electric energy to the motor can use power batteries, hydrogen fuel cells, etc., There are no special restrictions here. It should be noted that this is only an illustrative description of structures such as new energy vehicles and does not limit the scope of protection of the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this application, “plurality” means two or more, unless otherwise explicitly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • connection connection
  • fixing and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the present application. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种转子组件、永磁同步电机、电动压缩机、空调系统和车辆,转子组件(1)包括:转子本体(11)和转子铆钉(12),转子本体(11)包括转子铁芯(111),转子铁芯(111)的两端分别设有端板(112),至少一个端板(112)设有平衡块(113);转子铆钉(12)将转子本体(11)固定为一体,转子铆钉(12)包括杆部(121)和位于杆部(121)两端的头部(122)和铆接部(123),至少一个平衡块(113)为具有铆钉孔(a)的第一平衡块,铆钉孔(a)包括用于与杆部(121)配合的第一孔段(1131)和用于与铆接部(123)配合的第二孔段(1132)。

Description

转子组件、永磁同步电机、电动压缩机、空调系统和车辆
相关申请的交叉引用
本申请基于申请号为202210615605.6、申请日为2022-05-31的中国专利申请;申请号为202221359939.3、申请日为2022-05-31的中国专利申请;申请号为202210629322.7、申请日为2022-05-31的中国专利申请以及申请号为202221359709.7、申请日为2022-05-31的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电机设备制造技术领域,尤其是涉及一种转子组件、永磁同步电机、电动压缩机、空调系统和车辆。
背景技术
众所周知,永磁同步电机结构简单、效率高、电机功率密度高,被广泛应用于电动压缩机领域。当电动压缩机安装在车辆上,尤其是四轮驱动或者混合动力车辆上,对电动压缩机的抗振动冲击有比较高的要求,通常会有10g-50g,其中,g为标准的重力加速度。电动压缩机在工作时,转子部分温度会有较大范围的变化,由于温度的变化,会导致转子各个零部件会膨胀或者收缩,由于平衡块,端板、铆接销、转子铁芯是采用不同的材料,它们的热膨胀系数不一致,这样在常温下形成的紧固结构,在极限温度下会有微小的间隙。当间隙产生时,在高强度振动的冲击下,以及残余应力的作用下,铆接销翻边部分会失效,进而断裂,造成转子破坏,压缩机故障,存在改进的空间。
公开内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的第一个目的在于提出一种转子组件,该转子组件通过优化转子铆钉与平衡块之间的配合结构,改善铆接工艺,极大地提升了转子组件的结构稳定性,增强电动压缩机的可靠性。
根据本申请实施例的转子组件,包括:转子本体,所述转子本体包括转子铁芯、端板和平衡块,所述转子铁芯内嵌设有永磁体,所述转子铁芯的轴向两端分别设有所述端板,至少一个所述端板的背离所述转子铁芯的一侧设有所述平衡块;转子铆钉,所述转子铆钉沿轴向穿设于所述转子本体,以将所述转子本体固定为一体,所述转子铆钉包括杆部和位于所述杆部长度两端的头部和铆接部;其中,至少一个所述平衡块为第一平衡块,所述第一平衡块上具有铆钉孔,所述铆钉孔包括用于与所述杆部配合的第一孔段和用于与所述铆接部配合的第二孔段,所述第二孔段相对于所述第一孔段为扩孔形态,所述第二孔段内填充有所述铆接部的至少部分。
根据本申请一些实施例的转子组件,所述第二孔段的横截面积沿着远离所述第一孔段的方向逐渐增大。
根据本申请一些实施例的转子组件,所述铆接部填满所述第二孔段。
根据本申请一些实施例的转子组件,所述铆接部包括位于所述第二孔段内的沉入部,以及位于所述第二孔段外以凸出于所述第一平衡块表面的外露部。
根据本申请一些实施例的转子组件,所述杆部的直径为D,所述铆接部的最大直径为D0,其中,1.2D≤D0≤2D。
根据本申请一些实施例的转子组件,所述转子铆钉的硬度满足:HRB50-HRB200。
根据本申请一些实施例的转子组件,所述铆接部为无孔实心结构,且所述转子铆钉的抗拉强度τ满足;0.2·τ≤M·r·π·(n/D) 2/225≤0.7·τ,r为所述杆部的中心轴线与所述转子铁芯的中心轴线之间的距离,M为所述平衡块的质量,n为所述转子组件的最高转速,D为所述杆部的直径。
根据本申请一些实施例的转子组件,所述转子本体的磁极数为A,所述转子铆钉的数量为B,B≤A-2。
根据本申请一些实施例的转子组件,所述转子铆钉设于所述转子本体的相邻两个磁极之间的位置。
根据本申请一些实施例的转子组件,所述转子铆钉为多个且沿所述转子铁芯的周向间隔开设置,各个所述转子铆钉的所述铆接部均位于所述转子铁芯的轴向同侧。
根据本申请一些实施例的转子组件,所述转子铁芯的外半径为R,0.5<r/R<0.9。
根据本申请一些实施例的转子组件,所述杆部的直径D的取值范围为3mm-6mm。
根据本申请一些实施例的转子组件,当所述转子本体的两侧均具有所述平衡块且两个所述平衡块的质量不同时,两个所述平衡块中较重的一个的质量为M。
根据本申请一些实施例的转子组件,至少一个所述平衡块为第三平衡块,所述第三平衡块上设有所述铆接部,所述第三平衡块的径向宽度W大于2D。
根据本申请一些实施例的转子组件,夹设在设有所述铆接部的所述平衡块与所述转子铁芯之间的所述端板的厚度大于等于0.8mm。
根据本申请一些实施例的转子组件,所述铆接部的体积不小于所述头部的体积,和/或,所述铆接部的直径不小于所述头部的直径。
本申请还提出了一种永磁同步电机。
根据本申请实施例的永磁同步电机,包括定子组件和转子组件,所述转子组件相对于所述定子组件可转动,且所述转子组件为上述任一种实施例所述的转子组件。
本申请又提出了一种电动压缩机。
根据本申请实施例的电动压缩机,包括压缩部件和驱动部件,所述驱动部件驱动所述压缩部件执行压缩工作,所述驱动部件包括上述实施例所述的永磁同步电机。
本申请又提出了一种空调系统。
根据本申请实施例的空调系统,包括上述实施例的电动压缩机。
本申请又提出了一种车辆。
根据本申请实施例的车辆,包括车体和搭载于所述车体的空调系统,所述空调系统为上述实施例所述的空调系统。
所述车辆、所述空调系统、所述电动压缩机、所述永磁同步电机和上述的转子组件相对于现有技术所具有的优势相同,在此不再赘述。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
图1是本申请实施例的转子组件的结构示意图;
图2是本申请实施例的转子组件的俯视图;
图3是图2中沿A-A处的截面图;
图4是图3中B处的放大图;
图5是本申请一些实施例的转子铆钉在铆接前的结构示意图;
图6是本申请一种实施例的转子铆钉在铆接后的结构示意图;
图7是本申请一种实施例的转子铆钉在铆接后的结构示意图;
图8是本申请一种实施例的转子铆钉在铆接后的结构示意图(另一种状态);
图9是本申请实施例的电动压缩机的结构示意图;
图10是根据本申请一些实施例的车辆的结构示意图;
图11是根据本申请一些实施例的转子组件的剖视图;
图12是根据本申请一些实施例的转子铁芯的结构示意图;
图13是根据本申请一些实施例的转子组件的剖视图;
图14是根据本申请一些实施例的转子铆钉在加工前的示意图;
图15是根据本申请一些实施例的转子铆钉在加工后的示意图;
图16是根据本申请一些实施例的平衡块的俯视图;
图17是根据本申请一些实施例的端板的俯视图;
图18是根据本申请一些实施例的转子铁芯的铆接点的最佳位置示意图;
图19是根据本申请一些实施例的平衡块和转子铁芯的位置示意图(在r/R小于0.5时);
图20是根据本申请一些实施例的平衡块和转子铁芯的位置示意图(在r/R接近0.7时);
图21是根据本申请一些实施例的平衡块和转子铁芯的位置示意图(在r/R大于0.7时);
图22是根据本申请一些实施例的平衡块的高度和截面积随r/R比值的变化示意图;
图23是根据本申请一些实施例的转子组件的直轴电感Ld和交轴电感Lq随着铆接销直径的变化;
图24是根据本申请一些实施例的转子组件的磁力线分布示意图(铆钉孔径为4.2mm);
图25是根据本申请一些实施例的转子组件的磁力线分布示意图(铆钉孔径为5.2mm);
图26是根据本申请一些实施例的转子组件的磁力线分布示意图(铆钉孔径为6mm)。
附图标记:
车辆1000,电动压缩机100,转子组件1,转子本体11,转子铁芯111,端板112,平衡块113,第一孔段1131,第二孔段1132,磁极114,铆钉孔a,铆扣点b,转子铆钉12,杆部121,头部122,铆接部123,沉入部1231,外露部1232,驱动轴2,压缩部件3,高压壳体41,高压腔411,冷媒排出口412,低压壳体42,低压腔421,冷媒进入口422,支架43,盖板44,电控部件5,空调系统200,车体300。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面,参考附图,描述根据本申请一些实施例的转子组件1。
如图1和图9所示,根据本申请实施例的转子组件1,包括:转子本体11和转子铆钉12。其中,转子组件1用于与定子组件安装配合,以在永磁同步电机通电运行时,转子组件1可相对于定子组件转动,进而输出驱动力,进行空气压缩或执行其它类型的驱动作用。
其中,如图1-图3所示,转子本体11包括转子铁芯111、端板112和平衡块113,转子铁芯111内嵌设有永磁体,如在转子铁芯111内设有磁铁槽,可将永磁体安装于磁铁槽内实现与转子铁芯111的安装固定。且在实际安装时,转子铁芯111安装于定子组件内且套设于电动压缩机100的驱动轴2外,这样,在电动压缩机100运行时,定子组件的绕组通电且产生磁场作用于永磁体,以驱动转子铁芯111转动,进而带动驱动轴2输出驱动力。
转子铁芯111的轴向两端分别设有端板112,即端板112设置为两个,且两个端板112分别设于转子铁芯111的两端以与转子铁芯111的端面贴合,其中,至少一个端板112的背离转子铁芯111的一侧设有平衡块113。即可如图3所示在一个端板112对应设置平衡块113,或者也可在两个端板112的相对背离的侧面均设置有平衡块113,平衡块113的数量可根据实际的需求进行灵活地设置。
转子铆钉12沿轴向穿设于转子本体11,以将转子本体11固定为一体。需要说明的是,转子铁芯111、端板112和平衡块113均设置有中空的孔结构,以使转子铆钉12同时贯穿转子铁芯111、端板112和平衡块113,进而使得转子本体11的各个部分连接为一个整体,保证转子铁芯111、端板112和平衡块113在转子本体11的轴向上相对固定,避免在转子铁芯111转动的过程中,出现端板112、平衡块113与转子铁芯111相对分离的情况,提高转子本体11的结构稳定性。
其中,如图6-图8所示,转子铆钉12包括杆部121、头部122和铆接部123,头部122和铆接部123位于杆部121的长度方向的两端。如图6-图8所示,头部122连接于杆部121的上端,铆接部123连接于杆部121的下端,且需要说明的是,转子铆钉12在初成型时包括头部122和杆部121,且在将转子铆钉12铆接于转子本体11后,通过铆接工艺加工出铆接部123,以使得头部122和铆接部123在转子本体11的两端起到限位的作用,进而实现对转子本体11的各个部件的轴向限位作用。
至少一个平衡块113为第一平衡块,在第一平衡块上具有铆钉孔a,铆钉孔a包括第一孔段1131和第二孔段1132,其中,第一孔段1131用于与杆部121配合,第二孔段1132用于与铆接部123配合,且第二孔段1132相对于第一孔段1131为扩孔形态,第二孔段1132内填充有铆接部123的至少部分。
具体而言,本申请中的转子本体11的平衡块113可如图3所示设置为一个,或者也可设置为两个。其中,在平衡块113设置为一个时,该平衡块113可为第一平衡块,在平衡块113设置为两个时,可将其中的一个平衡块113或两个平衡块113均设置为第一平衡块。
例如,在平衡块113设置为两个且位于转子本体11的轴向两侧时,如果全部转子铆钉12的铆接方向一样,可以使得全部铆接部123位于转子本体11的轴向同一侧,全部头部122位于转子本体11的轴向另一侧,此时,可将其中设置铆接部123的轴侧的平衡块113设置为第一平衡块,而将设置头部122的轴侧的平衡块113设置为第二平衡块,第二平衡块上也可以具有铆钉孔,但是第二平衡块上的铆钉孔的形态与第一平衡块上的铆钉孔的形态可以不同。
例如,第二平衡块上的铆钉孔无需包括扩孔形态的孔段,若干转子铆钉12穿设于第二平衡块上的铆钉孔,这些转子铆钉12的局部杆段121位于第二平衡块上的铆钉孔内,这些转子铆钉12的头部122止挡在第二平衡块的外端面上。
当然,本申请不限于此,如果在平衡块113设置为两个且位于转子本体11的轴向两侧,且全部转子铆钉12的方向不一样,使得每个平衡块113上均用于铆接对应转子铆钉12的铆接部123时,两个平衡块113则可均为第一平衡块。
其中,由于第一平衡块上设置有两种结构形态的孔段,且在安装且为铆接加工时,可将杆部121穿设于第一孔段1131和第二孔段1132,进而在执行铆接工艺处理时,对杆部121的背离头部122的一端施加压力,以形成铆接部123,且使得铆接部123的至少部分位于第二孔段1132内。其中,将第二孔段1132设置为相对于第一孔段1131的扩孔形态,使得第二孔段1132的内径大于第一孔段1131的内径,进而使得铆接部123位于第二孔段1132内的部分与第二孔段1132配合时,铆接部123与第二孔段1132的配合面的直径大于第一孔段1131与杆部121的配合直径,增大铆接段与第二孔段1132之间的配合面,进而提高转子铆钉12与转子本体11的连接稳定性。其中,铆接部123与杆部121为相同的材料制成,即不需分别以不同的材料进行加工成型,利于减少加工工序,降低加工成本,且利于大规模的生产。
且将铆接部123的至少部分位于第二孔段1132内,可使得铆接部123与杆部121之间的连接部分位于第二孔段1132内,不会出现如常规设计中的铆接部完全凸出于平衡块之外,以使铆接部123的成型质量提高,尤其第二孔段1132的内周壁可对铆接部123的至少部分起到支撑加固的作用,进而更利于防止铆接部123相对于杆部121出现断裂的问题,提高铆接部123的结构质量,提升转子组件1的安装稳定性。其中,在实际铆接时,可将铆接部123的一部分位于第二孔段1132内,也可将铆接部123完全位于第二孔段1132内,结构设计灵活可选,利于调整铆接配合深度。
需要说明的是,在相关技术中,转子铆钉的铆接部多位于转子本体的端板侧,不设于平衡块上,其中,部分在平衡块上配合铆接部的,需将铆钉设计的较粗导致铆接后铆接部完全凸出于平衡块,或者存在平衡块的硬度较低已发生结构疲劳的问题,导致转子本体出现松动。而本申请中通过将第一平衡块上的铆钉孔a设置为包括第一孔段1131和第二孔段1132的形式,以与转子铆钉12的杆部121、铆接部123配合,不仅利于增大铆接深度,不易松脱,保证铆接的稳定性,且不会出现铆接部123相对于杆部121断裂的问题,利于提升转子铆钉12的结构可靠性,更不会出现铆接部123过多地凸出于第一平衡块的问题。
根据本申请实施例的转子组件1,通过设置不同孔径的第一孔段1131和第二孔段1132,以实现与转子铆钉12的杆部121和铆接部123的分别配合,利于增大铆接深度,提高铆接的稳定性,且可保证铆接部123的结构得到第二孔段1132的外周壁的有效支撑,防止出现铆接部123相对于杆部121断裂的情况,提高转子铆钉12的结构安全性,提升转子组件1的可靠性。
本申请实施例的转子组件1,通过优化转子铆钉12和平衡块113之间的配合结构,改善铆接工艺,且在转子铆钉12与平衡块113在极限温度下配合时,也不会造成转子铆钉12在铆接部123出现结构断裂的问题,提高转子铆钉12的结构稳定性,提升转子组件1以及具有其的永磁同步电机的安全性和可靠性。
此外,相关技术中,部分方案将配设于铆钉铆接部的平衡块的材料设置为较铆钉更软的材料,防止铆接过程中铆接部与平衡块的接触面位置发生疲劳凹陷、以及紧固强度下降,从而改善铆接失效的问题,但是在铆接位置使用黄铜材料等较软的材料,降低了设计自由度,增加成本;以及在另外部分方案中,在铆钉头部与平衡块之间介入比铆钉材料更硬的材料,防止铆钉头部疲劳引起凹陷,从而能够维持紧固强度,但是在铆钉头部与平衡块之间介入比铆钉材料更硬的材料,铆接工艺、以及生产工序更加复杂,存在改进的空间。而本申请实施例的转子组件1,通过采用上述技术方案,无需改变材料硬度,可以有效地避免上述一系列技术问题的产生。
在一些实施例中,如图4所示,第二孔段1132的横截面积沿着远离第一孔段1131的方向逐渐增大,如将第一孔段1131和第二孔段1132均设置为圆形孔结构,且第一孔段1131为恒定截面积的孔结构,第二孔段1132设置为变截面的孔结构,即第一孔段1131沿长度方向的各个位置处的内径的大小保持恒定,第二孔段1132沿长度方向的各个位置处的内径的大小逐渐变化。
如图4所示,第二孔段1132连接于第一孔段1131的右侧,且第一孔段1131贯通至第一平衡块的左侧端面,第二孔段1132贯通至第一平衡块的右侧端面,第二孔段1132的横截面积从左到右逐渐地增大,以在第一孔段1131的右侧形成扩口状结构。
进一步地,如图4所示,第二孔段1132的横截面积呈线性增大,即第二孔段1132构造为横置的漏斗状结构,这样,在将转子铆钉12穿设于第一孔段1131和第二孔段1132后进行,对转子铆钉12施加压力,以在杆部121的端部形成铆接部123,且铆接部123在与第二孔段1132铆接配合的过程中,铆接部123形成于第二孔段1132相适配的结构,如铆接部123也压紧为横置的漏斗结构。
由此,铆接部123和第二孔段1132具有较大的配合面,尤其相对于第一孔段1131与杆部121的配合面的横截面积更大,从而使得第二孔段1132与铆接部123的配合更加紧凑,利于提升铆接部123与第一平衡块之间的铆接效果,且在第二孔段1132的内周壁与铆接部123的支撑作用下可极大地减小铆接部123相对于杆部121断裂的风险,提高转子铆钉12的可靠性。
在一些实施例中,铆接部123填满第二孔段1132,即铆接部123沿转子铆钉12的轴向的长度大于或等于第二孔段1132沿第一平衡块的厚度方向的深度。
如二者的结构尺寸相等,可使得铆接部123完全伸至第二孔段1132内,且铆接部123的外表面与第一平衡块的外表面平齐,形成铆接部123在第二孔段1132内的嵌入式结构,这样,在电动压缩机100运行的时候,铆接部123不会凸出于第一平衡块外与第一平衡块外的结构接触发生冲击,利于提高铆接部123的安全性,同时第一平衡块的外周壁较为平整,不会造成结构上的突兀。
或者铆接部123对应的长度大于第二孔段1132的深度,如图4所示,铆接部123的左端与杆部121相连的部分位于第二孔段1132内,且铆接部123的右端部分位于第二孔段1132外。其中,需要说明的是,铆接部123凸出于第二孔段1132的部分可作为预留段,这样,在进行旋铆加工的时候,旋铆头不会接触到第一平衡块,或者预留段凸出于第二孔段1132外,以在转子组件1长期使用且铆接部123与第二孔段1132的内周壁之间出现较大缝隙时,可将转子组件1进行再次旋铆,以使预留段进一步地铆压,进而填充铆接部123与第二孔段1132之间的间隙,提高铆接的稳定性。
在一些实施例中,铆接部123包括沉入部1231和外露部1232,其中,沉入部1231位于第二孔段1132内,外露部1232位于第一平衡块的表面。其中,沉入部1231和外露部1232为转子铆钉12在旋铆过程中加工成型,如在杆部121穿设于第一孔段1131和第二孔段1132后,可对杆部121背离头部122的一端进行旋铆,以使杆部121的端部先于第二孔段1132内形成沉入部1231,且随着旋铆头的进一步地加工,使得杆部121在第一平衡块的表面形成外露部1232,且外露部1232适于压紧第一平衡块的表面。其中,如图6-图8所示,实际加工时,可将外露部1232加工为不同的形状。
由此,通过旋铆头对杆部121的一端进行加工后,可使得沉入部1231在第二孔段1132内与第二孔段1132的内周壁紧密地挤压贴合,利于提高铆接部123与第二孔段1132之间的配合度,同时,外露部1232与第一平衡块的表面也形成紧密的挤压配合结构,增大铆接部123与第一平衡块的表面之间的配合度,提高第一平衡块与铆接部123的配合稳定性。
需要说明的是,在转子铆钉12与转子本体11限位配合后,转子铆钉12在第一平衡块的一侧,不仅可通过沉入部1231与第二孔段1132的内周壁进行限位,且可通过外露部1232与第一平衡块的表面进行限位,即铆接部123与第一平衡块形成两层限位配合,进而利于提高铆接部123与第一平衡块之间的限位稳定性,提高铆接可靠性。
在一些实施例中,如图6-图8所示,杆部121的直径为D,铆接部123的最大直径为D0,其中,1.2D≤D0≤2D,即铆接部123的最大直径大于杆部121的直径的1.2倍且小于杆部121的直径的2倍,如将D0设置为1.4 D、1.6 D或者1.7 D。
其中,将铆接部123的结构尺寸与杆部121的结构尺寸设置在上述尺寸范围内,铆接部123可与第二孔段1132具有较大的配合深度和配合面积,提高铆接稳定性,保证转子铆钉12的铆接质量;且铆接部123的径向尺寸也不会过大,铆接部123不会过多地伸出至第二孔段1132外,节省材料,防止铆接后铆接部123凸出于转子铁芯111的外半径产生其它的质量问题,提高结构设计的合理性。
由此,可使得铆接部123的设置可兼顾铆接质量和节省材料的效果。
在一些实施例中,转子本体11的磁极数为A,转子铆钉12的数量为B,其中,B≤A-2。即转子铆钉12的设置数量小于或等于转子本体11的磁极数-2。如将磁极数设置为8,转子铆钉12的数量为6或者4。
由此,通过本申请中的转子铆钉12的铆接部123与第一平衡块进行连接配合后,可在保证铆接质量的前提下,最大化地减小转子铆钉12的数量,减少转子铆钉12的设置成本,降低材料成本,且降低加工工艺成本。当然,转子铆钉12的数量也不可设置的过少如设置为1个,即需保证转子组件1在周向上的多个不同位置处均可通过转子铆钉12实现有效地限位固定。
在一些实施例中,如图2所示,转子铁芯111的外半径为R,与转子铁芯111同轴且过转子铆钉12的中心轴线的圆柱面的直径为r(或者说,r为杆部的中心轴线与转子铁芯的中心轴线之间的距离),满足0.4<r/R<0.9,如r/R设置为0.6、0.7或者0.8。其中,通过合理的设置转子铁芯111上的用于穿设转子铆钉12避让孔的孔结构,可使得转子铆钉12在转子铁芯111上的位置距离转子铁芯111的外周壁较远,保持足够的安全距离。
需要说明的是,现有技术中的转子铆钉12在安装时,转子铁芯111上的用于穿设转子铆钉12的孔结构与转子铁芯111的外周壁之间的间距较小,导致转子铁芯111的外周壁在与转子铆钉12对应的位置处的结构强度较小,即在转子铁芯111长期使用且经常高速转动时,转子铆钉12会对转子铁芯111的孔结构产生较大的磨损存在转子铁芯111结构破损的问题。而在本申请中,将r/R的比值设置在上述范围内,可有效地避免出现转子铁芯111的外周壁破裂的问题,提高转子铁芯111的结构稳定性,保证铆接质量。
在一些实施例中,杆部121的直径D的取值范围为3mm-6mm,如杆部121的直径取为4mm、5mm。其中,需要说明的是,杆部121用于与铆钉孔a进行配合,且杆部121与铆钉孔a的内壁之间的间隙为0.1 mm到0.2mm,即铆钉孔a的孔径随着杆部121的直径变化而变化,以使二者在合理的配合间隙范围内安装配合。
在一些实施例中,转子铆钉12为多个,且多个转子铆钉12沿转子铁芯111的周向间隔开设置,从而使得转子铁芯111与端板112可在周向上的多个位置处通过转子铆钉12进行连接固定,从而极大地提高转子本体11的结构稳定性和可靠性。
其中,可将多个转子铆钉12在转子铁芯111的周向上的间距较为均衡,如转子铁芯111为4个,且4个转子铆钉12在转子铁芯111的周向上均匀地间隔开分布,即相邻两个转子铆钉12之间的周向夹角为90°,由此,可使得4个转子铆钉12对转子本体11的各个部件在周向上的安装作用力较为均衡,避免出现局部位置连接力过小或局部连接力过大的问题。
在一些实施例中,各个转子铆钉12的铆接部123均位于转子铁芯111的轴向同侧,也就是说,在通过多个转子铆钉12与转子本体11连接配合时,可将多个转子铆钉12从转子铁芯111的轴向的同一侧进行安装,以使多个转子铆钉12的头部122均位于转子铁芯111的第一侧,且多个转子铆钉12的铆接部123均位于转子铁芯111的第二侧。如图3所示,各个转子铆钉12的头部122均位于转子铁芯111的左侧端面,铆接部123均位于转子铁芯111的右侧端面。
其中,需要说明的是,转子铆钉12在穿设于转子铁芯111后,需进行旋铆工艺操作,由此,将多个转子铆钉12从转子铁芯111的同一侧装入,可使得操作人员在对转子铆钉12进行铆接时,将多个转子铆钉12均穿好之后,再从转子铁芯111的同一侧同时对多个转子铆钉12进行铆接操作,即在进行不同转子铆钉12的铆接操作时不需更换或调整铆接头的位置,极大地提高了铆接效率,提升转子组件1的装配效率。
在一些实施例中,第一平衡块的径向宽度W大于2D,D为杆部121的直径,即第一平衡块的径向宽度大于杆部121的直径的两倍,由此,在第一平衡块与杆部121配合时,需在第一平衡块设置销钉孔,且杆部121与铆钉孔a的内壁之间的间隙为0.1 mm到0.2mm,因此,将第一平衡块的径向宽度设置在上述范围内,可避免销钉孔在第一平衡块上的尺寸占比过大,造成对第一平衡块的结构强度的影响,保证第一平衡块的结构稳定性。
由此,在将转子铆钉12穿设于第一平衡块后,铆接部123经过旋铆成型过程中,转子铆钉12与第一平衡块的结构状态不会产生过大的影响,即不会造成第一平衡块出现明显的结构断裂的问题。
在一些实施例中,夹设在第一平衡块与转子铁芯111之间的端板112的厚度大于等于0.8mm。即在实际设置时,将位于第一平衡块与转子铁芯111之间的端板112的厚度设置为至少0.8mm,如设置为1mm,或者设置为1.1 mm。
其中,将该端板112的厚度设置为在上述范围内,可使得端板112自身的结构强度可有效保证,避免在转子铆钉12在铆接的过程中出现端板112发生严重变形的问题,保证铆接质量,且利于减小转子组件1的固有频率离散性。当然,端板112的厚度也不应当设置的过大,需在合理的成本范围内设置端板112的厚度。
在一些实施例中,夹设在第一平衡块与转子铁芯111之间的端板112的厚度大于等于0.8mm。即在实际设置时,将位于第一平衡块与转子铁芯111之间的端板112的厚度设置为至少0.8mm,如设置为1mm,或者设置为1.1mm。
其中,将该端板112的厚度设置为在上述范围内,可使得端板112自身的结构强度可有效保证,避免在转子铆钉12在铆接的过程中出现端板112发生严重变形的问题,保证铆接质量,且利于减小转子组件1的固有频率离散性。当然,端板112的厚度也不应当设置的过大,需在合理的成本范围内设置端板112的厚度。
以及在一些实施例中,铆接部123的体积不小于头部122的体积,这样,从而铆接部123的结构强度和抗扭切能力较大,不仅利于实现铆接成型,且在铆接部123对第一平衡块进行铆接时,不易出现铆接部123断裂或结构变形的问题,提升转子铆钉12的结构安全性。
这样,在将铆接部123对第一平衡块的侧面进行抵压限位时,铆接部123能够起到很好地限位作用,不会出现铆接部123从第一平衡块上脱离的问题,提高铆接限位的可靠性。
和/或,在另一些实施例中,铆接部123的直径不小于头部122的直径,即铆接部123的横截面积大于头部122的横截面积。同样地,也可增大铆接部123的抗扭切能力,即增强抗扭能力,防止在转子组件1转动的过程中出现铆接部123相对于杆部121错位断裂的问题,提高结构设计的安全性。且铆接部123的直径大于头部122的直径,可使得铆接部123相较于头部122具有更大的限位面,限位效果更佳。
需要说明的是,通过转子铆钉12穿设于转子本体11后,随着电动压缩机100的进一步地提升转速,此时铆接部123的受力最大。而本申请中的铆接部123的体积和/或直径设置为大于头部122,可使得铆接部123不易在受到较大压力的情况下发生断裂,其采用旋铆工艺时,对铆接部123铆接质量的要求也较低,更利于降低旋铆设备以及加工成本。
在一些实施例中,转子铆钉12的硬度满足:HRB50-HRB200,如转子铆钉12的硬度为HRB70、HRB70150。将转子铆钉12的硬度设置在上述范围内,不仅可避免硬度过小,保证转子铆钉12在转子组件1上的铆接效果,提高铆接质量,防止铆接过程中出现头部122发生严重变形的问题;且可避免硬度过大,利于减小转子铆钉12在铆接过程中的旋铆时间,提高铆接效率。
本申请还提出了一种永磁同步电机。
根据本申请实施例的永磁同步电机,包括定子组件和转子组件1,其中转子组件1相对于定子组件可转动,且转子组件1为上述任一种实施例所述的转子组件1。其中,定子组件包括定子铁芯和绕组,转子组件1设置于定子铁芯的内侧,且转子组件1可在定子铁芯内转动。
其中,该永磁同步电机,通过设置上述实施例的转子组件1,利用不同孔径的第一孔段1131和第二孔段1132以实现与转子铆钉12的杆部121和铆接部123的分别配合,利于增大铆接深度,提高铆接的稳定性,且可保证铆接部123的结构得到第二孔段1132的外周壁的有效支撑,防止出现铆接部123相对于杆部121断裂的情况,提高转子铆钉12的结构安全性,提升转子组件1的可靠性,保证永磁同步电机的工作稳定性。
本申请还提出了一种电动压缩机100。
根据本申请实施例的电动压缩机100,如图9所示,电动压缩机100包括压缩部件3和驱动部件,其中,驱动部件驱动压缩部件3执行压缩工作,且驱动部件包括上述实施例的永磁同步电机,压缩部件3和驱动部件均设在电动压缩机100的壳体部件内,壳体部件包括高压壳体41、低压壳体42和安装于高压壳体41与低压壳体42之间的支架43。
如图9所示,低压壳体42安装于支架43的左侧且与支架43限定出用于驱动部件的低压腔421,低压壳体42设有冷媒进入口422,高压壳体41安装于支架43的右侧且与支架43限定出用于安装压缩部件3的高压腔411,高压壳体41设有冷媒排出口412。在电动压缩机100运行时,低压冷媒从低压壳体42上的冷媒进入口422进入到低压腔421内且穿过支架43进入到压缩部件3中进行压缩,压缩之后的高压冷媒排放到高压腔411内,并从高压壳体41的冷媒排出口412排出至电动压缩机100外。且如图9所示,在低压壳体42背离高压壳体41的一侧连接有盖板44,盖板44与低压壳体42之间限定出安装空间,安装空间内设有电控部件5,电控部件5用于控制永磁同步电机的运行状态。
其中,该电动压缩机100通过设置上述实施例的永磁同步电机,可使得电动压缩机100具有稳定的工作状态,保证驱动部件能够准确、可靠地驱动压缩部件3运行,实现稳定的高压冷媒的输出。
本申请还提出了一种空调系统200。
根据本申请实施例的空调系统200,如图10所示,该空调系统200设置有上述实施例的电动压缩机100,在电动压缩机100运行过程中,不易出现电动压缩机100由于转子组件1故障而引起到工作停滞的问题,通过设置该电动压缩机100,可使得空调系统200的换热功能较为稳定,且利于保证空调系统200能够准确及时地调整空间内的温度状态。
本申请还提出了一种车辆1000。
根据本申请实施例的车辆1000,如图10所示,包括车体300和搭载于车体的空调系统200,其中,车辆的空调系统200为上述实施例中的空调系统200,且通过设置上述空调系统200为车体300的内部空间进行气流换热,可使得车体300内的空间温度能够准确地满足用户的温感需求,提升用户的乘车体验。
下面,参考附图,描述根据本申请一些实施例的转子组件1。
如图1、图2和图11-图13所示,根据本申请实施例的转子组件1,包括:转子本体11和转子铆钉12。其中,转子组件1用于与定子组件安装配合,以在永磁同步电机通电运行时,转子组件1可相对于定子组件转动,进而输出驱动力,进行空气压缩或执行其它类型的驱动作用。
其中,如图1、图2和图11所示,转子本体11包括转子铁芯111、端板112和平衡块113,转子铁芯111内嵌设有永磁体,如在转子铁芯111内设有磁铁槽,可将永磁体安装于磁铁槽内实现与转子铁芯111的安装固定。且在实际安装时,转子铁芯111安装于定子组件内且套设于电动压缩机100的驱动轴2外,这样,在电动压缩机100运行时,定子组件的绕组通电且产生磁场作用于永磁体,以驱动转子铁芯111转动,进而带动驱动轴2输出驱动力。需要说明的是,转子铁芯111为硅钢片层叠结构,且铁芯上需要设置铆扣点b,进行层间的形状锁合。锁合位置为在转子铁芯111的圆周方向上均匀分布,如位于转子半径方向上接近中间部位的区域。如图18所示虚线所围成的区域为铆扣点b的分布区域。其中,铆扣点b数量可设置为4个、或者8个。由于铆扣点b之间间隙的存在,2个“铆扣点b”不能实现平面上的位置完全固定,最少需要3个,因此最佳数量为4。铆扣点b的设置最终按图18中所示的位置。
转子铁芯111的轴向两端分别设有端板112,即端板112设置为两个,且两个端板112分别设于转子铁芯111的两端以与转子铁芯111的端面贴合,其中,至少一个端板112的背离转子铁芯111的一侧设有平衡块113。即可如图11所示在一个端板112对应设置平衡块113,或者如图13所示也可在两个端板112的相对背离的侧面均设置有平衡块113,平衡块113的数量可根据实际的需求进行灵活地设置。
转子铆钉12沿轴向穿设于转子本体11,以将转子本体11固定为一体。需要说明的是,如图9、图16所示,转子铁芯111、端板112和平衡块113均设置有中空的铆钉孔a,以使转子铆钉12同时贯穿转子铁芯111、端板112和平衡块113,进而使得转子本体11的各个部分连接为一个整体,保证转子铁芯111、端板112和平衡块113在转子本体11的轴向上相对固定,避免在转子铁芯111转动的过程中,出现端板112、平衡块113与转子铁芯111相对分离的情况,提高转子本体11的结构稳定性。
其中,如图15所示,转子铆钉12包括杆部121、头部122和铆接部123,头部122和铆接部123位于杆部121的长度方向的两端。如图15所示,头部122连接于杆部121的上端,铆接部123连接于杆部121的下端,且需要说明的是,转子铆钉12在初成型时包括头部122和杆部121,且在将转子铆钉12铆接于转子本体11后,通过铆接工艺加工出铆接部123,以使得头部122和铆接部123在转子本体11的两端起到限位的作用,进而实现对转子本体11的各个部件的轴向限位作用。由此,设置转子铆钉12穿设于转子本体11,可使得转子本体11的各个结构件固定安装于转子铆钉12的头部122与铆接部123之间,防止转子本体11、端板112和平衡块113沿转子本体11的轴向相对分离。
其中,铆接部123为无孔实心结构,即本申请中的铆接部123无中空区域,从而使得铆接部123的整体结构强度较大,避免出现如铆接部123的中空区域出现扭动变形的问题,提高转子铆钉12的结构稳定性,保证铆接质量。
转子铆钉12的抗拉强度τ;0.2·τ≤M·r·π·(n/D) 2/225≤0.7·τ,r为杆部121的中心轴线与转子铁芯111的中心轴线之间的距离,M为平衡块113的质量,n为转子组件1的最高转速,D为杆部121的直径。其中,需要说明的是,M·r·π·(n/D) 2/225为转子铆钉12在安装于转子本体11后受到的剪切应力,且可通过设置剪切应力与转子铆钉12的抗拉强度之间的关系,可使得剪切应力控制在抗拉强度的0.2倍到0.7之间,如设置为0.4倍、或者设置为0.6倍,从而使得转子铆钉12在对转子本体11的各个结构件进行穿设后,即便转子组件1在电动压缩机100运行的过程中保持较高的转速,转子铆钉12也可保持良好的结构状态,即不易出现转子铆钉12结构断裂的问题,满足使用需求。
由此,将转子铆钉12的剪切应力和转子铆钉12的抗拉强度设置在上述范围内,不易导致平衡块113的位置出现变化,进而避免在高速运转条件下不平衡量增大的情况,降低振动噪音;且电动压缩机100在较高转速长期运行时,转子铆钉12的切向和轴向受力满足安全要求,转子铆钉12不易失效;且可使得转子上平衡块113的质量满足配重要求的前提下,体积尽可能紧凑;以及转子铁芯111、平衡块113、端板112上有容纳转子铆钉12的铆钉孔a,可以将转子本体11的零部件简单可靠地装配在一起;进一步地,使得铆钉的布置,对电机的磁路的性能影响最小。
根据本申请实施例的转子组件1,通过设置转子本体11的各个结构件的配合参数与转子铆钉12的抗拉强度之间的关系,极大优化了转子组件1的布局性能,且保证了转子铆钉12在使用中的结构强度,很好地避免出现转子铆钉12易于断裂的问题,且使得转子组件1的结构更加紧凑和可靠,保证铆接质量。
在本实施例中,转子组件1优化了各个结构件与转子铆钉12的抗拉强度之间的关系,以在转子铆钉12穿设于转子铁芯111后,保证转子铆钉12与转子铁芯111以及平衡板的铆接质量,进而能够对转子本体11的各个部件起到稳定连接的作用,从而在电动压缩机100的冷量输出需求较大且转子铁芯111高速转动时,铆接部123仍可保持良好的结构状态,保证电动压缩机100具有稳定且大量的冷量输出,提高电动压缩机100的工作稳定性。
在一些实施例中,当转子本体11的两侧均具有平衡块113且两个平衡块113的质量不同时,两个平衡块113中较重的一个的质量为M,即0.2·τ≤M·r·π·(n/D) 2/225≤0.7·τ中的M为两个平衡块113中较重的一个的质量。由此,可以更好地保证转子铆钉12在使用中的结构强度,更好地避免出现转子铆钉12易于断裂的问题。
在一些实施例中,转子本体11的磁极114数为A,转子铆钉12的数量为B,其中,B≤A。即转子铆钉12的设置数量小于或等于转子本体11的磁极114数。如将磁极114数设置为8,转子铆钉12的数量为8、6或者4。
由此,通过本申请中的转子铆钉12与转子本体11进行连接配合后,可在保证铆接质量的前提下,最大化地减小转子铆钉12的数量,减少转子铆钉12的设置成本,降低材料成本,且降低加工工艺成本。当然,转子铆钉12的数量也不可设置的过少如设置为1个,即需保证转子组件1在周向上的多个不同位置处均可通过转子铆钉12实现有效地限位固定。
以及在进一步的实施例中,B≤A-2,即转子铆钉12的设置数量小于或等于转子本体11的磁极114数-2。如将磁极114数设置为8,转子铆钉12的数量为6或者4。由此,在转子铆钉12和转子本体11配合后,转子铆钉12的设置数量不仅可保证铆接质量,且利于降低转子铆钉12的设置成本。
在一些实施例中,转子铆钉12设于转子本体11的相邻两个磁极114之间的位置,以使转子铆钉12的设置不会与转子本体11的磁极114产生影响,提高结构设置的合理性。
以及在进一步地实施例中,转子铆钉12为多个,且多个转子铆钉12沿转子铁芯111的周向间隔开设置。如图12中所示,转子本体11的磁极114设置为8个,同时,转子铆钉12的数量设置为4个,即转子铆钉12的设置数量小于转子本体11的磁极114的数量,且在实际布置时,可将8个磁极114沿转子本体11的周向均匀地间隔开分布,同时,将4个转子铆钉12也在转子本体11的周向上均匀地间隔开分布,即相邻两个转子铆钉12之间的周向夹角为90°,由此,可使得4个转子铆钉12对转子本体11的各个部件在周向上的安装作用力较为均衡,避免出现局部位置连接力过小或局部连接力过大的问题。
且如图12所示,4个转子铆钉12均匀地间隔开交叉在8个磁极114之间,且转子铁芯111的磁铁槽近似为“V”形分布,这样,可使得转子本体11的磁极114在周向上分布均匀,且转子铆钉12的数量也设置相对均匀,平衡转子本体11在周向上各个位置处的驱动力,且平衡铆接效果。
以及,各个转子铆钉12的铆接部123均位于转子铁芯111的轴向同侧,也就是说,在通过多个转子铆钉12与转子本体11连接配合时,可将多个转子铆钉12从转子铁芯111的轴向的同一侧进行安装,以使多个转子铆钉12的头部122均位于转子铁芯111的第一侧,且多个转子铆钉12的铆接部123均位于转子铁芯111的第二侧。如图11所示,各个转子铆钉12的头部122均位于转子铁芯111的左侧端面,铆接部123均位于转子铁芯111的右侧端面。
其中,需要说明的是,转子铆钉12在穿设于转子铁芯111后,需进行旋铆工艺操作,由此,将多个转子铆钉12从转子铁芯111的同一侧装入,可使得操作人员在对转子铆钉12进行铆接时,将多个转子铆钉12均穿好之后,再从转子铁芯111的同一侧同时对多个转子铆钉12进行铆接操作,即在进行不同转子铆钉12的铆接操作时不需更换或调整铆接头的位置,极大地提高了铆接效率,提升转子组件1的装配效率。
在一些实施例中,如图18-图21所示,转子铁芯111的外半径为R,0.5<r/R<0.9,r为杆部121的中心轴线与转子铁芯111的中心轴线之间的距离,即杆部121的中心轴线与转子铁芯111的中心轴线之间的距离与转子铁芯111的外半径的比值大于0.5且小于0.9,如设置为0.6、0.7或者0.8。
其中,如图22所示,r/R的比值变化时,平衡块113的截面积的变化,以及平衡块113的高度的变化。其中,当r/R逐渐地增大时,平衡块113的高度逐渐减小,当r/R的比值超出0.9时,平衡块113的宽度不足,转子铆钉12旋铆后,铆接部123会凸出于转子本体11的外部空间。以及,当r/R的比值变小时,平衡块113的截面积随之下降,平衡块113重量不变时,平衡块113的高度会随之增加,参照图9的截面图,平衡块113和压缩机的轴承固定位置之间的距离受限,当平衡块113的高度超过12mm时,压缩机需要增大轴向长度,相应的体积和重量随之增加。
因此,本申请中将r/R的比值,限定在0.6到0.9的范围内,既可以保证平衡块113的高度足够小,又可以保证平衡块113有足够大的径向宽度,有足够空间让旋铆后的铆接部123进行放置。
进一步地,将r/R的比值设置为0.7时,转子铆钉12的位置可以设置在磁极114之间,且和铆扣点b的位置进行周向间隔布置。这样,转子铆钉12的数量既可以满足转子组件1的组装要求,又做到了对称布置,整个转子磁路的对称程度也会提高。
在一些实施例中,杆部121的直径D的取值范围为3mm-6mm,如杆部121的直径取为4 mm、5 mm。其中,需要说明的是,杆部121用于与铆钉孔a进行配合,且杆部121与铆钉孔a的内壁之间的间隙为0.1 mm到0.2mm,即铆钉孔a的孔径随着杆部121的直径变化而变化,以使二者在合理的配合间隙范围内安装配合。
且在铆钉孔a的直径变化时,电机的磁路磁力线走向、磁阻以及电感会随之变化,体现在电机控制上,就是交直轴电感的值。其中,当r/R的比值接近0.7时,铆钉孔a位于两个磁极114中间的位置,铆接销的材料可采用10号冷镦钢或相近牌号,磁导率低于硅钢或者和空气的磁导率相近,此时转子交轴磁路方向上的磁阻增大,相应的,交轴电感的值会降低,直轴电感值变化不大,因此交轴电感的差值会随着铆接销直径的变化也减小。
如图23所示,当杆部121的直径由3.2mm增大到6mm时,电机交直轴电感的变化。从图中可以看出,当杆部121的直径大于4mm时,交轴电感的值急剧下降,交直轴电感的差值也随之下降,转子提供的磁阻转矩会对应降低,电机的功率密度会下降。因此,将杆部121的直径设置上述范围内,可使得电机的功率密度保持在一定高度水平。
在一些实施例中,至少一个平衡块113为第三平衡块,即本申请中的转子本体11的平衡块113可如图11所示设置为一个,或者也可如图13所示设置为两个。其中,在平衡块113设置为一个时该平衡块113可作为第三平衡块,在平衡块113设置为两个时,可将其中的一个平衡块113或两个平衡块113均设置为第三平衡块。
其中,在第三平衡块上设置有铆接部123,即在将转子铆钉12穿设于转子本体11后,杆部121的背离头部122的一端伸至第三平衡块背离端板112的一侧,此时,可通过旋铆头对杆部121的端部进行旋铆操作,以使杆部121的端部加工成铆接部123,铆接部123限位抵压于第三平衡块的表面,由此,实现第三平衡块以及端板112和转子铁芯111的限位固定。
在一些实施例中,杆部121的直径为D,铆接部123的最大直径为D0,其中,1.2D≤D0≤2D,即铆接部123的最大直径大于杆部121的直径的1.2倍且小于杆部121的直径的2倍,如将D0设置为1.4 D、1.6 D或者1.7 D。
其中,将铆接部123的结构尺寸与杆部121的结构尺寸设置在上述尺寸范围内,铆接部123可与第二孔段具有较大的配合深度和配合面积,提高铆接稳定性,保证转子铆钉12的铆接质量;且铆接部123的径向尺寸也不会过大,铆接部123不会过多地伸出至第二孔段外,节省材料,防止铆接后铆接部123凸出于转子铁芯111的外半径产生其它的质量问题,提高结构设计的合理性。
由此,可使得铆接部123的设置可兼顾铆接质量和节省材料的效果。
在一些实施例中,如图2所示,第三平衡块的径向宽度W大于2D,即第三平衡块的径向宽度大于杆部121的直径的两倍,由此,在第三平衡块与杆部121配合时,需在第三平衡块设置销钉孔,且杆部121与铆钉孔a的内壁之间的间隙为0.1 mm到0.2mm,因此,将第三平衡块的径向宽度设置在上述范围内,可避免销钉孔在第三平衡块上的尺寸占比过大,造成对第三平衡块的结构强度的影响,保证第三平衡块的结构稳定性。
由此,在将转子铆钉12穿设于第三平衡块后,铆接部123经过旋铆成型过程中,转子铆钉12与第三平衡块的结构状态不会产生过大的影响,即不会造成第三平衡块出现明显的结构断裂的问题。
在一些实施例中,夹设在第三平衡块与转子铁芯111之间的端板112的厚度大于等于0.8mm。即在实际设置时,将位于第三平衡块与转子铁芯111之间的端板112的厚度设置为至少0.8mm,如设置为1mm,或者设置为1.1 mm。
其中,将该端板112的厚度设置为在上述范围内,可使得端板112自身的结构强度可有效保证,避免在转子铆钉12在铆接的过程中出现端板112发生严重变形的问题,保证铆接质量,且利于减小转子组件1的固有频率离散性。当然,端板112的厚度也不应当设置的过大,需在合理的成本范围内设置端板112的厚度。
以及在一些实施例中,铆接部123的体积不小于头部122的体积,这样,从而铆接部123的结构强度和抗扭切能力较大,不仅利于实现铆接成型,且在铆接部123对第三平衡块进行铆接时,不易出现铆接部123断裂或结构变形的问题,提升转子铆钉12的结构安全性。
这样,在将铆接部123对第三平衡块的侧面进行抵压限位时,铆接部123能够起到很好地限位作用,不会出现铆接部123从第三平衡块上脱离的问题,提高铆接限位的可靠性。
和/或,在另一些实施例中,铆接部123的直径不小于头部122的直径,即铆接部123的横截面积大于头部122的横截面积。同样地,也可增大铆接部123的抗扭切能力,即增强抗扭能力,防止在转子组件1转动的过程中出现铆接部123相对于杆部121错位断裂的问题,提高结构设计的安全性。且铆接部123的直径大于头部122的直径,可使得铆接部123相较于头部122具有更大的限位面,限位效果更佳。
需要说明的是,通过转子铆钉12穿设于转子本体11后,随着电动压缩机100的进一步地提升转速,此时铆接部123的受力最大。而本申请中的铆接部123的体积和/或直径设置为大于头部122,可使得铆接部123不易在受到较大压力的情况下发生断裂,其采用旋铆工艺时,对铆接部123铆接质量的要求也较低,更利于降低旋铆设备以及加工成本。
在一些实施例中,转子铆钉12的硬度满足:HRB50-HRB200,如转子铆钉12的硬度为HRB70、HRB70150。将转子铆钉12的硬度设置在上述范围内,不仅可避免硬度过小,保证转子铆钉12在转子组件1上的铆接效果,提高铆接质量,防止铆接过程中出现头部122发生严重变形的问题;且可避免硬度过大,利于减小转子铆钉12在铆接过程中的旋铆时间,提高铆接效率。
本申请还提出了一种永磁同步电机。
根据本申请实施例的永磁同步电机,包括定子组件和转子组件1,其中转子组件1相对于定子组件可转动,且转子组件1为上述任一种实施例所述的转子组件1。其中,定子组件包括定子铁芯和绕组,转子组件1设置于定子铁芯的内侧,且转子组件1可在定子铁芯内转动。
其中,该永磁同步电机,通过设置转子本体11的各个结构件的配合参数与转子铆钉12的抗拉强度之间的关系,极大优化了转子组件1的布局性能,且保证了转子铆钉12在使用中的结构强度,很好地避免出现转子铆钉12易于断裂的问题,且使得转子组件1的结构更加紧凑和可靠,保证铆接质量,提高永磁同步电机的运行稳定性。
本申请还提出了一种电动压缩机100。
根据本申请实施例的电动压缩机100,如图9所示,电动压缩机100包括压缩部件3和驱动部件,其中,驱动部件驱动压缩部件3执行压缩工作,且驱动部件包括上述实施例的永磁同步电机,压缩部件3和驱动部件均设在电动压缩机100的壳体部件内,壳体部件包括高压壳体41、低压壳体42和安装于高压壳体41与低压壳体42之间的支架43。
如图16所示,低压壳体42安装于支架43的左侧且与支架43限定出用于驱动部件的低压腔421,低压壳体42设有冷媒进入口422,高压壳体41安装于支架43的右侧且与支架43限定出用于安装压缩部件3的高压腔411,高压壳体41设有冷媒排出口412。在电动压缩机100运行时,低压冷媒从低压壳体42上的冷媒进入口422进入到低压腔421内且穿过支架43进入到压缩部件3中进行压缩,压缩之后的高压冷媒排放到高压腔411内,并从高压壳体41的冷媒排出口412排出至电动压缩机100外。且如图16所示,在低压壳体42背离高压壳体41的一侧连接有盖板44,盖板44与低压壳体42之间限定出安装空间,安装空间内设有电控部件5,电控部件5用于控制永磁同步电机的运行状态。
其中,该电动压缩机100通过设置上述实施例的永磁同步电机,可使得电动压缩机100具有稳定的工作状态,保证驱动部件能够准确、可靠地驱动压缩部件3运行,实现稳定的高压冷媒的输出。
本申请还提出了一种空调系统200。
根据本申请实施例的空调系统200,如图10所示,该空调系统200设置有上述实施例的电动压缩机100,在电动压缩机100运行过程中,不易出现电动压缩机100由于转子组件1故障而引起到工作停滞的问题,通过设置该电动压缩机100,可使得空调系统200的换热功能较为稳定,且利于保证空调系统200能够准确及时地调整空间内的温度状态。
本申请还提出了一种车辆1000。
根据本申请实施例的车辆1000,如图10所示,包括车体300和搭载于车体300的空调系统200,其中,车辆1000的空调系统200为上述实施例中的空调系统200,且通过设置上述空调系统200为车体300的内部空间进行气流换热,可使得车体300内的空间温度能够准确地满足用户的温感需求,提升用户的乘车体验。
值得说明的是,本申请所述的车辆1000可以为新能源车辆,在一些实施例中,新能源车辆可以是以电机作为主驱动力的纯电动车辆,在另一些实施例中,新能源车辆还可以是以内燃机和电机同时作为主驱动力的混合动力车辆。关于上述实施例中提及的为新能源车辆提供驱动动力的内燃机和电机,其中内燃机可以采用汽油、柴油、氢气等作为燃料,而为电机提供电能的方式可以采用动力电池、氢燃料电池等,这里不作特殊限定。需要说明,这里仅仅是对新能源车辆等结构作出的示例性说明,并非是限定本申请的保护范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种转子组件,其中,包括:
    转子本体,所述转子本体包括转子铁芯、端板和平衡块,所述转子铁芯内嵌设有永磁体,所述转子铁芯的轴向两端分别设有所述端板,至少一个所述端板的背离所述转子铁芯的一侧设有所述平衡块;
    转子铆钉,所述转子铆钉沿轴向穿设于所述转子本体,以将所述转子本体固定为一体,所述转子铆钉包括杆部和位于所述杆部长度两端的头部和铆接部,至少一个所述平衡块为第一平衡块,所述第一平衡块上具有铆钉孔,所述铆钉孔包括用于与所述杆部配合的第一孔段和用于与所述铆接部配合的第二孔段,所述第二孔段相对于所述第一孔段为扩孔形态,所述第二孔段内填充有所述铆接部的至少部分。
  2. 根据权利要求1所述的转子组件,其中,所述第二孔段的横截面积沿着远离所述第一孔段的方向逐渐增大。
  3. 根据权利要求1或2所述的转子组件,其中,所述铆接部填满所述第二孔段。
  4. 根据权利要求3所述的转子组件,其中,所述铆接部包括位于所述第二孔段内的沉入部,以及位于所述第二孔段外以凸出于所述第一平衡块表面的外露部。
  5. 根据权利要求1-4中任一项所述的转子组件,其中,所述杆部的直径为D,所述铆接部的最大直径为D0,其中,1.2D≤D0≤2D。
  6. 根据权利要求1-5中任一项所述的转子组件,其中,所述转子铆钉的硬度满足:HRB50-HRB200。
  7. 根据权利要求1-6中任一项所述的转子组件,其中,所述铆接部为无孔实心结构,且所述转子铆钉的抗拉强度τ满足;0.2·τ≤M·r·π·(n/D) 2 /225≤0.7·τ,r为所述杆部的中心轴线与所述转子铁芯的中心轴线之间的距离,M为所述平衡块的质量,n为所述转子组件的最高转速,D为所述杆部的直径。
  8. 根据权利要求1-7中任一项所述的转子组件,其中,所述转子本体的磁极数为A,所述转子铆钉的数量为B,B≤A-2。
  9. 根据权利要求1-8中任一项所述的转子组件,其中,所述转子铆钉设于所述转子本体的相邻两个磁极之间的位置。
  10. 根据权利要求1-9中任一项所述的转子组件,其中,所述转子铆钉为多个且沿所述转子铁芯的周向间隔开设置,各个所述转子铆钉的所述铆接部均位于所述转子铁芯的轴向同侧。
  11. 根据权利要求1-10中任一项所述的转子组件,其中,所述转子铁芯的外半径为R,0.5<r/R<0.9。
  12. 根据权利要求1-11中任一项所述的转子组件,其中,所述杆部的直径D的取值范围为3mm-6mm。
  13. 根据权利要求1-12中任一项所述的转子组件,其中,当所述转子本体的两侧均具有所述平衡块且两个所述平衡块的质量不同时,两个所述平衡块中较重的一个的质量为M。
  14. 根据权利要求1-13中任一项所述的转子组件,其中,至少一个所述平衡块为第三平衡块,所述第三平衡块上设有所述铆接部,所述第三平衡块的径向宽度W大于2D。
  15. 根据权利要求1-14中任一项所述的转子组件,其中,夹设在设有所述铆接部的所述平衡块与所述转子铁芯之间的所述端板的厚度大于等于0.8mm。
  16. 根据权利要求1-15中任一项所述的转子组件,其中,所述铆接部的体积不小于所述头部的体积,和/或,所述铆接部的直径不小于所述头部的直径。
  17. 一种永磁同步电机,其中,包括定子组件和转子组件,所述转子组件相对于所述定子组件可转动,且所述转子组件为根据权利要求1-16中任一项所述的转子组件。
  18. 一种电动压缩机,其中,包括压缩部件和驱动部件,所述驱动部件驱动所述压缩部件执行压缩工作,所述驱动部件包括根据权利要求17所述的永磁同步电机。
  19. 一种空调系统,其中,包括根据权利要求18所述的电动压缩机。
  20. 一种车辆,其中,包括车体和搭载于所述车体的空调系统,所述空调系统为根据权利要求19所述的空调系统。
PCT/CN2023/081975 2022-05-31 2023-03-16 转子组件、永磁同步电机、电动压缩机、空调系统和车辆 WO2023231510A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202221359709.7U CN218124419U (zh) 2022-05-31 2022-05-31 转子组件、永磁同步电机、电动压缩机、空调系统和车辆
CN202210615605.6A CN117200482A (zh) 2022-05-31 2022-05-31 转子组件、永磁同步电机、电动压缩机、空调系统和车辆
CN202221359709.7 2022-05-31
CN202221359939.3 2022-05-31
CN202210615605.6 2022-05-31
CN202221359939.3U CN218124420U (zh) 2022-05-31 2022-05-31 转子组件、永磁同步电机、电动压缩机、空调系统和车辆
CN202210629322.7A CN117200483A (zh) 2022-05-31 2022-05-31 转子组件、永磁同步电机、电动压缩机、空调系统和车辆
CN202210629322.7 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023231510A1 true WO2023231510A1 (zh) 2023-12-07

Family

ID=89026846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081975 WO2023231510A1 (zh) 2022-05-31 2023-03-16 转子组件、永磁同步电机、电动压缩机、空调系统和车辆

Country Status (1)

Country Link
WO (1) WO2023231510A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483367A (zh) * 2008-01-09 2009-07-15 株式会社日立产机系统 压缩机用电动机
CN106130248A (zh) * 2016-08-24 2016-11-16 广东美芝制冷设备有限公司 用于压缩机的电机转子、用于压缩机的电机及压缩机
CN210041464U (zh) * 2019-08-02 2020-02-07 南昌海立电器有限公司 电机转子和压缩机
CN218124419U (zh) * 2022-05-31 2022-12-23 安徽威灵汽车部件有限公司 转子组件、永磁同步电机、电动压缩机、空调系统和车辆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483367A (zh) * 2008-01-09 2009-07-15 株式会社日立产机系统 压缩机用电动机
CN106130248A (zh) * 2016-08-24 2016-11-16 广东美芝制冷设备有限公司 用于压缩机的电机转子、用于压缩机的电机及压缩机
CN210041464U (zh) * 2019-08-02 2020-02-07 南昌海立电器有限公司 电机转子和压缩机
CN218124419U (zh) * 2022-05-31 2022-12-23 安徽威灵汽车部件有限公司 转子组件、永磁同步电机、电动压缩机、空调系统和车辆

Similar Documents

Publication Publication Date Title
JP3818213B2 (ja) 電動圧縮機
CN101584099B (zh) 电动机和压缩机
JP4928978B2 (ja) 電動圧縮機
KR20060032583A (ko) 공조기용 송풍장치
WO2023231510A1 (zh) 转子组件、永磁同步电机、电动压缩机、空调系统和车辆
CN218124419U (zh) 转子组件、永磁同步电机、电动压缩机、空调系统和车辆
WO2017202318A1 (zh) 电机转子冲片、电机转子、电机和电动汽车
WO2017202319A1 (zh) 永磁同步电机和电动汽车
JP2003204653A (ja) モータ装置
CN205377551U (zh) 转子组件和具有其的电机、压缩机
CN218124420U (zh) 转子组件、永磁同步电机、电动压缩机、空调系统和车辆
JP2009240146A (ja) ブラシレスdcモータの回転子、この回転子を備えた圧縮機、およびこの圧縮機を搭載した機器
CN117200482A (zh) 转子组件、永磁同步电机、电动压缩机、空调系统和车辆
CN117200483A (zh) 转子组件、永磁同步电机、电动压缩机、空调系统和车辆
CN201152262Y (zh) 压缩机
CN113890251A (zh) 一种立式磨机用的大功率变速电机
CN208669598U (zh) 电动压缩机
CN112260495A (zh) 一种降低机械噪音的家用冰箱压缩机电机转子生产工艺
JP2012087674A (ja) インバータ一体型電動圧縮機
CN216200158U (zh) 一种安装稳固的平衡块
WO2017202317A1 (zh) 两对极电机和电动汽车
CN201152260Y (zh) 压缩机
CN118088453A (zh) 旋转式压缩机及制冷设备
CN103511224B (zh) 卧式压缩机
CN218154480U (zh) 多联机空调室内机及多联机空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814708

Country of ref document: EP

Kind code of ref document: A1