WO2023231423A1 - 一种除氟吸附材料及其制备方法和应用 - Google Patents

一种除氟吸附材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023231423A1
WO2023231423A1 PCT/CN2023/072828 CN2023072828W WO2023231423A1 WO 2023231423 A1 WO2023231423 A1 WO 2023231423A1 CN 2023072828 W CN2023072828 W CN 2023072828W WO 2023231423 A1 WO2023231423 A1 WO 2023231423A1
Authority
WO
WIPO (PCT)
Prior art keywords
fly ash
aluminum
salt solution
raw materials
limestone
Prior art date
Application number
PCT/CN2023/072828
Other languages
English (en)
French (fr)
Inventor
王超
王昊
Original Assignee
天津正达科技有限责任公司
中海油天津化工研究设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津正达科技有限责任公司, 中海油天津化工研究设计院有限公司 filed Critical 天津正达科技有限责任公司
Publication of WO2023231423A1 publication Critical patent/WO2023231423A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds

Definitions

  • the present invention relates to the technical field of wastewater treatment, and in particular to an adsorption material used in wastewater treatment external drainage to improve the standard, which can absorb free fluoride ions in the sewage and reduce the fluorine content of the external drainage.
  • Fluoride ion is a type of inorganic element that is highly harmful to organisms. When fluoride ion exceeds the standard, it will cause serious harm to animals, plants and humans. Since fluoride is cumulative, if the fluoride content in drinking water exceeds 1mg/L, drinking it for a long time will lead to excessive intake of fluoride, leading to an imbalance in calcium and phosphorus metabolism, causing teeth to appear spots and become brittle, and bone fluorosis to cause bone fluorosis. deformity.
  • Wastewater discharged from industrial fields such as mining, smelting, and electronic processing in my country is currently one of the important sources of fluoride ion environmental pollution in my country.
  • fluoride emission indicator for industrial wastewater has been increased from the original 10mg/L to 1mg/L.
  • the traditional fluoride-containing wastewater treatment process mainly uses chemical precipitation and coagulation sedimentation processes.
  • due to the high solubility of calcium fluoride it can only reduce the fluoride ion content in the effluent to less than 10 mg/L.
  • Due to the ultra-low concentration of fluoride ions in water further reduction requires the use of processes such as reverse osmosis and ion exchange. These processes require large hardware investments and high operating costs, and the secondary wastewater such as concentrated water and backwash water generated during the process is extremely difficult and costly to treat, making it difficult to meet the 1mg/L treatment standard.
  • Physical adsorption method is a method with low economic cost and high feasibility to treat low-fluorine sewage.
  • fluoride ion adsorption capacity of natural mineral materials, carbon-based adsorbents, activated aluminum materials, etc. that are currently common on the market is relatively low. It is low and can be used for residential water use, but in the field of sewage treatment, it is still far away from practical application.
  • the present invention provides a method that can achieve ultra-low fluoride ions of less than 1 mg/L in low fluorine content water bodies at the end of wastewater.
  • Fluoride removal adsorption material with high adsorption capacity and simple treatment process. This material can achieve a drainage fluoride ion concentration of less than 1 mg/L, does not produce secondary wastewater such as concentrated water flowback, has low material usage, and does not increase the use effect of complex treatment equipment.
  • the present invention provides a fluorine removal adsorption material, which is achieved by adopting the following technical solutions.
  • a kind of fluorine removal adsorption material is prepared by fully mixing the preparation raw materials, calcination treatment, surface treatment with salt solution and drying; the preparation raw materials are composed of skeleton sintering preparation raw materials, channel constituting burning loss raw materials, and functional activation raw materials;
  • the raw materials for the preparation of the skeleton sintering are high-aluminum fly ash and fly ash; the raw materials for the combustion loss of the channel are medium-aluminum coal gangue and limestone;
  • the functional activation raw materials are red mud;
  • the preparation raw materials are composed of the following mass percentages: high-aluminum fly ash 15% ⁇ 20%, red mud 5% to 15%, moderate aluminum gangue 20% to 30%, limestone 20% to 30%, and the balance is fly ash.
  • the surface treatment of the salt solution is to first use hydrochloric acid to remove the ash of the calcined material, and then immerse it in a salt solution for surface treatment;
  • the salt solution is a mixed salt solution of calcium chloride, magnesium chloride, and sodium chloride.
  • the mass concentration of the salt solution is 3 to 6%.
  • the present invention provides a method for preparing a fluorine removal adsorption material, which is achieved by adopting the following technical solutions.
  • a method for preparing the above-mentioned fluorine removal adsorption material including the following steps:
  • Raw material pretreatment high-aluminum fly ash, red mud, medium-aluminum gangue, limestone, and fly ash are ground to 200 to 300 mesh respectively, and kept and dried in a temperature range of 250°C to 350°C for 15 to 45 minutes;
  • Raw material ingredients Mix the dried materials thoroughly according to the following mass percentages: high alumina fly ash 15% ⁇ 20%, red mud 5% ⁇ 15%, medium aluminum gangue 20% ⁇ 30%, limestone 20 ⁇ 30% , the balance is fly ash;
  • a method for preparing the above-mentioned fluorine removal adsorption material including the following steps:
  • Raw material pretreatment high-aluminum fly ash, red mud, medium-aluminum gangue, limestone, and fly ash are ground to 200 ⁇ 300 mesh, and keep and dry in the temperature range of 250°C ⁇ 350°C for 15 ⁇ 45 minutes;
  • Raw material ingredients Mix the dried materials thoroughly according to the following mass percentages: high alumina fly ash 15% ⁇ 20%, red mud 5% ⁇ 15%, medium aluminum gangue 20% ⁇ 30%, limestone 20 ⁇ 30% , the balance is fly ash;
  • the present invention provides the use of a fluorine removal adsorbent material, which is achieved by adopting the following technical solutions.
  • the fluoride removal adsorption material of the present invention constructs a carrier structure by using aluminum, iron, magnesium, silicon, calcium and other elements in bulk solid waste, and uses organic components and non-metal oxides in materials such as coal gangue as binding and filling components. , forming pores during high-temperature calcination, and using salt solution for surface modification, finally preparing a disposable fluorine removal adsorption material with high adsorption capacity and low cost, which can overcome the existing problems such as natural mineral materials and activated aluminum materials.
  • a method for preparing a fluorine removal adsorption material including the following steps:
  • the terminal water body of factory wastewater in a nonferrous processing park was used as a test water sample, commercially available natural mineral adsorption materials and activated aluminum fluoride removal adsorption materials were used as comparison samples, and a fluoride ion selective electrode was used to measure the fluorine content of the water body.
  • the performance test data of the example products and comparative samples are as follows:
  • a method for preparing a fluorine removal adsorption material including the following steps:
  • the heating curve is as follows: it takes 0.8h from room temperature to 500°C, 1.8h from 500°C to 950°C, and 5°C/minute from 950°C to 1400°C. After reaching 1400°C, Keep it at constant temperature for 1.5 hours, then naturally cool to room temperature and then take it out; after the calcined material is acidified with hydrochloric acid to remove the ash, it is immersed in a 4% salt solution for surface treatment.
  • the terminal water body of a wastewater treatment system in an aluminum mining area was used as a test water sample, commercially available natural mineral adsorption materials and activated aluminum fluoride removal adsorption materials were used as comparison samples, and a fluoride ion selective electrode was used to measure the fluorine content of the water body. quantity.
  • the performance test data of the example products and comparative samples are as follows:
  • a method for preparing a fluorine removal adsorption material including the following steps:
  • the material After reaching 1300°C, keep it at constant temperature for 1 hour, then naturally cool to room temperature and take it out; After treatment, the material is acidified with industrial hydrochloric acid to remove ash, and then immersed in a 5% salt solution for surface treatment, in which the mass ratio of calcium chloride: magnesium chloride: sodium chloride is 1:2:1. After soaking for 30 minutes, filter and take out; the filtered material is dried at 250°C to constant weight to obtain the product.
  • the terminal water body of factory wastewater in a nonferrous processing park was used as a test water sample, commercially available natural mineral adsorption materials and activated aluminum fluoride removal adsorption materials were used as comparison samples, and a fluoride ion selective electrode was used to measure the fluorine content of the water body.
  • the performance test data of the example products and comparative samples are as follows:
  • a method for preparing a fluorine removal adsorption material including the following steps:
  • the heating curve is as follows: it takes 0.8h from room temperature to 500°C, 1.8h from 500°C to 950°C, and 5°C/minute from 950°C to 1400°C. After reaching 1400°C, Keep it at constant temperature for 1.5 hours, then naturally cool to room temperature and then take it out; after the calcined material is acidified with industrial hydrochloric acid to remove the ash, it is immersed in a 4% salt solution for surface treatment, where the mass ratio of calcium chloride: magnesium chloride: sodium chloride The ratio is 1.5:1.5:1, soak for 45 minutes and filter out; dry the filtered material at 300°C to constant weight to obtain the product.
  • the terminal water body of a wastewater treatment system in an aluminum mining area was used as a test water sample, commercially available natural mineral adsorption materials and activated aluminum fluoride removal adsorption materials were used as comparison samples, and a fluoride ion selective electrode was used to measure the fluorine content in the water body.
  • the performance test data of the example products and comparative samples are as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开了一种除氟吸附材料及其制备方法和应用。除氟吸附材料由制备原料充分混合后,经煅烧处理、盐溶液表面处理后烘干制得;所述制备原料由骨架烧结制备原料、通道构成烧失原料、功能活化原料构成;骨架烧结制备原料为高铝飞灰、粉煤灰;通道构成烧失原料为中铝煤矸石、石灰石;功能活化原料为赤泥;制备原料按照以下质量百分比组成:高铝飞灰15%~20%、赤泥5%~15%、中铝煤矸石20%~30%、石灰石20~30%、余量为粉煤灰。本发明除氟吸附材料能够克服现有材料产品低负载量、低吸附速率、吸附再生困难、使用成本高、强度低易破碎等缺点,能够满足工业污水处理末段水质超低氟含量达标排放的处理要求,且制备成本低。

Description

一种除氟吸附材料及其制备方法和应用 技术领域
本发明涉及废水处理技术领域,特别涉及一种应用于废水处理外排水提标改造,能够吸附污水中的游离氟离子,降低外排水氟含量的吸附材料。
背景技术
氟离子是一类对生物危害较大的无机元素,当氟离子超标后,对动植物和人类都会造成严重危害。由于氟具有积累性,如果饮用水中含氟量超过1mg/L,长时间饮用就会导致人摄入氟过量,导致钙、磷代谢失衡,牙齿出现斑点并变脆,患氟骨病导致骨骼畸形。
我国矿山开采、冶炼、电子加工等工业领域排放的污水,是目前我国氟离子环境污染的重要源头之一,为了解决氟对环境的影响和对居民健康的危害,我国一直在不断提升氟的排放标准。目前,工业废水的氟排放指标已经从原先的10mg/L提升至1mg/L。
传统的含氟废水处理工艺主要采用化学沉淀和混凝沉降工艺,但由于氟化钙溶解度偏高,所以仅能实现出水氟离子含量降至10mg/L以下。由于水中氟离子的超低浓度,进一步降低则需要使用反渗透和离子交换等工艺。这些工艺的硬件投资大,运行成本高,且工艺过程中产生的浓水、反洗水等二次废水处理难度和成本极大,难以满足1mg/L的处理标准。
物理吸附法是经济成本较低,可行性较高的一种处理低氟污水的方法,但目前市面上常见的天然矿物材料、碳基吸附剂、活性铝材料等,其氟离子吸附载量较低,用在居民用水上尚可,但在污水处理领域,仍距实际应用存在较大距离。
发明内容
本发明为了克服现有除氟材料存在的成本高、吸附载量低、配套处理工艺复杂等不足,提供了一种在废水末端低氟含量水体中,可以实现氟离子小于1mg/L的超低含量排放,具备高吸附载量和简单处理工艺的除氟吸附材料。该材料能实现排水氟离子浓度小于1mg/L,不产生浓水返排液等二次废水、材料使用量低,且不用增加复杂处理设备的使用效果。
第一方面,本发明提供了一种除氟吸附材料,是采用以下技术方案得以实现的。
一种除氟吸附材料,由制备原料充分混合后,经煅烧处理、盐溶液表面处理后烘干制得;所述制备原料由骨架烧结制备原料、通道构成烧失原料、功能活化原料构成;所述骨架烧结制备原料为高铝飞灰、粉煤灰;通道构成烧失原料为中铝煤矸石、石灰石;功能活化原料为赤泥;制备原料按照以下质量百分比组成:高铝飞灰15%~20%、赤泥5%~15%、中铝煤矸石20%~30%、石灰石20~30%、余量为粉煤灰。
进一步的,所述盐溶液表面处理为先用盐酸去除煅烧后物料的灰分后,浸入盐溶液表面处理;所述盐溶液为氯化钙、氯化镁、氯化钠的混合盐溶液。
更进一步的,所述盐溶液的质量浓度为3~6%。
更进一步的,所述氯化钙、氯化镁、氯化钠的质量比为氯化钙∶氯化镁∶氯化钠=(1~2)∶(1~2)∶1。
第二方面,本发明提供了一种除氟吸附材料的制备方法,是采用以下技术方案得以实现的。
一种上述除氟吸附材料的制备方法,包括如下步骤:
S1.原料预处理:高铝飞灰、赤泥、中铝煤矸石、石灰石、粉煤灰各自研磨至200~300目,并在250℃~350℃温度范围内保温干燥15~45分钟;
S2.原料配料:将干燥后的物料按照以下质量百分比充分混合:高铝飞灰15%~20%、赤泥5%~15%、中铝煤矸石20%~30%、石灰石20~30%、余量为粉煤灰;
S3.煅烧处理:将混合后的物料放入窑炉,升温曲线按照从室温至500℃用时0.8~1.2h,从500℃升温至950℃用时1.2~1.8h,再按照5℃/分钟从950℃升温至1250℃~1450℃区间,达到要求温度后,恒温保温1~2h,然后自然冷却到室温后取出;
S4.表面处理:将煅烧处理后物料,用盐酸酸化除去灰分后,浸入盐溶液进行表面处理,盐溶液质量浓度为3~6%,盐按质量百分比为氯化钙∶氯化镁∶氯化钠=(1~2)∶(1~2)∶1,浸泡15~45min后过滤取出;
S5.烘干处理:将过滤后的物料在250℃~350℃温度范围内保温干燥至恒重后得到产品。
一种上述除氟吸附材料的制备方法,包括如下步骤:
S1.原料预处理:高铝飞灰、赤泥、中铝煤矸石、石灰石、粉煤灰各自研磨至 200~300目,并在250℃~350℃温度范围内保温干燥15~45分钟;
S2.原料配料:将干燥后的物料按照以下质量百分比充分混合:高铝飞灰15%~20%、赤泥5%~15%、中铝煤矸石20%~30%、石灰石20~30%、余量为粉煤灰;
S3.煅烧处理:将混合后的物料放入窑炉,升温曲线按照从室温至500℃用时0.8~1.2h,从500℃升温至950℃用时1.2~1.8h,再按照5℃/分钟从950℃升温至1250℃~1450℃区间,达到要求温度后,恒温保温1~2h,然后自然冷却到室温后取出;
S4.表面处理:将煅烧处理后物料,用盐酸酸化除去灰分后,浸入盐溶液进行表面处理,盐溶液质量浓度为3~6%,盐溶液中氯化钙、氯化镁、氯化钠的质量比为(1~2)∶(1~2)∶1,浸泡15~45min后过滤取出;
S5.烘干处理:将过滤后的物料在250℃~350℃温度范围内保温干燥至恒重后得到产品。
第三方面,本发明提供了一种除氟吸附材料的用途,是采用以下技术方案得以实现的。
一种上述除氟吸附材料在废水处理中的应用。
本申请具有以下有益效果。
本发明的除氟吸附材料通过使用大宗固体废弃物中的铝、铁、镁、硅、钙等元素构建载体架构,利用煤矸石等物料中的有机成分和非金属氧化物作为粘结和填充成分,在高温煅烧时形成孔洞,并利用盐溶液进行表面改性,最终制备得到一次性使用且具备高吸附载量和成本低优势的除氟吸附材料,能够克服天然矿物材料、活性铝材料等现有材料产品低负载量、低吸附速率、吸附再生困难、使用成本高、强度低易破碎等缺点,满足了工业污水处理末段水质超低氟含量达标排放的处理要求。
具体实施方式
下面结合实施例对本发明进行进一步的说明。如无特殊说明,本发明实施例中采用的原料、试剂均为市售商品。
实施例1
一种除氟吸附材料的制备方法,包括以下步骤:
将高铝飞灰、中铝煤矸石、粉煤灰研磨至300目,在250℃保温干燥30min;将赤泥、石灰石研磨至250目,在300℃保温干燥15min;将干燥后的物料,按照以下质量百分比充分混合:高铝飞灰15%、赤泥10%、中铝煤矸石30%、石灰石30%、 余量为粉煤灰;将混合后的物料放入窑炉,升温曲线按照从室温至500℃用时1h,从500℃升温至950℃用时1.5h,按照5℃/分钟从950℃升温至1300℃,达到1300℃后,恒温保温1h,然后自然冷却到室温后取出;将煅烧处理后物料,用盐酸酸化除去灰分后,浸入5%盐溶液进行表面处理,盐按质量百分比为氯化钙∶氯化镁∶氯化钠=1∶2∶1。浸泡30min后过滤取出;将过滤后的物料在250℃干燥至恒重后得到产品。
使用一家有色加工园区内工厂废水的末端水体作为测试水样,使用市售天然矿物吸附材料和活性铝除氟吸附材料作为对比样品,使用氟离子选择电极测定水体氟含量。实施例产品与对比样品性能测试数据如下:
表1实施例1除氟测试对比数据
由表1数据可以看出,实施例1产品的吸附载量在有色金属加工园区污水末端水体中,高于市售对比产品,使用成本低。
实施例2
一种除氟吸附材料的制备方法,包括以下步骤:
将高铝飞灰、粉煤灰研磨至300目,在300℃保温干燥45min;将中铝煤矸石研末至200目,在250℃保温干燥30min;将赤泥、石灰石研磨至250目,在350℃保温干燥15min;将干燥后的物料,按照以下质量百分比充分混合:高铝飞灰18%、赤泥5%、中铝煤矸石22%、石灰石20%、余量为粉煤灰;将混合后的物料放入窑炉,升温曲线按照从室温至500℃用时0.8h,从500℃升温至950℃用时1.8h,按照5℃/分钟从950℃升温至1400℃,达到1400℃后,恒温保温1.5h,然后自然冷却到室温后取出;将煅烧处理后物料,用盐酸酸化除去灰分后,浸入4%盐溶液进行表面处理,盐按质量百分比为氯化钙∶氯化镁∶氯化钠=1.5∶1.5∶1,浸泡45min后过滤取出;将过滤后的物料在300℃干燥至恒重后得到产品。
使用一家铝矿矿区废水处理系统的末端水体作为测试水样,使用市售天然矿物吸附材料和活性铝除氟吸附材料作为对比样品,使用氟离子选择电极测定水体氟含 量。实施例产品与对比样品性能测试数据如下:
表2实施例2除氟测试对比数据
由表2数据可以看出,实施例2产品的吸附载量在矿山废水末端水体中,高于市售对比产品,使用成本低。
实施例3
一种除氟吸附材料的制备方法,包括以下步骤:
将高铝飞灰、中铝煤矸石、粉煤灰研磨至300目,在250℃保温干燥30min;将赤泥、石灰石研磨至250目,在300℃保温干燥15min;将干燥后的物料,按照以下质量百分比充分混合:高铝飞灰15%、赤泥10%、中铝煤矸石30%、石灰石30%、余量为粉煤灰;将混合后的物料放入窑炉,升温曲线按照从室温至500℃用时1h,从500℃升温至950℃用时1.5h,按照5℃/分钟从950℃升温至1300℃,达到1300℃后,恒温保温1h,然后自然冷却到室温后取出;将煅烧处理后物料,用工业盐酸酸化除去灰分后,浸入5%盐溶液进行表面处理,其中,氯化钙∶氯化镁∶氯化钠的质量比为1∶2∶1。浸泡30min后过滤取出;将过滤后的物料在250℃干燥至恒重后得到产品。
使用一家有色加工园区内工厂废水的末端水体作为测试水样,使用市售天然矿物吸附材料和活性铝除氟吸附材料作为对比样品,使用氟离子选择电极测定水体氟含量。实施例产品与对比样品性能测试数据如下:
表3实施例3除氟测试对比数据
由表3数据可以看出,实施例3产品的吸附载量在有色金属加工园区污水末端 水体中,高于市售对比产品,使用成本低。
实施例4
一种除氟吸附材料的制备方法,包括以下步骤:
将高铝飞灰、粉煤灰研磨至300目,在300℃保温干燥45min;将中铝煤矸石研末至200目,在250℃保温干燥30min;将赤泥、石灰石研磨至250目,在350℃保温干燥15min;将干燥后的物料,按照以下质量百分比充分混合:高铝飞灰18%、赤泥5%、中铝煤矸石22%、石灰石20%、余量为粉煤灰;将混合后的物料放入窑炉,升温曲线按照从室温至500℃用时0.8h,从500℃升温至950℃用时1.8h,按照5℃/分钟从950℃升温至1400℃,达到1400℃后,恒温保温1.5h,然后自然冷却到室温后取出;将煅烧处理后物料,用工业盐酸酸化除去灰分后,浸入4%盐溶液进行表面处理,其中,氯化钙∶氯化镁∶氯化钠的质量比为1.5∶1.5∶1,浸泡45min后过滤取出;将过滤后的物料在300℃干燥至恒重后得到产品。
使用一家铝矿矿区废水处理系统的末端水体作为测试水样,使用市售天然矿物吸附材料和活性铝除氟吸附材料作为对比样品,使用氟离子选择电极测定水体氟含量。实施例产品与对比样品性能测试数据如下:
表4实施例4除氟测试对比数据
由表4数据可以看出,实施例4产品的吸附载量在矿山废水末端水体中,高于市售对比产品,使用成本低。
本具体实施方式的实施例均为本发明的较佳实施例,并非依此限制本发明的保护范围,故:凡依本发明的结构、形状、原理所做的等效变化,均应涵盖于本发明的保护范围之内。

Claims (7)

  1. 一种除氟吸附材料,其特征在于,由制备原料充分混合后,经煅烧处理、盐溶液表面处理后烘干制得;所述制备原料由骨架烧结制备原料、通道构成烧失原料、功能活化原料构成;所述骨架烧结制备原料为高铝飞灰、粉煤灰;通道构成烧失原料为中铝煤矸石、石灰石;功能活化原料为赤泥;制备原料按照以下质量百分比组成:高铝飞灰15%~20%、赤泥5%~15%、中铝煤矸石20%~30%、石灰石20~30%、余量为粉煤灰。
  2. 根据权利要求1所述的除氟吸附材料,其特征在于,所述盐溶液表面处理为先用盐酸去除煅烧后物料的灰分后,浸入盐溶液表面处理;所述盐溶液为氯化钙、氯化镁、氯化钠的混合盐溶液。
  3. 根据权利要求2所述的除氟吸附材料,其特征在于,所述盐溶液的质量浓度为3~6%。
  4. 根据权利要求2所述的除氟吸附材料,其特征在于,所述氯化钙、氯化镁、氯化钠的质量比为氯化钙∶氯化镁∶氯化钠=(1~2)∶(1~2)∶1。
  5. 一种权利要求1-4任一所述除氟吸附材料的制备方法,其特征在于,包括如下步骤:
    S1.原料预处理:高铝飞灰、赤泥、中铝煤矸石、石灰石、粉煤灰各自研磨至200~300目,并在250℃~350℃温度范围内保温干燥15~45分钟;
    S2.原料配料:将干燥后的物料按照以下质量百分比充分混合:高铝飞灰15%~20%、赤泥5%~15%、中铝煤矸石20%~30%、石灰石20~30%、余量为粉煤灰;
    S3.煅烧处理:将混合后的物料放入窑炉,升温曲线按照从室温至500℃用时0.8~1.2h,从500℃升温至950℃用时1.2~1.8h,再按照5℃/分钟从950℃升温至1250℃~1450℃区间,达到要求温度后,恒温保温1~2h,然后自然冷却到室温后取出;
    S4.表面处理:将煅烧处理后物料,用盐酸酸化除去灰分后,浸入盐溶液进行表面处理,盐溶液质量浓度为3~6%,盐按质量百分比为氯化钙∶氯化镁∶氯化钠=(1~2)∶(1~2)∶1,浸泡15~45min后过滤取出;
    S5.烘干处理:将过滤后的物料在250℃~350℃温度范围内保温干燥至恒重后得到产品。
  6. 一种权利要求1-4任一所述除氟吸附材料的制备方法,其特征在于,包括如 下步骤:
    S1.原料预处理:高铝飞灰、赤泥、中铝煤矸石、石灰石、粉煤灰各自研磨至200~300目,并在250℃~350℃温度范围内保温干燥15~45分钟;
    S2.原料配料:将干燥后的物料按照以下质量百分比充分混合:高铝飞灰15%~20%、赤泥5%~15%、中铝煤矸石20%~30%、石灰石20~30%、余量为粉煤灰;
    S3.煅烧处理:将混合后的物料放入窑炉,升温曲线按照从室温至500℃用时0.8~1.2h,从500℃升温至950℃用时1.2~1.8h,再按照5℃/分钟从950℃升温至1250℃~1450℃区间,达到要求温度后,恒温保温1~2h,然后自然冷却到室温后取出;
    S4.表面处理:将煅烧处理后物料,用盐酸酸化除去灰分后,浸入盐溶液进行表面处理,盐溶液质量浓度为3~6%,盐溶液中氯化钙、氯化镁、氯化钠的质量比为(1~2)∶(1~2)∶1,浸泡15~45min后过滤取出;
    S5.烘干处理:将过滤后的物料在250℃~350℃温度范围内保温干燥至恒重后得到产品。
  7. 一种权利要求1-4任一所述除氟吸附材料在废水处理中的应用。
PCT/CN2023/072828 2022-05-28 2023-01-18 一种除氟吸附材料及其制备方法和应用 WO2023231423A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210591340.0A CN115193399B (zh) 2022-05-28 2022-05-28 一种用于废水处理的除氟吸附材料
CN202210591340.0 2022-05-28

Publications (1)

Publication Number Publication Date
WO2023231423A1 true WO2023231423A1 (zh) 2023-12-07

Family

ID=83575816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072828 WO2023231423A1 (zh) 2022-05-28 2023-01-18 一种除氟吸附材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115193399B (zh)
WO (1) WO2023231423A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012024912A1 (zh) * 2010-08-27 2012-03-01 江苏永冠给排水设备有限公司 一种饮用水除氟滤料的生产方法
CN108311095A (zh) * 2018-03-16 2018-07-24 锡林郭勒职业学院 一种粉煤灰除氟剂的制备方法及其应用
CN111116164A (zh) * 2020-02-19 2020-05-08 北京朗新明环保科技有限公司 一种粉煤灰基多孔除氟材料及其制备方法和应用
CN111389347A (zh) * 2020-04-09 2020-07-10 中国铝业股份有限公司 一种废水除氟吸附剂及其制备方法
CN112551630A (zh) * 2020-11-27 2021-03-26 河北恒奥环保科技有限公司 一种含氟废水处理用除氟剂的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624294A (zh) * 2009-08-14 2010-01-13 准格尔旗粉煤灰煤矸石研发中心 陶粒及其制备方法
CN112547021A (zh) * 2020-10-27 2021-03-26 南京长三角绿色发展研究院有限公司 一种生物质基羟基磷灰石复合材料及其制备方法和应用
CN112551658A (zh) * 2020-11-17 2021-03-26 鄂尔多斯应用技术学院 一种高铝粉煤灰除氟絮凝剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012024912A1 (zh) * 2010-08-27 2012-03-01 江苏永冠给排水设备有限公司 一种饮用水除氟滤料的生产方法
CN108311095A (zh) * 2018-03-16 2018-07-24 锡林郭勒职业学院 一种粉煤灰除氟剂的制备方法及其应用
CN111116164A (zh) * 2020-02-19 2020-05-08 北京朗新明环保科技有限公司 一种粉煤灰基多孔除氟材料及其制备方法和应用
CN111389347A (zh) * 2020-04-09 2020-07-10 中国铝业股份有限公司 一种废水除氟吸附剂及其制备方法
CN112551630A (zh) * 2020-11-27 2021-03-26 河北恒奥环保科技有限公司 一种含氟废水处理用除氟剂的制备方法

Also Published As

Publication number Publication date
CN115193399B (zh) 2023-08-04
CN115193399A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
Liu et al. Adsorption removal of phosphate from aqueous solution by active red mud
WO2021093168A1 (zh) 一种基于工业尾气-污水处理-绿色高性能土木功能材料协同处置的赤泥利用方法
CN108083345A (zh) 一种利用赤泥废料制备聚硅硫酸铝铁复合絮凝剂的方法
CN104492372B (zh) 一种用于吸附废水中重金属材料的制备方法及其应用
JP4336148B2 (ja) 酸化マグネシウム粉末及びその製造方法
CN106423045A (zh) 一种处理含锌废水的改性蒙脱土吸附剂制备方法
KR101478305B1 (ko) 폐수 처리용 무기 폐수처리제 및 이의 제조방법
WO2021054116A1 (ja) リン吸着材
CN111170400A (zh) 水质底质改良剂及其制备方法和水质底质的改良方法
CN105107457B (zh) 一种无机粉体材料的制备方法与应用
CN106076248A (zh) 一种稀土改性粉煤灰的制备方法
Gu et al. Phosphorus and Nitrogen Removal Using Novel Porous Bricks Incorporated with Wastes and Minerals.
JP2014050841A (ja) 水処理方法
JP2011101830A (ja) 水処理剤及び水処理方法
CN101306850B (zh) 复合高效硅藻土净水剂及制备方法
CN107043146B (zh) 一种利用牛粪制备复合水处理剂的方法
CN109985600B (zh) 一种改性海泡石及其在废水处理中的应用
WO2023231423A1 (zh) 一种除氟吸附材料及其制备方法和应用
CN113636631B (zh) 一种复合型水质凝集净化剂及其制备方法
Xu et al. Phosphate removal from digested sludge supernatant using modified fly ash
JP2001340872A (ja) 硼素及び/又は弗素含有排水の処理方法
CN110482853B (zh) 一种将电镀废水中有毒金属离子固化于钠钙铝硅酸盐玻璃中的方法及所得玻璃
CN110575812B (zh) 一种陶土/软锰矿高效除磷的环保吸附材料及制备方法
CN112047417A (zh) 一种硅藻土污水处理剂及其制备方法
CN114789039B (zh) 一种矿物型除磷剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814622

Country of ref document: EP

Kind code of ref document: A1