WO2012024912A1 - 一种饮用水除氟滤料的生产方法 - Google Patents

一种饮用水除氟滤料的生产方法 Download PDF

Info

Publication number
WO2012024912A1
WO2012024912A1 PCT/CN2011/070804 CN2011070804W WO2012024912A1 WO 2012024912 A1 WO2012024912 A1 WO 2012024912A1 CN 2011070804 W CN2011070804 W CN 2011070804W WO 2012024912 A1 WO2012024912 A1 WO 2012024912A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydroxyapatite
drinking water
phosphoric acid
water
calcium hydroxide
Prior art date
Application number
PCT/CN2011/070804
Other languages
English (en)
French (fr)
Inventor
刘泽山
冯莉
Original Assignee
江苏永冠给排水设备有限公司
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏永冠给排水设备有限公司, 中国矿业大学 filed Critical 江苏永冠给排水设备有限公司
Priority to IN2983DEN2012 priority Critical patent/IN2012DN02983A/en
Publication of WO2012024912A1 publication Critical patent/WO2012024912A1/zh
Priority to ZA2012/04716A priority patent/ZA201204716B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite

Definitions

  • the invention relates to a drinking water treatment technology, in particular to a method for removing a fluorine removal filter material which exceeds the standard fluorine in drinking water.
  • Fluorosis caused by drinking high-fluorine water is a worldwide endemic disease. It causes fluorosis in the light, and causes fluorosis in the severe cases, causing osteoporosis, bone deformation, and even paralysis. China is one of the countries with the most serious fluorosis in the world. Except for Shanghai, it is spread all over the country. At present, the population of sick villages with high fluoride water poisoning is as high as 81.41 million. The National Eleventh Five-Year Plan for Rural Drinking Water Safety Project decided to basically solve the drinking water safety problem of more than 300 million rural people by 2015.
  • fluorine removal technology at home and abroad mainly includes coagulation sedimentation method, chemical precipitation method, electrodialysis method, electrocoagulation method, reverse osmosis method, nanofiltration method, ion exchange method, adsorption method and the like.
  • the chemical precipitation method and the coagulation sedimentation method leave a large amount of calcium and aluminum plasma, which is mainly used for industrial wastewater treatment. Because high-fluorine water is mainly distributed in rural areas and desert areas where the environment is harsh, the terrain is complex, the water shortage is low, the transportation is inconvenient, the economy is backward, and the income is not high, electrodialysis, electrocoagulation, reverse osmosis, nanofiltration, etc.
  • Bone carbon defluoridation has been widely used in more than ten provinces, municipalities and autonomous regions such as Shandong, Inner Mongolia, Xinjiang, Hebei, Henan, Gansu, Shaanxi and Tianjin.
  • the chromaticity, turbidity and smell of effluent from bone carbon are often unsatisfactory.
  • the industrialization level of bone carbon preparation is low, the strength of the particles is poor, and the loss rate is high, which limits its use.
  • the fluorine-free bone carbon has basically withdrawn from the domestic market.
  • the removal of fluorine from zeolites was once raised in China.
  • the zeolite is greatly disturbed by the raw water quality, the fluorine removal capacity is low, and the regeneration is frequent.
  • the zeolite regeneration mainly uses alum and aluminum salts, and there is also a risk of exceeding the standard of aluminum ions. Therefore, it has not been well promoted and applied at present.
  • the modification and compounding are carried out on the basis of the existing adsorbent to improve the fluorine removal capacity.
  • some new defluorination agents such as the Chinese patent: 200910074805.
  • a preparation method of drinking water magnesium defluoridation agent includes 200710185294.
  • a modified chitosan for fluoride removal in water Cross-linked resin and preparation method thereof method for preparing defluorination agent by using marine product processing waste---chitosan disclosed in 200810015153.8; method for preparing defluorination agent by using chitosan disclosed in 200810015152.3; and high-efficiency defluorination disclosed by 200710176919.6
  • Preparation and application method of adsorbent using natural seabed ferromanganese nodules); composite metal (using rare earth element) oxide defluorination adsorbent disclosed in 200510116751.0; composite metal (using metal zirconium iron) oxide disclosed in 200910235470.5
  • the defluorination agent of this type has high fluorine removal capacity, but the raw material
  • the third is to nanometer the adsorbent material to increase the specific surface area of the filter material, and further improve the fluorine removal capacity and efficiency.
  • a Chinese patent: 200710150940.9 discloses a drinking water defluoridation method, using a nano molecular sieve; a method for removing fluorine by using nano-active zirconia disclosed in 200910068635.4; a method for removing fluorine by using nano-aluminum trichloride disclosed in 200919968636.9; and an iron oxide disclosed in 200710118307.1
  • Preparation and application of alumina composite nano-fluoride materials although the nano-materials of this kind of research, although the adsorption specific surface area will increase, as the fluorine-removing filter material, the required support filter will be too dense, and the flow resistance of water will increase. It also causes the loss of adsorbent.
  • the object of the present invention is to provide a porous spherical hydroxyapatite drinking water with simple method, low cost, high fluorine removal capacity, easy regeneration, long life, smooth water flow, good biocompatibility, safety and no toxic side effects. Production method for fluorine removal filter.
  • the steps of the production method of the drinking water defluoridation filter of the present invention are as follows:
  • Preparation of hydroxyapatite powder (1) Using industrial grade calcium hydroxide and phosphoric acid as raw materials, determining the purity of calcium hydroxide and phosphoric acid, and determining the dosage of calcium hydroxide and phosphoric acid according to the volume ratio of the reaction kettle according to the molar ratio of calcium to phosphorus of 1.45 to 1.75; (2) adding 5 times the amount of water added to the calcium hydroxide in the reaction vessel, heating to 60-90 °, and maintaining the water temperature; (3) firstly determine the quality of the added calcium hydroxide into a paste with cold water; (4) then adding the paste calcium hydroxide while stirring, and stirring uniformly; (5) adding phosphoric acid to a solution of 3 times the volume of phosphoric acid to prepare a solution; (6) adding the prepared phosphoric acid solution to the reaction vessel, controlling the dropping rate to be about 200 L/h, and stirring while dropping; (7) After the addition of the phosphoric acid solution is completed, stirring is continued, and the temperature is maintained at 60 to 90 ° for 40 to
  • porous hydroxyapatite spheres (1) The hydroxyapatite powder is placed in a ball machine, and a porogen having a mass percentage of 5% to 20% and a forming agent having a mass percentage of 30% to 40% are added and uniformly mixed; (2) spraying a binder having a mass percentage of 0.5% to 1%, and forming the powder into a pellet having a diameter of 0.5 to 2 mm; (3) The small ball is taken out, placed in an oven, heated, and dried to obtain a porous hydroxyapatite pellet, that is, a fluorine removal filter.
  • the pore forming agent is urea, sodium hydrogencarbonate or ammonium hydrogencarbonate; the forming agent is attapulgite, bentonite, or montmorillonite; and the hydroxyapatite powder accounts for 40% to 65% by mass. %.
  • the binder is carboxymethyl cellulose (CMC), water glass, or polyvinyl alcohol; the temperature for heating in the oven is 300-500°, and the drying setting time is 1-3h. .
  • the hydroxyapatite used in the invention is a kind of widely used bioactive ceramic material, and has good biocompatibility, safety, and no toxic and side effects. Hydroxyapatite also has excellent adsorption properties, which not only can absorb fluoride ions, but also remove excess fluorine in drinking water, and can also absorb other harmful elements in water.
  • the industrial grade calcium hydroxide and phosphoric acid raw materials can be used to synthesize hydroxyapatite powder under normal pressure and below 100°, and porous spherical hydroxyapatite filter can be prepared by pore forming and spheronization process. The material has the characteristics of high capacity of fluorine removal filter, easy regeneration, long service life and low flow resistance.
  • the raw materials are cheap and easy to obtain, the preparation process is simple, the process parameters are simple and easy to control, and it is easy to be mass-produced and popularized.
  • the main advantages are as follows: 1. The raw materials are cheap and easy to obtain, the preparation process is simple, the equipment investment is small, the process parameters are simple and easy to control, and it is easy to be mass-produced, popularized and applied; 2.
  • the fluorine-removing filter material is non-toxic, safe and has no side effects, and will not cause secondary pollution to the water quality. The whole process is green and environmentally friendly; 3, the use effect is good, the treated water quality meets the national drinking water standard, and the fluorine content is less than 1 mg/L; 4.
  • the specific surface area of the fluorine removal filter material is large, and the fluorine removal capacity can meet the requirements for handling high fluorine water; 5, long service life, easy to regenerate; 6, the mechanical strength of the particles can be controlled, reaching 5-10N / grain; 7.
  • the water is smooth and the resistance is small.
  • an industrial grade phosphoric acid having a content of 92.3% of industrial grade calcium hydroxide and a content of 85% is used.
  • Embodiment 1 According to the size of the reaction kettle, it is determined that the dosage of calcium hydroxide is 100 Kg, the molar ratio of calcium to phosphorus is 1.67, and the dosage of phosphoric acid is determined to be 50 L; 2. Add 500 L of water to the reaction vessel, heat to 70 °, and maintain the water temperature; 3. Weigh 100Kg of calcium hydroxide, adjust it into a paste with cold water, stir the reaction kettle while adding, and mix the calcium hydroxide suspension evenly; 4. Add phosphoric acid to 150L of water to form a solution, add dropwise to the reaction kettle, stir while stirring, control the addition for about one hour, continue to stir, keep the temperature at 70 ° for 90 min; 5.
  • the obtained hydroxyapatite spherical fluorine removal filter has a static capacity of 1.25 mg/g, a specific surface area of 101.3 m 2 /g, a mechanical strength of the particles of 7 N/particle, a treated water quality of which meets the national drinking water standard, and a fluorine content of less than 1 Mg/L.
  • Embodiment 2 1. According to the size of the reaction kettle, it is determined that the dosage of calcium hydroxide is 100 Kg, the molar ratio of calcium to phosphorus is 1.45, and the dosage of phosphoric acid is determined to be 60 L; 2. Add 500 L of water to the reaction vessel, heat to 90 °, and maintain the water temperature; 3. Weigh 100Kg of calcium hydroxide, adjust it into a paste with cold water, stir the reaction kettle while adding, and mix the calcium hydroxide suspension evenly; 4. Add phosphoric acid to 180L of water to form a solution, add dropwise to the reaction kettle, stir while stirring, control the dropwise addition for one hour and twenty minutes, continue stirring, keep the temperature at 90 ° for 40 min; 5.
  • the product is taken out, dehydrated, washed, dried, and pulverized to obtain a hydroxyapatite powder; 6. Mix 10% by mass of urea, 30% by mass of bentonite into 60% by mass of hydroxyapatite powder, and spray inwardly with 1% by mass of water glass binder. Making a ball into the ball machine and controlling the diameter of the ball to be 1 to 2 mm; 7. Remove the small ball, place it in an oven, and dry it at a temperature of 450 ° for 2 h. A porous hydroxyapatite spherical defluorination filter having a diameter of about 1 to 2 mm was obtained.
  • the obtained hydroxyapatite spherical defluorination filter has a static capacity of 1.31 mg/g, a specific surface area of 98.5 m2/g, a mechanical strength of the particles of 8 N/granule, a treated water quality of the national drinking water standard, and a fluorine content of less than 1 Mg/L.
  • Embodiment 3 According to the size of the reaction kettle, it is determined that the dosage of calcium hydroxide is 100 Kg, the molar ratio of calcium to phosphorus is 1.55, and the dosage of phosphoric acid is determined to be 55 L; 2. Add 500 L of water to the reaction vessel, heat to 80 °, and maintain the water temperature; 3. Weigh 100Kg of calcium hydroxide, adjust it into a paste with cold water, stir the reaction kettle while adding, and mix the calcium hydroxide suspension evenly; 4. Add phosphoric acid to 165L water to form a solution, add dropwise to the reaction kettle, stir while stirring, control the dropwise addition for one hour and ten minutes, continue stirring, keep the temperature at 80 ° for 60 min; 5.
  • hydroxyapatite powder taking out the product, dehydrating, washing, drying and pulverizing to obtain hydroxyapatite powder; 6. Add 20% by mass of sodium bicarbonate and 30% by mass of montmorillonite to 50% by mass of hydroxyapatite powder, and mix inwardly with 0.5% by mass of polyethylene.
  • An alcohol binder which is made into a small ball in a ball forming machine, and controls the diameter of the small ball to be 1 to 2 mm; 7. Remove the pellet, place it in an oven, and dry it at a temperature of 500 ° for about 1 h to obtain a porous hydroxyapatite spherical defluoridation filter having a diameter of about 1 to 2 mm.
  • the obtained hydroxyapatite spherical defluorination filter has a static capacity of 1.27 mg/g, a specific surface area of 102.6 m2/g, a mechanical strength of particles of 9 N/particle, a treated water quality of which meets the national drinking water standard, and a fluorine content of less than 1 Mg/L.
  • Embodiment 4 According to the size of the reaction kettle, it is determined that the dosage of calcium hydroxide is 100 Kg, the molar ratio of calcium to phosphorus is 1.67, and the dosage of phosphoric acid is determined to be 50 L; 2. Add 500 L of water to the reaction vessel, heat to 90 °, and maintain the water temperature; 3. Weigh 100Kg of calcium hydroxide, adjust it into a paste with cold water, stir the reaction kettle while adding, and mix the calcium hydroxide suspension evenly; 4. Add phosphoric acid to 150L of water to form a solution, add dropwise to the reaction kettle, stir while stirring, control the addition for about one hour, continue to stir, keep the temperature at 90 ° for 60 min; 5.
  • the obtained hydroxyapatite spherical defluorination filter has a static capacity of 1.28 mg/g, a specific surface area of 92 m2/g, a mechanical strength of particles of 5 N/particle, a treated water quality that meets the national drinking water standard, and a fluorine content of less than 1 Mg/L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Filtering Materials (AREA)

Abstract

一种饮用水除氟滤料的生产方法,采用廉价的工业级氢氧化钙和磷酸为原料,在常压、低于100°的条件下合成羟基磷灰石,经脱水、洗涤、干燥、粉碎后得到羟基磷灰石粉体,再利用成孔和成球工艺,在羟基磷灰石粉体中添加成孔、成形和粘合剂,将羟基磷灰石粉体制成直径为0.5~2mm的小球,经烘箱加温、干燥定型后即得到多孔球形羟基磷灰石除氟滤料。具有除氟滤料高容量、再生易、寿命长、出水流畅阻力小的特点;其生产方法具有原料廉价易得,制备工艺简单,过程参数简单易控制等特点;易于大规模工业生产和推广应用。

Description

一种饮用水除氟滤料的生产方法 技术领域
本发明涉及饮用水处理技术,尤其是一种去除饮用水中超标氟的除氟滤料的生产方法。
背景技术
饮用高氟水造成的氟中毒是涉及世界范围的地方病,轻者引起氟斑牙,重者会引起氟骨症,造成骨质疏松、骨变形,甚至瘫痪,丧失劳动能力。中国是世界上氟中毒最严重的国家之一,除上海市外,遍布全国各省,目前因高氟水源中毒的病村人口高达8141万。《全国农村饮水安全工程“十一五”规划》决定到2015年基本解决3亿多农村人口的饮水安全问题。
目前,国内外除氟技术主要有混凝沉降法、化学沉淀法、电渗析法、电凝聚法、反渗透法、纳滤法、离子交换法、吸附法等。化学沉淀法和混凝沉降法会遗留大量钙铝等离子,主要用于工业废水处理。由于高氟水主要分布在环境恶劣、地形复杂、缺水少电、交通不便、经济落后、收入不高的农村、牧区,因此电渗析法、电凝聚法、反渗透法、纳滤等方法虽然效果好,但装置复杂,设备昂贵,使用成本高,操作水平要求高,因此难以在我国农村推广应用。离子交换等树脂法由于抗干扰能力低,再生频繁,在饮水除氟市场上未得到广泛应用。吸附法是目前国内外最常用的饮用水除氟方法。除氟吸附剂尽管报道较多,如沸石、蛇纹石、氧化锆、粉煤灰、粘土、活性炭、活性氧化铝和骨碳等,但考虑到再生方法的难易、成本和除氟容量,许多吸附剂并未得到实际应用。
自80年代中期,国内不少高氟地区安装了活性氧化铝除氟设备,但由于利用活性氧化铝除氟时,需降低原水的pH值,而在农村实际应用时常忽略pH调节,使得使用效果受到影响。而且除氟剂易板结,使用寿命短,铝溶出较高,有引起大脑疾病(如阿尔茨海默氏病等老年性痴呆)的潜在风险,为此,许多农村水厂停止进行活性氧化铝除氟。
骨碳法除氟曾在山东、内蒙、新疆、河北、河南、甘肃、陕西、天津等十多个省、市、自治区得到广泛使用。但骨碳除氟的出水色度、浊度和嗅味经常不能令人满意。骨碳制备的工业化水平低,颗粒的强度差,损耗率高,限制了它的使用,目前除氟骨碳已经基本退出我国市场。
沸石除氟曾在我国曾一度兴起。但沸石受原水水质干扰大,除氟容量低,再生频繁,而且目前沸石再生主要使用明矾和铝盐,也有铝离子超标的风险。因此目前没有得到很好的推广应用。
针对上述情况,国内外学者进行了大量的研究。主要集中在三个方面:
一是在现有吸附剂的基础上进行改性、复合,以提高除氟容量,如中国专利:200410093484.5公开的改性沸石除氟滤料的生产方法及其相适应的除氟工艺;200510040604.X 公开的凹凸棒土除氟剂; 00103518.5公开的铝改性蒙脱石除氟材料制备及应用方法, 200510013656.8公开的铝盐混凝微滤联合除氟方法;200810034733.1公开的铁改性天然STI沸石除氟材料的制备方法及再生方法;200910097694.6公开的一种负载铝离子的骨炭除氟剂的制备方法;200710134319.3公开的一种高效除氟活性微孔陶瓷填料的制备方法;200610086619.4公开的一种高效除氟剂及其制备方法和应用;200810047744.3公开的一种水处理除铁锰复合吸附滤料的制备方法;200710071899.6公开的一种饮用水高效除氟净化方法;200910068349.8公开的用于从水中除氟的复合膨润土及其制备方法。这类研究不同程度地提高了除氟容量和除氟效果,但仍然存在除氟剂易板结、使用寿命短、再生效率低、铝离子超标的风险等问题。
二是一些新型除氟剂的研究,如中国专利:200910074805.X公开的一种饮用水镁质除氟剂的制备方法;200710185294.X公开的一种用于水中除氟的改性壳聚糖交联树脂及其制备方法;200810015153.8公开的用海产品加工废弃物---壳聚糖制备除氟剂的方法;200810015152.3公开的用壳聚糖制备除氟剂的方法;200710176919.6公开的高效除氟吸附剂(利用天然海底铁锰结核)的制备和应用方法;200510116751.0公开的一种复合金属(采用稀土元素)氧化物除氟吸附剂;200910235470.5公开的一种复合金属(利用金属锆铁)氧化物除氟吸附剂及其制备方法,这类研究的除氟剂除氟容量高,但原料成本相对较高,制备工艺相对复杂。
三是将吸附材料纳米化,以提高滤料的比表面积,进一步提高除氟容量和效率。如中国专利:200710150940.9公开的一种饮用水除氟方法,采用纳米分子筛;200910068635.4公开的纳米活性氧化锆除氟的方法;200919968636.9公开的纳米三氯化铝的除氟方法;200710118307.1公开的氧化铁-氧化铝复合纳米除氟材料的制备及应用,这类研究的纳米材料,虽然吸附比表面积会增大,但作为除氟滤料,所需支撑滤网则会过密,水的流动阻力加大,还会造成吸附剂的流失。
技术问题
本发明的目的是提出一种方法简单、成本低廉、除氟容量高、再生容易、寿命长、出水流畅、具有良好的生物相容性、安全、无毒副作用的多孔球形羟基磷灰石饮用水除氟滤料的生产方法。
技术解决方案
本发明的饮用水除氟滤料的生产方法步骤如下:
1、制备羟基磷灰石粉体:
(1)采用工业级氢氧化钙、磷酸为原料,测定氢氧化钙、磷酸的纯度,根据反应釜的容积大小,按照钙磷摩尔比1.45~1.75确定氢氧化钙和磷酸的投加质量;
(2)在反应釜中加入5倍于氢氧化钙投加质量的水,加热至60~90°,并保持水温;
(3)先将确定投加质量的氢氧化钙用冷水调成糊状;
(4)然后把糊状氢氧化钙边加入边搅拌反应釜中,搅拌均匀;
(5)将磷酸加入到3倍于磷酸体积的水中配成溶液;
(6)将配制的磷酸溶液向反应釜滴加,控制滴加速度约为200L/h,边滴边搅拌;
(7)待磷酸溶液加完后,继续搅拌,保持温度60~90°反应40~120min;
(8)取出产物,进行脱水、洗涤、干燥、粉碎,得到羟基磷灰石粉体;
2、制备多孔羟基磷灰石球体:
(1)将羟基磷灰石粉体放入成球机中,加入质量百分比为5%~20%的成孔剂和质量百分比为30%-40%的成形剂,混合均匀;
(2)喷洒质量百分比为0.5%~1%的粘合剂,将粉体制成直径为0.5~2mm的小球;
(3)取出小球,放入烘箱中加温、干燥定型后得到多孔羟基磷灰石小球,即除氟滤料。
所述的成孔剂为尿素、碳酸氢钠、或碳酸氢铵;成形剂为凹凸棒土、膨润土、或蒙脱土;所述的羟基磷灰石粉体所占质量百分比为40%~65%。;所述的粘合剂为羧甲基纤维素(CMC)、水玻璃、或聚乙烯醇;所述的放入烘箱中加温的温度为300~500°,干燥定型的时间为1~3h。
有益效果
本发明采用的羟基磷灰石是一类应用广泛的生物活性陶瓷材料,具有良好的生物相容性、安全、无毒副作用。羟基磷灰石还具有优异的吸附性能,不仅可以吸附氟离子,达到除去饮用水中过量氟的目的,还可以吸附水中其他有害元素。所采用的工业级氢氧化钙和磷酸原料,可在常压、低于100°的条件下合成羟基磷灰石粉体,利用成孔和成球工艺即可制备出多孔球形羟基磷灰石滤料,具有除氟滤料高容量、再生易、寿命长、出水流畅阻力小的特点;原料廉价易得,制备工艺简单,过程参数简单易控制,易于大规模工业生产、推广应用。主要优点如下:
1、原料廉价易得,制备工艺简单,设备投资小,过程参数简单易控制,易于大规模工业生产、推广应用;
2、除氟滤料无毒,安全无副作用,对水质不会产生二次污染,整个工艺绿色环保;
3、使用效果好,处理水质量达到国家饮用水标准,氟含量小于1 mg/L;
4、除氟滤料比表面积大,除氟容量能够满足处理高氟水的要求;
5、使用寿命长、再生易;
6、颗粒机械强度可控,达到5-10N/粒;
7、出水流畅、阻力小。
本发明的实施方式
以一吨反应釜为例,采用含量为92.3%的工业级氢氧化钙、含量为85%的工业级磷酸。
实施例一、
1、根据反应釜的大小,确定氢氧化钙的投加质量为100 Kg,钙磷摩尔比取1.67,确定磷酸的投加量为50L;
2、在反应釜中加入500L水,加热至70°,并保持水温;
3、称取氢氧化钙100Kg,用冷水调成糊状,边加入边搅拌反应釜中,使氢氧化钙悬浊液混合均匀;
4、将磷酸加入到150L水中配成溶液,向反应釜滴加,边滴边搅拌,控制一小时左右滴加完毕,继续搅拌,保持温度70°反应90 min;
5、取出产品,进行脱水、洗涤、干燥、粉碎,得到羟基磷灰石粉体;
6、将质量百分比为20%的尿素、质量百分比为30%凹凸棒土加入到质量百分比为50%的羟基磷灰石粉体中混合均匀,向内喷洒质量百分比为1%的CMC粘合剂,在成球机中制成小球,并控制小球的直径为1~2mm;
7、取出小球,放入烘箱中,在温度400°下干燥定型2h,即得到直径约为1~2mm的多孔羟基磷灰石球形除氟滤料。
所得到的羟基磷灰石球形除氟滤料的静态容量为1.25mg/g,比表面积101.3m2/g,颗粒机械强度7N/粒,处理水质量达到国家饮用水标准,氟含量小于1 mg/L。
实施例二、
1、根据反应釜的大小,确定氢氧化钙的投加质量为100 Kg,钙磷摩尔比取1.45,确定磷酸的投加量为60L;
2、在反应釜中加入500L水,加热至90°,并保持水温;
3、称取氢氧化钙100Kg,用冷水调成糊状,边加入边搅拌反应釜中,使氢氧化钙悬浊液混合均匀;
4、将磷酸加入到180L水中配成溶液,向反应釜滴加,边滴边搅拌,控制一小时二十分钟左右滴加完毕,继续搅拌,保持温度90°反应40 min;
5、取出产品,进行脱水、洗涤、干燥、粉碎,即得到羟基磷灰石粉体;
6、将质量百分比为10%的尿素、质量百分比为30%膨润土加入质量百分比为60%的羟基磷灰石粉体中混合均匀,向内喷洒质量百分比为1%的水玻璃粘合剂,在成球机中制成小球,并控制小球的直径为1~2mm;
7、取出小球,放入烘箱中,在温度450°下干燥定型2h。得到直径约为1~2mm的多孔羟基磷灰石球形除氟滤料。
所得到的羟基磷灰石球形除氟滤料的静态容量为1.31mg/g,比表面积98.5m2/g,颗粒机械强度8N/粒,处理水质量达到国家饮用水标准,氟含量小于1 mg/L。
实施例三、
1、根据反应釜的大小,确定氢氧化钙的投加质量为100 Kg,钙磷摩尔比取1.55,确定磷酸的投加量为55L;
2、在反应釜中加入500L水,加热至80°,并保持水温;
3、称取氢氧化钙100Kg,用冷水调成糊状,边加入边搅拌反应釜中,使氢氧化钙悬浊液混合均匀;
4、将磷酸加入到165L水中配成溶液,向反应釜滴加,边滴边搅拌,控制一小时十分钟左右滴加完毕,继续搅拌,保持温度80°反应60 min;
5、取出产品,进行脱水、洗涤、干燥、粉碎,得到羟基磷灰石粉体;
6、将质量百分比为20%的碳酸氢钠、质量百分比为30%蒙脱土加入到质量百分比为50%的羟基磷灰石粉体中混合均匀,向内喷洒质量百分比为0.5%的聚乙烯醇粘合剂,在成球机中制成小球,并控制小球的直径为1~2mm;
7、取出小球,放入烘箱中,在温度500°下干燥定型约1h,即得到直径约为1~2mm的多孔羟基磷灰石球形除氟滤料。
所得到的羟基磷灰石球形除氟滤料的静态容量为1.27mg/g,比表面积102.6m2/g,颗粒机械强度9N/粒,处理水质量达到国家饮用水标准,氟含量小于1 mg/L。
实施例四、
1、根据反应釜的大小,确定氢氧化钙的投加质量为100 Kg,钙磷摩尔比取1.67,确定磷酸的投加量为50L;
2、在反应釜中加入500L水,加热至90°,并保持水温;
3、称取氢氧化钙100Kg,用冷水调成糊状,边加入边搅拌反应釜中,使氢氧化钙悬浊液混合均匀;
4、将磷酸加入到150L水中配成溶液,向反应釜滴加,边滴边搅拌,控制一小时左右滴加完毕,继续搅拌,保持温度90°反应60 min;
5、取出产品,进行脱水、洗涤、干燥、粉碎,得到羟基磷灰石粉体;
6、将质量百分比为10%的碳酸氢铵、质量百分比为40%膨润土加入质量百分比为50%的羟基磷灰石粉体中混合均匀,向内喷洒质量百分比为1%的CMC粘合剂,在成球机中制成小球,并控制小球的直径为1~2mm;
7、取出小球,放入烘箱中在300°下干燥定型3h,即得到直径约为1~2mm的多孔羟基磷灰石球形除氟滤料。
所得到的羟基磷灰石球形除氟滤料的静态容量为1.28mg/g,比表面积92m2/g,颗粒机械强度5N/粒,处理水质量达到国家饮用水标准,氟含量小于1 mg/L。

Claims (6)

  1. 一种饮用水除氟滤料的生产方法,其特征在于包括如下步骤:
    a、制备羟基磷灰石粉体:
    (1)采用工业级氢氧化钙、磷酸为原料,按照钙磷摩尔比1.45~1.75确定氢氧化钙和磷酸的投加质量;
    (2)在反应釜中加入5倍于氢氧化钙投加质量的水,加热至60~90°,并保持水温;
    (3)先将确定投加质量的氢氧化钙用冷水调成糊状;
    (4)然后把糊状氢氧化钙边加入边搅拌反应釜中,搅拌均匀;
    (5)将磷酸加入到3倍于磷酸体积的水中配成溶液;
    (6)将配制的磷酸溶液向反应釜滴加,控制滴加速度约为200L/h,边滴边搅拌;
    (6)待磷酸溶液加完后,继续搅拌,保持温度60~90°反应40~120min;
    (7)取出产物,进行脱水、洗涤、干燥、粉碎,得到羟基磷灰石粉体;
    b、制备多孔羟基磷灰石球体:
    (1)将羟基磷灰石粉体放入成球机中,加入质量百分比为5%~20%的成孔剂和质量百分比为30%-40%的成形剂,混合均匀;
    (2)喷洒质量百分比为0.5%~1%的粘合剂,将粉体制成直径为0.5~2mm的小球;
    (3)取出小球,放入烘箱中加温、干燥定型后得到多孔羟基磷灰石小球,即除氟滤料。
  2. 根据权利要求1所述的饮用水除氟滤料的生产方法,其特征在于:所述的成孔剂为尿素、碳酸氢钠、或碳酸氢铵。
  3. 根据权利要求1所述的饮用水除氟滤料的生产方法,其特征在于:所述的成形剂为凹凸棒土、膨润土、或蒙脱土。
  4. 根据权利要求1所述的饮用水除氟滤料的生产方法,其特征在于:所述的羟基磷灰石粉体所占质量百分比为40%~65%。
  5. 根据权利要求1所述的饮用水除氟滤料的生产方法,其特征在于:所述的粘合剂为羧甲基纤维素(CMC)、水玻璃、或聚乙烯醇。
  6. 根据权利要求1所述的饮用水除氟滤料的生产方法,其特征在于:所述放入烘箱中加温的温度为300~500°,干燥定型的时间为1~3h。
PCT/CN2011/070804 2010-08-27 2011-01-30 一种饮用水除氟滤料的生产方法 WO2012024912A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
IN2983DEN2012 IN2012DN02983A (zh) 2010-08-27 2011-01-30
ZA2012/04716A ZA201204716B (en) 2010-08-27 2012-06-25 Production method of filter medium for removing fluoride from drinking water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010264616.1 2010-08-27
CN 201010264616 CN101913584B (zh) 2010-08-27 2010-08-27 一种饮用水除氟滤料的生产方法

Publications (1)

Publication Number Publication Date
WO2012024912A1 true WO2012024912A1 (zh) 2012-03-01

Family

ID=43321269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070804 WO2012024912A1 (zh) 2010-08-27 2011-01-30 一种饮用水除氟滤料的生产方法

Country Status (4)

Country Link
CN (1) CN101913584B (zh)
IN (1) IN2012DN02983A (zh)
WO (1) WO2012024912A1 (zh)
ZA (1) ZA201204716B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480401A (zh) * 2013-09-30 2014-01-01 江苏理工学院 一种羟基磷灰石负载三氯化铝催化剂的制备方法
CN111514846A (zh) * 2020-04-20 2020-08-11 西安斯威夫特环保科技有限公司 一种除氟滤料的制备方法
CN112547014A (zh) * 2020-12-07 2021-03-26 神美科技有限公司 一种碳掺杂氢氧化镁晶须负载稀土金属除氟材料的制备方法
CN113617335A (zh) * 2021-09-14 2021-11-09 新疆大漠奇观生态科技有限公司 一种基于天然钠基膨润土的酒类滤净提质材料的制备方法
CN115779856A (zh) * 2022-11-21 2023-03-14 煤炭科学技术研究院有限公司 一种羟基磷灰石/活性炭复合除氟材料及其制备方法
WO2023231423A1 (zh) * 2022-05-28 2023-12-07 天津正达科技有限责任公司 一种除氟吸附材料及其制备方法和应用

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101913584B (zh) * 2010-08-27 2012-04-04 江苏永冠给排水设备有限公司 一种饮用水除氟滤料的生产方法
CN102745790A (zh) * 2011-04-18 2012-10-24 刘威 一种催化型复合除氟滤料的产业化生产方法
CN102502907B (zh) * 2011-10-14 2013-06-26 江苏永冠给排水设备有限公司 凹凸棒土负载羟基磷灰石复合除氟滤球的生产方法
CN102500160B (zh) * 2011-11-10 2013-10-09 许庆华 圆柱形凹凸棒活性炭陶粒滤料
CN102923783A (zh) * 2012-11-23 2013-02-13 湖南特种金属材料厂 一种电池级高纯一水硫酸锰及其制备方法
CN103585949B (zh) * 2013-11-13 2016-01-13 南京理工大学 一种利用脱硫石膏制备重金属吸附剂的方法
CN104399426B (zh) * 2014-12-08 2017-04-26 中国矿业大学 一种铝掺杂羟基磷灰石除氟滤料的生产方法
CN104478031B (zh) * 2014-12-08 2016-08-24 中国矿业大学 聚合氯化铝/羟基磷灰石共聚材料的制备方法
CN106698714B (zh) * 2016-11-30 2017-12-19 江苏永冠给排水设备有限公司 一种基于直接反应的单级种植除氟水处理的新工艺
CN106745834B (zh) * 2016-11-30 2018-12-28 江苏永冠给排水设备有限公司 一种多级种植除钙水处理的新工艺
CN106745628B (zh) * 2016-12-19 2020-10-23 中国矿业大学 一种碳掺杂羟基磷灰石除氟滤料的生产方法
CN106732346A (zh) * 2017-03-13 2017-05-31 南京信息工程大学 一种印染废水脱色材料的制备方法
CN108033534B (zh) * 2017-11-17 2020-07-31 江苏永冠给排水设备有限公司 一种除氟溶液的制备方法和去除水中氟离子的工艺
CN108479693A (zh) * 2018-05-04 2018-09-04 成都理工大学 羟基磷灰石凹凸棒土复合材料及其制备方法和应用
CN109179553B (zh) * 2018-09-25 2021-12-24 中煤科工集团杭州研究院有限公司 一种含氟废水除氟处理和滤料再生装置及方法
CN111116164B (zh) * 2020-02-19 2021-11-19 国能朗新明环保科技有限公司 一种粉煤灰基多孔除氟材料及其制备方法和应用
CN113351165B (zh) * 2021-04-29 2023-04-14 中石化石油工程技术服务有限公司 矿区饮用水除氟工艺
CN113262632B (zh) * 2021-05-26 2023-03-28 汕头市优森活新材料科技有限公司 一种具有净化空气功能的复合材料及其制备方法
CN113401996A (zh) * 2021-06-21 2021-09-17 神美科技有限公司 一种水处理除氟药剂及其制备方法
CN113600123B (zh) * 2021-07-20 2023-09-15 煤炭科学技术研究院有限公司 一种掺杂高分散羟基磷灰石的红土基球型除氟滤料的制备方法
CN113716759A (zh) * 2021-09-27 2021-11-30 长春工业大学 一种高效去除农村地下水中氟、铁、锰的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1037465A (zh) * 1988-05-10 1989-11-29 天津市公用事业科学技术研究所 除氟滤料及其应用方法
CN1039567A (zh) * 1988-07-22 1990-02-14 北京工业大学 羟基磷酸钙的合成方法及其用途
CN1446109A (zh) * 2000-08-04 2003-10-01 欧健有限公司 多孔人工移植骨及其制造方法
CN101708399A (zh) * 2009-11-11 2010-05-19 济南大学 一种多孔钢渣滤料及其制备方法
CN101773751A (zh) * 2009-12-30 2010-07-14 山东大学 一种轻质阴、阳极水处理滤料及其制备方法
CN101913584A (zh) * 2010-08-27 2010-12-15 江苏永冠给排水设备有限公司 一种饮用水除氟滤料的生产方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1058689C (zh) * 1998-02-05 2000-11-22 华东理工大学 含有成孔剂的多孔磷酸钙骨水泥及其应用
CN101696113B (zh) * 2009-10-23 2012-05-09 中钢集团洛阳耐火材料研究院有限公司 一种低密度烧结陶粒压裂支撑剂的低成本制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1037465A (zh) * 1988-05-10 1989-11-29 天津市公用事业科学技术研究所 除氟滤料及其应用方法
CN1039567A (zh) * 1988-07-22 1990-02-14 北京工业大学 羟基磷酸钙的合成方法及其用途
CN1446109A (zh) * 2000-08-04 2003-10-01 欧健有限公司 多孔人工移植骨及其制造方法
CN101708399A (zh) * 2009-11-11 2010-05-19 济南大学 一种多孔钢渣滤料及其制备方法
CN101773751A (zh) * 2009-12-30 2010-07-14 山东大学 一种轻质阴、阳极水处理滤料及其制备方法
CN101913584A (zh) * 2010-08-27 2010-12-15 江苏永冠给排水设备有限公司 一种饮用水除氟滤料的生产方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480401A (zh) * 2013-09-30 2014-01-01 江苏理工学院 一种羟基磷灰石负载三氯化铝催化剂的制备方法
CN111514846A (zh) * 2020-04-20 2020-08-11 西安斯威夫特环保科技有限公司 一种除氟滤料的制备方法
CN112547014A (zh) * 2020-12-07 2021-03-26 神美科技有限公司 一种碳掺杂氢氧化镁晶须负载稀土金属除氟材料的制备方法
CN112547014B (zh) * 2020-12-07 2022-06-28 神美科技有限公司 一种碳掺杂氢氧化镁晶须负载稀土金属除氟材料的制备方法
CN113617335A (zh) * 2021-09-14 2021-11-09 新疆大漠奇观生态科技有限公司 一种基于天然钠基膨润土的酒类滤净提质材料的制备方法
CN113617335B (zh) * 2021-09-14 2023-09-26 新疆大漠奇观生态科技有限公司 一种基于天然钠基膨润土的酒类滤净提质材料的制备方法
WO2023231423A1 (zh) * 2022-05-28 2023-12-07 天津正达科技有限责任公司 一种除氟吸附材料及其制备方法和应用
CN115779856A (zh) * 2022-11-21 2023-03-14 煤炭科学技术研究院有限公司 一种羟基磷灰石/活性炭复合除氟材料及其制备方法
CN115779856B (zh) * 2022-11-21 2024-05-07 煤炭科学技术研究院有限公司 一种羟基磷灰石/活性炭复合除氟材料及其制备方法

Also Published As

Publication number Publication date
IN2012DN02983A (zh) 2015-07-31
CN101913584B (zh) 2012-04-04
CN101913584A (zh) 2010-12-15
ZA201204716B (en) 2013-07-31

Similar Documents

Publication Publication Date Title
WO2012024912A1 (zh) 一种饮用水除氟滤料的生产方法
CN101920140B (zh) 含有硅藻土和炭的复合陶瓷滤芯的制备方法
CN111203180B (zh) 一种磁性生物炭复合吸附剂及其制备方法和应用
CN102502907B (zh) 凹凸棒土负载羟基磷灰石复合除氟滤球的生产方法
CN104492372B (zh) 一种用于吸附废水中重金属材料的制备方法及其应用
CN101723499B (zh) 二乙烯三胺五乙酸改性硅藻土的制备工艺
CN101007261A (zh) 一种沸石吸附剂及其制备方法
CN1319640C (zh) 活性粉煤灰磷吸附剂的制备方法
CN111001388B (zh) 一种竹基生物炭除磷吸附剂的制备方法及其应用
CN103933926A (zh) 一种活化给水厂废弃泥除磷吸附剂的制备方法
CN101863646A (zh) 一种人工湿地专用填料及其制备方法
CN109126748B (zh) 基于无机硅源的复合材料pei-cs-kit-6及其制备方法和在除铅中的应用
CN101376094A (zh) 改性粉煤灰磷吸附剂的制备方法及其应用
CN103801261A (zh) 吸附材料及其制备方法和应用
CN106518150B (zh) 一种净水污泥和硅藻土制备的复合陶粒
CN112876224A (zh) 一种多孔阻垢陶瓷的制备方法和用途
CN101559349A (zh) 一种免烧型盐酸活化沸石滤料及其制备方法
CN112321270A (zh) 含有改性多孔材料的光催化负离子陶瓷砖及其制备工艺
CN101569856B (zh) 用于去除水中金属铅的过滤介质及其制备方法
CN104478031A (zh) 聚合氯化铝/羟基磷灰石共聚材料的制备方法
CN105418145A (zh) 一种用给水厂污泥制备多孔型吸磷陶粒的方法
CN105498683A (zh) 一种用于含氟污水净化的改性粘土矿物材料的制备方法
CN112808247B (zh) 一种复合除汞材料及其制备方法与应用
CN101560008B (zh) 一种处理低浓度含磷废水的方法
CN114733486B (zh) 一种除磷改性生物炭的制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2983/DELNP/2012

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819287

Country of ref document: EP

Kind code of ref document: A1