WO2021054116A1 - リン吸着材 - Google Patents
リン吸着材 Download PDFInfo
- Publication number
- WO2021054116A1 WO2021054116A1 PCT/JP2020/033172 JP2020033172W WO2021054116A1 WO 2021054116 A1 WO2021054116 A1 WO 2021054116A1 JP 2020033172 W JP2020033172 W JP 2020033172W WO 2021054116 A1 WO2021054116 A1 WO 2021054116A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosphorus
- mass
- cement
- parts
- lantern
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/288—Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/105—Phosphorus compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Definitions
- the present invention relates to a phosphorus adsorbent.
- Sewage such as industrial wastewater, domestic wastewater, and agricultural wastewater contains nutrient salts such as nitrogen and phosphorus that bring about eutrophication, and when they flow into rivers, lakes, marshes, the sea, etc., red tides, blue-green algae, etc. It is known to occur in large numbers.
- These sewage are purified at sewage treatment plants in urban areas.
- the sewerage penetration rate per capita in Japan is 78.8% (FY2017), and septic tanks are installed as wastewater treatment systems in suburbs, depopulated areas, and other undeveloped sewerage areas.
- a general septic tank does not have a function of removing nitrogen and phosphorus.
- a coagulation sedimentation method using a metal salt or lime as a coagulant a biological dephosphorization method (activated sludge method) utilizing the metabolism of microorganisms, an adsorption method and the like are known. ..
- the coagulation-precipitation method requires the addition of many expensive coagulants and discharges a large amount of sludge that is difficult to treat, so that the initial cost and running cost performance are high.
- the biological dephosphorization method (activated sludge method) requires fine control of dissolved oxygen concentration and sludge control in the final settling basin, as well as treatment and disposal of sludge with a high phosphorus content. .. Therefore, when applying these methods to distributed wastewater treatment equipment such as septic tanks, it is necessary to constantly manage the operation by specialists in addition to increasing the equipment.
- Patent Document 2 describes as a phosphate ion removing agent contained in raw water, a phosphate ion removing agent which is an iron ion treatment material ion-exchanged and / or supported by an iron ion-containing aqueous solution.
- a phosphate ion removing agent which is an iron ion treatment material ion-exchanged and / or supported by an iron ion-containing aqueous solution.
- this phosphate ion removing agent is inefficient and cannot sufficiently remove phosphate ions.
- commercially available phosphorus adsorbents are expensive, it is difficult to apply them to distributed wastewater treatment equipment such as septic tanks.
- An object of the present invention is to provide an inexpensive phosphorus adsorbent capable of exhibiting high phosphorus adsorbing performance.
- the present invention is as follows.
- Item 1. Phosphorus adsorbent containing incineration ash, cement, and lanthanum.
- Item 2. Phosphorus adsorbent obtained from incineration ash, cement, and lanterns.
- Item 3. A phosphorus adsorbent produced by reacting incineration ash, cement, and lanthanum.
- Item 4. The phosphorus adsorbent according to any one of the above items 1 to 3, wherein the incineration ash is coal ash.
- Item 5. The phosphorus adsorbent according to any one of Items 1 to 4, wherein the cement is contained in an amount of 5 to 150 parts by mass with respect to 100 parts by mass of the incinerated ash.
- a distributed wastewater treatment apparatus provided with the phosphorus adsorbent according to any one of the above items 1 to 9.
- Item 13 A septic tank provided with the phosphorus adsorbent according to any one of the above items 1 to 9.
- Item 14 A method for producing a phosphorus adsorbent, which obtains a phosphorus adsorbent from incineration ash, cement, and lanthanum.
- Item 15. A method for producing a phosphorus adsorbent, which comprises a step of granulating incineration ash, cement, and lanthanum using a solvent.
- Item 16 The method for producing a phosphorus adsorbent according to Item 14, further comprising a step of curing the obtained granulated product.
- Item 18 The method for producing a phosphorus adsorbent according to any one of Items 14 to 17, wherein 5 to 150 parts by mass of the cement is blended with 100 parts by mass of the incinerated ash.
- Item 19 The method for producing a phosphorus adsorbent according to any one of Items 14 to 17, wherein 0.1 to 15 parts by mass of the lanthanum is added to 100 parts by mass of the total amount of the incinerated ash and the cement.
- Item 20 The method for producing a phosphorus adsorbent according to any one of Items 14 to 16, wherein the incineration ash is coal ash.
- the incineration ash, the cement, and the lantern are mixed with 5 to 150 parts by mass of the cement with respect to 100 parts by mass of the incineration ash, and the total amount of the incineration ash and the cement is 100 parts by mass.
- the incineration ash, the cement, and the lantern are mixed with 5 to 150 parts by mass of the cement with respect to 100 parts by mass of the incineration ash, and the total amount of the incineration ash and the cement is 100 parts by mass.
- Item 22. The method for producing a phosphorus adsorbent according to any one of Items 14 to 21, wherein the granulated product is cured after granulation and then fired.
- Item 23. Item 2. The method for producing a phosphorus adsorbent according to Item 22, wherein the firing temperature is 600 to 1000 ° C.
- Item 24. A method for adsorbing phosphorus, wherein the phosphorus adsorbent according to any one of the above items 1 to 9 is brought into contact with a liquid containing phosphorus.
- Item 25. A method for removing phosphorus by adsorbing and removing phosphorus in sewage using the phosphorus adsorbent according to any one of the above items 1 to 9.
- the phosphorus adsorbent of the present invention has a high phosphorus adsorption amount and a high phosphorus adsorption rate, so that it can exhibit high phosphorus adsorption performance. Since the phosphorus adsorbent of the present invention uses incineration ash, cement, and lantern as raw materials, it is inexpensive and can be applied to a dispersed wastewater treatment device such as a septic tank.
- FIG. Samples 5 to 7 (calcination temperature 600 to 800 ° C.) in Example 2 and Sample A (without calcination) prepared in the same manner as in Example 2 except that calcination was not performed were tested according to the following test examples. After that, it is a photograph of the Erlenmeyer flask containing each solution taken from the top to the bottom of the Erlenmeyer flask. It is a graph which shows the relationship between the reaction time of a sample 10-14 and a phosphoric acid aqueous solution in Example 3 and a phosphoric acid concentration.
- Phosphorus Adsorbent Phosphorus adsorbents include incineration ash, cement, and lanthanum. By mixing the incineration ash and cement, the structure of the obtained mixture is densified, the strength is improved, and the lantern adsorbs phosphorus. Therefore, the phosphorus adsorbent of the present invention has a high phosphorus adsorption amount. The phosphorus adsorption rate is high.
- the incineration ash is not particularly limited as long as it contains silica (SiO 2 ) and alumina (Al 2 O 3) in its components.
- examples of the incineration ash include waste incineration ash such as city waste, wood chips, tire chips, paper sludge, sewage sludge, and biomass; incineration ash such as coal, waste solidified fuel, paper or plastic solidified fuel, and the like. .. These can be used alone or in combination of two or more.
- incineration ash (coal ash) of coal generated by an electric power company is preferably used because there are few impurities such as arsenic.
- coal ash so-called fly ash, which is discharged from a thermal power plant using coal as fuel, can be used.
- Fly ash contains silica (SiO 2 ) and alumina (Al 2 O 3 ), which account for 70 to 90% of the total, as the main components, and Fe 2 O 3 , CaO, MgO, SO 3 , and Na 2 O as other components. , containing K 2 O, oxides such as MnO. Fly ash is produced in large quantities when coal is burned, and reuse is desired. Therefore, fly ash is useful as a raw material for the phosphorus adsorbent of the present invention.
- the type of cement is not particularly limited, and examples thereof include general cements for concrete production such as portoride cement and alumina cement. From the viewpoint of environmental maintenance, cement is preferable because toxic components do not elute into water such as oceans and lakes. Examples of cements having low elution of toxic components include blast furnace cements (particularly, class B blast furnace cements). It is preferable not to use a portolide cement called ordinary cement, which has a large elution amount of toxic hexavalent chromium or the like.
- a water-soluble lanthanum compound can be used as a raw material for the lantern.
- water-soluble lanthanum compounds include lanthanum chloride (LaCl 3 ), lanthanum nitrate (La (NO 3 ) 3 ), lanthanum sulfate (La 2 (SO 4 ) 3 ), and lanthanum acetate (La (CH 3 CO 2 ) 3 ). ); Or their hydrates and the like.
- the content of lantern in the phosphorus adsorbent can be measured, for example, by fluorescent X-ray analysis.
- the phosphorus adsorbent of the present invention contains incineration ash, cement, and lantern, but the raw material may include incineration ash, cement, and lantern, and is, for example, a raw material.
- the raw material may include incineration ash, cement, and lantern, and is, for example, a raw material.
- These "phosphorus adsorbents obtained from incineration ash, cement, and lanterns", "phosphorus adsorbents produced by reacting incineration ash, cement, and lanterns” and the like may also be included. What kind of components are contained in the "phosphorus adsorbent obtained from incineration ash, cement, and lantern” here, to the extent that it is impossible or almost impractical to specify all of them. Due to the difficulty, phosphorus adsorbents are listed in the product-by-process claim.
- the content of incineration ash, cement, and lantern contained in the phosphorus adsorbent is preferably 5 to 150 parts by mass, more preferably 15 to 70 parts by mass, and further preferably 30 parts by mass with respect to 100 parts by mass of incineration ash.
- the lantern is preferably 0.1 to 15 parts by mass, more preferably 0.2 to 10 parts by mass, and further preferably 0. Includes 5-5 parts by mass.
- the content of lantern is preferably 0.5 to 4 parts by mass, and 0.7 to 2 parts by mass with respect to 100 parts by mass of the total amount of incineration ash and cement. Is more preferable, and 0.9 to 1.1 parts by mass is particularly preferable.
- the phosphorus adsorbent is preferably a granulated product containing incineration ash, cement, and lanthanum. Since the incineration ash contains silica (SiO 2 ) and alumina (Al 2 O 3 ), when mixed with cement, it reacts with calcium hydroxide produced during hydration of cement (porazone reaction). , Calcium silicate hydrate, calcium aluminate hydrate and the like are produced, and the structure of the obtained mixture becomes finer and the strength is improved. Further, the lanterns present on the surface and inside of the granulated product have an action of adsorbing phosphorus. Therefore, the phosphorus adsorbent of the present invention is preferably porous.
- the phosphorus to be adsorbed is not particularly limited as long as it contains a phosphorus element, and examples thereof include ions containing a phosphorus element (phosphate ion).
- the phosphate ions occurs at the stage of orthophosphoric acid (H 3 PO 4) is dissociated, orthophosphate ions (PO 4 3-), dihydrogen phosphate ion (H 2 PO 4 -) and hydrogen phosphate ions (HPO 4 2- ), phosphite ion, polyphosphate ion and the like are included.
- BET specific surface area of the phosphorus adsorbent is preferably at least 1 m 2 / g, more preferably at least 10 m 2 / g, more 20 m 2 / g is more preferred.
- the upper limit of the BET specific surface area is not particularly limited, but is about 100 m 2 / g.
- the phosphorus adsorbent is preferably in the form of particles.
- the particle size is not limited, and can be appropriately set according to the application, usage conditions (phosphorus adsorption conditions), and the like.
- the average particle size may be about 1 to 30 mm.
- 5 mm or more is preferable, 5 to 20 mm is more preferable, and 5 to 10 mm is further preferable from the viewpoint of handling.
- These particle size adjustments can be carried out, for example, by using known methods of classification and crushing towers.
- the particle shape of the phosphorus adsorbent is not limited, and may be any shape such as spherical shape, flake shape, and indefinite shape. In particular, it is preferably spherical from the viewpoint of filling property to a fixed floor (column or the like), liquid flowability, and the like.
- the phosphorus adsorbing amount of the phosphorus adsorbent of the present invention is 5 mg / g or more, preferably about 10 to 24 mg / g.
- the phosphorus adsorption rate of the phosphorus adsorbent of the present invention is about 0.8 to 1 mg / L / hour (see Examples).
- the phosphorus adsorbent of the present invention has high phosphorus adsorption performance (high phosphorus adsorption amount and high phosphorus adsorption rate), and thus can be used for removing phosphorus in water.
- the phosphorus adsorbent of the present invention is inexpensive and has high phosphorus adsorption performance, so that it can be applied to a dispersed wastewater treatment device, particularly a septic tank.
- phosphorus adsorbent of the present invention When the phosphorus adsorbent of the present invention is applied to a septic tank, phosphorus can be continuously adsorbed and removed for a period of about one year without maintenance, as shown in Examples described later.
- the phosphorus adsorbent of the present invention can be obtained by granulating incineration ash, cement and lantern with a solvent.
- the solvent used for granulation is not particularly limited as long as it can form a granulated product.
- the solvent preferably contains water, and water (tap water, distilled water, ion-exchanged water, etc.), seawater, steam water, groundwater, river water, sodium chloride aqueous solution, lithium nitrite aqueous solution, and the like can be used. ..
- the amount of the solvent used can be appropriately adjusted so that a granulated product is formed according to the blending amount of each raw material.
- incineration ash, cement, lantern and solvent for example, water
- incineration ash, cement and solvent for example, water
- incineration ash, cement and solvent for example, water
- incineration ash, cement and solvent for example, water
- Incineration ash and lantern are mixed, and the mixture, cement, and solvent (for example, water) are mixed to prepare the granulated product.
- examples thereof include a method of granulating, (4) a method of mixing cement and lantern, and mixing the mixture, incineration ash and a solvent (for example, water) for granulation.
- a method of supporting the lantern on the granulated product containing incineration ash and cement for example, a method of immersing the granulated product in a lanthanum aqueous solution in which a water-soluble lantern compound is dissolved in water and drying the granulated product.
- Examples thereof include a method of spraying the lanthanum aqueous solution on the granulated product.
- water-soluble lanthanum compounds include lanthanum chloride (LaCl 3 ), lanthanum nitrate (La (NO 3 ) 3 ), lanthanum sulfate (La 2 (SO 4 ) 3 ), and lanthanum acetate (La (CH 3 CO 2 ) 3 ). ), And these hydrates and the like.
- the concentration of the aqueous lanthanum solution to be used may be appropriately adjusted so that the phosphorus content contained in the phosphorus adsorbent, which is the final product, is in the following range.
- the incineration ash and the cement are preferably 95 to 40: 5 to 60, more preferably 60 to 80: 40 to 20, and further preferably 65 to 75: 35 to 25.
- the lantern is preferably used with respect to 100 parts by mass of the obtained granulated product.
- the obtained granulated product is further cured and then fired.
- the curing conditions can be appropriately adjusted according to the temperature, humidity and the like. Curing includes, for example, natural drying for several days to several weeks.
- the firing temperature is preferably 500 to 1000 ° C., more preferably 600 to 1000 ° C., further preferably 600 to 800 ° C., and particularly preferably 800 ° C. from the viewpoint of the strength after firing of the granulated product and the amount of phosphorus saturated adsorption. ..
- the firing atmosphere is not particularly limited, and may be, for example, in an oxidizing atmosphere (in the air), in a reducing atmosphere, in an inert gas atmosphere, or the like.
- the firing time can also be appropriately adjusted according to the firing temperature and the like.
- the obtained sintered body is in the form of particles and can be used as it is for phosphorus adsorption. It can also be used for phosphorus adsorption after being crushed, classified, etc., if necessary.
- the present invention also includes a method for adsorbing phosphorus, which comprises a step of bringing the phosphorus adsorbent into contact with a liquid containing phosphorus.
- the phosphorus contained in the liquid is not particularly limited as long as it contains a phosphorus element, and examples thereof include ions containing a phosphorus element (phosphate ion).
- the form is not particularly limited as long as the adsorbent can come into contact with a liquid containing phosphorus.
- a batch method of contacting the liquid a continuous method of continuously supplying and flowing the liquid, and the like may be used. It is also possible to use a fixed floor process or a mobile floor process.
- the liquid containing phosphorus (particularly a liquid using water as a medium) is not particularly limited, and examples thereof include sewage such as industrial wastewater, domestic wastewater, and agricultural wastewater; lake water, seawater, river water, and the like. Further, the phosphoric acid concentration of these liquids is not limited, and can be adjusted in advance to, for example, about 0.1 to 200 mg-P / L.
- the unit of the concentration (mg-P / L) is the concentration of phosphate phosphorus, and indicates the mass concentration of phosphorus existing as a phosphate ion.
- the temperature at which the liquid is brought into contact with the phosphorus-containing liquid (that is, the liquid temperature of the liquid) is also not particularly limited as long as the liquid state is maintained.
- the amount of the ion adsorbent of the present invention used for the liquid containing phosphorus is not particularly limited, and can be appropriately determined according to the concentration of phosphorus and the like.
- the phosphorus adsorbent of the present invention can be applied to, for example, a collective wastewater (sewage) treatment facility, a distributed wastewater treatment device, and the like. Therefore, the present invention also includes a method for removing phosphorus, which comprises a step of adsorbing and removing phosphorus in a collective wastewater (sewage) treatment facility or phosphorus in a distributed wastewater treatment device using the phosphorus adsorbent. Included. Examples of collective wastewater (sewage) treatment facilities include sewage treatment plants, agricultural settlement wastewater treatment facilities, and urine treatment plants. Dispersed wastewater treatment (also referred to as individual distributed wastewater treatment) refers to treatment at the place where wastewater is generated.
- the distributed wastewater treatment device refers to a device used in the distributed wastewater treatment, and examples thereof include septic tanks, septic tanks (septic tanks), small-scale business wastewater treatment devices, and vegetation purification devices. Since the phosphorus adsorbent of the present invention is inexpensive and requires less maintenance, it can be preferably applied to a distributed wastewater treatment apparatus.
- the adsorbent after being used in the adsorption method of the present invention can be desorbed from the adsorbed phosphorus by subjecting it to a physical treatment or a chemical treatment.
- the physical treatment include ultrasonic waves, heating, boosting voltage, atmospheric pressure, water pressure control, and the like.
- the chemical treatment include pH control with an acid or an alkali.
- the desorbed phosphorus component can be separated from the phosphorus adsorbent and recovered.
- the phosphorus adsorbent from which the phosphorus component has been separated can also be reused.
- the adsorbent adsorbing phosphorus can be used as it is as fertilizer.
- Example 1 Put coal ash 35g into a beaker, there was added a 1.0mol / L LaCl 3 ⁇ 7H 2 O aqueous solution 175 mL, After stirring for 24 hours at 1000 rpm, a glass fiber filter paper grade GF / F (diameter 47 mm, particle retention 0 It was filtered through 0.7 ⁇ m) and dried at 45 ° C. for 24 hours.
- the obtained lantern-supported coal ash and blast furnace cement were mixed at a mass ratio of 70:30, water corresponding to 20% of the mass of the obtained mixture was added, and the angle of the granulated pan was added using a granulator.
- a granulated product having a diameter of 1 mm or more and 5 mm or less prepared by granulating and curing in the same manner as described above was used as Sample 3 , except that an aqueous LaCl 3.7H 2 O solution was not used.
- a batch-type adsorption test of phosphoric acid was performed on Samples 1 to 3 as follows.
- Sodium dihydrogen phosphate (NaH 2 PO 4 ) was used as a phosphoric acid component, and an aqueous phosphoric acid solution having a phosphoric acid concentration of 100 mg-P / L was prepared.
- 0.5 g of the above sample was added to 100 mL of this aqueous phosphoric acid solution, and the sample was shaken at 100 rpm while being maintained at 25 ° C. in an incubator.
- the supernatant was sampled with a 1.5 mL syringe. This was filtered with a syringe filter having a nominal pore size of 0.45 ⁇ m.
- the concentration of phosphate ions in the filtrate was measured by the molybdenum blue method using a spectrophotometer (UV-2600, manufactured by Shimadzu Corporation) to measure the absorbance at 880 nm, and the amount of phosphoric acid adsorbed was calculated by the following formula. The results are shown in Table 1 and FIG.
- ⁇ Phosphoric acid adsorption amount> q S rem (C con- C sam ) / (1000 ⁇ a) q: Phosphoric acid adsorption amount (mg-P / g) REM : Remaining amount of solution (mL) C con : Control concentration (mg-P / L) C sam : Sample concentration (mg-P / L) a: Adsorbent dose (g) The unit of the adsorption amount (mg-P / g) is the amount of phosphate phosphorus, and indicates the mass of phosphorus existing as a phosphate ion.
- Coal ash and blast furnace cement are mixed at a mass ratio of 70:30, water corresponding to 20% of the mass of the obtained mixture is added, and the angle of the granulation pan is 30 degrees and the speed is 35 rpm in the granulator. Then, a granulated product having a diameter of about 1 to 5 mm was prepared. The granulated product was cured for 4 weeks to be cured (porous). Water was sprayed on the granules every day for the first 7 days. After the granulated product 4.2g was immersed for 24 hours in LaCl 3 ⁇ 7H 2 O aqueous solution of 0.5 mol / L, were dried for 24 hours at 45 ° C. in a dryer.
- the obtained granulated product was used as sample 4.
- the sample 4 contained lantern corresponding to 10.7% of the total mass of the coal ash and the blast furnace cement.
- the sample 4 and the above sample 3 in the same manner as above, before adding the above sample to a 1 mg-P / L phosphoric acid aqueous solution (0 hours), 0.5 hours after the addition of the above sample, 1 hour. After that, sampling was performed after 2 hours, 3 hours, and 168 hours, and the concentration of phosphoric acid in the solution was measured by the molybdenum blue method. The results are shown in Table 2 and FIG.
- Example 2 Coal ash and blast furnace cement are mixed at a mass ratio of 70:30, water corresponding to 20% of the mass of the obtained mixture is added, and granulated in a granulator at 30 ° C. and 35 rpm, and the diameter is increased. A granulated product having a size of about 1 to 5 mm was produced. The granulated product was cured for 4 weeks to be cured (porous). Water was sprayed on the granules every day for the first 7 days.
- the obtained phosphorus adsorbent was calcined at 600 ° C. (Sample 5), 700 ° C. (Sample 6), 800 ° C. (Sample 7), 900 ° C. (Sample 8), and 1000 ° C. (Sample 9).
- the firing was carried out under the conditions that the firing temperature was 125 ° C. for 3 hours after the start, the firing temperature was maintained for 2 hours after that, and the firing temperature was maintained for 2 hours, and then cooled to room temperature.
- Samples 5 to 9 were subjected to a batch-type adsorption test of phosphoric acid in the same manner as in Example 1.
- This white turbidity can be removed by a known removal or purification method, for example, removing the white turbidity with a filter, collecting the supernatant after standing, and using the supernatant. As a result, even for Samples 5 and 6 having a high amount of phosphoric acid adsorbed, by removing the white turbidity by the above method, treated water without white turbidity can be obtained and used.
- Example 3 Coal ash and blast furnace cement are mixed at a mass ratio of 70:30, water corresponding to 20% of the mass of the obtained mixture is added, and the diameter is about 1 at 30 ° C. and 35 rpm in a granulator.
- a granulated product of ⁇ 5 mm was prepared. The granulated product was cured for 4 weeks to be cured (porous). Water was sprayed on the granules every day for the first 7 days. Its granulation (less than a diameter of 3.35 mm 4.75 mm) normal temperature 5g of LaCl 3 ⁇ 7H 2 O solution of 10 mL (0.67 g / 10 mL) (about 25 ° C.) at soaked for 24 hours.
- the sample 10 contained lantern corresponding to 4.2% of the total mass of the coal ash and the blast furnace cement. Further, a sample 10 obtained by firing the sample 10 at 600 ° C. for 3 hours (diameter 3.35 mm or more and less than 4.75 mm) was used as the sample 11.
- Comparative Example As a comparative example, two types of commercially available phosphorus adsorbents were used. Kamihata Phosphate Adsorption Filter Phosphate Remover (product name) manufactured by Kamihata Fish Farm Co., Ltd. was used as sample 13, and Eheim phosphoric acid remover (product name) manufactured by Eheim Co., Ltd. was used as sample 14. The particle diameters of Sample 13 and Sample 14 were both 3.35 mm or more and less than 4.75 mm. Samples 10 to 14 were subjected to a batch-type adsorption test of phosphoric acid in the same manner as in Example 1.
- the samples 10 to 12 had a higher phosphoric acid adsorption rate than the samples 13 and 14 (commercially available phosphorus adsorbent).
- the pH of the solution of the samples 10 to 12 is in the range of pH 6 to 8 in each case, and the wastewater reference value (drainage reference value) without separately adjusting the pH. It was found that the pH was 5.8 to 8.6).
- Example 4 Coal ash and blast furnace cement are mixed at a mass ratio of 70:30, water corresponding to 20% of the mass of the obtained mixture is added, and the angle of the granulation pan is 30 degrees and the speed is 35 rpm in the granulator. To prepare a granulated product having a diameter of about 1 to 5 mm. The granulated product was cured for 4 weeks to be cured (porous). Water was sprayed on the granules every day for the first 7 days.
- the theoretical loading of lanthanum (La) to the mass of the granulated product is 0.1%, 0.5%, 1%, 2%, or to be 4%, LaCl 3 ⁇ 7H 2 in ultrapure water 50mL
- An aqueous solution in which O was dissolved was prepared. More specifically, in order to produce La loading of 0.1% of the granulated product was dissolved 0.107g of LaCl 3 ⁇ 7H 2 O in ultrapure water 50 mL (aqueous 15). To produce La loading of 0.5% of the granulated product was dissolved 0.535g of LaCl 3 ⁇ 7H 2 O in ultrapure water 50 mL (aqueous 16).
- La loading of 1% granules it was dissolved 1.07g of LaCl 3 ⁇ 7H 2 O in ultrapure water 50 mL (aqueous 17).
- To produce La loading of 2% of the granules were dissolved 2.14g of LaCl 3 ⁇ 7H 2 O in ultrapure water 50 mL (aqueous 18).
- To produce La loading of 4% of the granulated material was dissolved 4.28g of LaCl 3 ⁇ 7H 2 O in ultrapure water 50 mL (aqueous 19).
- the lantern carrying ratio of each sample was 0.08% (Sample 15), 0. Granulated products having a lantern carrying ratio of 50% (sample 16), 0.91% (sample 17), 2.19% (sample 18), and 3.95% (sample 19) were obtained.
- Example 15 Granulated products having a lantern carrying ratio of 50%
- sample 16 0.91%
- sample 17 0.91%
- sample 18 2.19%
- sample 19 3.95%
- the amount of phosphoric acid adsorbed was measured 168 hours after the addition of the sample using the same measuring method as in Example 1.
- the pH of the surface of the sample, the strength of the sample, and the BET specific surface area were measured by the methods shown below.
- the pH results are shown in Tables 8 and 9, the intensity results are shown in Tables 9 and 10, and the BET specific surface area results are shown in Tables 10 and 11.
- the BET specific surface area with nitrogen gas was measured by an automatic specific surface area measuring device (Gemini VII 2390 manufactured by Shimadzu Corporation).
- the phosphorus adsorbent of the present invention has a high phosphorus adsorption amount and a high phosphorus adsorption rate, and is therefore useful for removing phosphorus in water.
- it is inexpensive and can exhibit phosphorus adsorption performance for a long period of time. It can be applied to distributed wastewater treatment equipment such as.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Inorganic Chemistry (AREA)
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
項1.
焼却灰、セメント、及びランタンを含むリン吸着材。
項2.
焼却灰、セメント、及びランタンから得られるリン吸着材。
項3.
焼却灰、セメント、及びランタンを反応させて製造されるリン吸着材。
項4.
前記焼却灰が石炭灰である、上記項1~3のいずれか一項に記載のリン吸着材。
項5.
前記焼却灰100質量部に対して前記セメントが5~150質量部含まれる、上記項1~4のいずれか一項に記載のリン吸着材。
項6.
前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンが0.1~15質量部含まれる、上記項1~4のいずれか一項に記載のリン吸着材。
項7.
前記焼却灰100質量部に対して前記セメントが5~150質量部含まれ、かつ、前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンが0.1~15質量部含まれる、上記項1~4のいずれか一項に記載のリン吸着材。
項8.
前記焼却灰100質量部に対して前記セメントが5~150質量部含まれ、かつ、前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンが0.5~4質量部含まれる、上記項1~4のいずれか一項に記載のリン吸着材。
項9.
多孔質である、上記項1~8のいずれか一項に記載のリン吸着材。
項10.
分散型排水処理装置に含まれるリンを除去するために用いられる、上記項1~9のいずれか一項に記載のリン吸着材。
項11.
汚水に含まれるリンを除去するために用いられる、上記項1~9のいずれか一項に記載のリン吸着材。
項12.
上記項1~9のいずれか一項に記載のリン吸着材を備えた分散型排水処理装置。
項13.
上記項1~9のいずれか一項に記載のリン吸着材を備えた浄化槽。
項14.
焼却灰、セメント、及びランタンから、リン吸着材を得る、リン吸着材の製造方法。
項15.
焼却灰、セメント、及びランタンを、溶媒を用いて造粒する工程を備える、リン吸着材の製造方法。
項16.
さらに、得られた造粒物を養生する工程を備える、上記項14に記載のリン吸着材の製造方法。
項17.
前記焼却灰が石炭灰である、上記項14~16のいずれか一項に記載のリン吸着材の製造方法。
項18.
前記焼却灰100質量部に対して前記セメントを5~150質量部配合する、上記項14~17のいずれか一項に記載のリン吸着材の製造方法。
項19.
前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンを0.1~15質量部配合する、上記項14~17のいずれか一項に記載のリン吸着材の製造方法。
項20.
前記焼却灰、前記セメント、及び前記ランタンを、前記焼却灰100質量部に対して前記セメントを5~150質量部配合し、かつ、前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンを0.1~15質量部配合する、上記項14~17のいずれか一項に記載のリン吸着材の製造方法。
項21.
前記焼却灰、前記セメント、及び前記ランタンを、前記焼却灰100質量部に対して前記セメントを5~150質量部配合し、かつ、前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンを0.5~4質量部配合する、上記項14~17のいずれか一項に記載のリン吸着材の製造方法。
項22.
造粒した後、造粒物を養生し、その後に焼成する、上記項14~21のいずれか一項に記載のリン吸着材の製造方法。
項23.
前記焼成温度が600~1000℃である、上記項22に記載のリン吸着材の製造方法。
項24.
上記項1~9のいずれか一項に記載のリン吸着材を、リンを含む液体に接触させる、リンの吸着方法。
項25.
上記項1~9のいずれか一項に記載のリン吸着材を用いて、汚水中のリンを吸着除去する、リンの除去方法。
リン吸着材は、焼却灰、セメント、及びランタンを含む。焼却灰とセメントとが混合されることにより、得られる混合物の組織が緻密化し、強度が向上するとともに、ランタンがリンを吸着することから、本発明のリン吸着材は、リン吸着量が高く、リン吸着速度が速い。
高い吸着性能、リン吸着材の強度等の観点から、ランタンの含有量は、焼却灰及びセメントの合計量100質量部に対して0.5~4質量部が好ましく、0.7~2質量部がより好ましく、0.9~1.1質量部が特に好ましい。
本発明のリン吸着材は、焼却灰、セメント、及びランタンを、溶媒を用いて造粒することにより得られる。焼却灰、セメント、及びランタンを含む造粒物が得られる限り、その製造方法は、特に限定されない。造粒に用いる溶媒は、造粒物を形成することができれば、特に限定されない。溶媒には、水が含まれることが好ましく、水(水道水、蒸留水、イオン交換水等)、海水、汽水、地下水、河川水、塩化ナトリウム水溶液、亜硝酸リチウム水溶液等を使用することができる。溶媒の使用量は、各原料の配合量に応じて、造粒物が形成されるように適宜調整することができる。
また、上記(2)の方法であれば、焼却灰とセメントとを、好ましくは95~40:5~60、より好ましくは60~80:40~20、さらに好ましくは65~75:35~25の質量比で混合し、その合計量の20~30質量%の溶媒(例えば、水)を加えて混合、及び造粒を行い、得られた造粒物100質量部に対して、ランタンを好ましくは0.1~15質量部、より好ましくは0.2~10質量部、さらに好ましくは0.5~5質量部、特に好ましくは0.9~1.1質量部担持させることができる。
本発明は、上記リン吸着材を、リンを含む液体に接触させる工程を含むリンの吸着方法も包含する。液体に含まれるリンは、リン元素を含むものであれば特に限定されず、例えば、リン元素を含むイオン(リン酸イオン)が挙げられる。
リンを含む液体と接触させる際の温度(すなわち、前記液体の液温)も、液体状態が維持されている限り、特に限定されない。
ビーカーに石炭灰35gを入れ、そこに1.0mol/L LaCl3・7H2O水溶液175mLを加えて、1000rpmで24時間攪拌した後、ガラス繊維ろ紙 グレードGF/F(直径47mm、粒子保持能0.7μm)で濾過し、45℃で24時間乾燥させた。得られたランタン担持石炭灰と高炉セメントとを70:30の質量比で混合し、得られた混合物の質量の20%に相当する水を添加し、造粒機を用いて造粒パンの角度が30度かつ35rpmの速度で造粒し、得られた造粒物を4週間養生させて硬化(多孔質化)させた。なお、最初の7日間は毎日造粒物に水を噴霧した。得られた造粒物のうちの、直径1mm以上3.35mm未満の造粒物を試料1とし、直径3.35mm以上4.75mm以下の造粒物を試料2とした。なお、蛍光X線分析装置(株式会社リガク製、Supermini200)によりランタンの含有量を測定した結果、試料1及び試料2には、石炭灰と高炉セメントとの合計質量の3.9%に相当するランタンが含まれていた。
また、LaCl3・7H2O水溶液を使用しないことを除き、上記と同様の方法で造粒及び養生することにより作製した直径1mm以上5mm以下の造粒物を試料3とした。
<リン酸吸着量>
q = Srem(Ccon-Csam) / (1000・a)
q:リン酸吸着量(mg-P/g)
Srem:溶液残量(mL)
Ccon:コントロール濃度(mg-P/L)
Csam:試料濃度(mg-P/L)
a:吸着材投与量(g)
なお、前記吸着量の単位(mg-P/g)は、リン酸態リンの量であり、リン酸イオンとして存在するリンの質量を示している。
この試料4と、上記試料3について、上記と同様にして、1mg-P/Lのリン酸水溶液へ上記試料を添加する前(0時間)、上記試料の添加から0.5時間後、1時間後、2時間後、及び3時間後、及び168時間後にサンプリングを行い、溶液のリン酸の濃度を、モリブデンブルー法により測定した。その結果を表2及び図2に示す。
石炭灰と高炉セメントとを70:30の質量比で混合し、得られた混合物の質量の20%に相当する水を添加し、造粒機において30℃及び35rpmの条件で造粒し、直径が約1~5mmの造粒物を作製した。その造粒物を4週間養生させて硬化(多孔質化)させた。なお、最初の7日間は毎日造粒物に水を噴霧した。
得られた造粒物40gを蒸発皿に入れ、ここに超純水50mLにLaCl3・7H2Oを4.4561g溶かした水溶液を加え、常温(約25℃)で1日含浸させた。その後、蒸発皿をオーブンに入れ、105℃で8時間乾燥した。上記蛍光X線分析装置によりランタンの含有量を2回測定した。その結果、得られたリン吸着材には、石炭灰と高炉セメントとの合計質量の3.42%(1回目)又は3.95%(2回目)に相当するランタンが含まれていた。
試料5~9について、実施例1と同様にリン酸のバッチ式の吸着試験を行った。リン酸濃度が100mg-P/Lとなるリン酸水溶液50mLに、上記試料0.25gを添加し、25℃に保持しながら振とうした。リン酸水溶液へ上記試料を添加する前(0時間)、上記試料の添加から24時間後、及び168時間後にサンプリングを行い、実施例1と同様にして、溶液のリン酸の濃度を測定し、吸着量を算出した。また、リン吸着材を添加しない場合(コントロール)についても、同様にしてリン酸濃度を求めた。リン酸濃度の結果を表3及び図3に示し、リン酸吸着量の結果を表4及び図4に示す。
さらに、168時間後のリン酸水溶液の外観を肉眼で観察した結果を、168時間後のリン酸吸着量とともに表5及び図5に示す。さらに、試料5~9、及び焼成を行わない以外は実施例2と同様にして作成した試料(焼成なし)について、上記試験を行った後、各溶液が入った三角フラスコを、三角フラスコの上から底に向かって撮影した写真を図6に示す。
リン吸着材で処理された水は、沈殿(白濁)がない方が好ましい。図6に示された、焼成なしの試料、試料5及び試料6において観察される白濁は、吸着材が一部剥がれたものと考えられる。この白濁は、公知の除去又は精製方法、例えば、フィルターにより白濁を除去する、静置後に上澄みを回収して使用する等により除去することができる。これより、リン酸吸着量が高い試料5及び試料6についても、上記方法により白濁を除去することで、白濁のない処理水が得られ、それを使用することができる。
石炭灰と高炉セメントとを70:30の質量比で混合し、得られた混合物の質量の20%に相当する水を添加し、造粒機において30℃及び35rpmの条件で、直径が約1~5mmの造粒物を作製した。その造粒物を4週間養生させて硬化(多孔質化)させた。なお、最初の7日間は毎日造粒物に水を噴霧した。その造粒物(直径3.35mm以上4.75mm未満)5gを10mLのLaCl3・7H2O溶液(0.67g/10mL)に常温(約25℃)にて24時間浸漬させた。その後、オーブンで105℃にてLaCl3・7H2O溶液をドライアップしたものを試料10とした。なお、上記蛍光X線分析装置によりランタンの含有量を測定した結果、試料10には、石炭灰と高炉セメントとの合計質量の4.2%に相当するランタンが含まれていた。また、試料10を600℃で3時間焼成させたもの(直径3.35mm以上4.75mm未満)を試料11とした。
石炭灰50gに0.25mol/L LaCl3・7H2O水溶液30mLを噴霧し、得られたランタン担持石炭灰と高炉セメントとを70:30の質量比で混合し、得られた混合物の質量の20%に相当する水を添加し、造粒機を用いて30℃及び35rpmの条件で造粒し、得られた造粒物を4週間養生させて硬化(多孔質化)させた。なお、最初の7日間は毎日造粒物に水を噴霧した。得られた造粒物を600℃で3時間焼成したもの(直径1mm以上3.35mm未満)を試料12とした。
比較例として市販の2種類のリン吸着材を使用した。神畑養魚株式会社製、カミハタ リン酸塩吸着ろ材 フォスフェイト リムーバー(製品名)を試料13とし、エーハイム社製、エーハイム リン酸除去剤(製品名)を試料14とした。なお、試料13及び試料14の粒子の直径は、いずれも3.35mm以上4.75mm未満であった。
試料10~14について、実施例1と同様にリン酸のバッチ式の吸着試験を行った。リン酸濃度が10mg/Lとなるリン酸水溶液100mLに、上記試料0.5gを添加し、25℃に保持しながら100rpmで振とうした。リン酸水溶液へ上記試料を添加する前(0時間)、上記試料の添加から3時間後、9時間後、24時間後、72時間後、及び168時間後にサンプリングを行い、実施例1と同様にして、溶液のリン酸の濃度及びpHを測定した。pHの測定には、上記と同じpH測定器を用いた。また、リン吸着材を添加しない場合(コントロール)についても、同様にしてリン酸濃度及びpHを測定した。結果を表6、図7、表7及び図8に示す。
石炭灰と高炉セメントとを70:30の質量比で混合し、得られた混合物の質量の20%に相当する水を添加し、造粒機において造粒パンの角度が30度かつ35rpmの速度で造粒し、直径が約1~5mmの造粒物を作製した。その造粒物を4週間養生させて硬化(多孔質化)させた。なお、最初の7日間は毎日造粒物に水を噴霧した。
造粒物の質量に対するランタン(La)の理論的担持率が0.1%、0.5%、1%、2%、又は4%になるように、超純水50mLにLaCl3・7H2Oを溶解させた水溶液を調製した。具体的には、La担持率0.1%の造粒物を製造するために、超純水50mLにLaCl3・7H2Oを0.107g溶解させた(水溶液15)。La担持率0.5%の造粒物を製造するために、超純水50mLにLaCl3・7H2Oを0.535g溶解させた(水溶液16)。La担持率1%の造粒物を製造するために、超純水50mLにLaCl3・7H2Oを1.07g溶解させた(水溶液17)。La担持率2%の造粒物を製造するために、超純水50mLにLaCl3・7H2Oを2.14g溶解させた(水溶液18)。La担持率4%の造粒物を製造するために、超純水50mLにLaCl3・7H2Oを4.28g溶解させた(水溶液19)。
なお、上記蛍光X線分析装置により試料15~19中のランタンの含有量を測定し、ランタン担持率を測定したところ、各試料のランタン担持率は、0.08%(試料15)、0.50%(試料16)、0.91%(試料17)、2.19%(試料18)、及び3.95%(試料19)であり、理論値に近いランタン担持率の造粒物が得られた。
各試料の表面のpHは、上記と同じpH測定器(株式会社堀場製作所製 堀場コンパクトpHメータLAQUAtwin B-711)により測定した。
各試料について、荷重測定器(株式会社イマダ製、デジタルフォースゲージS-3)により点荷重を測定した。
各試料について、自動比表面積測定装置(株式会社島津製作所製、ジェミニVII2390)により窒素ガスによるBET比表面積を測定した。
Claims (14)
- 焼却灰、セメント、及びランタンを含むリン吸着材。
- 前記焼却灰が石炭灰である、請求項1に記載のリン吸着材。
- 前記焼却灰100質量部に対して前記セメントが5~150質量部含まれ、かつ、前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンが0.1~15質量部含まれる、請求項1又は2に記載のリン吸着材。
- 前記焼却灰100質量部に対して前記セメントが5~150質量部含まれ、かつ、前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンが0.5~4質量部含まれる、請求項1~3のいずれか一項に記載のリン吸着材。
- 多孔質である、請求項1~4のいずれか一項に記載のリン吸着材。
- 汚水に含まれるリンを除去するために用いられる、請求項1~5のいずれか一項に記載のリン吸着材。
- 焼却灰、セメント、及びランタンを、溶媒を用いて造粒する、リン吸着材の製造方法。
- 前記焼却灰が石炭灰である、請求項7に記載のリン吸着材の製造方法。
- 前記焼却灰、前記セメント、及び前記ランタンを、前記焼却灰100質量部に対して前記セメントを5~150質量部配合し、かつ、前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンを0.1~15質量部配合する、請求項7又は8に記載のリン吸着材の製造方法。
- 前記焼却灰、前記セメント、及び前記ランタンを、前記焼却灰100質量部に対して前記セメントを5~150質量部配合し、かつ、前記焼却灰及び前記セメントの合計量100質量部に対して前記ランタンを0.5~4質量部配合する、請求項7~9のいずれか一項に記載のリン吸着材の製造方法。
- 造粒した後、造粒物を養生し、その後に焼成する、請求項7~10のいずれか一項に記載のリン吸着材の製造方法。
- 前記焼成温度が600~1000℃である、請求項11に記載のリン吸着材の製造方法。
- 請求項1~5のいずれか一項に記載のリン吸着材を、リンを含む液体に接触させる、リンの吸着方法。
- 請求項1~5のいずれか一項に記載のリン吸着材を用いて、汚水中のリンを吸着除去する、リンの除去方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/642,798 US20220379283A1 (en) | 2019-09-19 | 2020-09-02 | Phosphorus adsorbent |
AU2020351421A AU2020351421A1 (en) | 2019-09-19 | 2020-09-02 | Phosphorus adsorbent |
JP2021546586A JP7174967B2 (ja) | 2019-09-19 | 2020-09-02 | リン吸着材 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-170334 | 2019-09-19 | ||
JP2019170334 | 2019-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021054116A1 true WO2021054116A1 (ja) | 2021-03-25 |
Family
ID=74884056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/033172 WO2021054116A1 (ja) | 2019-09-19 | 2020-09-02 | リン吸着材 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220379283A1 (ja) |
JP (1) | JP7174967B2 (ja) |
AU (1) | AU2020351421A1 (ja) |
WO (1) | WO2021054116A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113200580A (zh) * | 2021-03-29 | 2021-08-03 | 江苏省中国科学院植物研究所 | 一种基于生物质电厂灰的水体磷去除材料及其制备方法和应用 |
CN113415833A (zh) * | 2021-05-28 | 2021-09-21 | 嘉兴市禾晟生物制品有限公司 | 一种新型污水除磷剂的生产工艺 |
CN115739019A (zh) * | 2022-11-17 | 2023-03-07 | 武汉大学 | 一种基于高毒性剩余污泥的功能化生物炭及其制备方法和其应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03101834A (ja) * | 1989-09-14 | 1991-04-26 | Iseki Tory Tech Inc | 吸着剤及びその吸着剤を用いた水処理方法 |
JP2001340756A (ja) * | 2000-03-27 | 2001-12-11 | Natl Inst Of Advanced Industrial Science & Technology Meti | 有害陰イオン吸着粒子およびその製造方法 |
JP2004113885A (ja) * | 2002-09-25 | 2004-04-15 | Chugoku Electric Power Co Inc:The | 水質浄化材料 |
JP2006514600A (ja) * | 2002-08-14 | 2006-05-11 | アルティアー ナノマテリアルズ インコーポレイテッド | 希土類金属化合物、製造方法及び該化合物を用いた方法 |
CN101560110A (zh) * | 2009-05-26 | 2009-10-21 | 上海电力学院 | 用于废水处理的球型轻质多孔材料 |
JP2012223733A (ja) * | 2011-04-21 | 2012-11-15 | Hiroshima Univ | 水質環境改善方法 |
-
2020
- 2020-09-02 JP JP2021546586A patent/JP7174967B2/ja active Active
- 2020-09-02 US US17/642,798 patent/US20220379283A1/en active Pending
- 2020-09-02 WO PCT/JP2020/033172 patent/WO2021054116A1/ja active Application Filing
- 2020-09-02 AU AU2020351421A patent/AU2020351421A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03101834A (ja) * | 1989-09-14 | 1991-04-26 | Iseki Tory Tech Inc | 吸着剤及びその吸着剤を用いた水処理方法 |
JP2001340756A (ja) * | 2000-03-27 | 2001-12-11 | Natl Inst Of Advanced Industrial Science & Technology Meti | 有害陰イオン吸着粒子およびその製造方法 |
JP2006514600A (ja) * | 2002-08-14 | 2006-05-11 | アルティアー ナノマテリアルズ インコーポレイテッド | 希土類金属化合物、製造方法及び該化合物を用いた方法 |
JP2004113885A (ja) * | 2002-09-25 | 2004-04-15 | Chugoku Electric Power Co Inc:The | 水質浄化材料 |
CN101560110A (zh) * | 2009-05-26 | 2009-10-21 | 上海电力学院 | 用于废水处理的球型轻质多孔材料 |
JP2012223733A (ja) * | 2011-04-21 | 2012-11-15 | Hiroshima Univ | 水質環境改善方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113200580A (zh) * | 2021-03-29 | 2021-08-03 | 江苏省中国科学院植物研究所 | 一种基于生物质电厂灰的水体磷去除材料及其制备方法和应用 |
CN113200580B (zh) * | 2021-03-29 | 2023-08-18 | 江苏省中国科学院植物研究所 | 一种基于生物质电厂灰的水体磷去除材料及其制备方法和应用 |
CN113415833A (zh) * | 2021-05-28 | 2021-09-21 | 嘉兴市禾晟生物制品有限公司 | 一种新型污水除磷剂的生产工艺 |
CN115739019A (zh) * | 2022-11-17 | 2023-03-07 | 武汉大学 | 一种基于高毒性剩余污泥的功能化生物炭及其制备方法和其应用 |
Also Published As
Publication number | Publication date |
---|---|
AU2020351421A1 (en) | 2022-02-24 |
JPWO2021054116A1 (ja) | 2021-03-25 |
US20220379283A1 (en) | 2022-12-01 |
JP7174967B2 (ja) | 2022-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021054116A1 (ja) | リン吸着材 | |
Katsou et al. | Use of ultrafiltration membranes and aluminosilicate minerals for nickel removal from industrial wastewater | |
Yu et al. | Phosphate removal from domestic wastewater using thermally modified steel slag | |
Ma et al. | Simultaneous adsorption of ammonia and phosphate using ferric sulfate modified carbon/zeolite composite from coal gasification slag | |
CN102115234A (zh) | 一种赤泥除磷絮凝剂制备方法 | |
CN111848130A (zh) | 一种高效除磷的改性陶粒及其制备方法 | |
CN113145073A (zh) | 二次碳化镧改性污泥生物炭的制备方法及其应用 | |
Kamarzamann et al. | Hydroxyapatite/Dolomite alkaline activated material reaction in the formation of low temperature sintered ceramic as adsorbent materials | |
US20240173695A1 (en) | Organic Soil Amendments with Ions Bound Thereto for Removing Contaminants from Aqueous Streams | |
KR101739286B1 (ko) | 인 흡착용 흡착제의 제조방법 | |
Yang et al. | Using desulfurization slag as the aquacultural amendment for fish pond water quality improvement: Mechanisms and effectiveness studies | |
JP5713735B2 (ja) | リン吸着材ならびにそれを用いた土壌改良剤または肥料 | |
CN110575812B (zh) | 一种陶土/软锰矿高效除磷的环保吸附材料及制备方法 | |
Shah et al. | Waste water treatment-bed of coal fly ash for dyes and pigments industry | |
JP7210049B2 (ja) | 汚泥の処理方法、汚泥の処理システムおよび吸着剤の製造方法 | |
Li et al. | REMOVAL OF NH+ 4-N FROM AQUEOUS SOLUTION BY CERAMSITE COATED WITH Mg (OH) 2 COMBINED WITH AIR STRIPPING. | |
JP3103473B2 (ja) | 水質浄化材及びその製造法 | |
KR100272451B1 (ko) | 인 제거용 여재 및 그 제조방법 | |
JP4822369B2 (ja) | 水質改善処理剤及びその製造方法 | |
Wang et al. | Denitrification performance and kinetics of an attapulgite lightweight ceramsite biofilter | |
KR101399586B1 (ko) | 인 제거제 | |
KR20210069366A (ko) | Po4-p 및 nh3-n 제거용 하수처리재의 제조방법, 이에 의해 제조된 하수처리재, 및 이를 포함하는 하수처리시스템 | |
Yi et al. | Phosphate removal performance of acid pickling milling wastewater from high-phosphate hematite mineral processing by activated red mud | |
JP2022029369A (ja) | 陰イオン吸着剤、吸着剤袋、陰イオン吸着剤の使用方法、及び井戸水の浄化方法。 | |
JP2004298668A (ja) | 水質浄化方法および水質浄化装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20866136 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021546586 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020351421 Country of ref document: AU Date of ref document: 20200902 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20866136 Country of ref document: EP Kind code of ref document: A1 |