WO2023230777A1 - 平衡车、机器人的控制方法、装置、电子设备和存储介质 - Google Patents

平衡车、机器人的控制方法、装置、电子设备和存储介质 Download PDF

Info

Publication number
WO2023230777A1
WO2023230777A1 PCT/CN2022/096046 CN2022096046W WO2023230777A1 WO 2023230777 A1 WO2023230777 A1 WO 2023230777A1 CN 2022096046 W CN2022096046 W CN 2022096046W WO 2023230777 A1 WO2023230777 A1 WO 2023230777A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
leg
pedal
center
information
Prior art date
Application number
PCT/CN2022/096046
Other languages
English (en)
French (fr)
Inventor
辛全彬
Original Assignee
北京小米机器人技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米机器人技术有限公司 filed Critical 北京小米机器人技术有限公司
Priority to PCT/CN2022/096046 priority Critical patent/WO2023230777A1/zh
Priority to CN202280004269.XA priority patent/CN117480091A/zh
Publication of WO2023230777A1 publication Critical patent/WO2023230777A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K3/00Bicycles

Definitions

  • the present disclosure relates to the field of robotic technology, and specifically relates to a balancing vehicle, a robot control method, a device, an electronic device and a storage medium.
  • Robots can achieve more and more functions, thereby replacing humans in various fields and liberating humans from heavy labor.
  • the motion control of robots is an important aspect of robot control technology.
  • robots can be controlled to reach their destinations through their own motion, but they can also be controlled to drive balance vehicles and other transportation vehicles to reach their destinations.
  • the compatibility between robots and transportation vehicles such as balancing vehicles is poor, which in turn leads to poor stability of robots driving balancing vehicles.
  • embodiments of the present disclosure provide a control method, device, electronic device, and storage medium for a balancing car, a robot, and a storage medium to solve the defects in the related technology.
  • a balancing vehicle including:
  • the main body of the balancing car is equipped with a controller, and the controller is used to control the movement of the wheels according to the speed information and direction information input by the driving object;
  • Wheels located on both sides of the balance car body, are used to move according to the control instructions of the controller;
  • the rudder includes interconnected pedals and a directional shaft.
  • the pedals are located in front or behind the main body of the balancing car and are used to drive the directional shaft to rotate according to the steering force exerted by the driving object.
  • the directional shaft extends to the The main body of the balancing vehicle is used for inputting the direction information to the controller through rotation.
  • the direction axis is arranged along a horizontal direction.
  • the direction axis is connected to the center of one end of the pedal close to the body of the balancing vehicle.
  • the pedal when the driving object does not apply steering force to the pedal, the pedal is in a horizontal state; and/or,
  • the direction axis inputs direction information to the controller to keep going straight.
  • a method for controlling a robot is provided.
  • the robot is on a balance vehicle, and at least one leg of the robot is on a rudder pedal of the balance vehicle or a non-rudder steering pressure. on the sensor pedal; the method includes:
  • each leg of the robot is controlled to perform corresponding movements to input speed information and direction information.
  • the expected motion information includes expected body tilt angle and expected angular velocity; and/or,
  • the actual motion information includes actual body tilt angle and actual angular velocity.
  • obtaining desired motion information includes:
  • the desired acceleration is obtained, and the desired body inclination angle is determined based on the desired acceleration.
  • obtaining desired motion information includes:
  • it also includes:
  • the height of the foot end of each of the at least one leg on the pedal is corrected according to the error angle of the rudder.
  • it also includes:
  • the center of mass offset of the robot is obtained as the center of mass displacement offset, and at least one position on the pedal is obtained.
  • the height of the foot end of each leg in one leg, and the error angle of the rudder is determined based on the height of the foot end of each leg in the at least one leg.
  • controlling each leg of the robot to perform corresponding movements based on the displacement of the center of mass of the robot and the height of the foot end of each of at least one leg on the pedal includes:
  • a control device for a robot is provided.
  • the robot is on a balance vehicle, and at least one leg of the robot is on a rudder pedal or a non-rudder steering pressure sensor of the balance vehicle.
  • the device On the pedal; the device includes:
  • An acquisition module used to acquire expected motion information and current actual motion information, where both the expected motion information and the actual motion information are used to characterize the motion state of the robot;
  • a determination module configured to determine the displacement of the center of mass of the robot and the foot end height of each of at least one leg on the pedal based on the expected motion information and the actual motion information;
  • a control module configured to control each leg of the robot to perform corresponding movements according to the displacement of the center of mass of the robot and the height of the foot end of each of at least one leg on the pedal to move toward the balance.
  • the car inputs speed information and direction information.
  • the expected motion information includes expected body tilt angle and expected angular velocity; and/or,
  • the actual motion information includes actual body tilt angle and actual angular velocity.
  • the acquisition module when used to acquire desired motion information, it is specifically used to:
  • the desired acceleration is obtained, and the desired body inclination angle is determined based on the desired acceleration.
  • the acquisition module when used to acquire desired motion information, it is specifically used to:
  • a correction module is also included for:
  • the height of the foot end of each of the at least one leg on the pedal is corrected according to the error angle of the rudder.
  • a calibration module is also included for:
  • the center of mass offset of the robot is obtained as the center of mass displacement offset, and at least one position on the pedal is obtained.
  • the height of the foot end of each leg in one leg, and the error angle of the rudder is determined based on the height of the foot end of each leg in the at least one leg.
  • control module is specifically used to:
  • an electronic device includes a memory and a processor.
  • the memory is used to store computer instructions executable on the processor.
  • the processor is used to execute the The computer instructions are based on the robot control method described in the first aspect.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the method described in the first aspect is implemented.
  • the balance car provided by the present disclosure can carry the driving object and move the parole object by arranging the balance car body and the wheels, and the balance car body is equipped with a controller that can control the wheels according to the speed information and direction information input by the driving object.
  • Movement that is, controlling the movement of the entire balancing vehicle and the driving object on the balancing vehicle; by setting up a rudder composed of pedals and a direction axis, it is convenient for the driving object to exert steering force by stepping on the pedals in front or behind the main body of the balancing vehicle, and then the pedals act in response to the steering force
  • the direction axis is driven to rotate under the action to input direction information to the controller, thereby facilitating the robot, especially the four-legged robot and other driving objects to input direction information, improving the adaptability of the robot and the balancing car, and the stability of the robot driving the balancing car. .
  • Figure 1 is a side view of a balancing vehicle driven by a quadruped robot according to an exemplary embodiment of the present disclosure
  • Figure 2 is a top view of a balancing car driven by a quadruped robot according to an exemplary embodiment of the present disclosure
  • Figure 3 is a flow chart of a robot control method according to an exemplary embodiment of the present disclosure
  • Figure 4 is a schematic structural diagram of a robot control device according to an exemplary embodiment of the present disclosure.
  • FIG. 5 is a structural block diagram of an electronic device according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in this disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • self-balancing vehicles are mainly suitable for human driving.
  • Biped robots can also drive due to their similarity to human legs.
  • quadruped robots and other multi-legged robots have poor stability when driving self-balancing vehicles, and may even be unable to drive.
  • Balance car a multi-legged robot that has poor stability when driving self-balancing vehicles, and may even be unable to drive.
  • At least one embodiment of the present disclosure provides a balancing car, which is suitable for driving by robots, especially multi-legged robots such as quadruped robots.
  • a balancing car which is suitable for driving by robots, especially multi-legged robots such as quadruped robots.
  • FIG 1 is a side view
  • Figure 2 is a top view. It can be seen from the figure that the balancing car includes: a balancing car body 101.
  • the motion mechanism 101 is equipped with a controller, which is used to control the movement of the motion mechanism 102 according to the speed information and direction information input by the driving object; the motion mechanism 102 is connected to the main body 101 of the balancing car, and is used to control the movement of the motion mechanism 102 according to the speed information and direction information input by the driving object.
  • the rudder includes an interconnected pedal 1031 and a direction axis 1032, and the pedal 1031 is located in front of the balance car body 101 (i.e., the straight direction of the balance car) or
  • the rear direction (that is, the opposite direction of the straight direction of the balancing vehicle) is used to drive the direction axis 1032 to rotate according to the steering force exerted by the driving object.
  • the direction axis 1032 extends into the main body 101 of the balancing vehicle and is used to rotate to the desired direction.
  • the controller inputs the direction information.
  • the main body 101 of the balancing car may include a main structure and circuits and components (such as a controller) arranged in the main structure.
  • the shape of the main structure may be the same as or similar to the main body 101 of the balancing car in the related art, that is, it is provided with a circuit for parole. Where the subject's feet are placed, where the wheels are mounted, the mounting axles on which the wheels are mounted, etc.
  • the motion mechanism 102 may include wheels installed on the mounting shaft of the balance vehicle body 101 (for example, may be provided on both sides of the balance vehicle body 101), and drive motors for driving wheel rotation and steering. The drive motors, etc. may be connected to the body.
  • the circuits and components within the structure are connected and thus controlled by the circuit structure such as the controller; the wheels can be the same as or different from the wheels of the balancing car in related technologies, and can perform rotation, steering and other movements driven by a drive motor, etc.
  • the rudder is used by the driving object to input direction information to the controller.
  • the circuits and components within the main structure include at least one sensor for collecting the rotation direction and angle of the steering axis 1032 (the at least one sensor can be the same as the sensor used to collect the rotation direction and angle of the rudder in the related art, or it can be different. Same), the at least one sensor can report the collected rotation direction and angle to the controller.
  • the controller can be pre-set with a mapping relationship between the rotation direction and angle of the direction axis 1032 and the direction information (such as a one-to-one mapping table, etc. ), so that the controller can determine the direction information based on the mapping relationship after acquiring the rotation direction and angle of the direction axis 1032.
  • the direction axis 1032 is arranged along the horizontal direction, thereby improving the stability of the direction axis 1032 and preventing frequent rotation from reducing its rotational flexibility and accuracy.
  • the direction axis 1032 is connected to the center of one end of the pedal 1031 close to the balance car body 101 , thereby improving the stability of the pedal 1031 .
  • the pedal 1031 can be in a rectangular shape or other shape suitable for the driving subject to place his or her feet.
  • the length direction of the pedal 1031 can be perpendicular to the straight direction of the balance vehicle.
  • the direction axis 1032 can extend along the straight direction of the balance vehicle, that is, the length direction of the pedal 1031 vertical.
  • the pedal 1031 in order to facilitate the driving subject to input direction information, it can be set to the pedals on both sides of the direction axis 1032 when the driving subject does not apply steering force to the pedal 1031 (for example, the driving subject does not step on the pedal 1031, or when the driving subject steps on the pedal 1031 1031 applies the same pressure), the pedal 1031 is in a horizontal state; and/or, when the pedal 1031 is in a horizontal state, the direction axis 1032 inputs a straight direction to the controller. information.
  • the pedal 1031 when the driving subject applies a steering force to turn left on the pedal 1031 (when the driving subject steps on the pedal 1031 ), the pressure applied to the pedal 1031 part on the left side of the direction axis 1032 is greater than that on the pedal 1031 part on the right side of the direction axis 1032 When the pressure is partially applied), the pedal 1031 is high on the left and low on the right, and the direction axis 1032 inputs the direction information of turning left to the controller, and the steering angle is proportional to the rotation angle of the axial axis; when the driving object exerts pressure on the pedal 1031 When the steering force is turned to the right (when the driving subject steps on the pedal 1031, the pressure applied to the part of the pedal 1031 on the right side of the direction axis 1032 is greater than the pressure applied to the part of the pedal 1031 on the left side of the direction axis 1032), the pedal 1031 is lower on the left and higher on the right, and The direction axis 1032 inputs the direction information of the
  • the quadruped robot 200 drives the balancing car
  • the pedal 1031 is set in front of the balance car body 101
  • the two front legs of the quadruped robot 200 are on the pedal 1031
  • the footholds of the two front legs are relative to The direction axis 1032 is symmetrical
  • the two rear legs of the quadruped robot 200 are at a position for the driving object's feet to step on the balance car body 101;
  • the pedal 1031 is set behind the balance car body 101, then the quadruped robot 200
  • the two front legs are on the foot-stepping position of the balance vehicle body 101 for the driving object
  • the two rear legs of the quadruped robot 200 are on the pedals 1031
  • the footholds of the two rear legs are symmetrical with respect to the direction axis 1032 .
  • the balance car provided in this embodiment has a rudder that includes a pedal 1031 located in front or behind the balance car body 101, so it is suitable for driving multi-legged robots such as the quadruped robot 200, and increases the stability of the robot during driving.
  • the balancing car provided by the present disclosure can carry the driving object and move the parole object by arranging the balancing car body 101 and the wheels, and the balancing car body 101 is equipped with a controller that can be controlled according to the speed information and direction information input by the driving object.
  • the movement of the wheels controls the movement of the entire balancing vehicle and the driving object on the balancing vehicle; by setting a rudder composed of the pedal 1031 and the direction axis 1032, it is convenient for the driving object to apply steering force by stepping on the pedal 1031 in front or behind the main body 101 of the balancing vehicle.
  • the pedal 1031 drives the direction axis 1032 to rotate under the action of the steering force to input direction information to the controller, thereby facilitating the robot, especially the quadruped robot 200 and other driving objects to input direction information, and improving the adaptability of the robot and the balancing car. , and the stability of robot-driving balancing cars.
  • At least one embodiment of the present disclosure provides a method for controlling a robot. Please refer to FIG. 3 , which shows the flow of the method, including step S301 and step S303.
  • this method can be applied to a scenario where a quadruped robot and other robots drive a balancing car, for example, a scenario where a quadruped robot drives a balancing car provided by the first aspect.
  • a robot such as a quadruped robot can be placed on the balance car, and at least one leg of the robot is placed on the pedal of the rudder of the balance car or the steering pressure sensor pedal, so that the robot is on the balance car, and At least one leg of the robot is on the pedal of the rudder of the balance vehicle or the pedal of the steering pressure sensor.
  • the quadruped robot drives the balancing car provided by the first aspect
  • the pedal is set in front of the main body of the balancing car
  • the two front legs of the quadruped robot are on the pedal, and the footholds of the two front legs are relative to The direction axis is symmetrical
  • the two rear legs of the quadruped robot are in the position of the driving object's feet on the main body of the balance car
  • the pedals are set behind the main body of the balance car
  • the two front legs of the quadruped robot are in balance
  • the two rear legs of the quadruped robot are on the pedals
  • the footholds of the two rear legs are symmetrical with respect to the direction axis.
  • step S301 desired motion information and current actual motion information are obtained, where both the desired motion information and the actual motion information are used to characterize the motion state of the robot.
  • the expected motion information represents the motion state that the robot is expected to achieve, and the actual motion information represents the actual motion state of the robot. It can be understood that when the robot is driving a balancing car, the motions of the robot and the balancing car are consistent, so the motion state of the robot is the motion state of the robot and the balancing car as a whole.
  • the expected motion information includes the expected body inclination angle and the expected angular velocity.
  • the expected acceleration used to represent the speed information and the expected angular velocity used to represent the direction information can be obtained, and then based on The expected acceleration determines the expected fuselage inclination angle.
  • mapping relationship between the expected acceleration and the expected fuselage inclination angle can be saved in advance.
  • the mapping relationship can be a linearly related mapping relationship or a nonlinear related mapping relationship, and its form can be mapping. table, mapping curve, etc., and then the corresponding expected fuselage inclination angle can be determined according to the mapping relationship after obtaining the expected acceleration; and/or the actual motion information includes the actual fuselage inclination angle and the actual angular velocity.
  • the first method is to obtain the desired movement information from the navigation system of the robot
  • the second method is to receive the movement sent by the remote controller of the robot. instructions, and determine the desired movement information based on the movement instructions.
  • the robot's navigation system is a system that controls the movement of the robot. It can plan the movement information of the robot based on a pre-built map.
  • the SLAM algorithm is used to plan the movement information of the robot.
  • the movement information generated by the navigation system is what the robot is expected to achieve next. Movement status, that is, expected movement information.
  • the robot's remote control can send movement instructions to the robot.
  • the movement instructions can represent the movement state that the user wants the robot to achieve, such as sending acceleration, deceleration, steering and other movement information.
  • the robot After receiving the movement instructions, the robot can determine the movement information in it as the desired Sports information.
  • the robot has a sensor that collects its actual movement information, which can determine the actual movement information of the robot based on the information collected by the sensor.
  • step S302 the displacement of the center of mass of the robot and the foot end height of each of at least one leg on the pedal are determined based on the expected motion information and the actual motion information.
  • the robot has a PID controller for controlling motion.
  • the PID controller has a proportional unit, an integral unit and a differential unit. Desired motion information and actual motion information can be input to the PID controller, and the PID can output the mass displacement of the robot and the foot height of each of at least one leg on the pedal according to the control logic of driving the balancing car.
  • the displacement of the center of mass of the robot can be used to characterize the tilt of the robot, specifically the tilt of the robot forward or backward, and the tilt of the robot can control the speed control of the balancing car, such as acceleration, deceleration or uniform speed, which is consistent with The movements of humans when riding a balance car are the same.
  • the circuits and components in the main structure of the balance car body have at least one sensor that collects the inclination of the driving object.
  • the at least one sensor can collect the inclination of the robot. , and convert it into speed information and input it to the controller of the balancing car.
  • the foot height of each leg of at least one of the robot's legs on the pedal can represent the steering force exerted by the robot on the pedal. That is to say, the tilt of the pedal can be controlled by the height of the foot of each leg, thereby controlling the steering axis through rotation.
  • the direction information input by the controller of the dynamic balance vehicle is to characterize the tilt of the robot, specifically the tilt of the robot forward or
  • the pedals are set behind the main body of the balancing car, the two front legs of the quadruped robot are in the position for stepping on the driving object's feet, and the two rear legs of the quadruped robot are in on the pedals, and the footholds of the two hind legs are symmetrical with respect to the directional axis.
  • the height of the foot end of each leg of at least one leg on the pedal determined in this step refers to the height of each rear leg, and the height of each rear leg can be an absolute height, or two The relative height of the hind legs, that is, the height difference between the two hind legs.
  • the center of mass displacement can be corrected based on the center of mass displacement offset.
  • the center of mass displacement offset is used to represent the center of mass displacement of the robot when the acceleration of the balancing car is 0. Therefore, after using the center of mass displacement offset to correct the determined center of mass displacement, the expected motion information can be more accurately represented. .
  • At least one leg on the pedal can be determined based on the error angle of the rudder.
  • the height of the toe of each leg in a leg is corrected.
  • the pedals remain horizontal and the direction information of the balance car is to keep going straight.
  • Error angle i.e., rudder dead zone.
  • the direction information of the balance vehicle is to keep straight. Therefore, this error angle is used to correct the height of the foot of each leg in at least one leg on the pedal.
  • the desired motion information can be more accurately represented.
  • the following method can be used to calibrate the center of mass displacement offset and the error angle of the rudder in advance: place the robot on the balance car, and place at least one leg on the pedal of the rudder or the pedal of the steering pressure sensor, Then, when the balance vehicle is in a stationary state, the rotation angle of the direction axis is continuously increased by adjusting the height of at least one leg, so that at the maximum rotation angle of the stationary state, the mass center offset of the robot is obtained as the mass center displacement. offset, obtain the foot end height of each of at least one leg on the pedal, and determine the error angle of the rudder based on the foot end height of each of the at least one leg.
  • each leg of the robot is controlled to perform corresponding movement according to the displacement of the center of mass of the robot and the foot end height of at least one leg on the pedal to move toward the balance.
  • the car inputs speed information and direction information.
  • the angle value of each joint of each leg of the robot can be determined based on the displacement of the center of mass of the robot and the height of the foot of each of at least one leg on the pedal.
  • the coordinates of the foothold of each leg in the robot's body coordinate system can be determined based on the displacement of the center of mass of the robot and the height of the foot end of at least one leg on the pedal, and then respectively Calculate the angle value of each joint of each leg using the following formula:
  • ⁇ 0 , ⁇ 1 , and ⁇ 2 are the calculated roll hip joint angle, pitch hip joint angle, and knee joint rotation angle of one leg respectively
  • L0 is the calculated axis distance of the roll hip joint and pitch hip joint of one leg.
  • L1 is the calculated thigh length of one leg
  • L2 is the calculated calf length of one leg
  • ⁇ and ⁇ are the left and right leg sign adjustment variables
  • x, y, z are the calculated coordinates of the foothold of one leg respectively. value.
  • each joint of each leg of the robot is controlled to move to a corresponding angle value.
  • the robot control method provided by the embodiment of the present disclosure can control the robot to drive a balancing vehicle such as the balancing vehicle provided in the first aspect, and has high control accuracy and high driving stability.
  • a control device for a robot is provided, the robot is on a balance vehicle, and at least one leg of the robot is on a rudder pedal or a steering pressure sensor pedal of the balance vehicle; please Referring to Figure 4, the device includes:
  • the acquisition module 401 is used to obtain the expected motion information and the current actual motion information, where the expected motion information and the actual motion information are used to characterize the motion state of the robot;
  • Determining module 402 configured to determine the displacement of the center of mass of the robot and the foot end height of each of at least one leg on the pedal according to the expected motion information and the actual motion information;
  • the control module 403 is used to control each leg of the robot to perform corresponding movements according to the displacement of the center of mass of the robot and the foot end height of each of at least one leg on the pedal to move toward the pedal.
  • the balancing car inputs speed information and direction information.
  • the expected motion information includes expected body tilt angle and expected angular velocity; and/or,
  • the actual motion information includes actual body tilt angle and actual angular velocity.
  • the acquisition module when used to acquire desired motion information, it is specifically used to:
  • the desired acceleration is obtained, and the desired body inclination angle is determined based on the desired acceleration.
  • the acquisition module when used to acquire desired motion information, it is specifically used to:
  • a correction module is also included for:
  • the height of the foot end of each of the at least one leg on the pedal is corrected according to the error angle of the rudder.
  • a calibration module is also included for:
  • the center of mass offset of the robot is obtained as the center of mass displacement offset, and at least one position on the pedal is obtained.
  • the height of the foot end of each leg in one leg, and the error angle of the rudder is determined based on the height of the foot end of each leg in the at least one leg.
  • control module is specifically used to:
  • the device 500 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • the device 500 may include one or more of the following components: a processing component 502, a memory 504, a power supply component 506, a multimedia component 508, an audio component 510, an input/output (I/O) interface 512, a sensor component 514, and communications component 516.
  • Processing component 502 generally controls the overall operations of device 500, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing element 502 may include one or more processors 520 to execute instructions to complete all or part of the steps of the above method.
  • processing component 502 may include one or more modules that facilitate interaction between processing component 502 and other components.
  • processing component 502 may include a multimedia module to facilitate interaction between multimedia component 508 and processing component 502.
  • Memory 504 is configured to store various types of data to support operations at device 500 . Examples of such data include instructions for any application or method operating on device 500, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 504 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power component 506 provides power to various components of device 500 .
  • Power components 506 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 500 .
  • Multimedia component 508 includes a screen that provides an output interface between the device 500 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor may not only sense the boundary of the touch or sliding operation, but also detect the duration and pressure associated with the touch or sliding operation.
  • multimedia component 508 includes a front-facing camera and/or a rear-facing camera. When the device 500 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 510 is configured to output and/or input audio signals.
  • audio component 510 includes a microphone (MIC) configured to receive external audio signals when device 500 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signals may be further stored in memory 504 or sent via communication component 516 .
  • audio component 510 also includes a speaker for outputting audio signals.
  • the I/O interface 512 provides an interface between the processing component 502 and a peripheral interface module, which may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 514 includes one or more sensors for providing various aspects of status assessment for device 500 .
  • the sensor component 514 can detect the open/closed state of the device 500, the relative positioning of components, such as the display and keypad of the device 500, and the sensor component 514 can also detect a change in position of the device 500 or a component of the device 500. , the presence or absence of user contact with the device 500 , device 500 orientation or acceleration/deceleration and temperature changes of the device 500 .
  • Sensor assembly 514 may also include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 514 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 514 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 516 is configured to facilitate wired or wireless communication between apparatus 500 and other devices.
  • the device 500 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, 4G or 5G or a combination thereof.
  • the communication component 516 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 516 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 500 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the power supply method of the above electronic device.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the power supply method of the above electronic device.
  • the present disclosure also provides a non-transitory computer-readable storage medium including instructions, such as a memory 504 including instructions.
  • the instructions may be executed by the processor 520 of the device 500 to complete the above electronic tasks.
  • the method of powering the device may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.

Abstract

本公开是关于平衡车、机器人的控制方法、装置、电子设备和存储介质,所述平衡车包括:平衡车主体,所述平衡车主体内设有控制器,所述控制器用于根据驾驶对象输入的速度信息和方向信息控制运动机构的运动;运动机构,与所述平衡车主体连接,用于根据所述控制器的控制指令进行运动,以带动所述平衡车主体运动;方向舵,包括相互连接的踏板和方向轴,所述踏板设于所述平衡车主体的前方或后方,用于根据驾驶对象施加的转向力带动所述方向轴转动,所述方向轴延伸至所述平衡车主体内,用于通过转动向所述控制器输入所述方向信息。

Description

平衡车、机器人的控制方法、装置、电子设备和存储介质 技术领域
本公开涉及机器人技术领域,具体涉及一种平衡车、机器人的控制方法、装置、电子设备和存储介质。
背景技术
近年来,机器人的相关技术发展越来越迅速,机器人可以实现越来越多的功能,从而在各个领域代替人类进行工作,将人类从繁重的劳动中解放出来。机器人的运动控制是机器人控制技术中较为重要的一项内容,目前不仅可以控制机器人通过自身运动到达目的地,还可以控制机器人驾驶平衡车等交通工具到达目的地。相关技术中,机器人与平衡车等交通工具的适配性较差,进而导致机器人驾驶平衡车的稳定性较差。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种平衡车、机器人的控制方法、装置、电子设备和存储介质,用以解决相关技术中的缺陷。
根据本公开实施例的第一方面,提供一种平衡车,包括:
平衡车主体,所述平衡车主体内设有控制器,所述控制器用于根据驾驶对象输入的速度信息和方向信息控制车轮的运动;
车轮,设于所述平衡车主体的两侧,用于根据所述控制器的控制指令进行运动;
方向舵,包括相互连接的踏板和方向轴,所述踏板设于所述平衡车主体的前方或后方,用于根据驾驶对象施加的转向力带动所述方向轴转动,所述方向轴延伸至所述平衡车主体内,用于通过转动向所述控制器输入所述方向信息。
在一个实施例中,所述方向轴沿水平方向设置。
在一个实施例中,所述方向轴与所述踏板靠近所述平衡车主体的一端的中心连接。
在一个实施例中,在驾驶对象未向踏板施加转向力的情况下,所述踏板呈水平状态;和/或,
在所述踏板呈水平状态的情况下,所述方向轴向所述控制器输入保持直行的方向信息。
根据本公开实施例的第二方面,提供一种机器人的控制方法,所述机器人处于平衡车上,所述机器人的至少一条腿处于所述平衡车的方向舵的踏板上或非方向舵式的转向压力传感器踏板上;所述方法包括:
获取期望运动信息和当前的实际运动信息,其中,所述期望运动信息和所述实际运动信息均用于表征机器人的运动状态;
根据所述期望运动信息和所述实际运动信息,确定所述机器人的质心位移量和处于所述踏板上的至少一条腿中每条腿的足端高度;
根据所述机器人的质心位移量和处于所述踏板上的至少一条腿中每条腿的足端高度,控制所述机器人的每条腿进行相应的运动,以向所述平衡车输入速度信息和方向信息。
在一个实施例中,所述期望运动信息包括期望机身倾角和期望角速度;和/或,
所述实际运动信息包括实际机身倾角和实际角速度。
在一个实施例中,所述获取期望运动信息,包括:
获取期望加速度,并根据所述期望加速度确定所述期望机身倾角。
在一个实施例中,所述获取期望运动信息,包括:
向所述机器人的导航系统获取所述期望运动信息;和/或,
接收所述机器人的遥控器发送的运动指令,并根据所述运动指令确定所述期望运动信息。
在一个实施例中,还包括:
根据质心位移偏置量对所述质心位移量进行校正;和/或,
根据所述方向舵的误差角度对处于所述踏板上的至少一条腿中每条腿的足端高度进行校正。
在一个实施例中,还包括:
在所述机器人处于所述平衡车上,且所述平衡车处于静止状态的情况下,获取所述机器人的质心偏移量作为所述质心位移偏置量,并获取处于所述踏板上的至少一条腿中每条腿的足端高度,以及根据所述至少一条腿中每条腿的足端高度确定所述方向舵的误差角度。
在一个实施例中,所述根据所述机器人的质心位移和处于所述踏板上的至少一条腿中每条腿的足端高度,控制所述机器人的每条腿进行相应的运动,包括:
根据所述机器人的质心位移量和处于所述踏板上的至少一条腿中每条腿的足端高度,确定所述机器人的每条腿的每个关节的角度值;
控制所述机器人的每条腿的每个关节运动至对应的角度值。
根据本公开实施例的第三方面,提供一种机器人的控制装置,所述机器人处于平衡车上,所述机器人的至少一条腿处于所述平衡车的方向舵的踏板或非方向舵式的转向压力传感器踏板上;所述装置包括:
获取模块,用于获取期望运动信息和当前的实际运动信息,其中,所述期望运动信息和所述实际运动信息均用于表征机器人的运动状态;
确定模块,用于根据所述期望运动信息和所述实际运动信息,确定所述机器人的质心位移量和处于所述踏板上的至少一条腿中每条腿的足端高度;
控制模块,用于根据所述机器人的质心位移量和处于所述踏板上的至少一条腿中每条腿的足端高度,控制所述机器人的每条腿进行相应的运动,以向所述平衡车输入速度信息和方向信息。
在一个实施例中,所述期望运动信息包括期望机身倾角和期望角速度;和/或,
所述实际运动信息包括实际机身倾角和实际角速度。
在一个实施例中,所述获取模块用于获取期望运动信息时,具体用于:
获取期望加速度,并根据所述期望加速度确定所述期望机身倾角。
在一个实施例中,所述获取模块用于获取期望运动信息时,具体用于:
向所述机器人的导航系统获取所述期望运动信息;和/或,
接收所述机器人的遥控器发送的运动指令,并根据所述运动指令确定所述期望运动信息。
在一个实施例中,还包括校正模块,用于:
根据质心位移偏置量对所述质心位移量进行校正;和/或,
根据所述方向舵的误差角度对处于所述踏板上的至少一条腿中每条腿的足端高度进行校正。
在一个实施例中,还包括标定模块,用于:
在所述机器人处于所述平衡车上,且所述平衡车处于静止状态的情况下,获取所述机器人的质心偏移量作为所述质心位移偏置量,并获取处于所述踏板上的至少一条腿中每条腿的足端高度,以及根据所述至少一条腿中每条腿的足端高度确定所述方向舵的误差角度。
在一个实施例中,所述控制模块具体用于:
根据所述机器人的质心位移和处于所述踏板上的至少一条腿中每条腿的足端高度,确定所述机器人的每条腿的每个关节的角度值;
控制所述机器人的每条腿的每个关节运动至对应的角度值。
根据本公开实施例的第四方面,提供一种电子设备,所述电子设备包括存储器、处理器,所述存储器用于存储可在处理器上运行的计算机指令,所述处理器用于在执行所述计算机指令时基于第一方面所述的机器人的控制方法。
根据本公开实施例的第四方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现第一方面所述的方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开所提供的平衡车,通过设置平衡车主体和车轮,能够承载驾驶对 象并带假释对象移动,并且平衡车主体内设有控制器,能够根据驾驶对象输入的速度信息和方向信息控制车轮的运动,即控制整个平衡车及平衡车上的驾驶对象运动;通过设置踏板和方向轴组成的方向舵,从而便于驾驶对象通过踩踏平衡车主体前方或后方的踏板施加转向力,进而踏板在转向力的作用下带动方向轴转动,以向控制器输入方向信息,从而便于机器人,尤其是四足机器人等驾驶对象输入方向信息,提高了机器人与平衡车的适配性,以及机器人驾驶平衡车的稳定性。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是本公开一示例性实施例示出的平衡车被四足机器人驾驶的侧视图;
图2是本公开一示例性实施例示出的平衡车被四足机器人驾驶的俯视图;
图3是本公开一示例性实施例示出的机器人的控制方法的流程图;
图4是本公开一示例性实施例示出的机器人的控制装置的结构示意图;
图5是本公开一示例性实施例示出的电子设备的结构框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或 所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
相关技术中,平衡车主要适用于人类驾驶,双足机器人以其与人类的双腿相似性,也可以进行驾驶,但是四足机器人等多足机器人驾驶平衡车的稳定性较差,甚至无法驾驶平衡车。
基于此,第一方面,本公开至少一个实施例提供了一种平衡车,该平衡车适于机器人,尤其是四足机器人等多足机器人进行驾驶,请参照附图1和附图2,其示出了平衡车被四足机器人驾驶的示意图,其中附图1为侧视图,附图2为俯视图,从图中可以看出,所述平衡车包括:平衡车主体101,所述平衡车主体101内设有控制器,所述控制器用于根据驾驶对象输入的速度信息和方向信息控制运动机构102的运动;运动机构102,与所述平衡车主体101连接,用于根据所述控制器的控制指令进行运动,以带动所述平衡车主体101运动;方向舵,包括相互连接的踏板1031和方向轴1032,所述踏板1031设于所述平衡车主体101的前方(即平衡车直行方向)或后方(即平衡车直行方向的反方向),用于根据驾驶对象施加的转向力带动所述方向轴1032转动,所述方向轴1032延伸至所述平衡车主体101内,用于通过转动向所述控制器输入所述方向信息。
其中,平衡车主体101可以包括主体结构和设置在主体结构内的电路和元器件(例如控制器),主体结构的形状可以与相关技术中的平衡车主体101相同或相近,即设置有用于假释对象的脚部踩踏的位置、用于安装车轮的位置以及用于安装车轮的安装轴等等。运动机构102可以包括安装在平衡车主体101的安装轴上的车轮(例如可以设置在平衡车主体101的两侧)、以及用于驱动车轮转动和转向的驱动电机等,驱动电机等可以与主体结构内的电路 和元器件连接,从而受控于控制器等电路结构;车轮可以与相关技术中平衡车的车轮相同或不同,在驱动电机等的驱动下进行转动和转向等运动。
方向舵用于驾驶对象向控制器输入方向信息。主体结构内的电路和元器件包括用于采集方向轴1032的转动方向和角度的至少一个传感器(该至少一个传感器可以与相关技术中用于采集方向舵的转动方向和角度的传感器相同,也可以不相同),该至少一个传感器可以将采集的转动方向和角度上报至控制器,控制器内可以预先设置有方向轴1032的转动方向和角度与方向信息的映射关系(例如一一对应的映射表等),从而控制器可以在获取到方向轴1032的转动方向和角度后,根据该映射关系确定方向信息。
在一个可能的实施例中,所述方向轴1032沿水平方向设置,从而可以提高方向轴1032的稳定性,避免频繁转动降低其转动的灵活性和精度。
在另一个可能的实施例中,所述方向轴1032与所述踏板1031靠近所述平衡车主体101的一端的中心连接,从而可以提高踏板1031的稳定性。踏板1031可以呈矩形或其他适于驾驶对象放置脚部的形状,踏板1031的长度方向可以与平衡车直行的方向垂直,方向轴1032可以沿平衡车直行的方向延伸,即与踏板1031的长度方向垂直。
可以理解的是,为了便于驾驶对象输入方向信息,可以设置为在驾驶对象未向踏板1031施加转向力(例如驾驶对象未踩踏踏板1031,或驾驶对象踩踏踏板1031时向方向轴1032两侧的踏板1031部分施加相同的压力)的情况下,所述踏板1031呈水平状态;和/或,在所述踏板1031呈水平状态的情况下,所述方向轴1032向所述控制器输入保持直行的方向信息。进一步的,可以设置为:在驾驶对象向踏板1031施加向左转动的转向力(驾驶对象踩踏踏板1031时向方向轴1032左侧的踏板1031部分施加压力大于向方向轴1032右侧的踏板1031部分施加压力)时,踏板1031左高右低,且所述方向轴1032向控制器输入向左转的方向信息,且转向角度与轴向轴的转动角度呈正比;在驾驶对象向踏板1031施加向右转动的转向力(驾驶对象踩踏踏板1031时向方向轴1032右侧的踏板1031部分施加压力大于向方向轴1032左侧的踏板 1031部分施加压力)时,踏板1031左低右高,且所述方向轴1032向控制器输入向由转的方向信息,且转向角度与轴向轴的转动角度呈正比。
在四足机器人200驾驶该平衡车的场景下,若踏板1031设置在平衡车主体101的前方,则四足机器人200的两条前腿处于踏板1031上,且两条前腿的落脚点相对于方向轴1032对称,四足机器人200的两条后腿处于平衡车主体101的用于驾驶对象的脚部踩踏的位置上;若踏板1031设置在平衡车主体101的后方,则四足机器人200的两条前腿处于平衡车主体101的用于驾驶对象的脚部踩踏的位置上,四足机器人200的两条后腿处于踏板1031上,且两条后腿的落脚点相对于方向轴1032对称。而且可以使处于踏板1031上的两条腿的距离尽量增加,从而增加踏板1031的转向力臂,进而提高转向能力。因此本实施例所提供的平衡车,由于方向舵包括设于平衡车主体101前方或后方的踏板1031,因此适合四足机器人200等多足机器人驾驶,且增加了机器人驾驶过程中的稳定性。
本公开所提供的平衡车,通过设置平衡车主体101和车轮,能够承载驾驶对象并带假释对象移动,并且平衡车主体101内设有控制器,能够根据驾驶对象输入的速度信息和方向信息控制车轮的运动,即控制整个平衡车及平衡车上的驾驶对象运动;通过设置踏板1031和方向轴1032组成的方向舵,从而便于驾驶对象通过踩踏平衡车主体101前方或后方的踏板1031施加转向力,进而踏板1031在转向力的作用下带动方向轴1032转动,以向控制器输入方向信息,从而便于机器人,尤其是四足机器人200等驾驶对象输入方向信息,提高了机器人与平衡车的适配性,以及机器人驾驶平衡车的稳定性。
第二方面,本公开至少一个实施例提供了一种机器人的控制方法,请参照附图3,其示出了该方法的流程,包括步骤S301和步骤S303。
其中,该方法可以应用于四足机器人等机器人驾驶平衡车的场景下,例如四足机器人驾驶第一方面所提供的平衡车的场景下。在运行该方法前,可以将四足机器人等机器人放置在平衡车上,并将机器人的至少一条腿放置在平衡车的方向舵的踏板或转向压力传感器踏板上,从而使机器人处于平衡车 上,且机器人的至少一条腿处于平衡车的方向舵的踏板或转向压力传感器踏板上。在四足机器人驾驶第一方面所提供的平衡车的场景下,若踏板设置在平衡车主体的前方,则四足机器人的两条前腿处于踏板上,且两条前腿的落脚点相对于方向轴对称,四足机器人的两条后腿处于平衡车主体的用于驾驶对象的脚部踩踏的位置上;若踏板设置在平衡车主体的后方,则四足机器人的两条前腿处于平衡车主体的用于驾驶对象的脚部踩踏的位置上,四足机器人的两条后腿处于踏板上,且两条后腿的落脚点相对于方向轴对称。
在步骤S301中,获取期望运动信息和当前的实际运动信息,其中,所述期望运动信息和所述实际运动信息均用于表征机器人的运动状态。
其中,期望运动信息所表征的是希望机器人达到的运动状态,实际运动信息所表征的是机器人实际的运动状态。可以理解的是,机器人处于驾驶平衡车的场景下,机器人和平衡车的运动是一致的,因此机器人的运动状态即为机器人和平衡车整体的运动状态。在一个可能的实施例中,所述期望运动信息包括期望机身倾角和期望角速度,获取期望运动信息时可以获取用于表征速度信息的期望加速度和用于表征方向信息的期望角速度,然后再根据期望加速度确定期望机身倾角,示例性的,可以预先保存期望加速度与期望机身倾角间的映射关系,该映射关系可以为线性相关的映射关系或非线性相关的映射关系,其形式可以为映射表、映射曲线等,然后可以在获取到期望加速度后根据该映射关系确定对应的期望机身倾角;和/或,所述实际运动信息包括实际机身倾角和实际角速度。
可选的,采用下述至少一种方式获取期望运动信息:第一种方式,向所述机器人的导航系统获取所述期望运动信息,第二种方式,接收所述机器人的遥控器发送的运动指令,并根据所述运动指令确定所述期望运动信息。其中,机器人的导航系统是控制机器人运动的系统,其可以根据预先构建的地图规划机器人的运动信息,例如采用SLAM算法规划机器人的运动信息,导航系统所生成的运动信息是希望机器人接下来达到的运动状态,即期望运动信息。机器人的遥控器可以向机器人发送运动指令,运动指令可以表征用户 希望机器人所达到的运动状态,例如发送加减速、转向等运动信息,机器人在接收到运动指令后可以将其中的运动信息确定为期望运动信息。机器人具有采集其实际运动信息的传感器,其可以根据传感器所采集的信息确定机器人的实际运动信息。
在步骤S302中,根据所述期望运动信息和所述实际运动信息,确定所述机器人的质心位移量和处于所述踏板上的至少一条腿中每条腿的足端高度。
机器人具有用于控制运动的PID控制器,PID控制器具有比例单元、积分单元和微分单元。可以将期望运动信息和实际运动信息输入至PID控制器,则PID可以按照驾驶平衡车的控制逻辑输出机器人的质位移量和处于踏板上的至少一条腿中每条腿的足端高度。
其中,机器人的质心位移量可以用于表征机器人的倾斜程度,具体为机器人向前或向后的倾斜程度,而机器人的倾斜程度能够控制平衡车的速度控制,例如加速、减速或者匀速,这与人类骑行平衡车时的动作是同理的,示例性的,平衡车主体的主体结构内的电路和元器件具有采集驾驶对象倾斜程度的至少一个传感器,该至少一个传感器可以采集机器人的倾斜程度,并将其转换为速度信息输入至平衡车的控制器。机器人处于踏板上的至少一条腿中每条腿的足端高度,可以表征机器人向踏板施加的转向力,也就是说可以通过每条腿的足端高度控制踏板的倾斜,进而控制转向轴通过转动向平衡车的控制器所输入的方向信息。
在一个可能的场景下,踏板设置在平衡车主体的后方,四足机器人的两条前腿处于平衡车主体的用于驾驶对象的脚部踩踏的位置上,四足机器人的两条后腿处于踏板上,且两条后腿的落脚点相对于方向轴对称。则本步骤中所确定的处于所述踏板上的至少一条腿中每条腿的足端高度指的是,每条后腿的高度,所述每条后退的高度可以为绝对高度,或者两条后腿的相对高度,即两条后腿的高度差。
在一个可能的实施例中,可以在确定所述机器人的质心位移量之后,根据质心位移偏置量对所述质心位移量进行校正。理论上,机器人的质心位移 量为0时,不存在任何倾斜,平衡车的加速度应为0,但是由于平衡车和/或机器人的误差,机器人的质心位移量为0时平衡车的加速度往往不为0,质心位移偏置量就是用来表征平衡车加速度为0时机器人的质心位移量,因此采用质心位移偏置量对所确定的质心位移量进行校正后,能够更加准确的表征期望运动信息。
在另一个可能的实施例中,可以在确定所述机器人的处于所述踏板上的至少一条腿中每条腿的足端高度之后,根据所述方向舵的误差角度对处于所述踏板上的至少一条腿中每条腿的足端高度进行校正。理论上,机器人的两条腿在踏板上关于方向轴对称且高度相同时,踏板保持水平,平衡车的方向信息为保持直行,但是为了避免驾驶过程中出现控制误差,方向舵的方向轴存在一定的误差角度(即方向舵死区),在该误差角度范围内平衡车的方向信息均为保持直行,因此采用该误差角度对处于所述踏板上的至少一条腿中每条腿的足端高度进行校正后,能够更加准确的表征期望运动信息。
可以理解的是,可以采用下述方式预先对质心位移偏置量和方向舵的误差角度进行标定:将机器人放置在平衡车上,且使至少一条腿放置在方向舵的踏板或转向压力传感器踏板上,然后在平衡车处于静止状态的情况下,通过调整至少一条腿的高度不断增加方向轴的转动角度,从而在静止状态的最大转动角度时,获取所述机器人的质心偏移量作为所述质心位移偏置量,并获取处于所述踏板上的至少一条腿中每条腿的足端高度,以及根据所述至少一条腿中每条腿的足端高度确定所述方向舵的误差角度。
在步骤S303中,根据所述机器人的质心位移量和处于所述踏板上的至少一条腿中每条腿的足端高度,控制所述机器人的每条腿进行相应的运动,以向所述平衡车输入速度信息和方向信息。
本步骤中,可以先根据所述机器人的质心位移量和处于所述踏板上的至少一条腿中每条腿的足端高度,确定所述机器人的每条腿的每个关节的角度值,示例性的,可以根据所述机器人的质心位移量和处于所述踏板上的至少一条腿中每条腿的足端高度确定每条腿的落脚点在机器人的机身坐标系内的 坐标,然后分别利用下述公式计算每条腿的每个关节的角度值:
Figure PCTCN2022096046-appb-000001
Figure PCTCN2022096046-appb-000002
Figure PCTCN2022096046-appb-000003
其中,θ 0、θ 1、θ 2分别为所计算的一条腿的横滚髋关节角度、俯仰髋关节角度和膝关节转角,L0为所计算的一条腿的横滾髋和俯仰髋关节轴线距离,L1为所计算的一条腿的大腿长,L2为所计算的一条腿的小腿长,α和β为左右腿符号调节变量,x,y,z分别为所计算的一条腿的落脚点的坐标值。
接下来,控制所述机器人的每条腿的每个关节运动至对应的角度值。
本公开实施例所提供的机器人的控制方法,能够控制机器人驾驶第一方面所提供的平衡车等平衡车,而且控制精度较高,且驾驶稳定性较高。
根据本公开实施例的第三方面,提供一种机器人的控制装置,所述机器人处于平衡车上,所述机器人的至少一条腿处于所述平衡车的方向舵的踏板或转向压力传感器踏板上;请参照附图4,所述装置包括:
获取模块401,用于获取期望运动信息和当前的实际运动信息,其中,所述期望运动信息和所述实际运动信息均用于表征机器人的运动状态;
确定模块402,用于根据所述期望运动信息和所述实际运动信息,确定所述机器人的质心位移量和处于所述踏板上的至少一条腿中每条腿的足端高度;
控制模块403,用于根据所述机器人的质心位移量和处于所述踏板上的至少一条腿中每条腿的足端高度,控制所述机器人的每条腿进行相应的运动,以向所述平衡车输入速度信息和方向信息。
在本公开的一些实施例中,所述期望运动信息包括期望机身倾角和期望角速度;和/或,
所述实际运动信息包括实际机身倾角和实际角速度。
在本公开的一些实施例中,所述获取模块用于获取期望运动信息时,具体用于:
获取期望加速度,并根据所述期望加速度确定所述期望机身倾角。
在本公开的一些实施例中,所述获取模块用于获取期望运动信息时,具体用于:
向所述机器人的导航系统获取所述期望运动信息;和/或,
接收所述机器人的遥控器发送的运动指令,并根据所述运动指令确定所述期望运动信息。
在本公开的一些实施例中,还包括校正模块,用于:
根据质心位移偏置量对所述质心位移量进行校正;和/或,
根据所述方向舵的误差角度对处于所述踏板上的至少一条腿中每条腿的足端高度进行校正。
在本公开的一些实施例中,还包括标定模块,用于:
在所述机器人处于所述平衡车上,且所述平衡车处于静止状态的情况下,获取所述机器人的质心偏移量作为所述质心位移偏置量,并获取处于所述踏板上的至少一条腿中每条腿的足端高度,以及根据所述至少一条腿中每条腿的足端高度确定所述方向舵的误差角度。
在本公开的一些实施例中,所述控制模块具体用于:
根据所述机器人的质心位移和处于所述踏板上的至少一条腿中每条腿的足端高度,确定所述机器人的每条腿的每个关节的角度值;
控制所述机器人的每条腿的每个关节运动至对应的角度值。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在第一方面有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
根据本公开实施例的第四方面,请参照附图5,其示例性的示出了一种电子设备的框图。例如,装置500可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图5,装置500可以包括以下一个或多个组件:处理组件502,存储器504,电源组件506,多媒体组件508,音频组件510,输入/输出(I/O)的接口512,传感器组件514,以及通信组件516。
处理组件502通常控制装置500的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理元件502可以包括一个或多个处理器520来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件502可以包括一个或多个模块,便于处理组件502和其他组件之间的交互。例如,处理部件502可以包括多媒体模块,以方便多媒体组件508和处理组件502之间的交互。
存储器504被配置为存储各种类型的数据以支持在设备500的操作。这些数据的示例包括用于在装置500上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器504可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件506为装置500的各种组件提供电力。电力组件506可以包括电源管理系统,一个或多个电源,及其他与为装置500生成、管理和分配电力相关联的组件。
多媒体组件508包括在所述装置500和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触控面板(TP)。如果屏幕包括触控面板,屏幕可以被实现为触控屏,以接收来自用户的输入信号。触控面板包括一个或多个触控传感器以感测触控、滑动和触控面板上的手势。所述触控传感器可以不仅感测触控或滑动动作的边界,而且还检测与所述触控或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件508包括一个前置摄像头和/或后置摄像头。当装置500处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体 数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件510被配置为输出和/或输入音频信号。例如,音频组件510包括一个麦克风(MIC),当装置500处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器504或经由通信组件516发送。在一些实施例中,音频组件510还包括一个扬声器,用于输出音频信号。
I/O接口512为处理组件502和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件514包括一个或多个传感器,用于为装置500提供各个方面的状态评估。例如,传感器组件514可以检测到装置500的打开/关闭状态,组件的相对定位,例如所述组件为装置500的显示器和小键盘,传感器组件514还可以检测装置500或装置500一个组件的位置改变,用户与装置500接触的存在或不存在,装置500方位或加速/减速和装置500的温度变化。传感器组件514还可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件514还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件514还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件516被配置为便于装置500和其他设备之间有线或无线方式的通信。装置500可以接入基于通信标准的无线网络,如WiFi,2G或3G,4G或5G或它们的组合。在一个示例性实施例中,通信部件516经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信部件516还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置500可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述电子设备的供电方法。
第五方面,本公开在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器504上述指令可由装置500的处理器520执行以完成上述电子设备的供电方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (20)

  1. 一种平衡车,其特征在于,包括:
    平衡车主体,所述平衡车主体内设有控制器,所述控制器用于根据驾驶对象输入的速度信息和方向信息控制运动机构的运动;
    运动机构,与所述平衡车主体连接,用于根据所述控制器的控制指令进行运动,以带动所述平衡车主体运动;
    方向舵,包括相互连接的踏板和方向轴,所述踏板设于所述平衡车主体的前方或后方,用于根据驾驶对象施加的转向力带动所述方向轴转动,所述方向轴延伸至所述平衡车主体内,用于通过转动向所述控制器输入所述方向信息。
  2. 根据权利要求1所述的平衡车,其特征在于,所述方向轴沿水平方向设置。
  3. 根据权利要求1所述的平衡车,其特征在于,所述方向轴与所述踏板靠近所述平衡车主体的一端的中心连接。
  4. 根据权利要求1所述的平衡车,其特征在于,在驾驶对象未向踏板施加转向力的情况下,所述踏板呈水平状态;和/或,
    在所述踏板呈水平状态的情况下,所述方向轴向所述控制器输入保持直行的方向信息。
  5. 一种机器人的控制方法,其特征在于,所述机器人处于平衡车上,所述机器人的至少一条腿处于所述平衡车的方向舵的踏板或非方向舵的转向压力传感器踏板上;所述方法包括:
    获取期望运动信息和当前的实际运动信息,其中,所述期望运动信息和所述实际运动信息均用于表征机器人的运动状态;
    根据所述期望运动信息和所述实际运动信息,确定所述机器人的质心位移量和处于所述踏板上的至少一条腿中每条腿的足端高度;
    根据所述机器人的质心位移量和处于所述踏板上的至少一条腿中每条腿的足端高度,控制所述机器人的每条腿进行相应的运动,以向所述平衡车输入速度信息和方向信息。
  6. 根据权利要求5所述的机器人的控制方法,其特征在于,所述期望运动信息包括期望机身倾角和期望角速度;和/或,
    所述实际运动信息包括实际机身倾角和实际角速度。
  7. 根据权利要求6所述的机器人的控制方法,其特征在于,所述获取期望运动信息,包括:
    获取期望加速度,并根据所述期望加速度确定所述期望机身倾角。
  8. 根据权利要求5所述的机器人的控制方法,其特征在于,所述获取期望运动信息,包括:
    向所述机器人的导航系统获取所述期望运动信息;和/或,
    接收所述机器人的遥控器发送的运动指令,并根据所述运动指令确定所述期望运动信息。
  9. 根据权利要求5所述的机器人的控制方法,其特征在于,还包括:
    根据质心位移偏置量对所述质心位移量进行校正;和/或,
    根据所述方向舵的误差角度对处于所述踏板上的至少一条腿中每条腿的足端高度进行校正。
  10. 根据权利要求9所述的机器人的控制方法,其特征在于,还包括:
    在所述机器人处于所述平衡车上,且所述平衡车处于静止状态的情况 下,获取所述机器人的质心偏移量作为所述质心位移偏置量,并获取处于所述踏板上的至少一条腿中每条腿的足端高度,以及根据所述至少一条腿中每条腿的足端高度确定所述方向舵的误差角度。
  11. 根据权利要求5或9所述的机器人的控制方法,其特征在于,所述根据所述机器人的质心位移和处于所述踏板上的至少一条腿中每条腿的足端高度,控制所述机器人的每条腿进行相应的运动,包括:
    根据所述机器人的质心位移量和处于所述踏板上的至少一条腿中每条腿的足端高度,确定所述机器人的每条腿的每个关节的角度值;
    控制所述机器人的每条腿的每个关节运动至对应的角度值。
  12. 一种机器人的控制装置,其特征在于,所述机器人处于平衡车上,所述机器人的至少一条腿处于所述平衡车的方向舵的踏板或非方向舵的转向压力传感器踏板上;所述装置包括:
    获取模块,用于获取期望运动信息和当前的实际运动信息,其中,所述期望运动信息和所述实际运动信息均用于表征机器人的运动状态;
    确定模块,用于根据所述期望运动信息和所述实际运动信息,确定所述机器人的质心位移量和处于所述踏板上的至少一条腿中每条腿的足端高度;
    控制模块,用于根据所述机器人的质心位移量和处于所述踏板上的至少一条腿中每条腿的足端高度,控制所述机器人的每条腿进行相应的运动,以向所述平衡车输入速度信息和方向信息。
  13. 根据权利要求12所述的机器人的控制装置,其特征在于,所述期望运动信息包括期望机身倾角和期望角速度;和/或,
    所述实际运动信息包括实际机身倾角和实际角速度。
  14. 根据权利要求13所述的机器人的控制装置,其特征在于,所述获取模块用于获取期望运动信息时,具体用于:
    获取期望加速度,并根据所述期望加速度确定所述期望机身倾角。
  15. 根据权利要求12所述的机器人的控制装置,其特征在于,所述获取模块用于获取期望运动信息时,具体用于:
    向所述机器人的导航系统获取所述期望运动信息;和/或,
    接收所述机器人的遥控器发送的运动指令,并根据所述运动指令确定所述期望运动信息。
  16. 根据权利要求12所述的机器人的控制装置,其特征在于,还包括校正模块,用于:
    根据质心位移偏置量对所述质心位移量进行校正;和/或,
    根据所述方向舵的误差角度对处于所述踏板上的至少一条腿中每条腿的足端高度进行校正。
  17. 根据权利要求16所述的机器人的控制装置,其特征在于,还包括标定模块,用于:
    在所述机器人处于所述平衡车上,且所述平衡车处于静止状态的情况下,获取所述机器人的质心偏移量作为所述质心位移偏置量,并获取处于所述踏板上的至少一条腿中每条腿的足端高度,以及根据所述至少一条腿中每条腿的足端高度确定所述方向舵的误差角度。
  18. 根据权利要求12或16所述的机器人的控制装置,其特征在于,所述控制模块具体用于:
    根据所述机器人的质心位移和处于所述踏板上的至少一条腿中每条腿的足端高度,确定所述机器人的每条腿的每个关节的角度值;
    控制所述机器人的每条腿的每个关节运动至对应的角度值。
  19. 一种电子设备,其特征在于,所述电子设备包括存储器、处理器,所述存储器用于存储可在处理器上运行的计算机指令,所述处理器用于在执行所述计算机指令时基于权利要求5至11中任一项所述的机器人的控制方法。
  20. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现权利要求5至11中任一项所述的方法。
PCT/CN2022/096046 2022-05-30 2022-05-30 平衡车、机器人的控制方法、装置、电子设备和存储介质 WO2023230777A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/096046 WO2023230777A1 (zh) 2022-05-30 2022-05-30 平衡车、机器人的控制方法、装置、电子设备和存储介质
CN202280004269.XA CN117480091A (zh) 2022-05-30 2022-05-30 平衡车、机器人的控制方法、装置、电子设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/096046 WO2023230777A1 (zh) 2022-05-30 2022-05-30 平衡车、机器人的控制方法、装置、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023230777A1 true WO2023230777A1 (zh) 2023-12-07

Family

ID=89026496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096046 WO2023230777A1 (zh) 2022-05-30 2022-05-30 平衡车、机器人的控制方法、装置、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN117480091A (zh)
WO (1) WO2023230777A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1872614A (zh) * 2006-06-30 2006-12-06 宁波Gqy视讯股份有限公司 立坐两用式自平衡两轮车
JP2011063120A (ja) * 2009-09-17 2011-03-31 Toyota Motor Corp 倒立型移動体、その制御方法及び制御プログラム
CN202765191U (zh) * 2012-09-11 2013-03-06 杭州亿脑智能科技有限公司 智能平衡休闲车
CN103676943A (zh) * 2013-09-12 2014-03-26 上海交通大学 座椅型重心手控转向脚踏式两轮自平衡智能车
CN106826755A (zh) * 2017-04-20 2017-06-13 歌尔科技有限公司 一种小型机器人用平衡车
CN208181252U (zh) * 2018-04-17 2018-12-04 温州盛淼工业设计有限公司 一种小型机器人用平衡车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1872614A (zh) * 2006-06-30 2006-12-06 宁波Gqy视讯股份有限公司 立坐两用式自平衡两轮车
JP2011063120A (ja) * 2009-09-17 2011-03-31 Toyota Motor Corp 倒立型移動体、その制御方法及び制御プログラム
CN202765191U (zh) * 2012-09-11 2013-03-06 杭州亿脑智能科技有限公司 智能平衡休闲车
CN103676943A (zh) * 2013-09-12 2014-03-26 上海交通大学 座椅型重心手控转向脚踏式两轮自平衡智能车
CN106826755A (zh) * 2017-04-20 2017-06-13 歌尔科技有限公司 一种小型机器人用平衡车
CN208181252U (zh) * 2018-04-17 2018-12-04 温州盛淼工业设计有限公司 一种小型机器人用平衡车

Also Published As

Publication number Publication date
CN117480091A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
US10605250B2 (en) Fan and method and device for controlling the fan
US7101045B2 (en) Automatic pan and tilt compensation system for a camera support structure
US11156905B2 (en) Control method for gimbal, controller, and gimbal
CN104967785A (zh) 控制光学防抖的方法及装置
US9457861B2 (en) Inverted pendulum type vehicle
WO2018191963A1 (zh) 遥控器、云台及云台控制方法、装置、系统
CN109922253B (zh) 镜头防抖方法及装置、移动设备
US20210180743A1 (en) Gimbal control method, gimbal control device, gimbal system, and unmanned aerial vehicle
WO2020062281A1 (zh) 云台的控制方法、云台、可移动平台及可读存储介质
WO2018191969A1 (zh) 云台的控制方法及装置
WO2020248086A1 (zh) 云台系统的控制方法及云台系统
WO2019148446A1 (zh) 可更换镜头的云台控制方法及云台
CN108393882B (zh) 机器人姿态控制方法及机器人
WO2023230777A1 (zh) 平衡车、机器人的控制方法、装置、电子设备和存储介质
WO2019227410A1 (zh) 姿态转换方法、姿态显示方法及云台系统
WO2022151473A1 (zh) 拍摄控制方法、拍摄控制装置及云台组件
CN112362043B (zh) 导航方法、装置及电子设备
WO2020000423A1 (zh) 云台的控制方法、云台、飞行器和计算机可读存储介质
WO2020062163A1 (zh) 云台的控制方法及手持云台、手持设备
WO2022109860A1 (zh) 跟踪目标对象的方法和云台
CN114764241A (zh) 运动状态的控制方法、装置、设备及可读存储介质
CN115480560A (zh) 运动状态的控制方法、装置、轮腿式机器人及存储介质
JP3918053B2 (ja) 小型携帯端末
WO2021146908A1 (zh) 云台及其控制方法
JPH10117496A (ja) 自動追従装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944119

Country of ref document: EP

Kind code of ref document: A1