WO2023229049A1 - 弾性波装置及びフィルタ装置 - Google Patents

弾性波装置及びフィルタ装置 Download PDF

Info

Publication number
WO2023229049A1
WO2023229049A1 PCT/JP2023/019823 JP2023019823W WO2023229049A1 WO 2023229049 A1 WO2023229049 A1 WO 2023229049A1 JP 2023019823 W JP2023019823 W JP 2023019823W WO 2023229049 A1 WO2023229049 A1 WO 2023229049A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
piezoelectric layer
electrode finger
dielectric film
arm resonator
Prior art date
Application number
PCT/JP2023/019823
Other languages
English (en)
French (fr)
Inventor
和則 井上
勝己 鈴木
年麿 米田
明洋 井山
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023229049A1 publication Critical patent/WO2023229049A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present disclosure relates to an elastic wave device and a filter device.
  • Patent Document 1 describes an elastic wave device.
  • a space may be provided.
  • the piezoelectric layer is deformed by the heat caused by reflow etc. when mounting the acoustic wave device on the board, and a phenomenon (sticking) occurs where a part of the piezoelectric layer 2 is recessed and comes into contact with the bottom of the space, the piezoelectric layer There was a possibility that the deformation would be concentrated in other parts, causing excessive expansion and cracks in the piezoelectric layer.
  • the present disclosure is intended to solve the above-mentioned problems, and aims to suppress the occurrence of cracks in the piezoelectric layer.
  • An elastic wave device includes a support member including a support substrate having a thickness in a first direction, a piezoelectric layer provided in the first direction of the support member, and a main surface of the piezoelectric layer, and a first bus bar facing each other, a second bus bar, and at least one first electrode finger whose base end is connected to the first bus bar and extends in a second direction perpendicular to the first direction. , at least one second electrode finger facing either of the at least one first electrode finger in a third direction orthogonal to the first direction and the second direction and extending in the second direction.
  • the support member includes an IDT electrode, a wiring electrode provided on at least the first bus bar and the second bus bar, and a first dielectric film provided on the wiring electrode, and the support member is provided on the piezoelectric layer side.
  • the IDT electrode has a space, and the IDT electrode at least partially overlaps the space when viewed from the first direction, and the first dielectric film on the wiring electrode has a thickness of 100 nm or more. .
  • a filter device includes an input terminal, an output terminal, a series arm connecting the input terminal and the output terminal, a parallel arm connecting a node on the series arm and ground, and a parallel arm provided in the series arm.
  • at least one series arm resonator provided in the parallel arm, and at least one parallel arm resonator provided in the parallel arm, the at least one series arm resonator and the at least one parallel arm resonator having the elastic It is a wave device.
  • FIG. 1A is a perspective view showing the elastic wave device of the first embodiment.
  • FIG. 1B is a plan view showing the electrode structure of the first embodiment.
  • FIG. 2 is a cross-sectional view of a portion taken along line II-II in FIG. 1A.
  • FIG. 3A is a schematic cross-sectional view for explaining Lamb waves propagating through a piezoelectric layer in a comparative example.
  • FIG. 3B is a schematic cross-sectional view for explaining a thickness shear primary mode bulk wave propagating through the piezoelectric layer of the first embodiment.
  • FIG. 4 is a schematic cross-sectional view for explaining the amplitude direction of the bulk wave of the thickness shear primary mode propagating through the piezoelectric layer of the first embodiment.
  • FIG. 1A is a perspective view showing the elastic wave device of the first embodiment.
  • FIG. 1B is a plan view showing the electrode structure of the first embodiment.
  • FIG. 2 is a cross-sectional view of a portion taken along line II-
  • FIG. 5 is an explanatory diagram showing an example of resonance characteristics of the elastic wave device of the first embodiment.
  • FIG. 6 shows that in the acoustic wave device of the first embodiment, when p is the distance between the centers of adjacent electrodes or the average distance between the centers, and d is the average thickness of the piezoelectric layer, d/2p and the resonator.
  • FIG. 7 is a schematic plan view showing an example in which a pair of electrodes are provided in the acoustic wave device of the first embodiment.
  • FIG. 8 is a reference diagram showing an example of the resonance characteristics of the elastic wave device of the first embodiment.
  • FIG. 9 shows the fractional band of the elastic wave device of the first embodiment when a large number of elastic wave resonators are configured, and the amount of phase rotation of spurious impedance normalized by 180 degrees as the magnitude of spurious.
  • FIG. 10 is an explanatory diagram showing the relationship between d/2p, metallization ratio MR, and fractional band.
  • FIG. 11 is an explanatory diagram showing a map of fractional bands with respect to Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is brought as close to 0 as possible.
  • FIG. 12 is a partially cutaway perspective view for explaining the elastic wave device according to the embodiment of the present disclosure.
  • FIG. 13 is a schematic plan view showing an example of the elastic wave device according to the first embodiment.
  • FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG. 13.
  • FIG. 15 is a diagram illustrating the displacement of the piezoelectric layer in the first example.
  • FIG. 16 is a diagram illustrating the displacement of the piezoelectric layer in the second example.
  • FIG. 17 is a circuit diagram of a filter device according to a second embodiment.
  • FIG. 1A is a perspective view showing the elastic wave device of the first embodiment.
  • FIG. 1B is a plan view showing the electrode structure of the first embodiment.
  • the elastic wave device 1 of the first embodiment has a piezoelectric layer 2 made of LiNbO 3 .
  • the piezoelectric layer 2 may be made of LiTaO 3 .
  • the cut angle of LiNbO 3 and LiTaO 3 is a Z cut in the first embodiment.
  • the cut angle of LiNbO 3 or LiTaO 3 may be a rotational Y cut or an X cut.
  • the propagation directions of Y propagation and X propagation are ⁇ 30°.
  • the thickness of the piezoelectric layer 2 is not particularly limited, but is preferably 50 nm or more and 1000 nm or less in order to effectively excite the thickness shear primary mode.
  • the piezoelectric layer 2 has a first main surface 2a and a second main surface 2b facing each other in the Z direction. Electrode fingers 3 and electrode fingers 4 are provided on the first main surface 2a.
  • the electrode finger 3 is an example of a "first electrode finger”
  • the electrode finger 4 is an example of a "second electrode finger”.
  • the plurality of electrode fingers 3 are a plurality of "first electrode fingers” connected to the first bus bar 5.
  • the plurality of electrode fingers 4 are a plurality of "second electrode fingers” connected to the second bus bar 6.
  • the plurality of electrode fingers 3 and the plurality of electrode fingers 4 are inserted into each other.
  • an IDT (Interdigital Transducer) electrode including the electrode finger 3, the electrode finger 4, the first bus bar 5, and the second bus bar 6 is configured.
  • the electrode fingers 3 and 4 have a rectangular shape and have a length direction. In the direction orthogonal to this length direction, the electrode fingers 3 and the electrode fingers 4 adjacent to the electrode fingers 3 are opposed to each other.
  • the length direction of the electrode fingers 3 and 4 and the direction perpendicular to the length direction of the electrode fingers 3 and 4 are directions intersecting the thickness direction of the piezoelectric layer 2. Therefore, it can be said that the electrode fingers 3 and the electrode fingers 4 adjacent to the electrode fingers 3 face each other in the direction intersecting the thickness direction of the piezoelectric layer 2.
  • the thickness direction of the piezoelectric layer 2 is the Z direction (or the first direction)
  • the length direction of the electrode fingers 3 and 4 is the Y direction (or the second direction)
  • the electrode fingers 3 and 4 are referred to as the Y direction (or the second direction).
  • the direction orthogonal to each other is referred to as the X direction (or the third direction).
  • the length direction of the electrode fingers 3 and 4 may be replaced with the direction perpendicular to the length directions of the electrode fingers 3 and 4 shown in FIGS. 1A and 1B. That is, in FIGS. 1A and 1B, the electrode fingers 3 and 4 may be extended in the direction in which the first bus bar 5 and the second bus bar 6 extend. In that case, the first bus bar 5 and the second bus bar 6 will extend in the direction in which the electrode fingers 3 and 4 extend in FIGS. 1A and 1B. Then, a pair of adjacent electrode fingers 3 connected to one potential and electrode fingers 4 connected to the other potential are arranged in a direction perpendicular to the length direction of the electrode fingers 3 and 4. Multiple pairs are provided.
  • the electrode fingers 3 and 4 when the electrode fingers 3 and 4 are adjacent to each other, it does not mean that the electrode fingers 3 and 4 are arranged so as to be in direct contact with each other, but when the electrode fingers 3 and 4 are arranged with a gap between them. This refers to the case where the In addition, when the electrode fingers 3 and 4 are adjacent to each other, there are other electrodes between the electrode fingers 3 and 4 that are connected to the hot electrode or the ground electrode, including other electrode fingers 3 and 4. is not placed. This logarithm does not need to be an integer pair, and may be 1.5 pairs or 2.5 pairs.
  • the distance between the centers of the electrode fingers 3 and 4, that is, the pitch, is preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less.
  • the center-to-center distance between the electrode fingers 3 and 4 refers to the center of the width dimension of the electrode fingers 3 in a direction perpendicular to the length direction of the electrode fingers 3, and the center of the width dimension of the electrode fingers 3 in a direction perpendicular to the length direction of the electrode fingers 4. This is the distance between the center of the width dimension of the electrode finger 4 in the direction shown in FIG.
  • the electrode fingers 3 and 4 when there are multiple electrode fingers 3 and at least one of the electrode fingers 4 (when the electrode fingers 3 and 4 are considered as one pair of electrode sets, there are 1.5 or more pairs of electrode sets), the electrode fingers 3.
  • the distance between the centers of the electrode fingers 4 refers to the average value of the distance between the centers of adjacent electrode fingers 3 and electrode fingers 4 among 1.5 or more pairs of electrode fingers 3 and electrode fingers 4.
  • the width of the electrode fingers 3 and 4 that is, the dimension in the opposing direction of the electrode fingers 3 and 4, is preferably in the range of 150 nm or more and 1000 nm or less.
  • the center-to-center distance between the electrode fingers 3 and 4 is the distance between the center of the dimension (width dimension) of the electrode fingers 3 in the direction perpendicular to the length direction of the electrode fingers 3 and the length of the electrode fingers 4. This is the distance between the center of the dimension (width dimension) of the electrode finger 4 in the direction orthogonal to this direction.
  • a direction perpendicular to the length direction of the electrode fingers 3 and 4 is a direction perpendicular to the polarization direction of the piezoelectric layer 2. This is not the case when a piezoelectric material having a different cut angle is used as the piezoelectric layer 2.
  • “orthogonal” is not limited to strictly orthogonal, but approximately orthogonal (for example, the angle between the direction orthogonal to the length direction of the electrode fingers 3 and 4 and the polarization direction is 90° ⁇ 10°).
  • a support substrate 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an intermediate layer 7 interposed therebetween.
  • the intermediate layer 7 and the support substrate 8 have a frame-like shape, and have openings 7a and 8a, as shown in FIG. As a result, a space (air gap) 9 is formed.
  • the space 9 is provided so as not to hinder the vibration of the excitation region C of the piezoelectric layer 2. Therefore, the support substrate 8 is laminated on the second main surface 2b with the intermediate layer 7 interposed therebetween at a position that does not overlap with the portion where at least one pair of electrode fingers 3 and 4 are provided. Note that the intermediate layer 7 may not be provided. Therefore, the support substrate 8 can be laminated directly or indirectly on the second main surface 2b of the piezoelectric layer 2.
  • the intermediate layer 7 is made of silicon oxide.
  • the intermediate layer 7 can be formed of an appropriate insulating material such as silicon nitride, alumina, etc. in addition to silicon oxide.
  • the support substrate 8 is made of Si.
  • the plane orientation of the Si surface on the piezoelectric layer 2 side may be (100), (110), or (111).
  • Si has a high resistivity of 4 k ⁇ or more.
  • the support substrate 8 can also be constructed using an appropriate insulating material or semiconductor material. Examples of materials for the support substrate 8 include aluminum oxide, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, and star. Various ceramics such as tite and forsterite, dielectrics such as diamond and glass, semiconductors such as gallium nitride, etc. can be used.
  • the plurality of electrode fingers 3, electrode fingers 4, first bus bar 5, and second bus bar 6 are made of an appropriate metal or alloy such as Al or AlCu alloy.
  • the electrode finger 3, the electrode finger 4, the first bus bar 5, and the second bus bar 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesive layer other than the Ti film may be used.
  • an AC voltage is applied between the plurality of electrode fingers 3 and the plurality of electrode fingers 4. More specifically, an AC voltage is applied between the first bus bar 5 and the second bus bar 6. Thereby, it is possible to obtain resonance characteristics using the bulk wave of the thickness shear primary mode excited in the piezoelectric layer 2.
  • d/p is set to be 0.5 or less. Therefore, the bulk wave of the thickness shear primary mode is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
  • the electrode fingers 3 and 4 are When there are 1.5 or more pairs of electrode fingers 4, the distance between the centers of adjacent electrode fingers 3 and 4 is the average distance between the centers of each adjacent electrode finger 3 and electrode finger 4.
  • the elastic wave device 1 of the first embodiment has the above configuration, even if the logarithms of the electrode fingers 3 and 4 are made smaller in an attempt to achieve miniaturization, the Q value is unlikely to decrease. This is because the resonator does not require reflectors on both sides and has little propagation loss. Further, the reason why the reflector is not required is because the bulk wave of the thickness shear first mode is used.
  • FIG. 3A is a schematic cross-sectional view for explaining Lamb waves propagating in a piezoelectric layer of a comparative example.
  • FIG. 3B is a schematic cross-sectional view for explaining a thickness shear primary mode bulk wave propagating through the piezoelectric layer of the first embodiment.
  • FIG. 4 is a schematic cross-sectional view for explaining the amplitude direction of the bulk wave of the thickness shear primary mode propagating through the piezoelectric layer of the first embodiment.
  • FIG. 3A shows an elastic wave device as described in Patent Document 1, in which Lamb waves propagate through a piezoelectric layer.
  • waves propagate in the piezoelectric layer 201 as indicated by arrows.
  • the piezoelectric layer 201 has a first main surface 201a and a second main surface 201b, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction.
  • the X direction is the direction in which the electrode fingers 3 and 4 of the IDT electrode are lined up.
  • the Lamb wave the wave propagates in the X direction as shown.
  • the piezoelectric layer 201 vibrates as a whole, but since the wave propagates in the X direction, reflectors are placed on both sides to obtain resonance characteristics. Therefore, wave propagation loss occurs, and when miniaturization is attempted, that is, when the number of logarithms of electrode fingers 3 and 4 is decreased, the Q value decreases.
  • the vibration displacement is in the thickness sliding direction, so the waves are generated between the first principal surface 2a and the second principal surface of the piezoelectric layer 2. It propagates almost in the direction connecting the surface 2b, that is, in the Z direction, and resonates. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Since resonance characteristics are obtained by the propagation of waves in the Z direction, a reflector is not required. Therefore, no propagation loss occurs when propagating to the reflector. Therefore, even if the number of pairs of electrodes consisting of the electrode fingers 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
  • the amplitude direction of the bulk wave of the thickness shear primary mode is the first region 251 included in the excitation region C (see FIG. 1B) of the piezoelectric layer 2 and the first region 251 included in the excitation region C.
  • the second area 252 is the opposite.
  • FIG. 4 schematically shows a bulk wave when a voltage is applied between the electrode fingers 3 and 4 such that the electrode fingers 4 have a higher potential than the electrode fingers 3.
  • the first region 251 is a region of the excitation region C between a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2, and the first main surface 2a.
  • the second region 252 is a region of the excitation region C between the virtual plane VP1 and the second principal surface 2b.
  • the elastic wave device 1 at least one pair of electrodes consisting of an electrode finger 3 and an electrode finger 4 are disposed, but since the wave is not propagated in the X direction, There does not necessarily have to be a plurality of pairs of electrodes. That is, it is only necessary that at least one pair of electrodes be provided.
  • the electrode finger 3 is an electrode connected to a hot potential
  • the electrode finger 4 is an electrode connected to a ground potential.
  • the electrode finger 3 may be connected to the ground potential
  • the electrode finger 4 may be connected to the hot potential.
  • at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential, as described above, and no floating electrode is provided.
  • FIG. 5 is an explanatory diagram showing an example of resonance characteristics of the elastic wave device of the first embodiment.
  • the design parameters of the elastic wave device 1 that obtained the resonance characteristics shown in FIG. 5 are as follows.
  • Piezoelectric layer 2 LiNbO 3 with Euler angles (0°, 0°, 90°) Thickness of piezoelectric layer 2: 400 nm
  • Length of excitation region C (see Figure 1B): 40 ⁇ m Number of pairs of electrodes consisting of electrode fingers 3 and 4: 21 pairs Center-to-center distance (pitch) between electrode fingers 3 and 4: 3 ⁇ m Width of electrode fingers 3 and 4: 500 nm d/p: 0.133
  • Support substrate 8 Si
  • the excitation region C (see FIG. 1B) is a region where the electrode fingers 3 and 4 overlap when viewed in the X direction orthogonal to the length direction of the electrode fingers 3 and 4. .
  • the length of the excitation region C is a dimension along the length direction of the electrode fingers 3 and 4 of the excitation region C.
  • the excitation region C is an example of a "crossing region.”
  • the center-to-center distances of the electrode pairs consisting of the electrode fingers 3 and 4 were all made equal. That is, the electrode fingers 3 and the electrode fingers 4 were arranged at equal pitches.
  • d/p is 0.5 or less, more preferably 0. .24 or less. This will be explained with reference to FIG.
  • FIG. 6 shows d/2p and the resonator in the acoustic wave device of the first embodiment, where p is the distance between the centers of adjacent electrodes or the average distance between the centers, and d is the average thickness of the piezoelectric layer 2.
  • At least one pair of electrodes may be one pair, and in the case of one pair of electrodes, the above p is the distance between the centers of adjacent electrode fingers 3 and 4. Furthermore, in the case of 1.5 or more pairs of electrodes, the average distance between the centers of adjacent electrode fingers 3 and 4 may be set to p.
  • the thickness d of the piezoelectric layer 2 if the piezoelectric layer 2 has thickness variations, a value obtained by averaging the thicknesses may be adopted.
  • FIG. 7 is a schematic plan view showing an example in which a pair of electrodes are provided in the elastic wave device of the first embodiment.
  • a pair of electrodes including electrode fingers 3 and electrode fingers 4 are provided on the first main surface 2a of the piezoelectric layer 2.
  • K in FIG. 7 is the intersection width.
  • the number of pairs of electrodes may be one. Even in this case, if the above-mentioned d/p is 0.5 or less, the bulk wave of the thickness shear primary mode can be excited effectively.
  • excitation is an area where any of the adjacent electrode fingers 3 and electrode fingers 4 overlap when viewed in the direction in which they are facing each other. It is desirable that the metallization ratio MR of the adjacent electrode fingers 3 and 4 with respect to the region C satisfies MR ⁇ 1.75(d/p)+0.075. In that case, spurious can be effectively reduced. This will be explained with reference to FIGS. 8 and 9.
  • FIG. 8 is a reference diagram showing an example of the resonance characteristics of the elastic wave device of the first embodiment.
  • a spurious signal indicated by arrow B appears between the resonant frequency and the anti-resonant frequency.
  • d/p 0.08 and the Euler angles of LiNbO 3 (0°, 0°, 90°).
  • the metallization ratio MR was set to 0.35.
  • the metallization ratio MR will be explained with reference to FIG. 1B.
  • This excitation region C refers to the electrode finger that overlaps the electrode finger 4 when the electrode finger 3 and the electrode finger 4 are viewed in a direction perpendicular to the length direction of the electrode finger 3 and the electrode finger 4, that is, in the opposite direction. 3, a region of the electrode finger 4 overlapping with the electrode finger 3, and a region between the electrode finger 3 and the electrode finger 4 where the electrode finger 3 and the electrode finger 4 overlap.
  • the area of the electrode fingers 3 and 4 in the excitation region C with respect to the area of the excitation region C becomes the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallized portion to the area of the excitation region C.
  • the ratio of the metallized portion included in the entire excitation region C to the total area of the excitation region C may be taken as MR.
  • FIG. 9 shows the fractional band of the elastic wave device of the first embodiment when a large number of elastic wave resonators are configured, and the amount of phase rotation of spurious impedance normalized by 180 degrees as the magnitude of spurious. It is an explanatory diagram showing the relationship. Note that the specific band was adjusted by variously changing the thickness of the piezoelectric layer 2 and the dimensions of the electrode fingers 3 and 4. Further, although FIG. 9 shows the results when using the Z-cut piezoelectric layer 2 made of LiNbO 3 , the same tendency occurs even when piezoelectric layers 2 having other cut angles are used.
  • the spurious is as large as 1.0.
  • the fractional band exceeds 0.17, that is, exceeds 17%, a large spurious with a spurious level of 1 or more will affect the pass band even if the parameters that make up the fractional band are changed. Appear within. That is, as in the resonance characteristics shown in FIG. 8, a large spurious signal indicated by arrow B appears within the band. Therefore, it is preferable that the fractional band is 17% or less. In this case, by adjusting the thickness of the piezoelectric layer 2, the dimensions of the electrode fingers 3, 4, etc., the spurious can be reduced.
  • FIG. 10 is an explanatory diagram showing the relationship between d/2p, metallization ratio MR, and fractional band.
  • various elastic wave devices 1 having different d/2p and MR were configured, and the fractional bands were measured.
  • the hatched area on the right side of the broken line D in FIG. 10 is a region where the fractional band is 17% or less.
  • the fractional band can be reliably set to 17% or less.
  • FIG. 11 is an explanatory diagram showing a map of fractional bands with respect to Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is brought as close to 0 as possible.
  • the hatched areas in FIG. 11 are regions where a fractional band of at least 5% or more can be obtained. When the range of the region is approximated, it becomes the range expressed by the following equations (1), (2), and (3).
  • the fractional band can be made sufficiently wide, which is preferable.
  • FIG. 12 is a partially cutaway perspective view for explaining the elastic wave device according to the embodiment of the present disclosure.
  • the outer periphery of the space 9 is indicated by a broken line.
  • the elastic wave device of the present disclosure may utilize plate waves.
  • the elastic wave device 301 includes reflectors 310 and 311.
  • the reflectors 310 and 311 are provided on both sides of the electrode fingers 3 and 4 of the piezoelectric layer 2 in the elastic wave propagation direction.
  • a Lamb wave as a plate wave is excited.
  • the reflectors 310 and 311 are provided on both sides, resonance characteristics due to Lamb waves as plate waves can be obtained.
  • the elastic wave devices 1 and 101 utilize bulk waves in the primary thickness shear mode.
  • the first electrode finger 3 and the second electrode finger 4 are adjacent electrodes, and the thickness of the piezoelectric layer 2 is d, and the center of the first electrode finger 3 and the second electrode finger 4 is When the distance between the two is p, d/p is set to be 0.5 or less. Thereby, even if the elastic wave device is downsized, the Q value can be increased.
  • the piezoelectric layer 2 is formed of lithium niobate or lithium tantalate.
  • the first main surface 2a or the second main surface 2b of the piezoelectric layer 2 has a first electrode finger 3 and a second electrode finger 4 that face each other in a direction intersecting the thickness direction of the piezoelectric layer 2. It is desirable to cover the fingers 3 and the second electrode fingers 4 with a protective film.
  • FIG. 13 is a schematic plan view showing an example of the elastic wave device according to the first embodiment.
  • FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG. 13.
  • the protective film 19 is omitted for explanation.
  • the acoustic wave device 1A according to the first embodiment includes a support member 80, a piezoelectric layer 2, a functional electrode 30, a wiring electrode 14, and a protective film 19.
  • the support member 80 has a support substrate 8.
  • the support member 80 includes the intermediate layer 7 and the support substrate 8.
  • the intermediate layer 7 is provided in the Z direction of the support substrate 8.
  • the intermediate layer 7 is an example of a "second dielectric layer.”
  • the support member 80 has a space portion 9 and a drawer portion 9a.
  • the space portion 9 and the drawer portion 9a are spaces that are open to the piezoelectric layer 2 side of the support member 80.
  • the space portion 9 and the pull-out portion 9a are located in the intermediate layer 7.
  • the space portion 9 and the lead-out portion 9a are located on the piezoelectric layer 2 side of the intermediate layer 7. That is, it can be said that the space portion 9 and the lead-out portion 9a are spaces between the piezoelectric layer 2 and the support substrate 8.
  • the space portion 9 is provided at a position overlapping at least a portion of the IDT electrode when viewed from above in the Z direction.
  • the drawer portions 9a are provided on both sides of the space 9 in the X direction and communicate with the space 9.
  • the size of the space 9 in the Z direction is 1000 nm or more and 3000 nm or less.
  • the size of the space 9 in the Z direction is defined as the surface of the support member 80 facing the piezoelectric layer 2 at the position overlapping the space 9 when viewed from the second main surface 2b of the piezoelectric layer 2 in the Z direction ( This refers to the maximum distance in the Z direction to the bottom surface of the space 9.
  • the piezoelectric layer 2 is provided in the Z direction of the support member 80.
  • the piezoelectric layer 2 is provided on the intermediate layer 7 side of the support member 80.
  • the surface of the piezoelectric layer 2 on the support member 80 side may be referred to as the second main surface 2b, and the surface opposite to the second main surface 2b in the Z direction may be referred to as the first main surface 2a. .
  • the piezoelectric layer 2 has a through hole 2H.
  • the through hole 2H is a hole that penetrates the piezoelectric layer 2 in the Z direction.
  • the through hole 2H is provided at a position overlapping with the lead-out portion 9a and not overlapping with the functional electrode 30 and the wiring electrode 14 when viewed in plan in the Z direction.
  • the through hole 2H communicates with the drawer portion 9a.
  • the functional electrode 30 is an IDT electrode having electrode fingers 3 and 4 and bus bars 5 and 6. In the example of FIG. 13, the functional electrode 30 is provided on the first main surface 2a of the piezoelectric layer 2.
  • the wiring electrode 14 is provided on the first main surface 2a side with respect to the piezoelectric layer 2.
  • the wiring electrode 14 is provided at a position overlapping at least the bus bars 5 and 6 when viewed from above in the Z direction.
  • the wiring electrode 14 is provided at a position overlapping part of the bus bars 5 and 6.
  • the wiring electrode 14 is provided at a position overlapping the end of the space 9 in the Y direction when viewed in plan in the Z direction.
  • the ends of the space 9 in the Y direction refer to both ends in the Y direction of the range overlapping with the space 9 when viewed in plan in the Z direction.
  • the wiring electrode 14 is a metal layer, and is made of an alloy of Al and Cu, for example.
  • the piezoelectric layer 2 at a position overlapping with the space 9 when viewed from above in the Z direction is supported by the wiring electrode 14, and displacement of the piezoelectric layer 2 at the position can be suppressed. 2 can be suppressed from cracking.
  • the protective film 19 is a film provided at least on the wiring electrode 14.
  • the protective film 19 is an example of a "first dielectric layer.”
  • the protective film 19 is provided on the first main surface 2a of the piezoelectric layer 2, the functional electrode 30, and the wiring electrode 14.
  • the protective film 19 is provided over the first main surface 2a of the piezoelectric layer 2 so as to cover the functional electrode 30 and the wiring electrode 14.
  • the protective film 19 is made of a dielectric material such as silicon oxide, for example.
  • the protective film 19 has a smaller coefficient of thermal expansion than the intermediate layer 7. That is, the intermediate layer 7 has a larger coefficient of thermal expansion than the protective film 19.
  • the coefficient of thermal expansion refers to the coefficient of linear expansion.
  • the protective film 19 and the intermediate layer 7 are made of materials with the same composition, for example, the intermediate layer 7 can be formed under conditions such that the film density is lower than that when the protective film 19 is formed.
  • the thermal expansion coefficient of layer 7 can be made larger than that of protective film 19.
  • the protective film 19 provided directly on the wiring electrode 14 will be referred to as the protective film 19a of the wiring electrode, and the protective film 19 provided directly on the bus bars 5 and 6 will be referred to as the protective film 19a of the bus bar.
  • the protective film 19b and the protective film 19 provided directly on the electrode fingers 3 and 4 will be described as the protective film 19c for the electrode fingers.
  • the thickness of the protective film 19a of the wiring electrode is 100 nm or more. By setting this range, the displacement of the piezoelectric layer 2 can be suppressed to less than 1000 nm, so when the piezoelectric layer 2 is deformed, the piezoelectric layer 2 is depressed and comes into contact with the bottom surface of the space 9, causing cracks in the piezoelectric layer 2. can be suppressed from occurring.
  • the thickness of the protective film 19b of the bus bar is equal to the thickness of the protective film 19a of the wiring electrode. Note that the thickness of the protective film 19b of the bus bar is not limited to this, and may be different from the thickness of the protective film 19a of the wiring electrode.
  • the thickness of the protective film 19c of the electrode finger may be different from the thickness of the protective film 19a of the wiring electrode as a result of adjusting the film thickness.
  • the structure of the protective film 19 is not limited to that described above.
  • the protective film 19 does not need to be provided all over the front surface of the first main surface 2a of the piezoelectric layer 2, and may be provided at least in part at the position where the wiring electrode 14 and the bus bars 5, 6 are stacked. do it. That is, the protective film 19b of the bus bar and the protective film 19c of the electrode finger are not essential components.
  • the elastic wave devices according to the first example and the second example are both elastic wave devices according to the first embodiment.
  • the protective film 19c of the electrode finger was not provided.
  • the protective film 19c of the electrode finger was manufactured with a film thickness of 20 nm.
  • acoustic wave devices were manufactured by changing the thickness of the protective film 19a of the wiring electrode, heated to 250° C., and the maximum displacement of the piezoelectric layer 2 in the Z direction was measured.
  • the maximum displacement of the piezoelectric layer 2 in the Z direction is the difference between the position in the Z direction of the piezoelectric layer 2 at a position overlapping the space 9 when viewed in the Z direction before heating (25° C.) after heating (250° C.) The value was measured as the value that maximized the absolute value of the difference in position in the Z direction.
  • FIG. 15 is a diagram illustrating the displacement of the piezoelectric layer in the first example.
  • FIG. 16 is a diagram illustrating the displacement of the piezoelectric layer in the second example. More specifically, FIGS. 15 and 16 are scatter diagrams in which the vertical axis is the maximum displacement of the piezoelectric layer 2 measured in the Z direction, and the horizontal axis is the thickness of the protective film 19a of the wiring electrode. In FIGS. 15 and 16, the displacement from the first main surface 2a toward the second main surface 2b is positive, and the displacement from the second main surface 2b toward the first main surface 2a is negative. . As shown in FIGS.
  • the absolute maximum displacement of the piezoelectric layer 2 in the Z direction is The value became less than 1000 nm.
  • the absolute value of the maximum displacement of the piezoelectric layer 2 in the Z direction was 1000 nm or more.
  • the piezoelectric While it is possible to suppress the layer 2 from coming into contact with the bottom surface of the space 9, if the thickness of the protective film 19a of the wiring electrode is less than 100 nm, there is a possibility that the piezoelectric layer 2 comes into contact with the bottom surface of the space 9.
  • the elastic wave device 1A includes the support member 80 including the support substrate 8 having a thickness in the first direction (Z direction), and the support member 80 provided in the first direction.
  • At least one first electrode finger 3 extending in a second direction orthogonal to each other, and facing at least one first electrode finger 3 in a third direction orthogonal to the first direction and the second direction, and facing in the second direction.
  • an IDT electrode including at least one second electrode finger 4 that extends to a wiring electrode 14 provided on at least the first bus bar 5 and the second bus bar 6;
  • the support member 80 has a space 9 on the piezoelectric layer 2 side, and the IDT electrode at least partially overlaps the space 9 when viewed from the first direction.
  • the thickness of the first dielectric film (protective film 19a of the wiring electrode 14) on the wiring electrode 14 is 100 nm or more.
  • the piezoelectric layer 2 at a position overlapping with the space 9 when viewed in plan in the Z direction is supported by the first dielectric film, so that displacement of the piezoelectric layer 2 at the position can be suppressed. Therefore, even if the piezoelectric layer 2 is deformed when heat is applied to the acoustic wave device 1A, it is possible to suppress the occurrence of sticking, which causes the deformation to concentrate on other parts of the piezoelectric layer 2 due to the sticking, causing excessive expansion. This can suppress the occurrence of cracks in the piezoelectric layer 2.
  • the size of the space 9 in the first direction is 1000 nm or more and 3000 nm or less.
  • the piezoelectric layer 2 is recessed and comes into contact with the bottom surface of the space 9, which can further suppress cracks from occurring in the piezoelectric layer 2. It is possible to suppress the occurrence of variations in thickness.
  • the first dielectric film is further provided on at least one first electrode finger 3 and at least one second electrode finger 4.
  • the frequency characteristics of the elastic wave device 1A can be improved.
  • a second dielectric film (intermediate layer 7) is further provided between the support substrate 8 and the piezoelectric layer 2, and the second dielectric film has a larger coefficient of thermal expansion than the first dielectric film.
  • the difference in thermal expansion coefficient between the support substrate 8 and the piezoelectric layer 2 is alleviated, and the bondability between the substrates can be improved.
  • the deformation of the piezoelectric layer 2 due to thermal expansion of the second dielectric film can be suppressed by the first dielectric film, so cracks do not occur in the piezoelectric layer 2. It can be suppressed.
  • d/p is 0.5 or less, where d is the thickness of the piezoelectric layer 2, and p is the center-to-center distance between adjacent first electrode fingers 3 and second electrode fingers 4. This makes it possible to effectively excite bulk waves in the first-order thickness shear mode.
  • d/p is 0.24 or less.
  • the piezoelectric layer 2 contains lithium niobate or lithium tantalate. Thereby, good resonance characteristics can be obtained.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of lithium niobate or lithium tantalate are within the range of formula (1), formula (2), or formula (3) below.
  • the fractional band can be reliably set to 17% or less.
  • it is configured to be able to utilize thickness-shear mode bulk waves. This makes it possible to provide an elastic wave device that increases the coupling coefficient and provides good resonance characteristics.
  • the excitation region is a region where adjacent first electrode fingers 3 and second electrode fingers 4 overlap when viewed in the opposing direction, a plurality of first electrode fingers 3 with respect to the excitation region And when the metallization ratio of the second electrode finger 4 is MR, MR ⁇ 1.75(d/p)+0.075 is satisfied. Thereby, spurious can be effectively reduced.
  • a filter device 1B according to the second embodiment is a filter including a plurality of resonators.
  • the filter device 1B includes an elastic wave device 1A according to the first embodiment.
  • a filter device according to a second embodiment will be described, but a description of the same parts as in the first embodiment will be omitted.
  • FIG. 17 is a circuit diagram of a filter device according to the second embodiment.
  • the filter device 1B includes series arm resonators SR1 to SR4 inserted in series in a signal path (series arm) from the input terminal IN to the output terminal OUT, and nodes on the first path.
  • It is a so-called ladder type filter including parallel arm resonators PR1 to PR4 inserted in a signal path (parallel arm) between the filter and the ground.
  • One terminal of the series arm resonators SR1 to SR4 is electrically connected to the input terminal IN, and the other terminal is electrically connected to the output terminal OUT.
  • One terminal of the parallel arm resonators P1 to PR4 is electrically connected to the input terminal IN, and the other terminal is electrically connected to the ground.
  • the series arm resonators SR1 to SR4 and the parallel arm resonators PR1 to PR4 are resonators having the functional electrode 30 (IDT electrode) described in the first embodiment. That is, the series arm resonators SR1 to SR4 and the parallel arm resonators PR1 to PR4 have a structure corresponding to the elastic wave device 1A according to the first embodiment.
  • the thickness of the protective film 19a on the wiring electrode 14 is 100 nm or more, and the size of the space 9 in the Z direction is is 1000 nm or more and 3000 nm or less.
  • the protective film 19a of the wiring electrode has a different thickness from the protective film 19c of the electrode finger.
  • the protective film 19a of the wiring electrode has the same thickness as the protective film 19c of the electrode finger.
  • the filter device according to the second embodiment is not limited to that described above.
  • the protective film 19a of the wiring electrode is thicker than the protective film 19c of the electrode finger
  • the protective film 19a of the wiring electrode is thicker than the protective film 19c of the electrode finger. It may be thicker than the film 19c.
  • the protective film 19a of the wiring electrode may have the same thickness as the protective film 19c of the electrode finger.
  • the filter device 1B has an input terminal IN, an output terminal OUT, a series arm connecting the input terminal IN and the output terminal OUT, and a node on the series arm connecting the ground. It includes a parallel arm, at least one series arm resonator SR1 to SR4 provided in the series arm, and at least one parallel arm resonator PR1 to PR4 provided in the parallel arm. At least one series arm resonator SR1 to SR4 and at least one parallel arm resonator PR1 to PR4 are elastic wave devices according to the first embodiment.
  • the piezoelectric layer 2 at a position overlapping with the space 9 when viewed in plan in the Z direction is supported by the first dielectric film, so that displacement of the piezoelectric layer 2 at the position can be suppressed. Therefore, even if the piezoelectric layer 2 is deformed when heat is applied to the filter device 1B, it is possible to suppress the occurrence of sticking, which prevents the deformation from concentrating on other parts of the piezoelectric layer 2 due to sticking and causing excessive expansion. can be suppressed, and generation of cracks in the piezoelectric layer 2 can be suppressed.
  • the first dielectric film is further applied to at least one first electrode finger and at least one second electrode finger of at least one series arm resonator SR1 to SR4 and at least one parallel arm resonator PR1 to PR4. provided.
  • the first dielectric film provided on the wiring electrode of at least one series arm resonator SR1 to SR4 includes at least one first electrode finger and at least one second electrode finger of at least one series arm resonator SR1 to SR4. It is thicker than the first dielectric film provided on the electrode finger.
  • the first dielectric film provided on the wiring electrodes of at least one parallel arm resonator PR1 to PR4 includes at least one first electrode finger and at least one second electrode finger of at least one parallel arm resonator PR1 to PR4. It is thicker than the first dielectric film provided on the electrode finger. Even in this case, the occurrence of cracks in the piezoelectric layer 2 can be suppressed.
  • the first dielectric film is further applied to at least one first electrode finger and at least one second electrode finger of at least one series arm resonator SR1 to SR4 and at least one parallel arm resonator PR1 to PR4. provided.
  • the first dielectric film provided on the wiring electrode of at least one series arm resonator SR1 to SR4 includes at least one first electrode finger and at least one second electrode finger of at least one series arm resonator SR1 to SR4. It has a different thickness from the first dielectric film provided on the electrode fingers.
  • the first dielectric film provided on the wiring electrodes of at least one parallel arm resonator PR1 to PR4 includes at least one first electrode finger and at least one second electrode finger of at least one parallel arm resonator PR1 to PR4. It has the same film thickness as the first dielectric film provided on the electrode fingers. Even in this case, the occurrence of cracks in the piezoelectric layer 2 can be suppressed.
  • the present invention can also take the following aspects.
  • a support member including a support substrate having a thickness in a first direction; a piezoelectric layer provided in the first direction of the support member; a first bus bar and a second bus bar provided on the main surface of the piezoelectric layer and facing each other; a base end connected to the first bus bar; and a second bus bar extending in a second direction perpendicular to the first direction; at least one first electrode finger extending in the second direction; an IDT electrode comprising a second electrode finger; Wiring electrodes provided on at least the first bus bar and the second bus bar; a first dielectric film provided on the wiring electrode; Equipped with The elastic wave device, wherein the first dielectric film on the wiring electrode has a thickness of 100 nm or more.
  • ⁇ 2> The elastic wave device according to ⁇ 1>, wherein the size of the space in the first direction is 1000 nm or more and 3000 nm or less.
  • ⁇ 3> The acoustic wave device according to ⁇ 1> or ⁇ 2>, wherein the first dielectric film is further provided on the at least one first electrode finger and the at least one second electrode finger.
  • a second dielectric film is further provided between the supporting substrate and the piezoelectric layer, and the second dielectric film has a coefficient of thermal expansion larger than that of the first dielectric film, and has a coefficient of thermal expansion of ⁇ 1> or ⁇ 2>.
  • ⁇ 5> ⁇ 1> to ⁇ 4>, where d/p is 0.5 or less, where d is the thickness of the piezoelectric layer, and p is the center-to-center distance between adjacent first and second electrode fingers;
  • ⁇ 6> The elastic wave device according to ⁇ 5>, wherein the d/p is 0.24 or less.
  • ⁇ 7> The acoustic wave device according to any one of ⁇ 1> to ⁇ 6>, wherein the piezoelectric layer contains lithium niobate or lithium tantalate.
  • the first dielectric film is further provided on the at least one first electrode finger and the at least one second electrode finger of the at least one series arm resonator and the at least one parallel arm resonator,
  • the first dielectric film provided on the wiring electrode of the at least one series arm resonator is arranged to connect the at least one first electrode finger and the at least one second electrode finger of the at least one series arm resonator. thicker than the first dielectric film provided on the electrode finger;
  • the first dielectric film provided on the wiring electrode of the at least one parallel arm resonator is arranged to connect the at least one first electrode finger and the at least one second electrode finger of the at least one parallel arm resonator.
  • the filter device which is thicker than the first dielectric film provided on the electrode finger.
  • the first dielectric film is further provided on the at least one first electrode finger and the at least one second electrode finger of the at least one series arm resonator and the at least one parallel arm resonator,
  • the first dielectric film provided on the wiring electrode of the at least one series arm resonator is arranged to connect the at least one first electrode finger and the at least one second electrode finger of the at least one series arm resonator.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

圧電層のクラックを抑制する。第1方向に厚みを有する支持基板を備える支持部材と、支持部材の第1方向に設けられた圧電層と、圧電層の主面に設けられ、かつ、互いに対向する第1のバスバーと、第2のバスバーと、第1のバスバーに基端が接続され、第1方向に直交する第2方向に延びる少なくとも1本の第1電極指と、第1方向及び第2方向に直交する第3方向について少なくとも1本の第1電極指のいずれかと対向し、第2方向に延びる少なくとも1本の第2電極指と、を含むIDT電極と、少なくとも第1のバスバー及び第2のバスバーに設けられる配線電極と、配線電極に設けられた第1誘電体膜と、を備える。支持部材は、圧電層側に空間部を有し、IDT電極は、第1方向から見て少なくとも一部が空間部と重なっている。配線電極上の第1誘電体膜の膜厚は、100nm以上である。

Description

弾性波装置及びフィルタ装置
 本開示は、弾性波装置及びフィルタ装置に関する。
 特許文献1には、弾性波装置が記載されている。
特開2012-257019号公報
 特許文献1に示す弾性波装置において、空間部を設ける場合がある。この場合、弾性波装置を基板に実装する際のリフロー等による熱によって圧電層が変形し、圧電層2の一部が凹んで空間部の底面に接する現象(スティッキング)が起きると、圧電層の変形が他の部分に集中して過度に膨らみ、圧電層にクラックが発生する可能性があった。
 本開示は、上述した課題を解決するものであり、圧電層のクラックの発生を抑制することを目的とする。
 一態様に係る弾性波装置は、第1方向に厚みを有する支持基板を備える支持部材と、前記支持部材の前記第1方向に設けられた圧電層と、前記圧電層の主面に設けられ、かつ、互いに対向する第1のバスバーと、第2のバスバーと、前記第1のバスバーに基端が接続され、前記第1方向に直交する第2方向に延びる少なくとも1本の第1電極指と、前記第1方向及び前記第2方向に直交する第3方向について前記少なくとも1本の第1電極指のいずれかと対向し、前記第2方向に延びる少なくとも1本の第2電極指と、を含むIDT電極と、少なくとも前記第1のバスバー及び前記第2のバスバーに設けられる配線電極と、前記配線電極に設けられた第1誘電体膜と、を備え、前記支持部材は、前記圧電層側に空間部を有し、前記IDT電極は、前記第1方向から見て少なくとも一部が前記空間部と重なっており、前記配線電極上の前記第1誘電体膜の膜厚は、100nm以上である。
 一態様に係るフィルタ装置は、入力端子と、出力端子と、前記入力端子と前記出力端子を結ぶ直列腕と、前記直列腕上のノードとグラウンドとを結ぶ並列腕と、前記直列腕に設けられた少なくとも1つの直列腕共振子と、前記並列腕に設けられた少なくとも1つの並列腕共振子と、を備え、前記少なくとも1つの直列腕共振子及び前記少なくとも1つの並列腕共振子は、前記弾性波装置である。
 本開示によれば、圧電層のクラックの発生を抑制することができる。
図1Aは、第1実施形態の弾性波装置を示す斜視図である。 図1Bは、第1実施形態の電極構造を示す平面図である。 図2は、図1AのII-II線に沿う部分の断面図である。 図3Aは、比較例の圧電層を伝播するラム波を説明するための模式的な断面図である。 図3Bは、第1実施形態の圧電層を伝播する厚み滑り1次モードのバルク波を説明するための模式的な断面図である。 図4は、第1実施形態の圧電層を伝播する厚み滑り1次モードのバルク波の振幅方向を説明するための模式的な断面図である。 図5は、第1実施形態の弾性波装置の共振特性の例を示す説明図である。 図6は、第1実施形態の弾性波装置において、隣り合う電極の中心間距離又は中心間距離の平均距離をp、圧電層の平均厚みをdとした場合、d/2pと、共振子としての比帯域との関係を示す説明図である。 図7は、第1実施形態の弾性波装置において、1対の電極が設けられている例を示す模式的な平面図である。 図8は、第1実施形態の弾性波装置の共振特性の一例を示す参考図である。 図9は、第1実施形態の弾性波装置の、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す説明図である。 図10は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す説明図である。 図11は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°、θ、ψ)に対する比帯域のマップを示す説明図である。 図12は、本開示の実施形態に係る弾性波装置を説明するための部分切り欠き斜視図である。 図13は、第1実施形態に係る弾性波装置の一例を示す模式的な平面図である。 図14は、図13のXIV-XIV線に沿った断面図である。 図15は、第1実施例における圧電層の変位を説明する図である。 図16は、第2実施例における圧電層の変位を説明する図である。 図17は、第2実施形態に係るフィルタ装置の回路図である。
 以下に、本開示の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態により本開示が限定されるものではない。なお、本開示に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換又は組み合わせが可能である変形例や第2実施形態以降では第1実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
 (第1実施形態)
 図1Aは、第1実施形態の弾性波装置を示す斜視図である。図1Bは、第1実施形態の電極構造を示す平面図である。
 第1実施形態の弾性波装置1は、LiNbOからなる圧電層2を有する。圧電層2は、LiTaOからなるものであってもよい。LiNbOやLiTaOのカット角は、第1実施形態では、Zカットである。LiNbOやLiTaOのカット角は、回転YカットやXカットであってもよい。好ましくは、Y伝搬及びX伝搬±30°の伝搬方位が好ましい。
 圧電層2の厚みは、特に限定されないが、厚み滑り1次モードを効果的に励振するには、50nm以上、1000nm以下が好ましい。
 圧電層2は、Z方向に対向し合う第1の主面2aと、第2の主面2bとを有する。第1の主面2a上に、電極指3及び電極指4が設けられている。
 ここで電極指3が「第1電極指」の一例であり、電極指4が「第2電極指」の一例である。図1A及び図1Bでは、複数の電極指3は、第1のバスバー5に接続されている複数の「第1電極指」である。複数の電極指4は、第2のバスバー6に接続されている複数の「第2電極指」である。複数の電極指3及び複数の電極指4は、互いに間挿し合っている。これにより、電極指3と、電極指4と、第1のバスバー5と、第2のバスバー6と、を備えるIDT(Interdigital Transuducer)電極が構成される。
 電極指3及び電極指4は、矩形形状を有し、長さ方向を有する。この長さ方向と直交する方向において、電極指3と、電極指3と隣接する電極指4とが対向している。電極指3、4の長さ方向及び電極指3、4の長さ方向と直交する方向は、圧電層2の厚み方向に交差する方向である。このため、電極指3と、電極指3と隣接する電極指4とは、圧電層2の厚み方向に交差する方向において対向しているともいえる。以下の説明では、圧電層2の厚み方向をZ方向(又は第1方向)とし、電極指3、電極指4の長さ方向をY方向(又は第2方向)とし、電極指3、電極指4の直交する方向をX方向(又は第3方向)として、説明することがある。
 また、電極指3、電極指4の長さ方向が図1A及び図1Bに示す電極指3、電極指4の長さ方向に直交する方向と入れ替わってもよい。すなわち、図1A及び図1Bにおいて、第1のバスバー5及び第2のバスバー6が延びている方向に電極指3、電極指4を延ばしてもよい。その場合、第1のバスバー5及び第2のバスバー6は、図1A及び図1Bにおいて電極指3、電極指4が延びている方向に延びることとなる。そして、一方電位に接続される電極指3と、他方電位に接続される電極指4とが隣り合う1対の構造が、上記電極指3、電極指4の長さ方向と直交する方向に、複数対設けられている。
 ここで電極指3と電極指4とが隣り合うとは、電極指3と電極指4とが直接接触するように配置されている場合ではなく、電極指3と電極指4とが間隔を介して配置されている場合を指す。また、電極指3と電極指4とが隣り合う場合、電極指3と電極指4との間には、他の電極指3、電極指4を含む、ホット電極やグラウンド電極に接続される電極は配置されない。この対数は、整数対である必要はなく、1.5対、2.5対等であってもよい。
 電極指3と電極指4との間の中心間距離すなわちピッチは、1μm以上、10μm以下の範囲が好ましい。また、電極指3と電極指4との間の中心間距離とは、電極指3の長さ方向と直交する方向における電極指3の幅寸法の中心と、電極指4の長さ方向と直交する方向における電極指4の幅寸法の中心とを結んだ距離となる。
 さらに、電極指3、電極指4の少なくとも一方が複数本ある場合(電極指3、電極指4を一対の電極組とした場合に、1.5対以上の電極組がある場合)、電極指3、電極指4の中心間距離は、1.5対以上の電極指3、電極指4のうち隣り合う電極指3、電極指4それぞれの中心間距離の平均値を指す。
 また、電極指3、電極指4の幅、すなわち電極指3、電極指4の対向方向の寸法は、150nm以上、1000nm以下の範囲が好ましい。なお、電極指3と電極指4との間の中心間距離とは、電極指3の長さ方向と直交する方向における電極指3の寸法(幅寸法)の中心と、電極指4の長さ方向と直交する方向における電極指4の寸法(幅寸法)の中心とを結んだ距離となる。
 また、第1実施形態では、Zカットの圧電層を用いているため、電極指3、電極指4の長さ方向と直交する方向は、圧電層2の分極方向に直交する方向となる。圧電層2として他のカット角の圧電体を用いた場合には、この限りでない。ここにおいて、「直交」とは、厳密に直交する場合のみに限定されず、略直交(電極指3、電極指4の長さ方向と直交する方向と分極方向とのなす角度が例えば90°±10°)でもよい。
 圧電層2の第2の主面2b側には、中間層7を介して支持基板8が積層されている。中間層7及び支持基板8は、枠状の形状を有し、図2に示すように、開口部7a、8aを有する。それによって、空間部(エアギャップ)9が形成されている。
 空間部9は、圧電層2の励振領域Cの振動を妨げないために設けられている。従って、上記支持基板8は、少なくとも1対の電極指3、電極指4が設けられている部分と重ならない位置において、第2の主面2bに中間層7を介して積層されている。なお、中間層7は設けられずともよい。従って、支持基板8は、圧電層2の第2の主面2bに直接又は間接に積層され得る。
 中間層7は、酸化ケイ素で形成されている。もっとも、中間層7は、酸化ケイ素の他、窒化ケイ素、アルミナ等の適宜の絶縁性材料で形成することができる。
 支持基板8は、Siにより形成されている。Siの圧電層2側の面における面方位は(100)や(110)であってもよく、(111)であってもよい。好ましくは、抵抗率4kΩ以上の高抵抗のSiが望ましい。もっとも、支持基板8についても適宜の絶縁性材料や半導体材料を用いて構成することができる。支持基板8の材料としては、例えば、酸化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、水晶等の圧電体、アルミナ、マグネシア、サファイア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト等の各種セラミック、ダイヤモンド、ガラス等の誘電体、窒化ガリウム等の半導体等を用いることができる。
 上記複数の電極指3、電極指4及び第1のバスバー5、第2のバスバー6は、Al、AlCu合金等の適宜の金属又は合金からなる。第1実施形態では、電極指3、電極指4及び第1のバスバー5、第2のバスバー6は、Ti膜上にAl膜を積層した構造を有する。なお、Ti膜以外の密着層を用いてもよい。
 駆動に際しては、複数の電極指3と、複数の電極指4との間に交流電圧を印加する。より具体的には、第1のバスバー5と第2のバスバー6との間に交流電圧を印加する。それによって、圧電層2において励振される厚み滑り1次モードのバルク波を利用した、共振特性を得ることが可能とされている。
 また、弾性波装置1では、圧電層2の厚みをd、複数対の電極指3、電極指4のうちいずれかの隣り合う電極指3、電極指4の中心間距離をpとした場合、d/pは0.5以下とされている。そのため、上記厚み滑り1次モードのバルク波が効果的に励振され、良好な共振特性を得ることができる。より好ましくは、d/pは0.24以下であり、その場合には、より一層良好な共振特性を得ることができる。
 なお、第1実施形態のように電極指3、電極指4の少なくとも一方が複数本ある場合、すなわち、電極指3、電極指4を1対の電極組とした場合に電極指3、電極指4が1.5対以上ある場合、隣り合う電極指3、電極指4の中心間距離は、各隣り合う電極指3、電極指4の中心間距離の平均距離となる。
 第1実施形態の弾性波装置1では、上記構成を備えるため、小型化を図ろうとして、電極指3、電極指4の対数を小さくしたとしても、Q値の低下が生じ難い。これは、両側に反射器を必要としない共振器であり、伝搬ロスが少ないためである。また、上記反射器を必要としないのは、厚み滑り1次モードのバルク波を利用していることによる。
 図3Aは、比較例の圧電層を伝播するラム波を説明するための模式的な断面図である。図3Bは、第1実施形態の圧電層を伝播する厚み滑り1次モードのバルク波を説明するための模式的な断面図である。図4は、第1実施形態の圧電層を伝播する厚み滑り1次モードのバルク波の振幅方向を説明するための模式的な断面図である。
 図3Aでは、特許文献1に記載のような弾性波装置であり、圧電層をラム波が伝搬する。図3Aに示すように、圧電層201中を矢印で示すように波が伝搬する。ここで、圧電層201には、第1の主面201aと、第2の主面201bとがあり、第1の主面201aと第2の主面201bとを結ぶ厚み方向がZ方向である。X方向は、IDT電極の電極指3、4が並んでいる方向である。図3Aに示すように、ラム波では、波が図示のように、X方向に伝搬していく。板波であるため、圧電層201が全体として振動するものの、波はX方向に伝搬するため、両側に反射器を配置して、共振特性を得ている。そのため、波の伝搬ロスが生じ、小型化を図った場合、すなわち電極指3、4の対数を少なくした場合、Q値が低下する。
 これに対して、図3Bに示すように、第1実施形態の弾性波装置では、振動変位は厚み滑り方向であるから、波は、圧電層2の第1の主面2aと第2の主面2bとを結ぶ方向、すなわちZ方向にほぼ伝搬し、共振する。すなわち、波のX方向成分がZ方向成分に比べて著しく小さい。そして、このZ方向の波の伝搬により共振特性が得られるため、反射器を必要としない。よって、反射器に伝搬する際の伝搬損失は生じない。従って、小型化を進めようとして、電極指3、電極指4からなる電極対の対数を減らしたとしても、Q値の低下が生じ難い。
 なお、厚み滑り1次モードのバルク波の振幅方向は、図4に示すように、圧電層2の励振領域C(図1B参照)に含まれる第1領域251と、励振領域Cに含まれる第2領域252とで逆になる。図4では、電極指3と電極指4との間に、電極指4が電極指3よりも高電位となる電圧が印加された場合のバルク波を模式的に示してある。第1領域251は、励振領域Cのうち、圧電層2の厚み方向に直交し圧電層2を2分する仮想平面VP1と、第1の主面2aとの間の領域である。第2領域252は、励振領域Cのうち、仮想平面VP1と、第2の主面2bとの間の領域である。
 弾性波装置1では、電極指3と電極指4とからなる少なくとも1対の電極が配置されているが、X方向に波を伝搬させるものではないため、この電極指3、電極指4からなる電極対の対数は複数対ある必要は必ずしもない。すなわち、少なくとも1対の電極が設けられてさえおればよい。
 例えば、上記電極指3がホット電位に接続される電極であり、電極指4がグラウンド電位に接続される電極である。もっとも、電極指3がグラウンド電位に、電極指4がホット電位に接続されてもよい。第1実施形態では、少なくとも1対の電極は、上記のように、ホット電位に接続される電極又はグラウンド電位に接続される電極であり、浮き電極は設けられていない。
 図5は、第1実施形態の弾性波装置の共振特性の例を示す説明図である。なお、図5に示す共振特性を得た弾性波装置1の設計パラメータは以下のとおりである。
 圧電層2:オイラー角(0°、0°、90°)のLiNbO
 圧電層2の厚み:400nm
 励振領域C(図1B参照)の長さ:40μm
 電極指3、電極指4からなる電極の対数:21対
 電極指3と電極指4との間の中心間距離(ピッチ):3μm
 電極指3、電極指4の幅:500nm
 d/p:0.133
 中間層7:1μmの厚みの酸化ケイ素膜
 支持基板8:Si
 なお、励振領域C(図1B参照)とは、電極指3と電極指4の長さ方向と直交するX方向に視たときに、電極指3と電極指4とが重なっている領域である。励振領域Cの長さとは、励振領域Cの電極指3、電極指4の長さ方向に沿う寸法である。ここで、励振領域Cとは、「交差領域」の一例である。
 第1実施形態では、電極指3、電極指4からなる電極対の中心間距離は、複数対において全て等しくした。すなわち、電極指3と電極指4とを等ピッチで配置した。
 図5から明らかなように、反射器を有しないにもかかわらず、比帯域が12.5%である良好な共振特性が得られている。
 ところで、上記圧電層2の厚みをd、電極指3と電極指4との電極の中心間距離をpとした場合、第1実施形態では、d/pは0.5以下、より好ましくは0.24以下である。これを、図6を参照して説明する。
 図5に示した共振特性を得た弾性波装置と同様に、但しd/2pを変化させ、複数の弾性波装置を得た。図6は、第1実施形態の弾性波装置において、隣り合う電極の中心間距離又は中心間距離の平均距離をp、圧電層2の平均厚みをdとした場合、d/2pと、共振子としての比帯域との関係を示す説明図である。
 図6に示すように、d/2pが0.25を超えると、すなわちd/p>0.5では、d/pを調整しても、比帯域は5%未満である。これに対して、d/2p≦0.25、すなわちd/p≦0.5の場合には、その範囲内でd/pを変化させれば、比帯域を5%以上とすることができ、すなわち高い結合係数を有する共振子を構成することができる。また、d/2pが0.12以下の場合、すなわちd/pが0.24以下の場合には、比帯域を7%以上と高めることができる。加えて、d/pをこの範囲内で調整すれば、より一層比帯域の広い共振子を得ることができ、より一層高い結合係数を有する共振子を実現することができる。従って、d/pを0.5以下とすることにより、上記厚み滑り1次モードのバルク波を利用した、高い結合係数を有する共振子を構成し得ることがわかる。
 なお、少なくとも1対の電極は、1対でもよく、上記pは、1対の電極の場合、隣り合う電極指3、電極指4の中心間距離とする。また、1.5対以上の電極の場合には、隣り合う電極指3、電極指4の中心間距離の平均距離をpとすればよい。
 また、圧電層2の厚みdについても、圧電層2が厚みばらつきを有する場合、その厚みを平均化した値を採用すればよい。
 図7は、第1実施形態の弾性波装置において、1対の電極が設けられている例を示す模式的な平面図である。弾性波装置101では、圧電層2の第1の主面2a上において、電極指3と電極指4とを有する1対の電極が設けられている。なお、図7中のKが交差幅となる。前述したように、本開示の弾性波装置では、電極の対数は1対であってもよい。この場合においても、上記d/pが0.5以下であれば、厚み滑り1次モードのバルク波を効果的に励振することができる。
 弾性波装置1では、好ましくは、複数の電極指3、電極指4において、いずれかの隣り合う電極指3、電極指4が対向している方向に視たときに重なっている領域である励振領域Cに対する、上記隣り合う電極指3、電極指4のメタライゼーション比MRが、MR≦1.75(d/p)+0.075を満たすことが望ましい。その場合には、スプリアスを効果的に小さくすることができる。これを、図8及び図9を参照して説明する。
 図8は、第1実施形態の弾性波装置の共振特性の一例を示す参考図である。矢印Bで示すスプリアスが、共振周波数と反共振周波数との間に現れている。なお、d/p=0.08として、かつLiNbOのオイラー角(0°、0°、90°)とした。また、上記メタライゼーション比MR=0.35とした。
 メタライゼーション比MRを、図1Bを参照して説明する。図1Bの電極構造において、1対の電極指3、電極指4に着目した場合、この1対の電極指3、電極指4のみが設けられるとする。この場合、一点鎖線で囲まれた部分が励振領域Cとなる。この励振領域Cとは、電極指3と電極指4とを、電極指3、電極指4の長さ方向と直交する方向すなわち対向方向に視たときに、電極指4と重なり合っている電極指3の領域、電極指3と重なり合っている電極指4の領域及び電極指3と電極指4とが重なり合っている電極指3と電極指4との間の領域である。そして、この励振領域Cの面積に対する、励振領域C内の電極指3及び電極指4の面積が、メタライゼーション比MRとなる。すなわち、メタライゼーション比MRは、メタライゼーション部分の面積の励振領域Cの面積に対する比である。
 なお、複数対の電極指3、電極指4が設けられている場合、励振領域Cの面積の合計に対する全励振領域Cに含まれているメタライゼーション部分の割合をMRとすればよい。
 図9は、第1実施形態の弾性波装置の、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す説明図である。なお、比帯域については、圧電層2の膜厚や電極指3、電極指4の寸法を種々変更し、調整した。また、図9は、ZカットのLiNbOからなる圧電層2を用いた場合の結果であるが、他のカット角の圧電層2を用いた場合においても、同様の傾向となる。
 図9中の楕円Jで囲まれている領域では、スプリアスが1.0と大きくなっている。図9から明らかなように、比帯域が0.17を超えると、すなわち17%を超えると、スプリアスレベルが1以上の大きなスプリアスが、比帯域を構成するパラメータを変化させたとしても、通過帯域内に現れる。すなわち、図8に示す共振特性のように、矢印Bで示す大きなスプリアスが帯域内に現れる。よって、比帯域は17%以下であることが好ましい。この場合には、圧電層2の膜厚や電極指3、電極指4の寸法等を調整することにより、スプリアスを小さくすることができる。
 図10は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す説明図である。第1実施形態の弾性波装置1において、d/2pと、MRが異なる様々な弾性波装置1を構成し、比帯域を測定した。図10の破線Dの右側のハッチングを付して示した部分が、比帯域が17%以下の領域である。このハッチングを付した領域と、付していない領域との境界は、MR=3.5(d/2p)+0.075で表される。すなわち、MR=1.75(d/p)+0.075である。従って、好ましくは、MR≦1.75(d/p)+0.075である。その場合には、比帯域を17%以下としやすい。より好ましくは、図10中の一点鎖線D1で示すMR=3.5(d/2p)+0.05の右側の領域である。すなわち、MR≦1.75(d/p)+0.05であれば、比帯域を確実に17%以下にすることができる。
 図11は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°、θ、ψ)に対する比帯域のマップを示す説明図である。図11のハッチングを付して示した部分が、少なくとも5%以上の比帯域が得られる領域である。領域の範囲を近似すると、下記の式(1)、式(2)及び式(3)で表される範囲となる。
 (0°±10°、0°~20°、任意のψ)  …式(1)
 (0°±10°、20°~80°、0°~60°(1-(θ-50)/900)1/2)又は(0°±10°、20°~80°、{180°-60°(1-(θ-50)/900)1/2}~180°)  …式(2)
 (0°±10°、{180°-30°(1-(ψ-90)/8100)1/2}~180°、任意のψ)  …式(3)
 従って、上記式(1)、式(2)又は式(3)のオイラー角範囲の場合、比帯域を十分に広くすることができ、好ましい。
 図12は、本開示の実施形態に係る弾性波装置を説明するための部分切り欠き斜視図である。図12において、空間部9の外周縁を破線で示す。本開示の弾性波装置は、板波を利用するものであってもよい。この場合、図12に示すように、弾性波装置301は、反射器310、311を有する。反射器310、311は、圧電層2の電極指3、4の弾性波伝搬方向両側に設けられる。弾性波装置301では、空間部9上の電極指3、4に、交流電界を印加することにより、板波としてのラム波が励振される。このとき、反射器310、311が両側に設けられているため、板波としてのラム波による共振特性を得ることができる。
 以上説明したように、弾性波装置1、101では、厚み滑り1次モードのバルク波が利用されている。また、弾性波装置1、101では、第1電極指3及び第2電極指4は隣り合う電極同士であり、圧電層2の厚みをd、第1電極指3及び第2電極指4の中心間距離をpとした場合、d/pが0.5以下とされている。これにより、弾性波装置が小型化しても、Q値を高めることができる。
 弾性波装置1、101では、圧電層2がニオブ酸リチウム又はタンタル酸リチウムで形成されている。圧電層2の第1の主面2a又は第2の主面2bには、圧電層2の厚み方向に交差する方向において対向する第1電極指3及び第2電極指4があり、第1電極指3及び第2電極指4の上を保護膜で覆うことが望ましい。
 図13は、第1実施形態に係る弾性波装置の一例を示す模式的な平面図である。図14は、図13のXIV-XIV線に沿った断面図である。図13では、説明のため、保護膜19を省略して記載している。図13及び図14に示すように、第1実施形態に係る弾性波装置1Aは、支持部材80と、圧電層2と、機能電極30と、配線電極14と、保護膜19と、を備える。
 支持部材80は、支持基板8を有する。第1実施形態では、支持部材80は、中間層7と支持基板8とを備える。中間層7は、支持基板8のZ方向に設けられる。中間層7は、「第2誘電体層」の一例である。支持部材80には、空間部9と、引き出し部9aとがある。
 空間部9及び引き出し部9aは、支持部材80の圧電層2側に開口している空間である。第1実施形態では、空間部9及び引き出し部9aは、中間層7にある。図14の例では、空間部9及び引き出し部9aは、中間層7の圧電層2側にある。すなわち、空間部9及び引き出し部9aは、圧電層2と支持基板8との間にある空間であるといえる。空間部9は、Z方向に平面視して、IDT電極の少なくとも一部と重なる位置に設けられる。引き出し部9aは、空間部9のX方向の両側に設けられ、空間部9と連通している。
 空間部9のZ方向の大きさは、1000nm以上3000nm以下である。空間部9のZ方向の大きさとは、圧電層2の第2の主面2bから、Z方向に平面視して、空間部9と重なる位置における支持部材80の圧電層2と対向する面(空間部9の底面)までの、Z方向の最大距離を指す。空間部9のZ方向の大きさを1000nm以上とすることで、圧電層2が変形した際に、圧電層2が凹んで空間部9の底面と接触して、圧電層2にクラックが生じることを抑制できる。また、空間部9のZ方向の大きさを3000nm以下とすることで、弾性波装置1Aの製造時に圧電層2の厚みのばらつきが生じることを抑制できる。
 圧電層2は、支持部材80のZ方向に設けられる。第1実施形態では、圧電層2は、支持部材80の中間層7側に設けられる。以下の説明では、圧電層2の支持部材80側の面を第2の主面2b、第2の主面2bとZ方向の反対側の面を第1の主面2aとして説明することがある。
 圧電層2には、貫通孔2Hがある。貫通孔2Hは、圧電層2をZ方向に貫通する孔である。貫通孔2Hは、Z方向に平面視して、引き出し部9aと重なる位置であって、機能電極30、配線電極14と重ならない位置に設けられる。貫通孔2Hは引き出し部9aと連通している。
 機能電極30は、電極指3、4と、バスバー5、6とを有するIDT電極である。図13の例では、機能電極30は、圧電層2の第1の主面2aに設けられる。
 配線電極14は、圧電層2に対して第1の主面2a側に設けられる。配線電極14は、Z方向に平面視して、少なくとも、バスバー5、6と重なる位置に設けられる。第1実施形態では、配線電極14は、バスバー5、6の一部と重なる位置に設けられる。また、配線電極14は、Z方向に平面視して、空間部9のY方向の端部と重なる位置に設けられる。ここで、空間部9のY方向の端部とは、Z方向に平面視して、空間部9と重なる範囲のY方向の両端の端部を指す。第1実施形態では、配線電極14は、金属層であり、例えばAlとCuの合金からなる。これにより、Z方向に平面視して空間部9と重なる位置の圧電層2が、配線電極14によって支持されることで、該位置の圧電層2に変位が生じることを抑制できるので、圧電層2にクラックが生じることを抑制できる。
 保護膜19は、少なくとも配線電極14に設けられる膜である。保護膜19は、「第1誘電体層」の一例である。第1実施形態では、保護膜19は、圧電層2の第1の主面2aと、機能電極30と、配線電極14とに設けられる。図14の例では、保護膜19は、機能電極30と、配線電極14とを覆うように、圧電層2の第1の主面2aに亘って設けられる。これにより、Z方向に平面視して空間部9と重なる位置の圧電層2が、保護膜19によって支持されることで、該位置の圧電層2に変位が生じることを抑制できる。したがって、弾性波装置1Aに熱が加わった際に圧電層2が変形しても、スティッキングが発生することを抑制できるので、スティッキングにより圧電層2の他の部分に変形が集中して過度に膨らむことを抑制でき、圧電層2のクラックの発生を抑制できる。
 保護膜19は、例えば、酸化ケイ素等の誘電体からなる。保護膜19は、中間層7より熱膨張係数が小さい。すなわち、中間層7は、保護膜19より熱膨張係数が大きい。ここで、熱膨張係数とは、線膨張係数を指す。保護膜19と中間層7とが同じ組成の材料からなる場合、例えば、中間層7の形成時に、保護膜19の形成時よりも膜密度が小さくなるような条件で層形成することで、中間層7の熱膨張係数を保護膜19より大きくすることができる。これにより、支持基板8と圧電層2との熱膨張係数の差が緩和され、基板間の接合性を向上できる。
 以下の説明においては、Z方向に平面視して、配線電極14の上に直接設けられる保護膜19を配線電極の保護膜19a、バスバー5、6の上に直接設けられる保護膜19をバスバーの保護膜19b、電極指3、4の上に直接設けられる保護膜19を電極指の保護膜19cとして説明する。
 配線電極の保護膜19aの膜厚は、100nm以上である。この範囲とすることで、圧電層2の変位を1000nm未満に抑制できるので、圧電層2が変形した際に、圧電層2が凹んで空間部9の底面と接触して、圧電層2にクラックが生じることを抑制できる。
 第1実施形態では、バスバーの保護膜19bの膜厚は、配線電極の保護膜19aの膜厚と等しい。なお、バスバーの保護膜19bの膜厚は、これに限られず、配線電極の保護膜19aの膜厚と異なっていてもよい。
 第1実施形態では、電極指の保護膜19cの膜厚は、膜厚の調整をした結果、配線電極の保護膜19aの膜厚と異なっていてもよい。これにより、弾性波装置1Aの周波数特性を電極指の保護膜19cにより良好なものとしつつ、圧電層2にクラックが発生することを配線電極の保護膜19aにより抑制できる。
 なお、保護膜19の構成は、上記で説明したものに限られない。例えば、保護膜19は圧電層2の第1の主面2aの前面に亘って設けられていなくてもよく、配線電極14とバスバー5、6が積層する位置の少なくとも一部に設けられてさえすればよい。すなわち、バスバーの保護膜19b及び電極指の保護膜19cは必須の構成ではない。
 ここで、実施例について説明する。第1実施例及び第2実施例に係る弾性波装置は、いずれも第1実施形態に係る弾性波装置である。第1実施例では、電極指の保護膜19cを設けず作製した。第2実施例では、電極指の保護膜19cの膜厚を20nmとして作製した。第1実施例及び第2実施例では、配線電極の保護膜19aの膜厚を変えて弾性波装置を作製し、250℃に加熱して、圧電層2のZ方向の最大変位を測定した。圧電層2のZ方向の最大変位は、Z方向に平面視して空間部9と重なる位置の圧電層2の、加熱前(25℃)におけるZ方向の位置に対する、加熱後(250℃)におけるZ方向の位置の差の絶対値が最大になる値として測定した。
 図15は、第1実施例における圧電層の変位を説明する図である。図16は、第2実施例における圧電層の変位を説明する図である。より詳しくは、図15及び図16は、以上により測定した、圧電層2のZ方向の最大変位を縦軸とし、配線電極の保護膜19aの膜厚を横軸としてプロットした散布図である。図15及び図16では、第1の主面2aから第2の主面2bに向かう向きの変位を正、第2の主面2bから第1の主面2aに向かう向きの変位を負とした。図15及び図16に示すように、第1実施例及び第2実施例では、配線電極の保護膜19aの膜厚が100nm以上1200nm以下である場合、圧電層2のZ方向の最大変位の絶対値が1000nm未満となった。一方で、配線電極の保護膜19aの膜厚が80nm以下である場合、圧電層2のZ方向の最大変位の絶対値が1000nm以上となった。空間部9のZ方向の大きさは、1000nm以上であるので、この結果から、電極指の保護膜19cの有無にかかわらず、配線電極の保護膜19aの膜厚を100nm以上とした場合、圧電層2が空間部9の底面と接触することを抑制できる一方、配線電極の保護膜19aの膜厚を100nm未満とした場合、圧電層2が空間部9の底面と接触する可能性がある。
 以上説明したように、第1実施形態に係る弾性波装置1Aは、第1方向(Z方向)に厚みを有する支持基板8を備える支持部材80と、支持部材80の第1方向に設けられた圧電層2と、圧電層2の主面に設けられ、かつ、互いに対向する第1のバスバー5と、第2のバスバー6と、第1のバスバー5に基端が接続され、第1方向に直交する第2方向に延びる少なくとも1本の第1電極指3と、第1方向及び第2方向に直交する第3方向について少なくとも1本の第1電極指3のいずれかと対向し、第2方向に延びる少なくとも1本の第2電極指4と、を含むIDT電極と、少なくとも第1のバスバー5及び第2のバスバー6の上に設けられる配線電極14と、配線電極14に設けられた第1誘電体膜(保護膜19)と、を備える。支持部材80は、圧電層2側に空間部9を有し、IDT電極は、第1方向から見て少なくとも一部が空間部9と重なっている。配線電極14上の第1誘電体膜(配線電極14の保護膜19a)の膜厚は、100nm以上である。
 これにより、Z方向に平面視して空間部9と重なる位置の圧電層2が、第1誘電体膜によって支持されることで、該位置の圧電層2に変位が生じることを抑制できる。したがって、弾性波装置1Aに熱が加わった際に圧電層2が変形しても、スティッキングが発生することを抑制できるので、スティッキングにより圧電層2の他の部分に変形が集中して過度に膨らむことを抑制でき、圧電層2のクラックの発生を抑制できる。
 望ましい態様として、空間部9の第1方向の大きさは、1000nm以上3000nm以下である。圧電層2が変形した際に、圧電層2が凹んで空間部9の底面と接触して、圧電層2にクラックが生じることをより抑制できる、また、弾性波装置1Aの製造時に圧電層2の厚みのばらつきが生じることを抑制できる。
 望ましい態様として、第1誘電体膜は、さらに少なくとも1本の第1電極指3及び少なくとも1本の第2電極指4に設けられている。これにより、弾性波装置1Aの周波数特性を良好なものとすることができる。
 望ましい態様として、支持基板8と圧電層2との間に第2誘電体膜(中間層7)をさらに備え、第2誘電体膜は、第1誘電体膜よりも熱膨張係数が大きい。これにより、支持基板8と圧電層2との熱膨張係数の差が緩和され、基板間の接合性を向上できる。この場合でも、弾性波装置1Aに熱が加わった際に、第2誘電体膜の熱膨張による圧電層2の変形を第1誘電体膜により抑制できるので、圧電層2にクラックが生じることを抑制できる。
 望ましい態様として、圧電層2の膜厚をd、隣り合う第1電極指3及び第2電極指4の中心間距離をpとした場合、d/pが0.5以下である。これにより、厚み滑り1次モードのバルク波を効果的に励振することができる。
 より望ましい態様として、d/pが0.24以下である。これにより、厚み滑り1次モードのバルク波をより効果的に励振することができる。
 望ましい態様として、圧電層2は、ニオブ酸リチウムまたはタンタル酸リチウムを含む。これにより、良好な共振特性を得ることができる。
 より望ましい態様として、ニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ、θ、ψ)が、以下の式(1)、式(2)または式(3)の範囲にある。この場合、比帯域を確実に17%以下にすることができる。
 (0°±10°、0°~20°、任意のψ)  …式(1)
 (0°±10°、20°~80°、0°~60°(1-(θ-50)/900)1/2) または (0°±10°、20°~80°、{180°-60°(1-(θ-50)/900)1/2}~180°)  …式(2)
 (0°±10°、{180°-30°(1-(ψ-90)/8100)1/2}~180°、任意のψ)  …式(3)
 望ましい態様として、厚み滑りモードのバルク波を利用可能に構成されている。これにより、結合係数が高まり、良好な共振特性が得られる弾性波装置を提供することができる。
 望ましい態様として、隣り合う第1電極指3及び第2電極指4が対向している方向に視たときに重なっている領域を励振領域とした場合、励振領域に対する、複数の第1電極指3及び第2電極指4のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たす。これにより、スプリアスを効果的に小さくすることができる。
(第2実施形態)
 第2実施形態に係るフィルタ装置1Bは、複数の共振子を備えるフィルタである。フィルタ装置1Bは、第1実施形態に係る弾性波装置1Aを含む。以下、第2実施形態に係るフィルタ装置について説明するが、第1実施形態と同じ箇所は説明を省略する。
 図17は、第2実施形態に係るフィルタ装置の回路図である。図17に示すように、フィルタ装置1Bは、入力端子INから出力端子OUTまでの信号経路(直列腕)に、直列に挿入された直列腕共振子SR1~SR4と、第1経路上のノードとグラウンドとの間の信号経路(並列腕)に挿入された並列腕共振子PR1~PR4とを含む、いわゆるラダー型フィルタとなっている。直列腕共振子SR1~SR4は、一方の端子が、入力端子INと電気的に接続され、他方の端子が出力端子OUTと電気的に接続される。並列腕共振子P1~PR4は、一方の端子が入力端子INと電気的に接続され、他方の端子がグラウンドと電気的に接続される。
 第2実施形態では、直列腕共振子SR1~SR4及び並列腕共振子PR1~PR4は、第1実施形態で説明した機能電極30(IDT電極)を有する共振子である。すなわち、直列腕共振子SR1~SR4及び並列腕共振子PR1~PR4は、第1実施形態に係る弾性波装置1Aに相当する構造となっている。換言すれば、直列腕共振子SR1~SR4及び並列腕共振子PR1~PR4において、配線電極14上の保護膜19aの膜厚は、100nm以上となっており、空間部9のZ方向の大きさは、1000nm以上3000nm以下となっている。
 第2実施形態では、直列腕共振子SR1~SR4において、配線電極の保護膜19aは、電極指の保護膜19cと異なる膜厚を有する。
 第2実施形態では、並列腕共振子PR1~PR4において、配線電極の保護膜19aは、電極指の保護膜19cと同じ膜厚を有する。
 なお、第2実施形態に係るフィルタ装置は、上記で説明したものに限られない。例えば、直列腕共振子SR1~SR4では、配線電極の保護膜19aは、電極指の保護膜19cよりも厚く、並列腕共振子PR1~PR4では、配線電極の保護膜19aは、電極指の保護膜19cよりも厚くてもよい。また、直列腕共振子SR1~SR4及び並列腕共振子PR1~PR4では、配線電極の保護膜19aは、電極指の保護膜19cと同じ膜厚を有していてもよい。
 以上説明したように、第2実施形態に係るフィルタ装置1Bは、入力端子INと、出力端子OUTと、入力端子INと出力端子OUTを結ぶ直列腕と、直列腕上のノードとグラウンドとを結ぶ並列腕と、直列腕に設けられた少なくとも1つの直列腕共振子SR1~SR4と、並列腕に設けられた少なくとも1つの並列腕共振子PR1~PR4と、を備える。少なくとも1つの直列腕共振子SR1~SR4及び少なくとも1つの並列腕共振子PR1~PR4は、第1実施形態に係る弾性波装置である。
 これにより、Z方向に平面視して空間部9と重なる位置の圧電層2が、第1誘電体膜によって支持されることで、該位置の圧電層2に変位が生じることを抑制できる。したがって、フィルタ装置1Bに熱が加わった際に圧電層2が変形しても、スティッキングが発生することを抑制できるので、スティッキングにより圧電層2の他の部分に変形が集中して過度に膨らむことを抑制でき、圧電層2のクラックの発生を抑制できる。
 また、第1誘電体膜は、さらに少なくとも1つの直列腕共振子SR1~SR4及び少なくとも1つの並列腕共振子PR1~PR4の少なくとも1本の第1電極指及び少なくとも1本の第2電極指に設けられる。少なくとも1つの直列腕共振子SR1~SR4の配線電極に設けられた第1誘電体膜は、少なくとも1つの直列腕共振子SR1~SR4の少なくとも1本の第1電極指及び少なくとも1本の第2電極指に設けられた第1誘電体膜よりも厚い。少なくとも1つの並列腕共振子PR1~PR4の配線電極に設けられた第1誘電体膜は、少なくとも1つの並列腕共振子PR1~PR4の少なくとも1本の第1電極指及び少なくとも1本の第2電極指に設けられた第1誘電体膜よりも厚い。この場合でも、圧電層2のクラックの発生を抑制できる。
 また、第1誘電体膜は、さらに少なくとも1つの直列腕共振子SR1~SR4及び少なくとも1つの並列腕共振子PR1~PR4の少なくとも1本の第1電極指及び少なくとも1本の第2電極指に設けられる。少なくとも1つの直列腕共振子SR1~SR4の配線電極に設けられた第1誘電体膜は、少なくとも1つの直列腕共振子SR1~SR4の少なくとも1本の第1電極指及び少なくとも1本の第2電極指に設けられた第1誘電体膜と異なる膜厚を有する。少なくとも1つの並列腕共振子PR1~PR4の配線電極に設けられた第1誘電体膜は、少なくとも1つの並列腕共振子PR1~PR4の少なくとも1本の第1電極指及び少なくとも1本の第2電極指に設けられた第1誘電体膜と同じ膜厚を有する。この場合でも、圧電層2のクラックの発生を抑制できる。
 なお、上記した実施の形態は、本開示の理解を容易にするためのものであり、本開示を限定して解釈するためのものではない。本開示は、その趣旨を逸脱することなく、変更/改良され得るとともに、本開示にはその等価物も含まれる。
 また、本発明は以下の態様をとることもできる。
<1>
 第1方向に厚みを有する支持基板を備える支持部材と、
 前記支持部材の前記第1方向に設けられた圧電層と、
 前記圧電層の主面に設けられ、かつ、互いに対向する第1のバスバーと、第2のバスバーと、前記第1のバスバーに基端が接続され、前記第1方向に直交する第2方向に延びる少なくとも1本の第1電極指と、前記第1方向及び前記第2方向に直交する第3方向について前記少なくとも1本の第1電極指のいずれかと対向し、前記第2方向に延びる少なくとも1本の第2電極指と、を含むIDT電極と、
 少なくとも前記第1のバスバー及び前記第2のバスバーに設けられる配線電極と、
 前記配線電極に設けられた第1誘電体膜と、
 を備え、
 前記配線電極上の前記第1誘電体膜の膜厚は、100nm以上である、弾性波装置。
<2>
 前記空間部の前記第1方向の大きさは、1000nm以上3000nm以下である、<1>に記載の弾性波装置。
<3>
 前記第1誘電体膜は、さらに前記少なくとも1本の第1電極指及び前記少なくとも1本の第2電極指に設けられている、<1>または<2>に記載の弾性波装置。
<4>
 前記支持基板と前記圧電層との間に第2誘電体膜をさらに備え、前記第2誘電体膜は、前記第1誘電体膜よりも熱膨張係数が大きい、<1>または<2>に記載の弾性波装置。
<5>
 前記圧電層の膜厚をd、隣り合う前記第1電極指及び前記第2電極指の中心間距離をpとした場合、d/pが0.5以下である、<1>から<4>のいずれか1つに記載の弾性波装置。
<6>
 前記d/pが0.24以下である、<5>に記載の弾性波装置。
<7>
 前記圧電層は、ニオブ酸リチウムまたはタンタル酸リチウムを含む、<1>から<6>のいずれか1つに記載の弾性波装置。
<8>
 前記ニオブ酸リチウムまたは前記タンタル酸リチウムのオイラー角(φ、θ、ψ)が、以下の式(1)、式(2)または式(3)の範囲にある、<7>に記載の弾性波装置。
 (0°±10°、0°~20°、任意のψ)  …式(1)
 (0°±10°、20°~80°、0°~60°(1-(θ-50)/900)1/2) または (0°±10°、20°~80°、[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°、[180°-30°(1-(ψ-90)/8100)1/2]~180°、任意のψ)  …式(3)
<9>
 厚み滑りモードのバルク波を利用可能に構成されている、<1>から<8>のいずれか1つに記載の弾性波装置。
<10>
 隣り合う前記第1電極指及び前記第2電極指が対向している方向に視たときに重なっている領域を励振領域とした場合、前記励振領域に対する、複数の前記第1電極指及び前記第2電極指のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たす、<1>から<9>のいずれか1つに記載の弾性波装置。
<11>
 入力端子と、
 出力端子と、
 前記入力端子と前記出力端子を結ぶ直列腕と、
 前記直列腕上のノードとグラウンドとを結ぶ並列腕と、
 前記直列腕に設けられた少なくとも1つの直列腕共振子と、
 前記並列腕に設けられた少なくとも1つの並列腕共振子と、
 を備え、
 前記少なくとも1つの直列腕共振子及び前記少なくとも1つの並列腕共振子は、<1>から<10>のいずれか1つに記載の弾性波装置である、フィルタ装置。
<12>
 前記第1誘電体膜は、さらに前記少なくとも1つの直列腕共振子及び前記少なくとも1つの並列腕共振子の前記少なくとも1本の第1電極指及び前記少なくとも1本の第2電極指に設けられ、
 前記少なくとも1つの直列腕共振子の前記配線電極に設けられた前記第1誘電体膜は、前記少なくとも1つの直列腕共振子の前記少なくとも1本の第1電極指及び前記少なくとも1本の第2電極指に設けられた前記第1誘電体膜よりも厚く、
 前記少なくとも1つの並列腕共振子の前記配線電極に設けられた前記第1誘電体膜は、前記少なくとも1つの並列腕共振子の前記少なくとも1本の第1電極指及び前記少なくとも1本の第2電極指に設けられた前記第1誘電体膜よりも厚い、<11>に記載のフィルタ装置。
<13>
 前記第1誘電体膜は、さらに前記少なくとも1つの直列腕共振子及び前記少なくとも1つの並列腕共振子の前記少なくとも1本の第1電極指及び前記少なくとも1本の第2電極指に設けられ、
 前記少なくとも1つの直列腕共振子の前記配線電極に設けられた前記第1誘電体膜は、前記少なくとも1つの直列腕共振子の前記少なくとも1本の第1電極指及び前記少なくとも1本の第2電極指に設けられた前記第1誘電体膜と異なる膜厚を有し、
 前記少なくとも1つの並列腕共振子の前記配線電極に設けられた前記第1誘電体膜は、前記少なくとも1つの並列腕共振子の前記少なくとも1本の第1電極指及び前記少なくとも1本の第2電極指に設けられた前記第1誘電体膜と同じ膜厚を有する、<11>に記載のフィルタ装置。
1、1A、101、301 弾性波装置
1B フィルタ装置
2 圧電層
2a 第1の主面
2b 第2の主面
2H 貫通孔
30 機能電極
3 電極指(第1電極指)
4 電極指(第2電極指)
5 バスバー(第1のバスバー)
6 バスバー(第2のバスバー)
7 中間層
7a 開口部
8 支持基板
8a 開口部
80 支持部材
9 空間部
9a 引き出し部
14 配線電極
19、19a~19c 保護膜
201 圧電層
201a 第1の主面
201b 第2の主面
251 第1領域
252 第2領域
310、311 反射器
C 励振領域(交差領域)
SR1~SR4 直列腕共振子
PR1~PR4 並列腕共振子
VP1 仮想平面

Claims (13)

  1.  第1方向に厚みを有する支持基板を備える支持部材と、
     前記支持部材の前記第1方向に設けられた圧電層と、
     前記圧電層の主面に設けられ、かつ、互いに対向する第1のバスバーと、第2のバスバーと、前記第1のバスバーに基端が接続され、前記第1方向に直交する第2方向に延びる少なくとも1本の第1電極指と、前記第1方向及び前記第2方向に直交する第3方向について前記少なくとも1本の第1電極指のいずれかと対向し、前記第2方向に延びる少なくとも1本の第2電極指と、を含むIDT電極と、
     少なくとも前記第1のバスバー及び前記第2のバスバーに設けられる配線電極と、
     前記配線電極に設けられた第1誘電体膜と、
     を備え、
     前記支持部材は、前記圧電層側に空間部を有し、前記IDT電極は、前記第1方向から見て少なくとも一部が前記空間部と重なっており、
     前記配線電極上の前記第1誘電体膜の膜厚は、100nm以上である、弾性波装置。
  2.  前記空間部の前記第1方向の大きさは、1000nm以上3000nm以下である、請求項1に記載の弾性波装置。
  3.  前記第1誘電体膜は、さらに前記少なくとも1本の第1電極指及び前記少なくとも1本の第2電極指に設けられている、請求項1または2に記載の弾性波装置。
  4.  前記支持基板と前記圧電層との間に第2誘電体膜をさらに備え、前記第2誘電体膜は、前記第1誘電体膜よりも熱膨張係数が大きい、請求項1または2に記載の弾性波装置。
  5.  前記圧電層の膜厚をd、隣り合う前記第1電極指及び前記第2電極指の中心間距離をpとした場合、d/pが0.5以下である、請求項1に記載の弾性波装置。
  6.  前記d/pが0.24以下である、請求項5に記載の弾性波装置。
  7.  前記圧電層は、ニオブ酸リチウムまたはタンタル酸リチウムを含む、請求項1に記載の弾性波装置。
  8.  前記ニオブ酸リチウムまたは前記タンタル酸リチウムのオイラー角(φ、θ、ψ)が、以下の式(1)、式(2)または式(3)の範囲にある、請求項7に記載の弾性波装置。
     (0°±10°、0°~20°、任意のψ)  …式(1)
     (0°±10°、20°~80°、0°~60°(1-(θ-50)/900)1/2) または (0°±10°、20°~80°、[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
     (0°±10°、[180°-30°(1-(ψ-90)/8100)1/2]~180°、任意のψ)  …式(3)
  9.  厚み滑りモードのバルク波を利用可能に構成されている、請求項1に記載の弾性波装置。
  10.  隣り合う前記第1電極指及び前記第2電極指が対向している方向に視たときに重なっている領域を励振領域とした場合、前記励振領域に対する、複数の前記第1電極指及び前記第2電極指のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たす、請求項1に記載の弾性波装置。
  11.  入力端子と、
     出力端子と、
     前記入力端子と前記出力端子を結ぶ直列腕と、
     前記直列腕上のノードとグラウンドとを結ぶ並列腕と、
     前記直列腕に設けられた少なくとも1つの直列腕共振子と、
     前記並列腕に設けられた少なくとも1つの並列腕共振子と、
     を備え、
     前記少なくとも1つの直列腕共振子及び前記少なくとも1つの並列腕共振子は、請求項1または2に記載の弾性波装置である、フィルタ装置。
  12.  前記第1誘電体膜は、さらに前記少なくとも1つの直列腕共振子及び前記少なくとも1つの並列腕共振子の前記少なくとも1本の第1電極指及び前記少なくとも1本の第2電極指に設けられ、
     前記少なくとも1つの直列腕共振子の前記配線電極に設けられた前記第1誘電体膜は、前記少なくとも1つの直列腕共振子の前記少なくとも1本の第1電極指及び前記少なくとも1本の第2電極指に設けられた前記第1誘電体膜よりも厚く、
     前記少なくとも1つの並列腕共振子の前記配線電極に設けられた前記第1誘電体膜は、前記少なくとも1つの並列腕共振子の前記少なくとも1本の第1電極指及び前記少なくとも1本の第2電極指に設けられた前記第1誘電体膜よりも厚い、請求項11に記載のフィルタ装置。
  13.  前記第1誘電体膜は、さらに前記少なくとも1つの直列腕共振子及び前記少なくとも1つの並列腕共振子の前記少なくとも1本の第1電極指及び前記少なくとも1本の第2電極指に設けられ、
     前記少なくとも1つの直列腕共振子の前記配線電極に設けられた前記第1誘電体膜は、前記少なくとも1つの直列腕共振子の前記少なくとも1本の第1電極指及び前記少なくとも1本の第2電極指に設けられた前記第1誘電体膜と異なる膜厚を有し、
     前記少なくとも1つの並列腕共振子の前記配線電極に設けられた前記第1誘電体膜は、前記少なくとも1つの並列腕共振子の前記少なくとも1本の第1電極指及び前記少なくとも1本の第2電極指に設けられた前記第1誘電体膜と同じ膜厚を有する、請求項11に記載のフィルタ装置。
PCT/JP2023/019823 2022-05-26 2023-05-26 弾性波装置及びフィルタ装置 WO2023229049A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263345967P 2022-05-26 2022-05-26
US63/345,967 2022-05-26

Publications (1)

Publication Number Publication Date
WO2023229049A1 true WO2023229049A1 (ja) 2023-11-30

Family

ID=88919336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019823 WO2023229049A1 (ja) 2022-05-26 2023-05-26 弾性波装置及びフィルタ装置

Country Status (1)

Country Link
WO (1) WO2023229049A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182096A (ja) * 2010-02-26 2011-09-15 Taiyo Yuden Co Ltd 弾性波デバイス
JP2014013991A (ja) * 2012-07-04 2014-01-23 Taiyo Yuden Co Ltd ラム波デバイスおよびその製造方法
JP2020109957A (ja) * 2018-12-28 2020-07-16 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 横モード抑制を有する弾性波デバイス
WO2021060512A1 (ja) * 2019-09-27 2021-04-01 株式会社村田製作所 弾性波装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182096A (ja) * 2010-02-26 2011-09-15 Taiyo Yuden Co Ltd 弾性波デバイス
JP2014013991A (ja) * 2012-07-04 2014-01-23 Taiyo Yuden Co Ltd ラム波デバイスおよびその製造方法
JP2020109957A (ja) * 2018-12-28 2020-07-16 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 横モード抑制を有する弾性波デバイス
WO2021060512A1 (ja) * 2019-09-27 2021-04-01 株式会社村田製作所 弾性波装置

Similar Documents

Publication Publication Date Title
WO2021246447A1 (ja) 弾性波装置
WO2021187537A1 (ja) 弾性波装置
WO2022239630A1 (ja) 圧電バルク波装置
WO2022138457A1 (ja) 弾性波装置
WO2023223906A1 (ja) 弾性波素子
US20230327636A1 (en) Acoustic wave device
WO2023229049A1 (ja) 弾性波装置及びフィルタ装置
WO2023219167A1 (ja) 弾性波装置
WO2023224129A1 (ja) 弾性波装置
WO2023219170A1 (ja) 弾性波装置及びフィルタ装置
WO2023210762A1 (ja) 弾性波素子
WO2023190610A1 (ja) 弾性波装置
WO2024038831A1 (ja) 弾性波装置
WO2023190370A1 (ja) 弾性波装置
WO2023210764A1 (ja) 弾性波素子および弾性波装置
WO2023234321A1 (ja) 弾性波装置
WO2023136293A1 (ja) 弾性波装置
WO2023191089A1 (ja) 弾性波装置
WO2023191070A1 (ja) 弾性波装置
WO2023190654A1 (ja) 弾性波装置
WO2023145878A1 (ja) 弾性波装置
WO2023136294A1 (ja) 弾性波装置
WO2022210941A1 (ja) 弾性波装置
WO2022210923A1 (ja) 弾性波装置
WO2023171721A1 (ja) 弾性波装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811921

Country of ref document: EP

Kind code of ref document: A1