WO2023228983A1 - 光拡散シート、バックライトユニット、液晶表示装置、情報機器、及び光拡散シートの製造方法 - Google Patents

光拡散シート、バックライトユニット、液晶表示装置、情報機器、及び光拡散シートの製造方法 Download PDF

Info

Publication number
WO2023228983A1
WO2023228983A1 PCT/JP2023/019378 JP2023019378W WO2023228983A1 WO 2023228983 A1 WO2023228983 A1 WO 2023228983A1 JP 2023019378 W JP2023019378 W JP 2023019378W WO 2023228983 A1 WO2023228983 A1 WO 2023228983A1
Authority
WO
WIPO (PCT)
Prior art keywords
light diffusion
diffusion sheet
recesses
shape
less
Prior art date
Application number
PCT/JP2023/019378
Other languages
English (en)
French (fr)
Inventor
旭 古田
正幸 鋤柄
元彦 岡部
義弘 福井
友子 木村
Original Assignee
恵和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恵和株式会社 filed Critical 恵和株式会社
Publication of WO2023228983A1 publication Critical patent/WO2023228983A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • F21Y2105/14Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array
    • F21Y2105/16Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array square or rectangular, e.g. for light panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present disclosure relates to a light diffusion sheet, a backlight unit, a liquid crystal display device, an information device, and a method for manufacturing a light diffusion sheet.
  • liquid crystal display devices (hereinafter also referred to as liquid crystal displays) have been widely used as display devices for various information devices such as smartphones and tablet terminals.
  • backlights for liquid crystal displays the mainstream type is a direct type where a light source is placed on the back side of a liquid crystal panel, or an edge light type where a light source is placed near the side of a liquid crystal panel.
  • a direct type backlight in order to eliminate the image of a light source such as an LED (Light Emitting Diode) on the light emitting surface and increase the uniformity of brightness within the surface, a light diffusion member (light diffusion plate, light diffusion sheet, light Diffusion film) is used.
  • a light diffusion member light diffusion plate, light diffusion sheet, light Diffusion film
  • Patent Document 1 discloses that in a laminated structure of a light diffusing plate and other optical films, in order to prevent the light diffusing plate and other optical films from being worn and damaged due to vibration during transportation, It is disclosed that the inner surface of the recess of the diffuser plate is a curved surface with the center of curvature located on the depth direction side of the recess at the opening edge.
  • an object of the present disclosure is to provide a light diffusion sheet that is less likely to be damaged even when laminated, while improving brightness uniformity.
  • the light diffusion sheet according to the present disclosure has a plurality of recesses formed in a substantially inverted polygonal pyramid shape on at least the first surface.
  • the ridgeline that partitions the plurality of recesses has a concave shape between the intersections with respect to a straight line connecting the intersections of the ridgelines.
  • the arrangement pitch of the plurality of recesses is P
  • the dimension occupied by the curved portion of the top of the ridgeline in the arrangement direction of the plurality of recesses is Wr
  • the ratio Wr/P is 0.3 or less.
  • the maximum height difference d between the straight line and the ridgeline is 1 ⁇ m or more and 10 ⁇ m or less.
  • the plurality of recesses include a recess in which the top of an approximately inverted polygonal pyramid is formed in a linear shape.
  • the first surface since at least the first surface has a plurality of recesses formed in a substantially inverted polygonal pyramid, it is possible to improve brightness uniformity. Furthermore, the ridge lines that partition the recess (opening edges of the recess) cause wear and damage, and the ridge lines have a concave shape between the intersections of the ridge lines. For this reason, even when used in layers with other optical sheets or other light diffusion sheets, wear and damage are less likely to occur. Further, the dimension Wr occupied by the curved portion of the ridge top in the arrangement direction of the recesses is suppressed to 30% or less of the arrangement pitch P of the recesses.
  • the top of the ridge line can maintain a steep shape, even if the ridge line is concave between the intersection points of the ridge line, the brightness uniformity is unlikely to deteriorate.
  • the maximum height difference d between the ridgeline and the straight line connecting the intersection points of the ridgelines is set to 1 ⁇ m or more, scratch resistance is improved, and the maximum height difference d is set to 10 ⁇ m or less, suppressing a decrease in brightness uniformity. can do.
  • the top of the substantially inverted polygonal pyramid that is, the bottom of the recess
  • the notation "substantially inverted polygonal pyramid” is used in consideration of the fact that it is difficult to form a geometrically strict inverted polygonal pyramid concave part using a normal shape transfer technique.
  • these notations include shapes that can be regarded as true or substantially inverted polygonal pyramids.
  • the ridge lines have a concave shape between all the intersection points of the ridge lines, but it is not essential that the ridge lines have a concave shape between all the intersection points. In other words, the ridge line does not have to have a concave shape between some of the intersection points.
  • the term “light diffusion sheet” includes a plate-shaped “light diffusion plate” and a membrane-shaped “light diffusion film.”
  • an "optical sheet” refers to a sheet having various optical functions such as diffusion, condensation, refraction, and reflection, and a “light diffusion sheet” is one of the “optical sheets.” .
  • both scratch resistance and brightness uniformity can be further improved.
  • both scratch resistance and brightness uniformity can be further improved.
  • the ratio Wr/P when the ratio Wr/P is 0.2 or less, brightness uniformity can be further improved. In this case, when the ratio Wr/P is 0.1 or less, brightness uniformity can be further improved.
  • the arrangement pitch P is 50 ⁇ m or more and 500 ⁇ m or less
  • the angle that the wall surfaces of the plurality of recesses (that is, the slopes of a substantially inverted polygonal pyramid) make with the sheet surface of the light diffusion sheet is When the angle is 40 degrees or more and 65 degrees or less, brightness uniformity can be improved.
  • the ridge line when the ridge line is recessed between the intersection points in a substantially parabolic shape, a substantially circular arc shape, a substantially triangular shape, or a substantially trapezoidal shape, scratch resistance can be improved.
  • the plurality of recesses may be formed into a substantially inverted quadrangular pyramid.
  • the ridgeline may extend in the first direction and the second direction.
  • the maximum height difference d is an average value of a maximum height difference dx between the straight line and the ridgeline in the first direction and a maximum height difference dy between the straight line and the ridgeline in the second direction.
  • the arrangement pitch P may be an average value of an arrangement pitch Px of the plurality of recesses in the first direction and an arrangement pitch Py of the plurality of recesses in the second direction.
  • the dimension Wr may be an average value of a dimension Wrx occupied by a curved portion at the top of the ridgeline in the first direction and a dimension Wry occupied by a curved portion at the top of the ridgeline in the second direction. . In this way, it becomes easy to manufacture a light diffusing sheet with excellent scratch resistance and brightness uniformity.
  • the plurality of recesses are provided only on the first surface, and the second surface is a matte surface, thereby suppressing wear and damage on the second surface and improving brightness uniformity. can be further improved.
  • the ratio of the recesses in which the top portions are formed in a linear shape may be 10% or more. Alternatively, the ratio may be 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 100%.
  • the backlight unit according to the present disclosure is a backlight unit that is incorporated in a liquid crystal display device and guides light emitted from a light source toward a display screen, and is provided between the display screen and the light source. Such a light diffusion sheet is provided.
  • the backlight unit according to the present disclosure since it includes the light diffusion sheet according to the present disclosure described above, it is possible to improve brightness uniformity and prevent damage even if the light diffusion sheet and other optical sheets are laminated. Can be suppressed.
  • the backlight unit when the light source is placed on a reflective sheet provided on the opposite side of the display screen when viewed from the light diffusion sheet, brightness uniformity is further improved.
  • a plurality of light diffusion sheets may be stacked and placed between the display screen and the light source.
  • the light diffusion sheet closest to the display screen must contain a diffusion agent, and the other light diffusion sheets must substantially contain no diffusion agent, otherwise the brightness uniformity will be reduced. Improve even further.
  • a liquid crystal display device includes the above-described backlight unit according to the present disclosure and a liquid crystal display panel.
  • the liquid crystal display device since the liquid crystal display device includes the above-described backlight unit according to the present disclosure, it is possible to improve brightness uniformity and prevent damage even if the light diffusion sheet and other optical sheets are laminated. Can be suppressed.
  • An information device includes the liquid crystal display device according to the present disclosure described above.
  • the information device since it includes the liquid crystal display device according to the present disclosure described above, it is possible to improve brightness uniformity and suppress damage even when a light diffusion sheet and other optical sheets are laminated. can do.
  • a method for manufacturing a light diffusion sheet according to the present disclosure is a method for manufacturing a light diffusion sheet according to the present disclosure described above, wherein the line speed is 10 m/min or more and 30 m/min or less, and the compression linear pressure is 100 kgf/cm or more and 500 kgf
  • the light diffusing sheet is extrusion molded at a thickness of /cm or less.
  • the dimension Wr occupied by the curved portion of the ridge top in the arrangement direction of the recesses can be made 30% or less of the arrangement pitch P of the recesses, so that the shape of the ridge top is steep and brightness is reduced.
  • a light diffusion sheet with excellent uniformity can be manufactured.
  • the maximum height difference d between the ridgeline and a straight line connecting the intersection points of the ridgelines can be set to 1 ⁇ m or more and 10 ⁇ m or less. That is, a light diffusion sheet is obtained in which the ridge lines are recessed between the intersections of the ridge lines, and the intersections between the ridge lines are raised. For this reason, even if the light diffusion sheet and other optical sheets are laminated, the ridge lines are unlikely to come into contact with other optical sheets between the intersections of the ridgelines, making it difficult for wear and damage to occur. Since it makes point contact with other optical sheets, it is less likely to cause slippage and wear and damage. Therefore, a light diffusion sheet with excellent scratch resistance can be manufactured.
  • extrusion molding is used, so the light diffusion sheet according to the present disclosure described above can be manufactured at low cost.
  • a light diffusion sheet has a plurality of recesses formed in a substantially inverted polygonal pyramid on at least the first surface.
  • the ridgeline that partitions the plurality of recesses has a concave shape between the intersections with respect to a straight line connecting the intersections of the ridgelines.
  • the arrangement pitch of the plurality of recesses is P
  • the dimension occupied by the curved portion of the top of the ridgeline in the arrangement direction of the plurality of recesses is Wr
  • the ratio Wr/P is 0.3 or less.
  • the maximum height difference d between the straight line and the ridgeline is 1 ⁇ m or more and 10 ⁇ m or less.
  • the plurality of recesses include a recess having a substantially inverted polygonal pyramid with a rectangular top.
  • the first surface has a plurality of recesses formed in a substantially inverted polygonal pyramid, it is possible to improve brightness uniformity. Furthermore, the ridge lines that partition the recess (opening edges of the recess) cause wear and damage, and the ridge lines have a concave shape between the intersections of the ridge lines. For this reason, even when used in layers with other optical sheets or other light diffusion sheets, wear and damage are less likely to occur. Further, the dimension Wr occupied by the curved portion of the ridge top in the arrangement direction of the recesses is suppressed to 30% or less of the arrangement pitch P of the recesses.
  • the top of the ridge line can maintain a steep shape, even if the ridge line is concave between the intersection points of the ridge line, the brightness uniformity is unlikely to deteriorate.
  • the maximum height difference d between the ridgeline and the straight line connecting the intersection points of the ridgelines is set to 1 ⁇ m or more, scratch resistance is improved, and the maximum height difference d is set to 10 ⁇ m or less, suppressing a decrease in brightness uniformity. can do.
  • the top of the substantially inverted polygonal pyramid that is, the bottom of the recess
  • FIG. 1 is a cross-sectional view of a liquid crystal display device according to an embodiment.
  • FIG. 2 is a cross-sectional view of a backlight unit according to an embodiment.
  • 3 is a plan view showing an example of arrangement of light sources in the backlight unit shown in FIG. 2.
  • FIG. FIG. 1 is a perspective view of a light diffusion sheet according to an embodiment. It is a perspective view which expands and shows the recessed part formed in the light-diffusion sheet based on embodiment. It is a schematic diagram which shows an example of the shape of the X direction ridgeline which divides a recessed part in the light-diffusion sheet which concerns on embodiment.
  • FIG. 7 is a diagram showing an example of the results of measuring the shape and dimensions of the X-direction ridge line shown in FIG. 6 using a laser microscope.
  • 8 is a diagram showing an example of the results of measuring the shape and dimensions of the Y-direction ridgeline shown in FIG. 7 using a laser microscope.
  • FIG. 10 is a diagram showing an example of the results of measuring the shape, dimensions, etc. of the cross-sectional structure shown in FIG. 9 using a laser microscope.
  • FIG. FIG. 11 is a diagram showing an example of the results of measuring the shape, dimensions, etc. of the cross-sectional structure shown in FIG. 10 using a laser microscope. It is a schematic diagram which shows the shape of the apex of the recessed part (inverted quadrangular pyramid) formed in the light-diffusion sheet based on embodiment. It is a block diagram of the apparatus for measuring the scratch resistance of a light-diffusion sheet in an Example. It is a figure which shows the shape of the square pyramid on the roll used for manufacturing a light-diffusion sheet in an Example. It is a figure which shows the shape of the square pyramid on the flat plate used for manufacturing a light-diffusion sheet in a comparative example.
  • FIG. 3 is a diagram illustrating a method for investigating the proportion of linear peaks generated in concave portions formed in a light diffusion sheet in Examples.
  • the liquid crystal display device 50 of the present embodiment includes a liquid crystal display panel 5, a first polarizing plate 6 attached to the lower surface of the liquid crystal display panel 5, and a first polarizing plate 6 attached to the upper surface of the liquid crystal display panel 5. It includes a second polarizing plate 7 and a backlight unit 40 provided on the back side of the liquid crystal display panel 5 with the first polarizing plate 6 interposed therebetween.
  • the liquid crystal display panel 5 includes a TFT substrate 1 and a CF substrate 2 provided to face each other, a liquid crystal layer 3 provided between the TFT substrate 1 and the CF substrate 2, and a liquid crystal layer 3 provided between the TFT substrate 1 and the CF substrate 2.
  • a sealing material (not shown) provided in a frame shape is provided to encapsulate the liquid crystal layer 3 between them.
  • the shape of the display screen 50a of the liquid crystal display device 50 when viewed from the front (from the top of FIG. 1) is, in principle, rectangular or square; It may have any shape such as a trapezoid or an automobile instrument panel.
  • liquid crystal display device 50 in each sub-pixel corresponding to each pixel electrode, a predetermined voltage is applied to the liquid crystal layer 3 to change the alignment state of the liquid crystal layer 3, and the first polarizing plate is removed from the backlight unit 40. An image is displayed by adjusting the transmittance of the light incident through the polarizer 6 and outputting the light through the second polarizing plate 7.
  • the liquid crystal display device 50 of this embodiment can be used in various information devices (for example, in-vehicle devices such as car navigation systems, personal computers, mobile phones, personal digital assistants, portable game machines, copy machines, ticket vending machines, automatic teller machines, etc.). ) is used as a display device incorporated in.
  • information devices for example, in-vehicle devices such as car navigation systems, personal computers, mobile phones, personal digital assistants, portable game machines, copy machines, ticket vending machines, automatic teller machines, etc.
  • the TFT substrate 1 includes, for example, a plurality of TFTs provided in a matrix on a glass substrate, an interlayer insulating film provided to cover each TFT, and a plurality of TFTs provided in a matrix on the interlayer insulating film.
  • the pixel electrode includes a plurality of pixel electrodes connected to each pixel electrode, and an alignment film provided so as to cover each pixel electrode.
  • the CF substrate 2 includes, for example, a black matrix provided in a lattice shape on a glass substrate, a color filter including a red layer, a green layer, and a blue layer provided between each lattice of the black matrix, and a black matrix and a color filter.
  • the liquid crystal layer 3 is made of a nematic liquid crystal material containing liquid crystal molecules having electro-optic properties.
  • the first polarizing plate 6 and the second polarizing plate 7 each include, for example, a polarizer layer having a polarization axis in one direction, and a pair of protective layers provided to sandwich the polarizer layer.
  • the backlight unit 40 of this embodiment includes a reflective sheet 41, a plurality of small light sources 42 arranged two-dimensionally on the reflective sheet 41, and a plurality of small light sources 42 provided above the plurality of small light sources 42.
  • a first prism sheet 45 and a second prism sheet 46 are provided.
  • the laminate of the first light diffusion sheets 43 is configured by laminating two layers of the first light diffusion sheets 43 having the same structure.
  • a polarizing sheet may be provided above the second prism sheet 46.
  • the reflective sheet 41 is made of, for example, a white polyethylene terephthalate resin film, a silver vapor-deposited film, or the like.
  • the type of the small light source 42 is not particularly limited, it may be an LED element, a laser element, etc., for example, and an LED element may be used from the viewpoint of cost, productivity, etc.
  • a lens may be attached to the LED element.
  • a plurality of small light sources 42 made of LED elements of several mm square may be arranged in a two-dimensional array at regular intervals on the reflective sheet 41.
  • the small light source 42 may have a rectangular shape when viewed in plan, in which case the length of one side is 10 ⁇ m or more (preferably 50 ⁇ m or more) and 20 mm or less (preferably 10 mm or less, more preferably 5 mm or less). It may be.
  • the number of small light sources 42 arranged is not particularly limited, but when a plurality of small light sources 42 are arranged in a distributed manner, it is preferable to arrange them regularly on the reflective sheet 41.
  • Regularly arranging means arranging with a certain regularity, and this applies, for example, to arranging the small light sources 42 at equal intervals.
  • the distance between the centers of two adjacent small light sources 42 may be 0.5 mm or more (preferably 2 mm or more) and 20 mm or less.
  • Each first light diffusion sheet 43 has a base material layer 21.
  • a plurality of recesses 22 are provided on the first surface 43a (the surface facing the small light source 42) of the first light diffusion sheet 43.
  • the plurality of recesses 22 are formed into substantially inverted polygonal pyramids. In this example, the plurality of recesses 22 are formed into approximately inverted regular square pyramids. Adjacent recesses 22 are defined by ridgelines 23.
  • the arrangement pitch of the recesses 22 is, for example, about 50 ⁇ m or more and about 500 ⁇ m or less.
  • the angle between the wall surface of the recess 22 (the slope of a substantially inverted polygonal pyramid) and the sheet surface of the first light diffusion sheet 43 (virtual mirror surface without the recess 22) is, for example, 40 degrees or more and 65 degrees or less. In other words, the apex angle of the recess 22 is, for example, 50 degrees or more and 100 degrees or less.
  • the second surface 43b of the first light diffusion sheet 43 may be a mirror surface, but is preferably a matte surface in order to improve diffusivity.
  • FIG. 4 exemplifies a state in which concave portions 22 formed in a substantially inverted regular square pyramid are arranged in a 5 ⁇ 5 matrix on the first surface 43 a of the first light diffusion sheet 43 .
  • the base material layer 21 is preferably composed of, for example, polycarbonate as a base material (matrix resin) and does not contain a diffusing agent. May contain.
  • a diffusing agent any known material can be used as appropriate.
  • the first light diffusion sheet 43 has a single layer structure of the base material layer 21, but instead of this, it may have a two or more layer structure including a layer in which the recesses 22 are formed.
  • the second light diffusion sheet 44 has a matte surface on a first surface 44a (the surface facing the first prism sheet 45), and a mirror surface or a concave portion formed in a substantially inverted square pyramid shape on a second surface 44b. You can.
  • the second light diffusing sheet 44 is preferably made of polycarbonate as a base material (matrix resin), and preferably contains a diffusing agent, for example, about 0.5 to 4% by mass of the diffusing agent based on 100% by mass of the base material. May contain.
  • the second light diffusion sheet 44 is constructed by mixing 99 parts by mass of aromatic polycarbonate resin with 1 part by mass of silicone composite powder (average particle diameter: 2.0 ⁇ m) as a diffusing agent.
  • the first prism sheet 45 and the second prism sheet 46 are formed, for example, so that a plurality of grooves having an isosceles triangular cross section are adjacent to each other, and the apex angle of the prism sandwiched between a pair of adjacent grooves is The film is formed at an angle of about 90°.
  • each groove formed on the first prism sheet 45 and each groove formed on the second prism sheet 46 are arranged so as to be orthogonal to each other.
  • the first prism sheet 45 and the second prism sheet 46 may be integrally formed.
  • a PET (polyethylene terephthalate) film formed with a prism shape using a UV-curable acrylic resin may be used.
  • the DBEF series manufactured by 3M Co., Ltd. may be used as the polarizing sheet.
  • the polarizing sheet improves the brightness of the display screen 50a by preventing the light emitted from the backlight unit 40 from being absorbed by the first polarizing plate 6 of the liquid crystal display device 50.
  • a plurality of recesses 22 are formed on the first surface (the surface facing the small light source 42) 43a of the first light diffusion sheet 43, but instead of or in addition to this, a plurality of recesses 22 may be formed.
  • a plurality of other recesses similar to the recesses 22 may be formed on the second surface 43b of the light diffusion sheet 43.
  • the plurality of recesses 22 may be formed into a substantially inverted polygonal pyramid.
  • the plurality of recesses 22 may be regularly arranged two-dimensionally.
  • the "inverted polygonal pyramid” is preferably a triangular pyramid, a square pyramid, or a hexagonal pyramid, which can be arranged two-dimensionally without gaps.
  • a mold metal roll
  • An inverted quadrangular pyramid may also be selected.
  • the plurality of recesses 22 may be provided without gaps over the entire surface of the first light diffusion sheet 43, or may be provided at regular intervals (pitch). You can leave it there.
  • the first light diffusion sheet 43 may be composed of a base material layer 21 that does not contain a diffusing agent, for example, a base material layer 21 made of clear polycarbonate.
  • a diffusing agent for example, a base material layer 21 made of clear polycarbonate.
  • the material of the diffusing agent is not particularly limited, but inorganic particles such as silica, titanium oxide, aluminum hydroxide, barium sulfate, etc., organic particles such as acrylic, Acrylonitrile, silicone, polystyrene, polyamide, etc. may also be used.
  • the particle size of the diffusing agent may be, for example, 0.1 ⁇ m or more (preferably 1 ⁇ m or more) and 10 ⁇ m or less (preferably 8 ⁇ m or less) from the viewpoint of light diffusion effect.
  • the first light diffusion sheet 43 preferably does not contain a diffusion agent from the viewpoint of reflection and refraction effects due to the substantially inverted polygonal pyramid shape and light diffusion effects due to the diffusion agent.
  • the content of the diffusing agent may be, for example, 0.1% by mass or more (preferably 0.3% by mass or more) and 10% by mass or less (preferably 8% by mass or less), assuming that the matrix) is 100% by mass.
  • the difference between the refractive index of the diffusing agent and the refractive index of the matrix of the base material layer 21 is 0.01 or more, preferably 0.03 or more, more preferably 0.05 or more, still more preferably 0.1 or more, and most preferably may be 0.15 or more. If the difference between the refractive index of the diffusing agent and the refractive index of the matrix of the base material layer 21 is less than 0.01, the diffusion effect of the diffusing agent will be insufficient.
  • the resin serving as the matrix of the base layer 21 is not particularly limited as long as it is a material that transmits light, but examples thereof include acrylic, polystyrene, polycarbonate, MS (methyl methacrylate-styrene copolymer) resin, polyethylene terephthalate, and polyethylene naphthalate. , cellulose acetate, polyimide, etc. may also be used.
  • the thickness of the first light diffusion sheet 43 is not particularly limited, but may be, for example, 3 mm or less (preferably 2 mm or less, more preferably 1.5 mm or less, still more preferably 1 mm or less) and 0.1 mm or more. .
  • 3 mm or less preferably 2 mm or less, more preferably 1.5 mm or less, still more preferably 1 mm or less
  • 0.1 mm or more preferably 3 mm or less
  • the thickness of the first light diffusion sheet 43 exceeds 3 mm, it becomes difficult to achieve a thinner liquid crystal display.
  • the thickness of the first light diffusion sheet 43 is less than 0.1 mm, it becomes difficult to exhibit the effect of improving brightness uniformity.
  • the thickness of the recess forming layer is greater than the maximum depth of the recesses 22. have.
  • the thickness is set to be larger than 20 ⁇ m.
  • the first light diffusion sheet 43 may have a structure of three or more layers including a base layer and a recess formation layer.
  • the base material layer and the recess forming layer may be configured as independent sheets, and both may be laminated or arranged separately.
  • the method for manufacturing the first light diffusion sheet 43 is not particularly limited, and for example, an extrusion molding method, an injection molding method, or the like may be used.
  • the line speed may be set to 10 m/min or more and 30 m/min or less
  • the compression linear pressure may be set to 100 kgf/cm or more and 500 kgf/cm or less, for example.
  • the procedure for manufacturing a single-layer light diffusing sheet with an uneven surface using an extrusion method is as follows. First, pellet-shaped plastic particles to which a diffusing agent has been added (you may also mix pellet-shaped plastic particles to which no diffusing agent has been added) are put into a single-screw extruder, and are melted while heating. Knead. Thereafter, the molten resin extruded by the T-die is cooled by sandwiching it between two metal rolls, then conveyed using a guide roll, and cut into single sheets by a sheet cutter to produce a diffusion sheet.
  • the reversed shape of the roll surface is transferred to the resin, so the desired uneven shape is formed on the surface of the diffusion sheet. Can be shaped. Further, since the shape transferred to the resin is not necessarily a 100% transfer of the shape of the roll surface, the shape of the roll surface may be designed by calculating backward from the degree of transfer.
  • the pellet-shaped plastic particles necessary for forming each layer are placed in two single-screw extruders. After charging, the same procedure as described above may be carried out for each layer, and the produced sheets may be laminated.
  • a two-layer light diffusing sheet having an uneven surface on its surface may be produced as described below.
  • pellet-shaped plastic particles necessary for forming each layer are placed in each of two single-screw extruders, and are melted and kneaded while heating. Thereafter, the molten resin for each layer is put into one T-die, laminated within the T-die, and the laminated molten resin extruded by the T-die is cooled by sandwiching it between two metal rolls. Thereafter, the laminated molten resin may be transported using a guide roll and cut into flat sheets using a sheet cutter, thereby producing a two-layered diffusion sheet having an uneven surface.
  • a light diffusion sheet may be manufactured as follows by shape transfer using UV (ultraviolet light). First, a roll having an inverted shape of the uneven shape to be transferred is filled with an uncured ultraviolet curable resin, and a base material is pressed against the resin. Next, while the roll filled with ultraviolet curable resin and the base material are integrated, ultraviolet rays are irradiated to cure the resin. Next, the sheet on which the concavo-convex shape has been imprinted and transferred using the resin is peeled off from the roll. Finally, the sheet is again irradiated with ultraviolet rays to completely cure the resin, producing a diffusion sheet with an uneven surface.
  • UV ultraviolet
  • the first surface 43a of the first light diffusion sheet 43 is provided with a plurality of recesses 22 formed, for example, in the shape of a substantially inverted square pyramid.
  • the center 22a of the recess 22 is the deepest part of the recess 22.
  • the plurality of recesses 22 are arranged along the X direction (first direction) and the Y direction (second direction) that are orthogonal to each other.
  • Adjacent recesses 22 are defined by ridgelines 23.
  • the ridgeline 23 extends along the X direction and the Y direction.
  • the ridgeline 23 has a concave shape between the intersections 23a of the ridgelines 23 with respect to the straight lines Lx and Ly connecting the intersections 23a.
  • the maximum height difference d between the straight lines Lx and Ly connecting the intersection points 23a and the ridgeline 23 needs to be 1 ⁇ m or more and 10 ⁇ m or less, more preferably 1.5 ⁇ m or more and 7 ⁇ m or less, and 2. It is even more preferable that the thickness is 5 ⁇ m or more and 5 ⁇ m or less.
  • the ridge lines have a concave shape between all the intersection points 23a of the ridge lines, but it is not essential that the ridge lines 23 have a concave shape between all the intersection points 23a. . In other words, the ridgeline 23 does not have to have a concave shape between some of the intersection points 23a.
  • FIG. 6 shows an example of the shape of the ridgeline 23 extending in the X direction along the Ax-Bx line in FIG. 5 when viewed from a direction parallel to the sheet surface and perpendicular to the X direction.
  • FIG. 6 shows an example of the shape of the ridgeline 23 extending in the Y direction along the Ay-By line in FIG. 5 when viewed from a direction parallel to the sheet surface and perpendicular to the Y direction.
  • the ridgeline 23 has a concave shape between the intersections 23a with respect to a straight line Lx that connects the intersections 23a of the ridgelines 23 in the X direction.
  • the ridgeline 23 extending in the The distance (maximum height difference) is dx.
  • the ridgeline 23 has a concave shape between the intersections 23a with respect to the straight line Ly that connects the intersections 23a of the ridgelines 23 in the Y direction.
  • the ridge line 23 extending in the Y direction has a lowest point 23b at a position of Py/2 (half pitch) from the intersection 23a, and from the straight line Ly to the lowest point 23b, where the arrangement pitch of the recesses 22 in the Y direction is Py.
  • the distance (maximum height difference) is dy.
  • the arrangement pitch Px of the recesses 22 in the X direction is equal to the interval (horizontal distance) between the intersections 23a in the X direction
  • the arrangement pitch Py of the recesses 22 in the Y direction is , is equal to the interval (horizontal distance) between the intersection points 23a in the Y direction.
  • the average value of the maximum height difference dx in the X direction and the maximum height difference dy in the Y direction is the maximum height difference d, and it is necessary to set the maximum height difference d to 1 ⁇ m or more and 10 ⁇ m or less, and preferably The thickness may be set to 1.5 ⁇ m or more and 7 ⁇ m or less, more preferably 2.5 ⁇ m or more and 5 ⁇ m or less.
  • the concave shape of the ridge line 23 between the intersection points 23a is not particularly limited, but as shown in FIG. 8, for example, the ridge line 23 is Concave in a substantially arc shape ((A) in FIG. 8), a substantially parabolic shape ((B) in FIG. 8), a substantially triangular shape ((C) in FIG. 8), or a substantially trapezoidal shape ((D) in FIG. 8). You can stay there.
  • Another feature of the first light diffusion sheet 43 is that when the arrangement pitch of the recesses 22 is P and the dimension occupied by the curved portion of the top of the ridgeline 23 in the arrangement direction of the recesses 22 is Wr, the ratio Wr/P is 0. It is necessary that it is 3 or less, more preferably 0.2 or less, and even more preferably 0.1 or less.
  • FIG. 9 shows an example of the cross-sectional structure of the first light diffusion sheet 43 taken along the line Cx-Dx in FIG. 5, and FIG. 10 shows an example of the cross-sectional structure of the first light diffusion sheet 43 taken along the line Cy-Dy in FIG. show.
  • FIG. 9 shows the first point passing through the center 22a of the recesses 22 adjacent to each other in the X direction and the midpoint between the intersections 23a on the ridge lines 23 located between the recesses 22 and perpendicular to the sheet surface.
  • a cross-sectional configuration when the light diffusion sheet 43 is cut is shown.
  • FIG. 10 shows the first light diffusing sheet in a plane that passes through each center 22a of the recesses 22 adjacent in the Y direction and the intersection 23a of the ridgeline 23 located between the recesses 22 and is perpendicular to the sheet surface. 43 is shown.
  • the interval (horizontal distance) between the centers 22a of the recesses 22 adjacent in the X direction is equal to the arrangement pitch Px of the recesses 22 in the X direction.
  • the dimension that the curved portion at the top of the ridgeline 23 occupies in the X direction is Wrx.
  • the dimensions occupied in the X direction by the linear portions of the respective wall surfaces (slopes of inverted quadrangular pyramids) of the recesses 22 adjacent to each other with the ridge line 23 in between are Wsx1 and Wsx2.
  • the angle between the wall surface of the recess 22 (the slope of the inverted quadrangular pyramid) and the sheet surface in the X direction is ⁇ x.
  • the height from the center 22a of the recess 22 to the apex (the midpoint between the intersections 23a) of the ridgeline 23 (the ridgeline 23 extending in the Y direction) is Hx.
  • the interval (horizontal distance) between the centers 22a of the recesses 22 adjacent to each other in the Y direction is equal to the arrangement pitch Py of the recesses 22 in the Y direction.
  • the dimension that the curved portion at the top of the ridge line 23 occupies in the Y direction is Wry.
  • the dimensions occupied in the Y direction by straight portions of the wall surfaces (slopes of inverted quadrangular pyramids) of the recesses 22 adjacent to each other with the ridge line 23 in between are Wsy1 and Wsy2.
  • the angle between the wall surface of the recess 22 (the slope of the inverted quadrangular pyramid) and the sheet surface in the Y direction is ⁇ y.
  • the height from the center 22a of the recess 22 to the apex (the midpoint between the intersections 23a) of the ridgeline 23 (the ridgeline 23 extending in the X direction) is Hy.
  • the average value of the arrangement pitch Px and the arrangement pitch Py is set to P
  • the average value of the dimension Wrx and the dimension Wry is set to Wr
  • the ratio Wr/P is 0.3. It is necessary to set it to below, preferably 0.2 or less, more preferably 0.1 or less.
  • FIG. 11 shows an example of the results of measuring the shape and dimensions of the X-direction ridgeline shown in FIG. 6 using a laser microscope
  • FIG. 12 shows an example of the results of measuring the shape and dimensions of the Y-direction ridgeline shown in FIG. 7 using a laser microscope
  • FIG. 13 shows an example of the results of measuring the shape, dimensions, and angle of the cross-sectional structure shown in FIG. 9 using a laser microscope
  • FIG. 14 shows the shape, dimensions, and angle of the cross-sectional structure shown in FIG. An example of the results measured using a microscope is shown.
  • the "horizontal distance between the intersection points 23a" in each of the X direction and the Y direction was determined as Px and Py.
  • the arrangement pitches Px and Py can also be easily and accurately determined by the method of measuring the "horizontal distance between the intersection points 23a.”
  • a further feature of the first light diffusion sheet 43 is that the plurality of recesses 22 are formed by forming an approximately inverted polygonal pyramid (approximately an inverted quadrangular pyramid in this example) with a linear apex 22b, as shown in FIG. 15, for example. It is to include.
  • the plurality of recesses 22 include recesses 22 in which the apex portions 22b of substantially inverted quadrangular pyramids are formed in a dot shape, and recesses 22 in which apex portions 22b of substantially inverted quadrangular pyramids are formed in a linear shape.
  • the apex 22b of a substantially inverted quadrangular pyramid When the apex 22b of a substantially inverted quadrangular pyramid is formed in the shape of a point in the recess 22, the apex 22b becomes the center 22a of the recess 22.
  • the tops 22b of all the recesses 22 may be formed in a linear shape.
  • the linear top part 22b is shown enlarged more than it actually is.
  • (a) of FIG. 15 shows how the top part 22b extends linearly in the X direction
  • (b) of FIG. 15 shows how the top part 22b extends linearly in the Y direction.
  • the first light diffusion sheet 43 of this embodiment has a plurality of recesses 22 formed in a substantially inverted polygonal pyramid on at least the first surface 43a.
  • the ridgeline 23 that partitions the plurality of recesses 22 has a concave shape between the intersections 23a with respect to a straight line connecting the intersections 23a of the ridgelines 23.
  • the ratio Wr/P is 0.3 or less.
  • the maximum height difference d between the ridge lines 23 and the ridge lines 23 is 1 ⁇ m or more and 10 ⁇ m or less.
  • the plurality of recesses 22 include a recess 22 formed into a substantially inverted polygonal pyramid having a linear apex 22b.
  • the uniformity of brightness can be improved.
  • the ridge lines 23 (opening edges of the recess 22) that partition the recess 22 cause wear and damage, and the ridge lines 23 have a concave shape between the intersection points 23a of the ridge lines 23. For this reason, even when used in layers with other optical sheets or other light diffusion sheets, wear and damage are less likely to occur. Further, the dimension Wr occupied by the curved portion of the top of the ridge line 23 in the arrangement direction of the recesses 22 is suppressed to 30% or less of the arrangement pitch P of the recesses.
  • the top of the ridgeline 23 can maintain a steep shape, even if the ridgeline 23 is concave between the intersection points 23a, the luminance uniformity is unlikely to deteriorate. Furthermore, since the maximum height difference d between the straight line connecting the intersection points 23a and the ridgeline 23 is set to 1 ⁇ m or more, scratch resistance is improved, and the maximum height difference d is set to 10 ⁇ m or less, suppressing a decrease in brightness uniformity. can do. Furthermore, since the apex 22b of the recess 22 (approximately an inverted polygonal pyramid) is formed in a linear shape, it is possible to easily mass-produce the first light diffusion sheet 43 in which deterioration in brightness uniformity is suppressed.
  • both scratch resistance and brightness uniformity are further improved.
  • both scratch resistance and brightness uniformity can be improved.
  • the maximum height difference d is 2.5 ⁇ m or more and 5 ⁇ m or less, both scratch resistance and brightness uniformity can be further improved.
  • the ratio Wr/P is defined as P, the arrangement pitch of the plurality of recesses 22, and Wr, the dimension occupied by the curved portion of the top of the ridgeline 23 in the arrangement direction of the plurality of recesses 22. , 0.2 or less, luminance uniformity can be further improved. In this case, when the ratio Wr/P is 0.1 or less, brightness uniformity can be further improved.
  • the arrangement pitch P of the plurality of recesses 22 is 50 ⁇ m or more and 500 ⁇ m or less, and the angle between the wall surface of the plurality of recesses 22 (that is, the slope of an approximately inverted polygonal pyramid) and the sheet surface is
  • the angle is 40 degrees or more and 65 degrees or less, brightness uniformity can be improved.
  • the scratch resistance can be improved. can.
  • the plurality of recesses 22 may be formed into a substantially inverted quadrangular pyramid shape.
  • the ridgeline 23 may extend in the X direction (first direction) and the Y direction (second direction).
  • the maximum height difference d between the straight line connecting the intersection points 23a and the ridge line 23 is the maximum height difference dx between the straight line and the ridge line 23 in the X direction
  • the maximum height difference dy between the straight line and the ridge line 23 in the Y direction. may be the average value.
  • the arrangement pitch P of the plurality of recesses 22 may be an average value of the arrangement pitch Px of the recesses 22 in the X direction and the arrangement pitch Py of the recesses 22 in the Y direction.
  • the dimension Wr occupied by the curved portion of the top of the ridgeline 23 in the arrangement direction of the recesses 22 is the dimension Wrx occupied by the curved portion of the top of the ridgeline 23 in the X direction, and the dimension occupied by the curved portion of the top of the ridgeline 23 in the Y direction. It may be an average value with Wry. In this way, it becomes easy to manufacture a light diffusing sheet with excellent scratch resistance and brightness uniformity.
  • the plurality of recesses 22 are provided only on the first surface 43a, and the second surface 43b is a matte surface to suppress wear and damage on the second surface 43b. At the same time, brightness uniformity can be further improved.
  • the ratio of the recesses 22 whose top portions 22b are linearly formed among the plurality of recesses 22 may be 10% or more. Alternatively, the ratio may be 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 100%.
  • the backlight unit 40 of this embodiment is a backlight unit 40 that is incorporated into a liquid crystal display device 50 and guides light emitted from a light source 42 toward a display screen 50a, and is provided between the display screen 50a and the light source 42.
  • the first light diffusion sheet 43 of this embodiment is provided.
  • the backlight unit 40 of this embodiment since it includes the first light diffusion sheet 43 of this embodiment, the brightness uniformity can be improved, and the first light diffusion sheets 43 can be stacked together or the first light diffusion sheet 43 can be stacked. Even if the light diffusion sheet 43 and other optical sheets are laminated, damage can be suppressed.
  • the brightness uniformity is further improved. improves.
  • the liquid crystal display device 50 of this embodiment includes the backlight unit 40 of this embodiment and a liquid crystal display panel 5.
  • liquid crystal display device 50 of the present embodiment since the backlight unit 40 of the present embodiment is provided, brightness uniformity can be improved, and the first light diffusion sheet 43 or by stacking the first light diffusion sheet 43 and another optical sheet, damage can be suppressed.
  • the light diffusion sheet manufacturing method of this embodiment is a method of manufacturing the first light diffusion sheet 43 of this embodiment, in which the line speed is 10 m/min or more and 30 m/min or less, and the compression linear pressure is 100 kgf/cm or more and 500 kgf
  • the first light diffusion sheet 43 is extrusion molded at a density of /cm or less.
  • the dimension Wr occupied by the curved portion of the top of the ridgeline 23 in the arrangement direction of the recesses 22 can be made 30% or less of the arrangement pitch P of the recess 22.
  • the first light diffusion sheet 43 having a steep shape and excellent brightness uniformity can be manufactured.
  • the maximum height difference d between the straight line connecting the intersection points 23a and the ridge line 23 can be set to 1 ⁇ m or more and 10 ⁇ m or less. That is, the first light diffusion sheet 43 is obtained in which the ridge line 23 is recessed between the intersection points 23a and the portion of the intersection point 23a is higher. Therefore, even if the first light diffusion sheets 43 are laminated together or the first light diffusion sheet 43 and another optical sheet are laminated, the ridge line 23 is unlikely to come into contact with other optical sheets etc. between the intersection points 23a. , wear and damage are less likely to occur, and since there is point contact with other optical sheets etc. at the intersection 23a, slippage is less likely to occur and wear and damage is less likely to occur. Therefore, the first light diffusion sheet 43 with excellent scratch resistance can be manufactured.
  • the first light diffusion sheet 43 of this embodiment can be manufactured at low cost.
  • the apex 22b of the recess 22 (substantially inverted polygonal pyramid) is formed in a linear shape, but instead of this, the planar shape of the apex 22b is formed in a rectangular shape.
  • the same effects as in this embodiment can be obtained.
  • dy (the maximum value of the distance between the straight line connecting the intersection points 23a and the ridgeline 23) and its average value d
  • heights Hx and Hy (the height from the center 22a of the recess 22 to the apex of the ridgeline 23) shown in FIGS. 9 and 10.
  • Wrx and Wry dimensions occupied by the curved portion of the top of the ridge line 23 in the X and Y directions
  • Haze and light transmittance at a wavelength of 450 nm were measured as optical properties of the first light diffusing sheet 43 of each Example described below.
  • Haze was produced using HZ-2 manufactured by Suga Test Instruments Co., Ltd., in accordance with JIS K-7105. It was measured.
  • the light transmittance at a wavelength of 450 nm was measured using V-670 manufactured by JASCO Corporation, with light incident on the surface (first surface 43a) having the recess 22 formed in an inverted regular square pyramid.
  • the apparatus shown in FIG. 16 was used for the scratch resistance test of the first light diffusion sheet 43 of each Example described later.
  • the lower surface of the first light diffusion sheet 43, which is a fixed sample is the first surface 43a (the surface in which the inverted regular square pyramid-shaped recesses 22 are formed)
  • the first light diffusion sheet 43, which is a moving sample is The moving sample and the fixed sample were sequentially stacked on a glass plate with the upper surface as the second surface 43b (matte surface), and a weight of 516 gf was placed on a circular area of 20 mm in diameter from above at a take-up speed of 10 mm/
  • the moving sample was moved 100 mm while being picked up at a speed of seconds, and the degree of damage on the friction surfaces between the moving sample and the fixed sample was visually inspected and determined. Inspections and judgments were performed on both the lower surface of the fixed sample (the surface where the inverted square pyramid concavities 22 are formed) and the upper surface (matte surface
  • AA The light diffusion sheet has no visible scratches and has excellent scratch resistance.
  • Many scratches were clearly visible even by visual inspection, and the light diffusion sheet had poor scratch resistance.
  • a second light diffusing sheet 44 with a thickness of 120 ⁇ m made of the same aromatic polycarbonate resin and the same diffusing agent in the same composition as in Example 18, which will be described later, is placed.
  • the second surfaces 44b which are mirror surfaces, are stacked one on top of the other, with the second surfaces 44b facing the light source 42 side.
  • the surface roughness Ra on the matte surface (first surface 44a) side was 1.6 ⁇ m
  • the surface roughness Ra on the mirror surface (second surface 44b) side was 0.4 ⁇ m.
  • Two prism sheets 45 and 46 were placed on top of the second light diffusion sheet 44. Luminance and luminance uniformity were measured using the above configuration.
  • the LED array used had an LED pitch of 3 mm, and the LED (small light source 42) used was a blue LED manufactured by Cree (product number XPGDRY-L1-0000-00501).
  • the evaluation criteria for brightness uniformity are as follows.
  • AA A light diffusion sheet with a brightness uniformity of 210 or more, at a level where no brightness unevenness is visible to the naked eye, and which exhibits the most excellent uniformity.
  • A A light diffusion sheet exhibiting excellent uniformity with brightness uniformity of 200 or more and less than 210, with almost no brightness spots visible to the naked eye.
  • B Luminance uniformity is 190 or more and less than 200, and brightness spots are slightly visible by visual observation, but the light diffusion sheet shows uniformity at an acceptable level.
  • C Luminance uniformity is 180 or more and less than 190, and brightness unevenness is visible with the naked eye, but the light diffusion sheet shows uniformity at the minimum acceptable level.
  • X Luminance uniformity is less than 180, brightness spots are clearly visible to the naked eye, and it is a light diffusion sheet with poor uniformity.
  • the evaluation criteria for brightness are as follows.
  • B An overall excellent light diffusion sheet that is rated B or higher in both the scratch resistance test results for both the inverted square pyramid surface and the matte surface, and the brightness uniformity evaluation results (however, AA and A rated products are ).
  • C A usable light diffusion sheet that has overall performance that is at least C or above in the scratch resistance test results for both the inverted square pyramid surface and the matte surface, and the brightness uniformity evaluation results. (Excluding products rated AA, A, and B).
  • It is a comprehensively inferior light diffusing sheet with an ⁇ rating in one or more of the evaluation results of the scratch resistance test on both the inverted square pyramid surface and the matte surface and the evaluation result of brightness uniformity.
  • the molten resin extruded from the T-die is sandwiched between the two rolls and cooled while transferring the shape.
  • a single-layer light-diffusing sheet with a thickness of 180 ⁇ m was prepared by extrusion molding.
  • the molding conditions were such that the line speed was 17 m/min, the compression force between the two rolls (compression linear pressure) was 280 kgf/cm, and the polycarbonate resin was A light-diffusing sheet was obtained under resin temperature conditions (230 to 310° C.) that provided good shape transfer and good peeling of the sheet from the roll.
  • the shape of the recesses (inverted square pyramids) 22 formed in the first light diffusion sheet 43 of Example 1 produced as described above was observed using a laser microscope VK-100 manufactured by Keyence Corporation. .
  • the cross-sectional shape of the ridgeline 23 of the recess 22 formed in an inverted regular square pyramid (the cross-sectional shape shown in FIGS. 6, 7, 9, and 10)
  • the maximum height difference dx shown in FIGS. 6 and 7, dy the maximum value of the distance between the straight line connecting the intersection points 23a and the ridgeline 23
  • its average value d the heights Hx and Hy (the height from the center 22a of the recess 22 to the apex of the ridgeline 23) shown in FIGS. 9 and 10.
  • Example 3 In the method for manufacturing the first light diffusing sheet 43 of Example 3, as the regular square pyramid-shaped roll of the two metal rolls, a regular square pyramid shape with a height of 59.6 ⁇ m, a pitch of 100 ⁇ m, and an apex angle of 80 degrees is used. The same conditions as in Example 1 were used, as shown in Table 1, except that a roll held on the surface was used.
  • the press plate is sandwiched between the two molds and placed in a press machine equipped with a heating and cooling device, under conditions of a press plate temperature of 250°C and a surface pressure of 200 kg/ cm2 . Pressed for 20 minutes. Thereafter, the press plate temperature was cooled to 20° C. while the pressure was maintained, and the pressure was maintained until the resin plate was sufficiently cooled, and a light diffusion sheet having a thickness of 180 ⁇ m shown in Table 1 was produced by compression molding.
  • Comparative Example 2 a pressed original plate was made in the same manner as in Comparative Example 1, and then, in the same square pyramid shape as in Example 2, the valley part of the pyramid was formed into a curved surface with a radius of curvature of 4.2 ⁇ m as in Comparative Example 1. Heating, pressurizing, and cooling with a press were carried out under the same conditions as in Comparative Example 1, except that a flat plate mold with a rounded shape on the surface was used, and a mold with a thickness of 180 ⁇ m as shown in Table 1 was obtained. A light diffusion sheet was created by compression molding.
  • Comparative Example 3 a pressed original plate was made in the same manner as in Comparative Example 1, and then, in the same square pyramid shape as in Example 3, the valley of the pyramid was shaped to have a radius of curvature of 4.2 ⁇ m in the same manner as in Comparative Examples 1 and 2.
  • the molds shown in Table 1 were heated, pressurized, and cooled using a press under the same conditions as Comparative Examples 1 and 2, except that a flat plate mold with a rounded surface shape was used.
  • a light diffusion sheet with a thickness of 180 ⁇ m was created by compression molding.
  • Comparative Examples 1 to 3 although a curved surface shape with a radius of curvature of about 4.2 ⁇ m is provided near the apex of the ridge line 23, the maximum height difference d is 0 ⁇ m, there is no dent in the ridge line 23, and there is no concavity between the intersection points 23a.
  • the ridgeline 23 has a horizontal shape. For this reason, scratches caused by the ridge lines 23 occurred in the scratch resistance test, resulting in poor scratch resistance.
  • Example 1 and Comparative Example 1 Example 2 and Comparative Example 2, and Example 3 and Comparative Example 3
  • the ratio Wr/P is all 10% or less, and the steep shape of the top of the ridgeline 23 is Therefore, equally good evaluation results were obtained regarding brightness uniformity.
  • Example 4 to 10 and Comparative Example 4> light diffusion sheets were produced in the same manner as in Example 1, except that among the molding conditions, the line speed was changed from 15 m/min to 4 m/min.
  • Example 8 to 10 and Comparative Example 4 as shown in Table 4, among the molding conditions, the compression line pressure between the two rolls was changed from 180 kgf/cm to 40 kgf/cm, except for Example 1.
  • a light diffusion sheet was prepared using the same method.
  • the ratio Wr/P is all 30% or less, and the steep shape of the top of the ridgeline 23 is maintained, so in terms of brightness uniformity, the evaluation results are equally good. was gotten.
  • Examples 11 to 14> In the manufacturing method of the first light diffusion sheet 43 of Example 11, as the regular square pyramid-shaped roll of the two metal rolls, a square pyramid shape with a height of 90.0 ⁇ m, a pitch of 180 ⁇ m, and an apex angle of 90 degrees is used. A light diffusion sheet having a thickness of 200 ⁇ m shown in Table 7 was produced using almost the same conditions as in Example 1, except that a roll held on the surface was used.
  • the manufacturing method of the first light diffusion sheet 43 of Example 13 as the square pyramid-shaped roll of the two metal rolls, a square pyramid shape with a height of 107.3 ⁇ m, a pitch of 180 ⁇ m, and an apex angle of 80 degrees is used.
  • a light diffusion sheet having a thickness of 200 ⁇ m shown in Table 7 was produced using almost the same conditions as in Example 1, except that a roll held on the surface was used.
  • Example 15 to 17 the same rolls as in Example 13 were used, and as shown in Table 7, the line speed was changed from 15 m/min to 11 m/min among the molding conditions to form a light diffusion film with a thickness of 200 ⁇ m. A sheet was produced.
  • Comparative Example 5 a pressed original plate was made in the same manner as in Comparative Example 1, and then, in the same square pyramid shape as in Example 11, the valley part of the pyramid was formed with a radius of curvature of 4.2 ⁇ m as in Comparative Example 1. Heating, pressurizing, and cooling with a press were performed under the same conditions as in Comparative Example 1, except that a flat plate mold with a curved surface shape was used, and a thickness of 200 ⁇ m as shown in Table 7 was obtained.
  • a light diffusing sheet was prepared by compression molding.
  • the ratio Wr/P is all 10% or less, and the top of the ridgeline 23 is kept in an even steeper shape, so the brightness uniformity is also particularly good.
  • the evaluation results were obtained.
  • the maximum height difference d was 5.0 ⁇ m or less, no deterioration in brightness uniformity due to the concave shape of the ridgeline 23 between the intersections 23a was observed.
  • Example 11 was rated “A”
  • Examples 12 to 17 were the most excellent “AA”
  • Comparative Example 5 was rated "x”.
  • Example 18 99 parts by mass of the aromatic polycarbonate resin used in Example 1 was mixed in advance with 1 part by mass of silicone composite powder (average particle size 2.0 ⁇ m) as a diffusing agent and charged into an extruder.
  • a light diffusing sheet having a thickness of 180 ⁇ m shown in Table 10 was produced using the same conditions as in Example 1, except that melting and kneading was performed.
  • Example 19 the same method as in Example 18 was used, but as shown in Table 10, the line speed was changed from 15 m/min to 9 m/min among the molding conditions, and light diffusion with a thickness of 180 ⁇ m was performed. A sheet was produced.
  • the ratio Wr/P is within the range of 6 to 13%, and the steep shape of the top of the ridgeline 23 is maintained, so that the brightness uniformity has good evaluation results. was gotten.
  • Example 24 the aromatic polycarbonate resin used in Example 1 and the molding conditions shown in Table 13 were used, and as one of the two metal rolls, (A) and (B) in FIG.
  • a roll having the shape shown in (a square pyramid shape with a height of 50 ⁇ m, a pitch of 100 ⁇ m, and an apex angle of 90 degrees) on its surface is used, and the other roll has a random mat shape (surface roughness Ra 1.
  • a light diffusing sheet having a thickness of 120 ⁇ m shown in Table 13 was prepared using a roll having a thickness of 6 ⁇ m) on the surface.
  • Example 25 the same diffusing agent-containing aromatic polycarbonate resin as in Example 18 and the molding conditions shown in Table 13 were used, and the same two metal rolls as in Example 24 were used to produce the thickness shown in Table 13. A light diffusion sheet with a diameter of 120 ⁇ m was produced.
  • Example 26 the same aromatic polycarbonate resin as in Example 24 and the molding conditions shown in Table 13 were used, and one of the two metal rolls used in Example 13 had a height of 107 mm.
  • a roll with a square pyramid shape of 3 ⁇ m and a pitch of 180 ⁇ m and an apex angle of 80 degrees was used, and the other roll had a random matte shape (surface roughness Ra 2.0 ⁇ m) on the surface.
  • a light diffusion sheet having a thickness of 200 ⁇ m shown in Table 13 was produced using a roll.
  • Comparative Example 1 As described above (see Table 2, etc.), the maximum height difference d is 0 ⁇ m, there is no dent in the ridge line 23, and the ridge line 23 has a horizontal shape between the intersection points 23a, so that the ridge line 23 has a horizontal shape as shown in FIG. As shown, in the scratch resistance test on the inverted quadrangular pyramid surface (lower surface of the fixed sample), scratches caused by the ridge lines 23 were clearly generated, and the scratch resistance was poor.
  • the first light diffusion sheet 43 has a relatively thin thickness, so a relatively large depression is formed in the ridgeline 23, and in Example 26, the inverted quadrangular pyramid of the depression 22 is different from that in comparison. Due to the large target, a relatively large depression is created in the ridge line 23.
  • the ratio Wr/P is within the range of about 5 to 11%, and the steep shape of the top of the ridge line 23 is maintained, so the brightness uniformity is evaluated as good. The results were obtained.
  • Example 24 was rated “A”
  • Examples 25 and 27 were rated “C”
  • Example 26 was the best, rated "AA”.
  • Table 16 shows the results of examining the shapes of the tops of the inverted quadrangular pyramids for five samples S1 to S5 in which the recesses 22 have different inverted quadrangular pyramid shapes among the first light diffusion sheets 43 of the embodiments described above.
  • the tops of the inverted square pyramids are formed in a linear shape at a rate of 50% or more in both the X direction and the Y direction (see FIG. 15). Do you get it. That is, in the first light diffusing sheet 43 of the embodiment, the plurality of recesses 22 include a recess 22 in which the top of an inverted quadrangular pyramid is formed in a dot shape, and a recess 22 in which the top of an inverted quadrangular pyramid is formed in a linear shape. It was found to contain.
  • the proportion of the tops of the inverted quadrangular pyramids formed in a linear shape is determined by three pyramid rolls having the same design dimensions ( The test was conducted using the method shown in FIG. 21 using a roll having a square pyramid shape on its surface. Specifically, a pyramid roll was used in which square pyramids (pyramid shapes) having a height of 50 ⁇ m and an apex angle of 90 degrees were two-dimensionally arranged on the surface at a pitch of 100 ⁇ m.
  • a first light of tablet size (length 267 mm in the roll rotation direction (MD direction), length 200 mm in the width direction (TD direction)) is emitted from the base material sheet corresponding to one round of the pyramid roll.
  • each sample was divided into 20 areas (5 (MD direction) x 4 (TD direction)) with a size of approximately 50 mm x 50 mm, and the shape of the top of six arbitrary adjacent recesses 22 was examined for each area. .
  • Tables 17 to 19 show the results of examining the incidence of linear tops for 15 samples each made using three pyramid rolls (hereinafter also referred to as first to third rolls).
  • Tables 20 to 21 show the results of investigating the incidence of linear apexes by dividing them into those with a size of 1.0 ⁇ m or less and those with a size of more than 1.0 ⁇ m for samples made with the first and third rolls. Shown below.
  • the shape measurement laser microscope VK-X110 of the shape analysis laser microscope VK-X series manufactured by Keyence Corporation the analysis software is application (version 3.6.1.0)
  • the shape profile of a cross section passing through the top of the inverted quadrangular pyramid (the bottom of the recess 22) and perpendicular to the ridgeline 23 of the recess 22 is measured in each of the X direction and the Y direction (see FIG. 15), and the profile is obtained.
  • the dimensions of the top were determined from the shape profile obtained.
  • the top of the inverted square pyramid is 0.1 ⁇ m or more and the other is less than 0.1 ⁇ m, it is determined that the top is linear, and the longer dimension is It is assumed that the dimensions of the top are the dimensions of the top. Furthermore, if both the X-direction dimension and the Y-direction dimension were less than 0.1 ⁇ m, it was determined that the apex was a dotted top even if the X-direction dimension and the Y-direction dimension were different.
  • the ratio of the recesses 22 in which the top portions 22b are linearly formed among the plurality of recesses 22, that is, the incidence of linear tops is 10. % or more.
  • the occurrence rate of linear peaks is 20% or more except for one sample, and the occurrence rate of linear peaks is 40% or more in many samples. % or more, the majority had a linear apex occurrence rate of 60% or more, and nearly half had a linear apex occurrence rate of 80% or more. Furthermore, when the first roll was used, as shown in Table 20, nearly half of the samples had a linear apex occurrence rate of 50% or more with a size of more than 1.0 ⁇ m.
  • the incidence of linear peaks is 70% or more in all samples, and the incidence of linear peaks is 90% or more except for one sample, The incidence of linear peaks was 100% in the majority of samples.
  • the incidence of linear peaks was 30% or more in many samples, and the majority had a linear peak occurrence rate of 50% or more. Further, when the third roll was used, as shown in Table 21, there was one sample in which the incidence of linear peaks with a size of more than 1.0 ⁇ m was 50% or more.
  • the top portion 22b of the recess 22 may be formed in a rectangular shape.
  • the top 22b of the recess 22 is rectangular means that the top of the inverted quadrangular pyramid has different dimensions in the X direction and in the Y direction, and both dimensions are 0.1 ⁇ m or more. means.
  • the difference between the X direction dimension and the Y direction dimension may be 10% or more of the longer dimension.
  • the dimensional difference may be 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more of the longer dimension.
  • the longer dimension of the X direction dimension and the Y direction dimension is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and preferably 3 ⁇ m or less. More preferably, the thickness is 2 ⁇ m or less.
  • a modified backlight unit shown in FIG. 40 instead of the combination of the two-layered first light diffusion sheet 43 and the second light diffusion sheet 44 in the backlight unit 40 of the above-described embodiment shown in FIG. 2, a modified backlight unit shown in FIG. 40, three first light diffusion sheets 43 may be stacked, or four or more first light diffusion sheets 43 may be stacked.
  • the display screen 50a that is, the first The light diffusing sheet 43 closest to the prism sheet 45
  • the other light diffusing sheets 43 may not substantially contain any diffusing agent. Thereby, brightness uniformity can be further improved.

Abstract

光拡散シート43は、略逆多角錐に形成された複数の凹部22を少なくとも第1面43aに有する。複数の凹部22を区画する稜線23は、稜線23の交点23a同士を結ぶ直線に対して、当該交点23a間において凹んだ形状を有する。複数の凹部22の配列ピッチをPとし、複数の凹部22の配列方向において稜線23の頂部の曲線部分が占める寸法をWrとすると、比率Wr/Pは、0.3以下である。稜線23の交点23a同士を結ぶ直線と、稜線23との最大高低差dは、1μm以上10μm以下である。複数の凹部22は、略逆多角錐の頂部が線状に形成された凹部22を含む。

Description

光拡散シート、バックライトユニット、液晶表示装置、情報機器、及び光拡散シートの製造方法
 本開示は、光拡散シート、バックライトユニット、液晶表示装置、情報機器、及び光拡散シートの製造方法に関するものである。
 近年、スマートフォンやタブレット端末などの各種情報機器の表示装置として、液晶表示装置(以下、液晶ディスプレイということもある。)が広く利用されている。液晶ディスプレイのバックライトとしては、光源が液晶パネルの背面に配置される直下型方式、又は、光源が液晶パネルの側面の近傍に配置されるエッジライト方式が主流となっている。
 直下型バックライトを採用する場合、発光面においてLED(Light Emitting Diode)等の光源のイメージを消して面内輝度の均一性を上げるために、光拡散部材(光拡散板、光拡散シート、光拡散フィルム)が使用される。
 特許文献1に開示された直下型バックライトでは、輝度均一性を向上させるために、逆多角錐状(逆ピラミッド状)又は逆多角錐台状の複数の凹部が設けられた光拡散板が用いられている。特許文献1には、光拡散板と他の光学フィルムとの積層構造において、輸送時の振動に起因して光拡散板や他の光学フィルムが磨耗して損傷することを抑制するために、光拡散板の凹部の内側面を、開口縁部において、曲率中心が凹部の深さ方向側に位置する曲面にすることが開示されている。
特開2010-117707号公報
 しかしながら、特許文献1に開示された直下型バックライトでは、光拡散板や他の光学フィルムの損傷を十分に抑制することができない。
 そこで、本開示は、輝度均一性を向上させながら、積層しても損傷が生じにくい光拡散シートを提供することを目的とする。
 前記の目的を達成するために、本開示に係る光拡散シートは、略逆多角錐に形成された複数の凹部を少なくとも第1面に有する。前記複数の凹部を区画する稜線は、当該稜線の交点同士を結ぶ直線に対して、当該交点間において凹んだ形状を有する。前記複数の凹部の配列ピッチをPとし、前記複数の凹部の配列方向において前記稜線の頂部の曲線部分が占める寸法をWrとすると、比率Wr/Pは、0.3以下である。前記直線と前記稜線との最大高低差dは、1μm以上10μm以下である。前記複数の凹部は、略逆多角錐の頂部が線状に形成された凹部を含む。
 本開示に係る光拡散シートによると、少なくとも第1面に、略逆多角錐に形成された複数の凹部を有するため、輝度均一性を向上させることができる。また、凹部を区画する稜線(凹部の開口縁)が摩耗や損傷の原因となるところ、稜線の交点間で稜線が凹んだ形状を有する。このため、他の光学シートや他の光拡散シートと重ねて使用しても、摩耗や損傷が生じにくくなる。また、凹部の配列方向において稜線頂部の曲線部分が占める寸法Wrを、凹部の配列ピッチPの30%以下に抑制している。このため、稜線頂部が急峻な形状を保てるので、稜線の交点間で稜線を凹ませても輝度均一性が低下しにくい。また、稜線の交点同士を結ぶ直線と稜線との最大高低差dを1μm以上とするため、耐傷付き性が向上すると共に、最大高低差dを10μm以下とするため、輝度均一性の低下を抑制することができる。さらに、略逆多角錐の頂部(つまり凹部の底部)が線状に形成されるため、輝度均一性の低下が抑制された光拡散シートの量産を容易に行うことができる。
 尚、本開示に係る光拡散シートにおいて、通常の形状転写技術により幾何学的に厳密な逆多角錐の凹部を形成することが難しいことを考慮して、「略逆多角錐」の表記を用いているが、これらの表記は、真正の又は実質的に逆多角錐とみなせる形状を含むことは言うまでもない。
 また、本開示に係る光拡散シートにおいては、稜線の全ての交点間で稜線が凹んだ形状であることが好ましいが、全ての交点間で稜線が凹んだ形状を有することは必須ではない。言い換えると、一部の交点間で稜線が凹んだ形状を有していなくてもよい。
 また、本開示において、「光拡散シート」は、板状の「光拡散板」や膜状の「光拡散フィルム」を包含するものとする。
 また、本開示において、「光学シート」とは、拡散、集光、屈折、反射などの光学的諸機能を有するシートを意味し、「光拡散シート」は、「光学シート」の1つである。
 本開示に係る光拡散シートにおいて、前記最大高低差dが、1.5μm以上7μm以下であると、耐傷付き性及び輝度均一性の両方をさらに向上させることができる。この場合、前記最大高低差dが、2.5μm以上5μm以下であると、耐傷付き性及び輝度均一性の両方をより一層向上させることができる。
 本開示に係る光拡散シートにおいて、前記比率Wr/Pが、0.2以下であると、輝度均一性をさらに向上させることができる。この場合、前記比率Wr/Pが、0.1以下であると、輝度均一性をより一層向上させることができる。
 本開示に係る光拡散シートにおいて、前記配列ピッチPが、50μm以上500μm以下であり、前記複数の凹部の壁面(つまり略逆多角錐の斜面)が前記光拡散シートのシート面となす角度が、40度以上65度以下であると、輝度均一性を向上させることができる。
 本開示に係る光拡散シートにおいて、前記稜線が、前記交点間において、略放物線状、略円弧状、略三角形状又は略台形状に凹んでいると、耐傷付き性を向上させることができる。
 本開示に係る光拡散シートにおいて、前記複数の凹部は、略逆四角錐に形成されてもよい。この場合、前記稜線は、第1方向及び第2方向に延びてもよい。また、前記最大高低差dは、前記第1方向における前記直線と前記稜線との最大高低差dxと、前記第2方向における前記直線と前記稜線との最大高低差dyとの平均値であってもよい。また、前記配列ピッチPは、前記第1方向における前記複数の凹部の配列ピッチPxと、前記第2方向における前記複数の凹部の配列ピッチPyとの平均値であってもよい。また、前記寸法Wrは、前記第1方向において前記稜線の頂部の曲線部分が占める寸法Wrxと、前記第2方向において前記稜線の頂部の曲線部分が占める寸法Wryとの平均値であってもよい。このようにすると、耐傷付き性及び輝度均一性に優れた光拡散シートが製造しやすくなる。
 本開示に係る光拡散シートにおいて、複数の凹部は、前記第1面のみに設けられ、第2面は、マット面であると、第2面での摩耗や損傷を抑制しながら、輝度均一性をさらに向上させることができる。
 本開示に係る光拡散シートにおいて、前記複数の凹部のうち、前記頂部が線状に形成された凹部の比率は10%以上であってもよい。或いは、当該比率は、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、又は100%であってもよい。
 本開示に係るバックライトユニットは、液晶表示装置に組み込まれ、光源から発せられた光を表示画面の方に導くバックライトユニットであって、表示画面と光源との間に、前述の本開示に係る光拡散シートを備える。
 本開示に係るバックライトユニットによると、前述の本開示に係る光拡散シートを備えるため、輝度均一性を向上させることができると共に、光拡散シートと他の光学シートとを積層しても損傷を抑制することができる。
 本開示に係るバックライトユニットにおいて、前記光源が、前記光拡散シートから見て前記表示画面の反対側に設けられた反射シートの上に配置されると、輝度均一性がより一層向上する。
 本開示に係るバックライトユニットにおいて、前記光拡散シートは、複数枚(例えば3枚以上)積層して前記表示画面と前記光源との間に配置されてもよい。このようにすると、輝度均一性がさらに向上する。前記光拡散シートを3枚以上積層する場合、前記表示画面に最も近い光拡散シートは、拡散剤を含有し、その他の光拡散シートは、実質的に拡散剤を含有しないと、輝度均一性がより一層向上する。
 本開示に係る液晶表示装置は、前述の本開示に係るバックライトユニットと、液晶表示パネルとを備える。
 本開示に係る液晶表示装置によると、前述の本開示に係るバックライトユニットを備えるため、輝度均一性を向上させることができると共に、光拡散シートと他の光学シートとを積層しても損傷を抑制することができる。
 本開示に係る情報機器は、前述の本開示に係る液晶表示装置を備える。
 本開示に係る情報機器によると、前述の本開示に係る液晶表示装置を備えるため、輝度均一性を向上させることができると共に、光拡散シートと他の光学シートとを積層しても損傷を抑制することができる。
 本開示に係る光拡散シートの製造方法は、前述の本開示に係る光拡散シートを製造する方法であって、ライン速度が10m/分以上30m/分以下、圧縮線圧力が100kgf/cm以上500kgf/cm以下で前記光拡散シートを押出成形する。
 本開示に係る光拡散シートの製造方法によると、凹部の配列方向において稜線頂部の曲線部分が占める寸法Wrを、凹部の配列ピッチPの30%以下にできるので、稜線頂部の形状が急峻で輝度均一性に優れた光拡散シートを製造することができる。
 また、本開示に係る光拡散シートの製造方法によると、稜線の交点同士を結ぶ直線と稜線との最大高低差dを1μm以上10μm以下にできる。すなわち、稜線同士の交点間において稜線が凹んでおり、稜線同士の交点部分が高くなった光拡散シートが得られる。このため、当該光拡散シートと他の光学シートとを積層させても、稜線同士の交点間では稜線が他の光学シートと接触しにくいため、摩耗や損傷が生じにくくなり、稜線同士の交点では他の光学シートと点接触するため、滑りが生じて摩耗や損傷が生じにくくなる。従って、耐傷付き性に優れた光拡散シートを製造することができる。
 また、本開示に係る光拡散シートの製造方法によると、押出成形を用いるため、前述の本開示に係る光拡散シートを低コストで製造することができる。
 前記の目的を達成するために、本開示の他の態様に係る光拡散シートは、略逆多角錐に形成された複数の凹部を少なくとも第1面に有する。前記複数の凹部を区画する稜線は、当該稜線の交点同士を結ぶ直線に対して、当該交点間において凹んだ形状を有する。前記複数の凹部の配列ピッチをPとし、前記複数の凹部の配列方向において前記稜線の頂部の曲線部分が占める寸法をWrとすると、比率Wr/Pは、0.3以下である。前記直線と前記稜線との最大高低差dは、1μm以上10μm以下である。前記複数の凹部は、略逆多角錐の頂部が長方形状に形成された凹部を含む。
 本開示の他の態様に係る光拡散シートによると、少なくとも第1面に、略逆多角錐に形成された複数の凹部を有するため、輝度均一性を向上させることができる。また、凹部を区画する稜線(凹部の開口縁)が摩耗や損傷の原因となるところ、稜線の交点間で稜線が凹んだ形状を有する。このため、他の光学シートや他の光拡散シートと重ねて使用しても、摩耗や損傷が生じにくくなる。また、凹部の配列方向において稜線頂部の曲線部分が占める寸法Wrを、凹部の配列ピッチPの30%以下に抑制している。このため、稜線頂部が急峻な形状を保てるので、稜線の交点間で稜線を凹ませても輝度均一性が低下しにくい。また、稜線の交点同士を結ぶ直線と稜線との最大高低差dを1μm以上とするため、耐傷付き性が向上すると共に、最大高低差dを10μm以下とするため、輝度均一性の低下を抑制することができる。さらに、略逆多角錐の頂部(つまり凹部の底部)が長方形状に形成されるため、輝度均一性の低下が抑制された光拡散シートの量産を容易に行うことができる。
 本開示によると、輝度均一性を向上させながら、他の光学シートと積層しても損傷が生じにくい光拡散シートを提供することができる。
実施形態に係る液晶表示装置の断面図である。 実施形態に係るバックライトユニットの断面図である。 図2に示すバックライトユニットにおける光源の配置例を示す平面図である。 実施形態に係る光拡散シートの斜視図である。 実施形態に係る光拡散シートに形成した凹部を拡大して示す斜視図である。 実施形態に係る光拡散シートにおいて凹部を区画するX方向稜線の形状の一例を示す模式図である。 実施形態に係る光拡散シートにおいて凹部を区画するY方向稜線の形状の一例を示す模式図である。 実施形態に係る光拡散シートにおいて凹部を区画する稜線の形状のバリエーションを示す模式図である。 実施形態に係る光拡散シートを、X方向に隣り合う凹部の各中心と当該凹部間に位置する稜線の中間点とを通り且つシート面に垂直な面で切断した場合の断面構成の一例を示す模式図である。 実施形態に係る光拡散シートを、Y方向に隣り合う凹部の各中心と当該凹部間に位置する稜線の中間点とを通り且つシート面に垂直な面で切断した場合の断面構成の一例を示す模式図である。 図6に示すX方向稜線の形状、寸法をレーザー顕微鏡により測定した結果の一例を示す図である。 図7に示すY方向稜線の形状、寸法をレーザー顕微鏡により測定した結果の一例を示す図である。 図9に示す断面構成の形状、寸法等をレーザー顕微鏡により測定した結果の一例を示す図である。 図10に示す断面構成の形状、寸法等をレーザー顕微鏡により測定した結果の一例を示す図である。 実施形態に係る光拡散シートに形成した凹部(逆四角錐)の頂点の形状を示す模式図である。 実施例において光拡散シートの耐傷つき性を測定するための装置の構成図である。 実施例において光拡散シートの製造に用いたロール上の正四角錐の形状を示す図である。 比較例において光拡散シートの製造に用いた平板上の正四角錐の形状を示す図である。 実施例及び比較例の各サンプルに対して耐傷つき性試験を行った結果を示す図である。 変形例に係るバックライトユニットの断面図である。 実施例において光拡散シートに形成した凹部に線状頂部が発生した割合を調べた方法を説明する図である。
 (実施形態)
 以下、本開示の実施形態について、図面を参照しながら説明する。尚、本開示の範囲は、以下の実施形態に限定されず、本開示の技術的思想の範囲内で任意に変更可能である。
  <液晶表示装置>
 図1に示すように、本実施形態の液晶表示装置50は、液晶表示パネル5と、液晶表示パネル5の下面に貼付された第1偏光板6と、液晶表示パネル5の上面に貼付された第2偏光板7と、液晶表示パネル5の背面側に第1偏光板6を介して設けられたバックライトユニット40とを備えている。液晶表示パネル5は、互いに対向するように設けられたTFT基板1及びCF基板2と、TFT基板1とCF基板2との間に設けられた液晶層3と、TFT基板1とCF基板2との間に液晶層3を封入するために枠状に設けられたシール材(図示省略)とを備える。
 液晶表示装置50の表示画面50aを正面(図1の上方)から見た形状は、原則、長方形又は正方形であるが、これに限らず、長方形の角が丸くなった形状、楕円形、円形、台形、又は、自動車のインストルメントパネル(インパネ)などの任意の形状であってもよい。
 液晶表示装置50においては、各画素電極に対応する各サブ画素において、液晶層3に所定の大きさの電圧を印加して液晶層3の配向状態を変えると共にバックライトユニット40から第1偏光板6を介して入射した光をその透過率を調整して第2偏光板7を介して出射することにより、画像が表示される。
 本実施形態の液晶表示装置50は、種々の情報機器(例えばカーナビゲーション等の車載装置、パーソナルコンピュータ、携帯電話、携帯情報端末、携帯型ゲーム機、コピー機、券売機、現金自動預け払い機など)に組み込まれる表示装置として用いられる。
 TFT基板1は、例えば、ガラス基板上にマトリクス状に設けられた複数のTFTと、各TFTを覆うように設けられた層間絶縁膜と、層間絶縁膜上にマトリクス状に設けられ且つ複数のTFTにそれぞれ接続された複数の画素電極と、各画素電極を覆うように設けられた配向膜とを備える。CF基板2は、例えば、ガラス基板上に格子状に設けられたブラックマトリクスと、ブラックマトリクスの各格子間にそれぞれ設けられた赤色層、緑色層及び青色層を含むカラーフィルターと、ブラックマトリクス及びカラーフィルターを覆うように設けられた共通電極と、共通電極を覆うように設けられた配向膜とを備える。液晶層3は、電気光学特性を有する液晶分子を含むネマチック液晶材料等により構成される。第1偏光板6及び第2偏光板7は、例えば、一方向の偏光軸を有する偏光子層と、その偏光子層を挟持するように設けられた一対の保護層とを備える。
  <バックライトユニット>
 図2に示すように、本実施形態のバックライトユニット40は、反射シート41と、反射シート41上に2次元状に配置された複数の小型光源42と、複数の小型光源42の上側に設けられた第1光拡散シート43の積層体と、第1光拡散シート43の積層体の上側に設けられた第2光拡散シート44と、第2光拡散シート44の上側に順に設けられた第1プリズムシート45及び第2プリズムシート46とを備える。本例では、第1光拡散シート43の積層体は、同じ構造の第1光拡散シート43が2層積層されて構成される。図示は省略しているが、第2プリズムシート46の上側に偏光シートが設けられてもよい。
 反射シート41は、例えば、白色のポリエチレンテレフタレート樹脂製のフィルム、銀蒸着フィルム等により構成される。
 小型光源42の種類は特に限定されないが、例えばLED素子やレーザー素子等であってもよく、コスト、生産性等の観点からLED素子を用いてもよい。小型光源42となるLED素子の出光角度特性を調節するために、LED素子にレンズを装着してもよい。例えば図3に示すように、数mm角のLED素子よりなる複数の小型光源42を一定の間隔をもって2次元アレイ状に反射シート41上に配置してもよい。小型光源42は、平面視した場合に長方形状を有していてもよく、その場合、一辺の長さは10μm以上(好ましくは50μm以上)20mm以下(好ましくは10mm以下、より好ましくは5mm以下)であってもよい。
 また、小型光源42の配置数も特に限定されないが、複数の小型光源42を分散配置する場合は、反射シート41上に規則的に配置することが好ましい。規則的に配置するとは、一定の法則性をもって配置することを意味し、例えば、小型光源42を等間隔で配置する場合が該当する。等間隔で小型光源42が配置される場合、隣り合う2つの小型光源42の中心間距離は、0.5mm以上(好ましくは2mm以上)20mm以下であってもよい。
 各第1光拡散シート43は、基材層21を有する。第1光拡散シート43の第1面(小型光源42と対向する面)43aには、複数の凹部22が設けられる。複数の凹部22は、略逆多角錐に形成される。本例では、複数の凹部22は、略逆正四角錐に形成される。隣り合う凹部22同士は、稜線23によって区画される。凹部22の配列ピッチは、例えば50μm程度以上500μm程度以下である。凹部22の壁面(略逆多角錐の斜面)が第1光拡散シート43のシート面(凹部22のない仮想鏡面)となす角度は、例えば40度以上65度以下である。言い換えると、凹部22の頂角は、例えば50度以上100度以下である。第1光拡散シート43の第2面43bは、鏡面であってもよいが、拡散性を向上させるために、マット面であることが好ましい。図4は、第1光拡散シート43の第1面43aに、略逆正四角錐に形成された凹部22が5×5のマトリクス状に配置された様子を例示する。
 基材層21は、例えばポリカーボネートを母材(マトリックス樹脂)として構成され、拡散剤を含まないことが好ましいが、母材100質量%に対して、例えば0.1~4質量%程度の拡散剤を含有してもよい。拡散剤としては公知の材料を適宜用いることができる。本例では、第1光拡散シート43を基材層21の一層構造としたが、これに代えて、凹部22が形成された層を含む2層以上の構造としてもよい。
 第2光拡散シート44は、第1面(第1プリズムシート45と対向する面)44aにマット面を有し、第2面44bに鏡面、又は略逆正四角錐に形成された凹部を有してもよい。第2光拡散シート44は、例えばポリカーボネートを母材(マトリックス樹脂)として構成され、拡散剤を含むことが好ましく、母材100質量%に対して、例えば0.5~4質量%程度の拡散剤を含有してもよい。第2光拡散シート44は、例えば、芳香族ポリカーボネート樹脂99質量部に対して、拡散剤としてシリコーン複合パウダー(平均粒子径2.0μm)1質量部を混合して構成される。
 第1プリズムシート45及び第2プリズムシート46は、例えば、横断面が二等辺三角形の複数の溝条が互いに隣り合うように形成され、隣り合う一対の溝条に挟まれたプリズムの頂角が90°程度に形成されたフィルムである。ここで、第1プリズムシート45に形成された各溝条と、第2プリズムシート46に形成された各溝条とは、互いに直交するように配置される。第1プリズムシート45及び第2プリズムシート46は、一体に形成されていてもよい。第1プリズムシート45及び第2プリズムシート46としては、例えば、PET(polyethylene terephthalate)フィルムにUV硬化型アクリル系樹脂を用いてプリズム形状をつけたものを用いてもよい。
 図示は省略しているが、第2プリズムシート46の上側に偏光シートを設ける場合、偏光シートとしては、例えば、3M社製のDBEFシリーズを用いてもよい。偏光シートは、バックライトユニット40から出射された光が液晶表示装置50の第1偏光板6に吸収されることを防止することによって、表示画面50aの輝度を向上させる。
  <光拡散シートの詳細構成>
 図2に示す例では、第1光拡散シート43の第1面(小型光源42と対向する面)43aに複数の凹部22を形成したが、これに代えて、或いは、これに加えて、第1光拡散シート43の第2面43bに、凹部22と同様の他の凹部を複数形成してもよい。
 複数の凹部22は、略逆多角錐に形成されてもよい。複数の凹部22は、規則的に2次元配列されてもよい。「逆多角錐」としては、隙間なく二次元配置することが可能な三角錐、四角錐又は六角錐が好ましい。凹部22を設ける際の押出成形や射出成形などの製造工程では金型(金属ロール)が用いられるが、この金型(金属ロール)表面の切削作業の精度を考慮して、「逆多角錐」として逆四角錐を選択してもよい。
 尚、通常の形状転写技術により幾何学的に厳密な逆多角錐の凹部を形成することが難しいことを考慮して、「略逆多角錐」との表記を用いているが、これらの表記は、真正の又は実質的に逆多角錐とみなせる形状を含むことは言うまでもない。また、「略」とは、近似可能であることを意味し、例えば「略四角錐」とは、四角錐に近似可能な形状な形状をいう。また、工業生産上の加工精度に起因する不可避的な形状のばらつきの範囲内で「逆多角錐」から変形した形状も、「略逆多角錐」に包含される。
 複数の凹部22が規則的に2次元配列される場合、複数の凹部22は、第1光拡散シート43の表面全体に隙間無く設けられていてもよいし、一定の間隔(ピッチ)で設けられていてもよい。
 第1光拡散シート43は、拡散剤を含まない基材層21、例えばクリアポリカーボネートからなる基材層21で構成されてもよい。基材層21に拡散剤を含有させる場合、拡散剤の材質は、特に限定されないが、無機粒子として、例えば、シリカ、酸化チタン、水酸化アルミニウム、硫酸バリウム等、有機粒子として、例えば、アクリル、アクリルニトリル、シリコーン、ポリスチレン、ポリアミド等を用いてもよい。拡散剤の粒径としては、光拡散効果の観点で、例えば、0.1μm以上(好ましくは1μm以上)10μm以下(好ましくは8μm以下)としてもよい。第1光拡散シート43は、略逆多角錐形状による反射及び屈折の効果と、拡散剤による光拡散効果の観点で、拡散剤を含まないことが好ましいが、基材層21を構成する材料(マトリックス)を100質量%として、拡散剤の含有量を、例えば、0.1質量%以上(好ましくは0.3質量%以上)10質量%以下(好ましくは8質量%以下)としてもよい。拡散剤の屈折率と基材層21のマトリックスの屈折率との差は、0.01以上、好ましくは0.03以上、より好ましくは0.05以上、更に好ましくは0.1以上、最も好ましくは0.15以上としてもよい。拡散剤の屈折率と基材層21のマトリックスの屈折率との差が0.01未満であると、拡散剤による拡散効果が不十分になる。
 基材層21のマトリックスとなる樹脂は、光を透過させる材料であれば、特に限定されないが、例えば、アクリル、ポリスチレン、ポリカーボネート、MS(メチルメタクリレート・スチレン共重合)樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、セルロールアセテート、ポリイミド等を用いてもよい。
 第1光拡散シート43の厚さは、特に限定されないが、例えば、3mm以下(好ましくは2mm以下、より好ましくは1.5mm以下、更に好ましくは1mm以下)で0.1mm以上であってもよい。第1光拡散シート43の厚さが3mmを超えると、液晶ディスプレイの薄型化の達成が難しくなる。一方、第1光拡散シート43の厚さが0.1mmを下回ると、輝度均一性向上効果を発揮することが難しくなる。
 第1光拡散シート43が多層構造(例えば第1層の基材層及び第2層の凹部形成層)を持つ場合は、凹部形成層の厚さは、凹部22の最大深さよりも大きい厚さを持つ。例えば深さ20μmの凹部が設けられる層の場合は、厚さを20μmよりも大きくする。第1光拡散シート43を、基材層及び凹部形成層を含む3層以上の構造で構成してもよい。或いは、基材層と凹部形成層とをそれぞれ独立したシートとして構成し、両者を積層してもよいし、別個に配置してもよい。
  <光拡散シートの製造方法>
 以下、第1光拡散シート43の製造方法について説明する。第1光拡散シート43の製造方法は、特に限定されないが、例えば、押出成形法、射出成形法などを用いてもよい。第1光拡散シート43を押出成形する場合、例えば、ライン速度を10m/分以上30m/分以下、圧縮線圧力を100kgf/cm以上500kgf/cm以下に設定してもよい。
 押出成形法を用いて、凹凸形状を表面に持つ単層の光拡散シートを製造する手順は次の通りである。まず、拡散剤が添加されたペレット状のプラスチック粒子(併せて、拡散剤が添加されていないペレット状のプラスチック粒子を混合してもよい)を単軸押し出し機に投入し、加熱しながら溶融、混錬する。その後、T-ダイスにより押し出された溶融樹脂を2本の金属ロールで挟んで冷却した後、ガイドロールを用いて搬送し、シートカッター機により枚葉平板に切り落とすことによって、拡散シートを作製する。ここで、所望の凹凸形状を反転した形状を表面に持つ金属ロールを使用して溶融樹脂を挟むことにより、ロール表面の反転形状が樹脂に転写されるので、所望の凹凸形状を拡散シート表面に賦形することができる。また、樹脂に転写された形状は、必ずしもロール表面の形状が100%転写されたものとはならないので、転写度合いから逆算して、ロール表面の形状を設計してもよい。
 押出成形法を用いて、凹凸形状を表面に持つ2層構造の光拡散シートを製造する場合は、例えば、2つの単軸押出機のそれぞれに、各層の形成に必要なペレット状のプラスチック粒子を投入した後、各層毎に前述と同様の手順を実施し、作製された各シートを積層すればよい。
 或いは、以下のように、凹凸形状を表面に持つ2層構造の光拡散シートを作製してもよい。まず、2つの単軸押出機のそれぞれに、各層の形成に必要なペレット状のプラスチック粒子を投入し、加熱しながら溶融、混錬する。その後、各層となる溶融樹脂を1つのT-ダイスに投入し、当該T-ダイス内で積層し、当該T-ダイスにより押し出された積層溶融樹脂を2本の金属ロールで挟んで冷却する。その後、ガイドロールを用いて積層溶融樹脂を搬送し、シートカッター機により枚葉平板に切り落とすことによって、凹凸形状を表面に持つ2層構造の拡散シートを作製してもよい。
 また、UV(紫外線)を用いた賦形転写によって、以下のように光拡散シートを製造してもよい。まず、転写したい凹凸形状の反転形状を有するロールに未硬化の紫外線硬化樹脂を充填し、当該樹脂に基材を押し当てる。次に、紫外線硬化樹脂が充填されたロールと基材とが一体になっている状態で、紫外線を照射して樹脂を硬化させる。次に、樹脂によって凹凸形状が賦形転写されたシートをロールからはく離させる。最後に、再度シートに紫外線照射をして樹脂を完全硬化させ、凹凸形状を表面に持つ拡散シートを作製する。
  <光拡散シートの特徴>
 以下、本実施形態の第1光拡散シート43の特徴について、図5~図10を参照しながら詳細に説明する。
 図5に示すように、第1光拡散シート43の第1面43aには、例えば略逆正四角錐に形成された複数の凹部22が設けられる。凹部22の中心22aは、凹部22の最深部である。複数の凹部22は、互いに直交するX方向(第1方向)及びY方向(第2方向)に沿って配列される。隣り合う凹部22同士は、稜線23によって区画される。稜線23は、X方向及びY方向に沿って延びる。
 第1光拡散シート43の特徴の1つとして、稜線23は、稜線23の交点23a同士を結ぶ直線Lx、Lyに対して、当該交点23a間において凹んだ形状を有する。ここで、交点23a同士を結ぶ直線Lx、Lyと稜線23との最大高低差dは、1μm以上10μm以下であることが必要であり、1.5μm以上7μm以下であることがさらに好ましく、2.5μm以上5μm以下であることがより一層好ましい。
 尚、第1光拡散シート43においては、稜線の全ての交点23a間で稜線が凹んだ形状であることが好ましいが、全ての交点23a間で稜線23が凹んだ形状を有することは必須ではない。言い換えると、一部の交点間23aで稜線23が凹んだ形状を有していなくてもよい。
 図6は、図5のAx-Bx線に沿ってX方向に延びる稜線23を、シート面に平行で且つX方向に対して垂直な方向から見たときの形状の一例を示し、図7は、図5のAy-By線に沿ってY方向に延びる稜線23を、シート面に平行で且つY方向に対して垂直な方向から見たときの形状の一例を示す。図6に示すように、X方向において稜線23の交点23a同士を結ぶ直線Lxに対して、稜線23は、交点23a間において凹んだ形状を有する。凹部22のX方向の配列ピッチをPxとして、X方向に延びる稜線23は、例えば交点23aからPx/2(半ピッチ)の位置に最下点23bを有し、直線Lxから最下点23bまでの距離(最大高低差)はdxである。また、図7に示すように、Y方向において稜線23の交点23a同士を結ぶ直線Lyに対して、稜線23は、交点23a間において凹んだ形状を有する。凹部22のY方向の配列ピッチをPyとして、Y方向に延びる稜線23は、例えば交点23aからPy/2(半ピッチ)の位置に最下点23bを有し、直線Lyから最下点23bまでの距離(最大高低差)はdyである。
 尚、凹部22が逆正四角錐に形成される場合、凹部22のX方向の配列ピッチPxは、X方向における交点23a同士の間隔(水平距離)に等しく、凹部22のY方向の配列ピッチPyは、Y方向における交点23a同士の間隔(水平距離)に等しい。
 また、X方向での最大高低差dxとY方向での最大高低差dyとの平均値を最大高低差dとして、最大高低差dを1μm以上10μm以下に設定することが必要であり、好ましくは1.5μm以上7μm以下、より好ましくは2.5μm以上5μm以下に設定してもよい。
 また、交点23a間における稜線23の凹んだ形状は、特に限定されるものではないが、例えば図8に示すように、交点23a同士を結ぶ直線Lに対して、稜線23は、交点23a間において略円弧状(図8の(A))、略放物線状(図8の(B))、略三角形状(図8の(C))又は略台形状(図8の(D))に凹んでいてもよい。
 第1光拡散シート43の別の特徴として、凹部22の配列ピッチをPとし、凹部22の配列方向において稜線23の頂部の曲線部分が占める寸法をWrとすると、比率Wr/Pは、0.3以下であることが必要であり、0.2以下であることがさらに好ましく、0.1以下であることがより一層好ましい。
 図9は、図5のCx-Dx線における第1光拡散シート43の断面構成の一例を示し、図10は、図5のCy-Dy線における第1光拡散シート43の断面構成の一例を示す。詳しくは、図9は、X方向に隣り合う凹部22の各中心22aと、当該凹部22間に位置する稜線23における交点23a間の中間点とを通り、且つシート面に垂直な面で第1光拡散シート43を切断した場合の断面構成を示す。図10は、Y方向に隣り合う凹部22の各中心22aと、当該凹部22間に位置する稜線23における交点23a間の中間点とを通り、且つシート面に垂直な面で第1光拡散シート43を切断した場合の断面構成を示す。
 図9に示す断面構成では、X方向に隣り合う凹部22のそれぞれの中心22aの間隔(水平距離)が、X方向における凹部22の配列ピッチPxに等しい。稜線23の頂部の曲線部分がX方向において占める寸法は、Wrxである。稜線23を挟んで隣り合う凹部22のそれぞれの壁面(逆四角錐の斜面)の直線部分がX方向において占める寸法は、Wsx1、Wsx2である。X方向において凹部22の壁面(逆四角錐の斜面)とシート面とがなす角度は、θxである。凹部22の中心22aから稜線23(Y方向に延びる稜線23)の頂点(交点23a間の中間点)までの高さは、Hxである。
 図10に示す断面構成では、Y方向に隣り合う凹部22のそれぞれの中心22aの間隔(水平距離)が、Y方向における凹部22の配列ピッチPyに等しい。稜線23の頂部の曲線部分がY方向において占める寸法は、Wryである。稜線23を挟んで隣り合う凹部22のそれぞれの壁面(逆四角錐の斜面)の直線部分がY方向において占める寸法は、Wsy1、Wsy2である。Y方向において凹部22の壁面(逆四角錐の斜面)とシート面とがなす角度は、θyである。凹部22の中心22aから稜線23(X方向に延びる稜線23)の頂点(交点23a間の中間点)までの高さは、Hyである。
 尚、凹部22が逆四角錐に形成される場合、配列ピッチPxと配列ピッチPyとの平均値をPとし、寸法Wrxと寸法Wryとの平均値をWrとして、比率Wr/Pを0.3以下に設定することが必要であり、好ましくは0.2以下、より好ましくは0.1以下に設定してもよい。
 図11は、図6に示すX方向稜線の形状、寸法をレーザー顕微鏡により測定した結果の一例を示し、図12は、図7に示すY方向稜線の形状、寸法をレーザー顕微鏡により測定した結果の一例を示し、図13は、図9に示す断面構成の形状、寸法、角度をレーザー顕微鏡により測定した結果の一例を示し、図14は、図10に示す断面構成の形状、寸法、角度をレーザー顕微鏡により測定した結果の一例を示す。
 尚、図11、図12において、稜線23の交点23a間を結ぶ直線Lx、Lyと稜線23との距離の最大値(最大高低差)dx、dyの測定では、稜線23上の点から直線Lx、Lyに垂直に引いた垂線の長さの最大値をdx、dyとした。
 また、配列ピッチPx、Pyの測定では、X方向、Y方向のそれぞれにおける「交点23a間の水平距離」をPx、Pyとして求めた。このように「交点23a間の水平距離」を測定する方法でも、配列ピッチPx、Pyを容易且つ正確に求めることができる。
 第1光拡散シート43のさらなる特徴は、複数の凹部22が、例えば図15に示すように、略逆多角錐(本例では略逆四角錐)の頂部22bが線状に形成された凹部22を含むことである。言い換えると、複数の凹部22は、略逆四角錐の頂部22bが点状に形成された凹部22と、略逆四角錐の頂部22bが線状に形成された凹部22とを含む。凹部22において略逆四角錐の頂部22bが点状に形成された場合、頂部22bは凹部22の中心22aとなる。第1光拡散シート43において、全ての凹部22の頂部22bが線状に形成されてもよい。尚、図15においては、線状の頂部22bを実際よりも拡大して示している。また、図15の(a)は、頂部22bがX方向に線状に延びる様子を示し、図15の(b)は、頂部22bがY方向に線状に延びる様子を示す。
  <実施形態の効果>
 以上に説明したように、本実施形態の第1光拡散シート43は、略逆多角錐に形成された複数の凹部22を少なくとも第1面43aに有する。複数の凹部22を区画する稜線23は、稜線23の交点23a同士を結ぶ直線に対して、当該交点23a間において凹んだ形状を有する。複数の凹部22の配列ピッチをPとし、複数の凹部22の配列方向において稜線23の頂部の曲線部分が占める寸法をWrとすると、比率Wr/Pは、0.3以下である。稜線23の交点23a同士を結ぶと稜線23との最大高低差dは、1μm以上10μm以下である。複数の凹部22は、線状の頂部22bを持つ略逆多角錐に形成された凹部22を含む。
 本実施形態の第1光拡散シート43によると、少なくとも第1面43aに、略逆多角錐に形成された複数の凹部22を有するため、輝度均一性を向上させることができる。また、凹部22を区画する稜線23(凹部22の開口縁)が摩耗や損傷の原因となるところ、稜線23の交点23a間で稜線23が凹んだ形状を有する。このため、他の光学シートや他の光拡散シートと重ねて使用しても、摩耗や損傷が生じにくくなる。また、凹部22の配列方向において稜線23の頂部の曲線部分が占める寸法Wrを、凹部の配列ピッチPの30%以下に抑制している。このため、稜線23の頂部が急峻な形状を保てるので、交点23a間で稜線23を凹ませても輝度均一性が低下しにくい。さらに、交点23a同士を結ぶ直線と稜線23との最大高低差dを1μm以上とするため、耐傷付き性が向上すると共に、最大高低差dを10μm以下とするため、輝度均一性の低下を抑制することができる。さらに、凹部22(略逆多角錐)の頂部22bが線状に形成されるため、輝度均一性の低下が抑制された第1光拡散シート43の量産を容易に行うことができる。
 本実施形態の第1光拡散シート43において、交点23a同士を結ぶ直線と稜線23との最大高低差dが、1.5μm以上7μm以下であると、耐傷付き性及び輝度均一性の両方をさらに向上させることができる。この場合、最大高低差dが、2.5μm以上5μm以下であると、耐傷付き性及び輝度均一性の両方をより一層向上させることができる。
 本実施形態の第1光拡散シート43において、複数の凹部22の配列ピッチをPとし、複数の凹部22の配列方向において稜線23の頂部の曲線部分が占める寸法をWrとして、比率Wr/Pが、0.2以下であると、輝度均一性をさらに向上させることができる。この場合、比率Wr/Pが、0.1以下であると、輝度均一性をより一層向上させることができる。
 本実施形態の第1光拡散シート43において、複数の凹部22の配列ピッチPが、50μm以上500μm以下であり、複数の凹部22の壁面(つまり略逆多角錐の斜面)がシート面となす角度が、40度以上65度以下であると、輝度均一性を向上させることができる。
 本実施形態の第1光拡散シート43において、稜線23が、交点23a間において、略放物線状、略円弧状、略三角形状又は略台形状に凹んでいると、耐傷付き性を向上させることができる。
 本実施形態の第1光拡散シート43において、複数の凹部22は、略逆四角錐に形成されてもよい。この場合、稜線23は、X方向(第1方向)及びY方向(第2方向)に延びてもよい。また、交点23a同士を結ぶ直線と稜線23との最大高低差dは、X方向における当該直線と稜線23との最大高低差dxと、Y方向における当該直線と稜線23との最大高低差dyとの平均値であってもよい。また、複数の凹部22の配列ピッチPは、X方向における凹部22の配列ピッチPxと、Y方向における凹部22の配列ピッチPyとの平均値であってもよい。また、凹部22の配列方向において稜線23の頂部の曲線部分が占める寸法Wrは、X方向において稜線23の頂部の曲線部分が占める寸法Wrxと、Y方向において稜線23の頂部の曲線部分が占める寸法Wryとの平均値であってもよい。このようにすると、耐傷付き性及び輝度均一性に優れた光拡散シートが製造しやすくなる。
 本実施形態の第1光拡散シート43において、複数の凹部22は、第1面43aのみに設けられ、第2面43bは、マット面であると、第2面43bでの摩耗や損傷を抑制しながら、輝度均一性をさらに向上させることができる。
 本実施形態の第1光拡散シート43において、複数の凹部22のうち、頂部22bが線状に形成された凹部22の比率は10%以上であってもよい。或いは、当該比率は、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、又は100%であってもよい。
 本実施形態のバックライトユニット40は、液晶表示装置50に組み込まれ、光源42から発せられた光を表示画面50aの方に導くバックライトユニット40であって、表示画面50aと光源42との間に、本実施形態の第1光拡散シート43を備える。
 本実施形態のバックライトユニット40によると、本実施形態の第1光拡散シート43を備えるため、輝度均一性を向上させることができると共に、第1光拡散シート43同士を積層したり、第1光拡散シート43と他の光学シートとを積層しても、損傷を抑制することができる。
 本実施形態のバックライトユニット40において、光源42が、第1光拡散シート43から見て表示画面50aの反対側に設けられた反射シート41の上に配置されると、輝度均一性がより一層向上する。
 本実施形態の液晶表示装置50は、本実施形態のバックライトユニット40と、液晶表示パネル5とを備える。
 本実施形態の液晶表示装置50、及び液晶表示装置50を備えた情報機器によると、本実施形態のバックライトユニット40を備えるため、輝度均一性を向上させることができると共に、第1光拡散シート43同士を積層したり、第1光拡散シート43と他の光学シートとを積層しても、損傷を抑制することができる。
 本実施形態の光拡散シート製造方法は、本実施形態の第1光拡散シート43を製造する方法であって、ライン速度が10m/分以上30m/分以下、圧縮線圧力が100kgf/cm以上500kgf/cm以下で第1光拡散シート43を押出成形する。
 本実施形態の光拡散シート製造方法によると、凹部22の配列方向において稜線23の頂部の曲線部分が占める寸法Wrを、凹部22の配列ピッチPの30%以下にできるので、稜線23の頂部の形状が急峻で輝度均一性に優れた第1光拡散シート43を製造することができる。
 また、本実施形態の光拡散シート製造方法によると、交点23a同士を結ぶ直線と稜線23との最大高低差dを1μm以上10μm以下にできる。すなわち、交点23a間において稜線23が凹んでおり、交点23aの部分が高くなった第1光拡散シート43が得られる。このため、第1光拡散シート43同士を積層したり、第1光拡散シート43と他の光学シートとを積層しても、交点23a間では稜線23が他の光学シート等と接触しにくいため、摩耗や損傷が生じにくくなり、交点23aでは他の光学シート等と点接触するため、滑りが生じて摩耗や損傷が生じにくくなる。従って、耐傷付き性に優れた第1光拡散シート43を製造することができる。
 また、本実施形態の光拡散シート製造方法によると、押出成形を用いるため、本実施形態の第1光拡散シート43を低コストで製造することができる。
 尚、本実施形態の第1光拡散シート43では、凹部22(略逆多角錐)の頂部22bが線状に形成されたが、これに代えて、頂部22bの平面形状を長方形状に形成しても、本実施形態と同様の効果を得ることができる。
 (実施例)
 以下、実施例に係る第1光拡散シート43について、比較例と対照しながら説明する。
  <凹部の形状、寸法、角度の測定>
 後述する各実施例の第1光拡散シート43に形成された凹部22の形状観察は、キーエンス社製のレーザーマイクロスコープVK-100を使用して行った。具体的には、逆正四角錐に形成された凹部22の稜線23の断面形状(図6、図7、図9、図10に示す断面形状)、図6、図7に示す最大高低差dx、dy(交点23a間を結ぶ直線と稜線23との距離の最大値)とその平均値d、図9、図10に示す高さHx、Hy(凹部22の中心22aから稜線23の頂点までの高さ)とその平均値H、図9、図10に示す寸法Wrx、Wry(X方向、Y方向において稜線23の頂部の曲線部分が占める寸法)とその平均値Wr、図6、図7に示す凹部22の配列ピッチPx、Py(X方向、Y方向における交点23a同士の水平距離)とその平均値P、配列ピッチPに対する寸法Wrの比率Wr/P(単位:%)、及び、図9、図10に示す角度θx、θy(X方向、Y方向において凹部22の壁面(逆正四角錐の斜面)と第1光拡散シート43のシート面とがなす角度)の測定を行った。
  <光学物性の測定>
 後述する各実施例の第1光拡散シート43の光学物性として、Haze(ヘーズ)、及び波長450nmにおける光線透過率を測定した。Hazeは、JIS K-7105に準拠して、スガ試験機株式会社製のHZ-2を用いて、逆正四角錐に形成された凹部22の有る面(第1面43a)から光を入射させて測定した。また、波長450nmにおける光線透過率は、日本分光株式会社製のV-670を用いて、逆正四角錐に形成された凹部22の有る面(第1面43a)から光を入射させて測定した。
  <耐傷付き性の評価>
 後述する各実施例の第1光拡散シート43の耐傷付き性試験には、図16に示した装置を用いた。図16に示すように、固定サンプルとなる第1光拡散シート43の下面を第1面43a(逆正四角錐形状の凹部22が形成された面)にし、移動サンプルとなる第1光拡散シート43の上面を第2面43b(マット面)にして、ガラス板上に移動サンプル及び固定サンプルを順次積層し、上方から、直径20mmの円形の面積に荷重516gfの重りを載せて、引取速度10mm/秒の速さで移動サンプルを引き取りながら100mm移動させて、移動サンプルと固定サンプルとの摩擦面の傷付き度合を目視で検査、判定した。検査、判定は、固定サンプルの下面(逆正四角錐の凹部22の形成面)、及び移動サンプルの上面(マット面)の両方について行った。
 検査、判定での評価は、以下の基準で行った。
AA:目視では傷付きが全く見えず、耐傷付き性に大変優れた光拡散シートである。
A :目視では傷付きが殆ど見えず、耐傷付き性のかなり優れた光拡散シートである。
B :目視で傷付きがわずかに見え、耐傷付き性がある程度優れた光拡散シートである。
C :目視で傷つきが少し見え、耐傷付き性が何とか許される下限近くである光拡散シートである。
× :目視でも傷付きがはっきり多く見え、耐傷付き性の劣る光拡散シートである。
  <輝度及び輝度均一性の測定>
 後述する各実施例の第1光拡散シート43の輝度及び輝度均一性の測定は、図2及び図3に示すバックライトユニット40の構成で実施した。すなわち、アレイ状に配列された小型光源42(LEDアレイ)の上に、後述する実施例で得られた逆正四角錐形状の凹部22を有する第1光拡散シート43を、凹部22が形成された第1面43aを光源42側に向けて2枚重ねて配置した。第1光拡散シート43の積層体の上には、後述の実施例18と同じ芳香族ポリカーボネート樹脂に同じ拡散剤を同じ組成で配合して用いた厚さ120μmの第2光拡散シート44を1枚、鏡面である第2面44bを光源42側に向けて重ねて配置した。第2光拡散シート44の製造では、一方のロールに鏡面ロールを用い、他方のロールに後述の実施例1と同じランダムなマット形状(表面粗さRa=2.5μm)を表面に持ったロールを用いて、実施例1と同じ方法で作成した。第2光拡散シート44においては、マット面(第1面44a)側の表面粗さRaが1.6μm、鏡面(第2面44b)側の表面粗さRaが0.4μmであった。第2光拡散シート44の上には、2枚のプリズムシート45、46を重ねて配置した。以上の構成で輝度及び輝度均一性の測定を行った。尚、LEDアレイとしては、LEDピッチ3mmのものを使用し、LED(小型光源42)としては、Cree社製の青色LED(品番XPGDRY-L1-0000-00501)を使用した。
 輝度均一性の測定では、まず、図3に示すLEDアレイ(6個×6個)において、LED(小型光源42)直上を通る対角線Lに沿って断面輝度を取得し、続いて、この断面輝度の平均値及び標準偏差を算出し、
 輝度均一性=(断面輝度の平均値)÷(断面輝度の標準偏差)
の計算式に従って、輝度均一性を求めた。このようにして求められた輝度均一性の数値が高いほど、輝度が均一であることを示す。
 輝度均一性の評価基準は、以下の通りである。
AA:輝度均一性が210以上で、目視で輝度ムラが全く見えないレベルで、最も優れた均一性を示す光拡散シートである。
A :輝度均一性が200以上210未満で、目視で輝度斑は殆ど見えない、優れた均一性を示す光拡散シートである。
B :輝度均一性が190以上200未満で、目視で輝度斑がわずかに見えるが、合格レベルの均一性を示す光拡散シートである。
C :輝度均一性が180以上190未満で、目視で輝度斑が見えるが、合格レベル最低限の均一性を示す光拡散シートである。
X :輝度均一性が180未満で、目視で輝度斑がはっきり見える、均一性に劣る光拡散シートである。
 また、輝度の評価基準は、以下の通りである。
A:断面輝度の平均値が3150cd/m以上の光拡散シートである。
B:断面輝度の平均値が3100cd/m以上3150cd/m未満の光拡散シートである。
C:断面輝度の平均値が3050cd/m以上3100cd/m未満の光拡散シートである。
  <総合評価>
 後述する各実施例の第1光拡散シート43の総合評価は、耐傷付き性試験の結果、及び輝度均一性の評価結果に基づいて、以下の基準で行った。
AA:逆正四角錐面及びマット面の両方の耐傷付き性試験の評価結果と、輝度均一性の評価結果において、全てA以上であり且つ2つ以上AAがある総合的に最も優れた光拡散シートである。
A :逆正四角錐面及びマット面の両方の耐傷付き性試験の評価結果と、輝度均一性の評価結果において、全てA以上である総合的に最も優れた光拡散シート(ただしAA評価品を除く)である。
B :逆正四角錐面及びマット面の両方の耐傷付き性試験の評価結果と、輝度均一性の評価結果において、全てB以上である総合的に優れた光拡散シート(ただしAA、A評価品を除く)である。
C :逆正四角錐面及びマット面の両方の耐傷付き性試験の評価結果と、輝度均一性の評価結果において、全てC以上である総合的に最低限度以上の性能を有する使用可能な光拡散シート(ただしAA、A、B評価品を除く)である。
× :逆正四角錐面及びマット面の両方の耐傷付き性試験の評価結果と、輝度均一性の評価結果において、どれか1つ以上に×評価がある総合的に劣った光拡散シートである。
  <実施例1>
 実施例1の第1光拡散シート43の製造方法は、以下の通りである。まず、ISO1133に準拠して測定したメルトマスフローレイトが15g/10分である芳香族ポリカーボネート樹脂を押出機に投入して、溶融混錬してからT-ダイより樹脂を押し出す。その後、2本の金属ロールのうち一方のロールとして、図17の(A)、(B)((B)は(A)のX-Y線断面方向から見た形状図)に示した形状(高さ50μm、ピッチ100μmで頂角90度の正四角錐のピラミッド形状)を表面に持ったロールを使用し、他方のロールとして、ランダムなマット形状(表面粗さRa=2.5μm)を表面に持ったロールを使用し、T-ダイより押し出された溶融樹脂を当該2つのロールで挟んで形状転写しながら冷却する。これにより、表1に示すように、ロール上の正四角錐の高さに依存した深さの凹(逆)ピラミッド形状を1つの表面に持ち、表面粗さRa=1.67μmのマット面を別の表面に持つ厚さ180μmの単層の光拡散シートを押出成形法によって作成した。尚、成形条件としては、表1に示すように、ライン速度が17m/分、2つのロール間の圧縮力(圧縮線圧力)が280kgf/cmとなるように加圧を行い、ポリカーボネート樹脂への形状転写が良好で、且つロールからのシートの剥離が良好な樹脂温度条件(230~310℃)において光拡散シートを得た。
 以上のようにして作製された実施例1の第1光拡散シート43に形成された凹部(逆正四角錐)22の形状観察を、キーエンス社製のレーザーマイクロスコープVK-100を使用して行った。具体的には、逆正四角錐に形成された凹部22の稜線23の断面形状(図6、図7、図9、図10に示す断面形状)、図6、図7に示す最大高低差dx、dy(交点23a間を結ぶ直線と稜線23との距離の最大値)とその平均値d、図9、図10に示す高さHx、Hy(凹部22の中心22aから稜線23の頂点までの高さ)とその平均値H、図9、図10に示す寸法Wrx、Wry(X方向、Y方向において稜線23の頂部の曲線部分が占める寸法)とその平均値Wr、図6、図7に示す凹部22の配列ピッチPx、Py(X方向、Y方向における交点23a同士の水平距離)とその平均値P、配列ピッチPに対する寸法Wrの比率Wr/P(単位:%)、及び、図9、図10に示す角度θx、θy(X方向、Y方向において凹部22の壁面(逆正四角錐の斜面)と第1光拡散シート43のシート面とがなす角度)の測定を行った。
  <実施例2~3>
 実施例2の第1光拡散シート43の製造方法では、2本の金属ロールのうち正四角錐形状のロールとして、高さ54.6μm、ピッチ100μmで頂角が85度の正四角錐のピラミッド形状を表面に持ったロールを使用した点を除いて、表1に示すように、実施例1と同じ条件を用いた。
 実施例3の第1光拡散シート43の製造方法では、2本の金属ロールのうち正四角錐形状のロールとして、高さ59.6μm、ピッチ100μmで頂角が80度の正四角錐のピラミッド形状を表面に持ったロールを使用した点を除いて、表1に示すように、実施例1と同じ条件を用いた。
  <比較例1~3>
 比較例1では、まず、実施例1と同じ芳香族ポリカーボネート樹脂を用いて、厚さ1mmのプレス原板を作った。続いて、図18の(A)、(B)((B)は(A)のX-Y線断面方向から見た形状図)に示した形状(実施例1と同じ形状の正四角錐のピラミッド形状においてピラミッドの谷部分を曲率半径4.2μmの曲面形状に丸めた形状)を表面に持った平板金型と、実施例1と同じランダムなマット形状(表面粗さRa=2.5μm)を表面に持った平板金型とを使用し、2枚の金型でプレス原板を挟んで、加熱冷却装置の付いたプレス機に入れて、プレス板温度250℃、面圧200kg/cmの条件で20分間プレスした。その後、加圧したままでプレス板温度を20℃まで冷却して、樹脂板が十分冷却されるまで加圧保持し、表1に示す厚さ180μmの光拡散シートを圧縮成形法によって作成した。
 比較例2では、比較例1と同様にしてプレス原板を作った後、実施例2と同じ形状の正四角錐のピラミッド形状において比較例1と同様にピラミッドの谷部分を曲率半径4.2μmの曲面形状に丸めた形状を表面に持った平板金型を使用した点を除いて、比較例1と同じ条件でプレス機での加熱、加圧、冷却を行って、表1に示す厚さ180μmの光拡散シートを圧縮成形法によって作成した。
 比較例3では、比較例1と同様にしてプレス原板を作った後、実施例3と同じ形状の正四角錐のピラミッド形状において比較例1、2と同様にピラミッドの谷部分を曲率半径4.2μmの曲面形状に丸めた形状を表面に持った平板金型を使用した点を除いて、比較例1、2と同じ条件でプレス機での加熱、加圧、冷却を行って、表1に示す厚さ180μmの光拡散シートを圧縮成形法によって作成した。
  <実施例1~3及び比較例1~3の評価>
 実施例1~3で得られた第1光拡散シート43について、測定で得られた各要素の形状、寸法及び角度などを比較例1~3と合わせて表2に示し、光学物性の測定結果、耐傷付き性試験の結果、輝度及び輝度均一性の評価結果、並びに総合評価結果を比較例1~3と合わせて表3に示す。
 表2、表3に示す結果から、実施例1~3で得られた、逆正四角錐形状の凹部22が形成された第1光拡散シート43においては、交点23a間を結ぶ直線と稜線23との最大高低差dが1.0μm以上であり、交点23a間で稜線23が凡そ放物線状に凹んだ形状を有する。このため、重ねて使用しても稜線23に起因する摩耗や損傷が生じにくくなる結果、耐傷付き性試験において良好な結果が得られた。
 一方、比較例1~3では、稜線23の頂点付近に曲率半径4.2μm程度の曲面形状が付与されているものの、最大高低差dが0μmで稜線23の凹みが全く無く、交点23a間で稜線23が水平な形状を持つ。このため、耐傷付き性試験において稜線23に起因する傷が生じる結果、耐傷付き性において劣った結果となった。
 また、実施例1と比較例1、実施例2と比較例2、実施例3と比較例3のそれぞれにおいて、比率Wr/Pは全て10%以下であり、稜線23の頂部の急峻な形状が保たれているので、輝度均一性については、それぞれ同等の良好な評価結果が得られた。
 以上から、総合評価については、実施例1~3は「C」であり、比較例1~3は「×」であった。
  <実施例4~10及び比較例4>
 実施例4~7では、表4に示すように、成形条件のうちライン速度を15m/分~4m/分に変更した点を除いて、実施例1と同じ方法で光拡散シートを作製した。
 実施例8~10及び比較例4では、表4に示すように、成形条件のうち、2つのロール間の圧縮線圧力を180kgf/cm~40kgf/cmに変更した点を除いて、実施例1と同じ方法で光拡散シートを作製した。
Figure JPOXMLDOC01-appb-T000004
  <実施例4~10及び比較例4の評価>
 実施例4~10で得られた第1光拡散シート43について、測定で得られた各要素の形状、寸法及び角度などを比較例4と合わせて表5に示し、光学物性の測定結果、耐傷付き性試験の結果、輝度及び輝度均一性の評価結果、並びに総合評価結果を比較例4と合わせて表6に示す。
Figure JPOXMLDOC01-appb-T000005
 表5、表6に示す結果から、実施例4~10及び比較例4で得られた、逆正四角錐形状の凹部22が形成された第1光拡散シート43においては、交点23a間を結ぶ直線と稜線23との最大高低差dが1.0μm以上であり、交点23a間で稜線23が凡そ放物線状に凹んだ形状を有する。このため、重ねて使用しても稜線23に起因する摩耗や損傷が生じにくくなる結果、耐傷付き性試験において良好な結果が得られた。
 また、実施例4~10においては、比率Wr/Pは全て30%以下であり、稜線23の頂部の急峻な形状が保たれているので、輝度均一性については、それぞれ同等の良好な評価結果が得られた。
 しかし、比較例4においては、比率Wr/Pが30%を超えているため、稜線23の頂部の急峻な形状が保たれず、輝度均一性について、劣った結果となった。
 以上から、総合評価については、実施例4~10は「C」であり、比較例4は「×」であった。
  <実施例11~14>
 実施例11の第1光拡散シート43の製造方法では、2本の金属ロールのうち正四角錐形状のロールとして、高さ90.0μm、ピッチ180μmで頂角が90度の正四角錐のピラミッド形状を表面に持ったロールを使用した点を除いて、実施例1とほぼ同じ条件を用いて、表7に示す厚さ200μmの光拡散シートを作製した。
Figure JPOXMLDOC01-appb-T000007
 実施例12の第1光拡散シート43の製造方法では、2本の金属ロールのうち正四角錐形状のロールとして、高さ98.2μm、ピッチ180μmで頂角が85度の正四角錐のピラミッド形状を表面に持ったロールを使用した点を除いて、実施例1とほぼ同じ条件を用いて、表7に示す厚さ200μmの光拡散シートを作製した。
 実施例13の第1光拡散シート43の製造方法では、2本の金属ロールのうち正四角錐形状のロールとして、高さ107.3μm、ピッチ180μmで頂角が80度の正四角錐のピラミッド形状を表面に持ったロールを使用した点を除いて、実施例1とほぼ同じ条件を用いて、表7に示す厚さ200μmの光拡散シートを作製した。
 実施例14の第1光拡散シート43の製造方法では、2本の金属ロールのうち正四角錐形状のロールとして、高さ117.3μm、ピッチ180μmで頂角が75度の正四角錐のピラミッド形状を表面に持ったロールを使用した点を除いて、実施例1とほぼ同じ条件を用いて、表7に示す厚さ200μmの光拡散シートを作製した。
  <実施例15~17及び比較例5>
 実施例15~17においては、実施例13と同じロールを用いて、表7に示すように、成形条件のうちライン速度を15m/分~11m/分に変更して、厚さ200μmの光拡散シートを作製した。
 比較例5においては、比較例1と同様にしてプレス原板を作った後、実施例11と同じ形状の正四角錐のピラミッド形状において比較例1と同様にピラミッドの谷部分を曲率半径4.2μmの曲面形状に丸めた形状を表面に持った平板金型を使用した点を除いて、比較例1と同じ条件でプレス機での加熱、加圧、冷却を行って、表7に示す厚さ200μmの光拡散シートを圧縮成形法によって作成した。
  <実施例11~17及び比較例5の評価>
 実施例11~17で得られた第1光拡散シート43について、測定で得られた各要素の形状、寸法及び角度などを比較例5と合わせて表8に示し、光学物性の測定結果、耐傷付き性試験の結果、輝度及び輝度均一性の評価結果、並びに総合評価結果を比較例5と合わせて表9に示す。
Figure JPOXMLDOC01-appb-T000008
 表8、表9に示す結果から、実施例11~17で得られた、逆正四角錐形状の凹部22が形成された第1光拡散シート43においては、交点23a間を結ぶ直線と稜線23との最大高低差dが2.5μm以上であり、交点23a間で稜線23が凡そ放物線状に凹んだ形状を有する。このため、重ねて使用しても稜線23に起因する摩耗や損傷がより一層生じにくくなる結果、耐傷付き性試験において実施例の中で最も良好な結果が得られた。
 一方、比較例5では、稜線23の頂点付近に曲面形状が付与されているものの、最大高低差dが0μmで稜線23の凹みが全く無く、交点23a間で稜線23が水平な形状を持つ。このため、耐傷付き性試験において稜線23に起因する傷が生じる結果、耐傷付き性において劣った結果となった。
 また、実施例11~17及び比較例5においては、比率Wr/Pは全て10%以下であり、稜線23の頂部がより一層急峻な形状に保たれているので、輝度均一性についても特に良好な評価結果が得られた。特に、実施例11~17では、最大高低差dが5.0μm以下であるので、交点23a間で稜線23が凹んだ形状を有することに起因する輝度均一性の低下は見られなかった。
 以上から、総合評価については、実施例11は「A」であり、実施例12~17は最も優れた「AA」であり、比較例5は「×」であった。
  <実施例18~23>
 実施例18においては、実施例1で用いた芳香族ポリカーボネート樹脂99質量部に対して、拡散剤としてシリコーン複合パウダー(平均粒子径2.0μm)1質量部をあらかじめ混合したものを押出機に投入して溶融混錬を行う点を除いて、実施例1と同じ条件を用いて、表10に示す厚さ180μmの光拡散シートを作製した。
Figure JPOXMLDOC01-appb-T000010
 実施例19~23においては、実施例18と同じ方法を用いて、表10に示すように、成形条件のうちライン速度を15m/分~9m/分に変更して、厚さ180μmの光拡散シートを作製した。
  <実施例18~23の評価>
 実施例18~23で得られた第1光拡散シート43について、測定で得られた各要素の形状、寸法及び角度などを表11に示し、光学物性の測定結果、耐傷付き性試験の結果、輝度及び輝度均一性の評価結果、並びに総合評価結果を表12に示す。
Figure JPOXMLDOC01-appb-T000011
 表11、表12に示す結果から、実施例18~23で得られた、逆正四角錐形状の凹部22が形成された第1光拡散シート43においては、交点23a間を結ぶ直線と稜線23との最大高低差dが1.6μm以上であり、交点23a間で稜線23が凡そ放物線状に凹んだ形状を有する。このため、重ねて使用しても稜線23に起因する摩耗や損傷が生じにくくなる結果、耐傷付き性試験において良好な結果が得られた。
 また、実施例18~23においては、比率Wr/Pは6~13%の範囲内にあり、稜線23の頂部の急峻な形状が保たれているので、輝度均一性については、良好な評価結果が得られた。
 以上から、総合評価について、実施例18~23は「C」であった。
  <実施例24~27>
 実施例24においては、実施例1で用いた芳香族ポリカーボネート樹脂、及び表13に示す成形条件を用いると共に、2本の金属ロールのうち一方のロールとして、図17の(A)、(B)に示した形状(高さ50μm、ピッチ100μmで頂角90度の正四角錐のピラミッド形状)を表面に持ったロールを使用し、他方のロールとして、ランダムなマット形状(表面粗さRa=1.6μm)を表面に持ったロールを使用し、表13に示す厚さ120μmの光拡散シートを作製した。
 実施例25においては、実施例18と同じ拡散剤含有芳香族ポリカーボネート樹脂、及び表13に示す成形条件を用いると共に、実施例24と同じ2本の金属ロールを使用して、表13に示す厚さ120μmの光拡散シートを作製した。
 実施例26においては、実施例24と同じ芳香族ポリカーボネート樹脂、及び表13に示す成形条件を用いると共に、2本の金属ロールのうち一方のロールとして、実施例13で用いた、高さ107.3μm、ピッチ180μmで頂角が80度の正四角錐のピラミッド形状を表面に持ったロールを使用し、他方のロールとして、ランダムなマット形状(表面粗さRa=2.0μm)を表面に持ったロールを使用し、表13に示す厚さ200μmの光拡散シートを作製した。
 実施例27においては、実施例25と同じ拡散剤含有芳香族ポリカーボネート樹脂、及び表13に示す成形条件を用いると共に、2本の金属ロールのうち一方のロールとして、実施例24、25と同じ正四角錐のピラミッド形状を表面に持ったロールを使用し、他方のロールとして、ランダムなマット形状(表面粗さRa=2.0μm)を表面に持ったロールを使用し、表13に示す厚さ200μmの光拡散シートを作製した。
  <実施例24~27の評価>
 実施例24~27で得られた第1光拡散シート43について、測定で得られた各要素の形状、寸法及び角度などを表14に示し、光学物性の測定結果、耐傷付き性試験の結果、輝度及び輝度均一性の評価結果、並びに総合評価結果を表15に示す。また、実施例24~27、及び比較例1のそれぞれにおける耐傷つき性試験後のサンプル、具体的には、固定サンプル下面(逆四角錐面)、及び移動サンプル上面(マット面)の表面写真を図19に示す。
 表14、表15に示す結果から、実施例24~27で得られた、逆正四角錐形状の凹部22が形成された第1光拡散シート43においては、交点23a間を結ぶ直線と稜線23との最大高低差dが2.7μm以上であり、交点23a間で稜線23が凡そ放物線状に凹んだ形状を有する。このため、重ねて使用しても稜線23に起因する摩耗や損傷が生じにくくなる結果、図19に示すように、マット面(移動サンプル上面)のみならず、逆四角錐面(固定サンプル下面)でも、耐傷付き性試験において良好な結果が得られた。一方、比較例1では、前述の通り(表2等参照)、最大高低差dが0μmで稜線23の凹みが全く無く、交点23a間で稜線23が水平な形状を持つため、図19に示すように、逆四角錐面(固定サンプル下面)では耐傷付き性試験で稜線23に起因する傷がはっきりと生じており、耐傷付き性が悪かった。
 尚、実施例24、25では、第1光拡散シート43の厚さが比較的薄いことにより、稜線23に比較的大きい凹みが生じており、実施例26では、凹部22の逆四角錐が比較的大きいことにより、稜線23に比較的大きい凹みが生じている。
 また、実施例24~27においては、比率Wr/Pは5~11%程度の範囲内にあり、稜線23の頂部の急峻な形状が保たれているので、輝度均一性については、良好な評価結果が得られた。
 以上から、総合評価について、実施例24は「A」であり、実施例25、27は「C」であり、実施例26は最も優れた「AA」であった。
  <逆四角錐(凹部)の頂部の形状評価>
 以上に説明した実施例の第1光拡散シート43のうち、凹部22の逆四角錐形状が異なる5つのサンプルS1~S5について、逆四角錐の頂部の形状を調べた結果を表16に示す。
 表16に示すように、いずれのサンプルS1~S5についても、X方向、Y方向(図15参照)の両方において50%以上の割合で逆正四角錐の頂部が線状に形成されていることが分かった。すなわち、実施例の第1光拡散シート43において、複数の凹部22は、逆四角錐の頂部が点状に形成された凹部22と、逆四角錐の頂部が線状に形成された凹部22とを含むことが分かった。
  <逆四角錐(凹部)の線状頂部の発生率>
 第1光拡散シート43に設けられた複数の凹部22のうち、逆四角錐の頂部が線状に形成される割合(線状頂部の発生率)について、同じ設計寸法を有する3つのピラミッドロール(正四角錐のピラミッド形状を表面に持ったロール)を用いて、図21に示す方法で調べた。具体的には、高さ50μm、頂角90度の正四角錐(ピラミッド形状)がピッチ100μmで表面に2次元配列されたピラミッドロールを使用した。尚、他方のロールとしては、ランダムなマット形状(表面粗さRa=2.5μm)を表面に持ったロールを使用した。また、図21に示すように、ピラミッドロールの一周分に相当する母材シートから、タブレットサイズ(ロール回転方向(MD方向)長さ267mm、幅方向(TD方向)長さ200mm)の第1光拡散シート43のサンプルを15個(5(MD方向)×3(TD方向))取り出し、各サンプルに番号(1A~5A、1B~5B、1C~5C)を付与した。また、各サンプルを約50mm×50mmのサイズの20領域(5(MD方向)×4(TD方向))に区画し、各領域について、任意の隣接する6つの凹部22の頂部の形状を調べた。
 3つのピラミッドロール(以下、第1~第3ロールということもある)によりそれぞれ作製された15個のサンプルについて、線状頂部の発生率を調べた結果を表17~19に示す。また、第1ロール及び第3ロールにより作製されたサンプルについて、線状頂部を寸法1.0μm以下のものと寸法1.0μm超のものとに分けて発生率を調べた結果を表20~21に示す。
 尚、逆四角錐の頂部(凹部22の底部)の寸法測定には、株式会社キーエンス社製の形状解析レーザー顕微鏡VK-Xシリーズの形状測定レーザーマイクロスコープVK-X110(解析ソフトは同社製の解析アプリケーション(バージョン3.6.1.0))を使用した。具体的には、逆四角錐の頂部(凹部22の底部)を通り且つ凹部22の稜線23と直交する断面の形状プロファイルをX方向及びY方向(図15参照)のそれぞれについて測定し、得られた形状プロファイルから頂部の寸法を求めた。そして、逆四角錐の頂部のX方向寸法及びY方向寸法のうち一方が0.1μm以上で他方が0.1μm未満であれば、線状頂部であると判定し、長い方の寸法を線状頂部の寸法であるとした。また、X方向寸法及びY方向寸法の両方が0.1μm未満であれば、X方向寸法とY方向寸法とが異なっていても、点状頂部であると判定した。
 表17~19に示すように、いずれのピラミッドロールを用いた場合にも、複数の凹部22のうち、頂部22bが線状に形成された凹部22の比率、つまり線状頂部の発生率は10%以上であった。
 具体的には、第1ロールを用いた場合、表17に示すように、1サンプルを除いて線状頂部の発生率は20%以上であり、多くのサンプルで線状頂部の発生率は40%以上であり、線状頂部の発生率が60%以上のものが過半数であり、線状頂部の発生率が80%以上のものが半数近くあった。また、第1ロールを用いた場合、表20に示すように、寸法1.0μm超の線状頂部の発生率が50%以上のサンプルが半数近くあった。
 第2ロールを用いた場合、表18に示すように、全てのサンプルで線状頂部の発生率は70%以上であり、1サンプルを除いて線状頂部の発生率は90%以上であり、サンプルの大部分で線状頂部の発生率は100%であった。
 第3ロールを用いた場合、表19に示すように、多くのサンプルで線状頂部の発生率は30%以上であり、線状頂部の発生率が50%以上のものが過半数であった。また、第3ロールを用いた場合、表21に示すように、寸法1.0μm超の線状頂部の発生率が50%以上のサンプルは1つであった。
 以上の結果から、凹部22の頂部22bが線状に形成されると、輝度均一性の低下が抑制された第1光拡散シート43の量産を容易に行うことができるが分かった。
 尚、凹部22の頂部22bを線状に形成する代わりに、長方形状に形成してもよい。「凹部22の頂部22bが長方形状である」とは、具体的には、逆四角錐の頂部のX方向寸法及びY方向寸法が互いに異なり、且つ両方の寸法が0.1μm以上であることを意味する。この場合、X方向寸法とY方向寸法との寸法差は、長い方の寸法の10%以上であってもよい。或いは、当該寸法差が長い方の寸法の20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、又は90%以上であってもよい。また、均一性の低下を抑制する観点で、X方向寸法及びY方向寸法のうち長い方の寸法は、10μm以下であることが好ましく、5μm以下であることがより好ましく、3μm以下であることがさらに好ましく、2μm以下であることが最も好ましい。
 (その他の実施形態)
 以上、本開示についての実施形態(実施例を含む。以下同じ。)を説明したが、本開示は前述の実施形態のみに限定されず、開示の範囲内で種々の変更が可能である。すなわち、前述の実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものではない。例えば、光拡散シートの構成(層構造、材質等)は、前述の実施形態の第1光拡散シート43の構成に限定されないことは言うまでもない。また、光拡散シートが適用されるバックライトや、当該バックライトを備えた液晶表示装置の構成も、前述の実施形態のバックライトユニット40や液晶表示装置50の構成に限定されないことは言うまでもない。
 例えば、図2に示す前述の実施形態のバックライトユニット40における第1光拡散シート43の2枚積層と第2光拡散シート44との組合せに代えて、図20に示す変形例のバックライトユニット40のように、第1光拡散シート43の3枚積層を用いてもよいし、或いは、第1光拡散シート43を4枚以上積層してもよい。尚、第1光拡散シート43を3枚以上積層する場合、略逆多角錐形状による反射及び屈折の効果と、拡散剤による光拡散効果とのトレードオフの観点で、表示画面50a(つまり第1プリズムシート45)に最も近い光拡散シート43は、拡散剤を含有し、その他の光拡散シート43は、実質的に拡散剤を含有しなくてもよい。これにより、輝度均一性をより一層向上させることができる。
   1  TFT基板
   2  CF基板
   3  液晶層
   5  液晶表示パネル
   6  第1偏光板
   7  第2偏光板
  21  基材層
  22  凹部
  22a  中心
  22b  頂部
  23  稜線
  23a  交点
  23b  最下点
  40  バックライトユニット
  41  反射シート
  42  小型光源
  43  第1光拡散シート
  43a  第1面
  43b  第2面
  44  第2光拡散シート
  44a  第1面
  44b  第2面
  45  第1プリズムシート
  46  第2プリズムシート
  50  液晶表示装置
  50a  表示画面

Claims (19)

  1.  略逆多角錐に形成された複数の凹部を少なくとも第1面に有する光拡散シートであって、
     前記複数の凹部を区画する稜線は、当該稜線の交点同士を結ぶ直線に対して、当該交点間において凹んだ形状を有し、
     前記複数の凹部の配列ピッチをPとし、前記複数の凹部の配列方向において前記稜線の頂部の曲線部分が占める寸法をWrとすると、比率Wr/Pは、0.3以下であり、
     前記直線と前記稜線との最大高低差dは、1μm以上10μm以下であり、
     前記複数の凹部は、略逆多角錐の頂部が線状に形成された凹部を含む、
    光拡散シート。
  2.  前記最大高低差dは、1.5μm以上7μm以下である
    請求項1に記載の光拡散シート。
  3.  前記最大高低差dは、2.5μm以上5μm以下である
    請求項2に記載の光拡散シート。
  4.  前記比率Wr/Pは、0.2以下である、
    請求項1~3のいずれか1項に記載の光拡散シート。
  5.  前記比率Wr/Pは、0.1以下である、
    請求項4に記載の光拡散シート。
  6.  前記配列ピッチPは、50μm以上500μm以下であり、
     前記複数の凹部の壁面が前記光拡散シートのシート面となす角度は、40度以上65度以下である、
    請求項1~3のいずれか1項に記載の光拡散シート。
  7.  前記稜線は、前記交点間において、略放物線状、略円弧状、略三角形状又は略台形状に凹んでいる、
    請求項1~3のいずれか1項に記載の光拡散シート。
  8.  前記複数の凹部は、略逆四角錐に形成され、
     前記稜線は、第1方向及び第2方向に延び、
     前記最大高低差dは、前記第1方向における前記直線と前記稜線との最大高低差dxと、前記第2方向における前記直線と前記稜線との最大高低差dyとの平均値であり、
     前記配列ピッチPは、前記第1方向における前記複数の凹部の配列ピッチPxと、前記第2方向における前記複数の凹部の配列ピッチPyとの平均値であり、
     前記寸法Wrは、前記第1方向において前記稜線の頂部の曲線部分が占める寸法Wrxと、前記第2方向において前記稜線の頂部の曲線部分が占める寸法Wryとの平均値である、
    請求項1~3のいずれか1項に記載の光拡散シート。
  9.  前記複数の凹部は、前記第1面のみに設けられ、
     第2面は、マット面である、
    請求項1~3のいずれか1項に記載の光拡散シート。
  10.  前記複数の凹部のうち、前記頂部が線状に形成された凹部の比率は10%以上である、
    請求項1~3のいずれか1項に記載の光拡散シート。
  11.  液晶表示装置に組み込まれ、光源から発せられた光を表示画面の方に導くバックライトユニットであって、
     前記表示画面と前記光源との間に、請求項1~3のいずれか1項に記載の光拡散シートを備える、
    バックライトユニット。
  12.  前記光源は、前記光拡散シートから見て前記表示画面の反対側に設けられた反射シートの上に配置される、
    請求項11に記載のバックライトユニット。
  13.  前記光拡散シートは、複数枚積層して前記表示画面と前記光源との間に配置される
    請求項11に記載のバックライトユニット。
  14.  前記光拡散シートは、3枚以上積層して前記表示画面と前記光源との間に配置される
    請求項13に記載のバックライトユニット。
  15.  3枚以上積層された前記光拡散シートのうち、前記表示画面に最も近い光拡散シートは、拡散剤を含有し、その他の光拡散シートは、実質的に拡散剤を含有しない
    請求項14に記載のバックライトユニット。
  16.  請求項11に記載のバックライトユニットと、
     液晶表示パネルとを備える、
    液晶表示装置。
  17.  請求項16に記載の液晶表示装置を備える、
    情報機器。
  18.  請求項1~3のいずれか1項に記載の光拡散シートの製造方法であって、
     ライン速度が10m/分以上30m/分以下、圧縮線圧力が100kgf/cm以上500kgf/cm以下で前記光拡散シートを押出成形する、
    光拡散シートの製造方法。
  19.  略逆多角錐に形成された複数の凹部を少なくとも第1面に有する光拡散シートであって、
     前記複数の凹部を区画する稜線は、当該稜線の交点同士を結ぶ直線に対して、当該交点間において凹んだ形状を有し、
     前記複数の凹部の配列ピッチをPとし、前記複数の凹部の配列方向において前記稜線の頂部の曲線部分が占める寸法をWrとすると、比率Wr/Pは、0.3以下であり、
     前記直線と前記稜線との最大高低差dは、1μm以上10μm以下であり、
     前記複数の凹部は、略逆多角錐の頂部が長方形状に形成された凹部を含む、
    光拡散シート。
PCT/JP2023/019378 2022-05-27 2023-05-24 光拡散シート、バックライトユニット、液晶表示装置、情報機器、及び光拡散シートの製造方法 WO2023228983A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022087114 2022-05-27
JP2022-087114 2022-05-27
JP2023-083829 2023-05-22
JP2023083829A JP7389296B1 (ja) 2022-05-27 2023-05-22 光拡散シート、バックライトユニット、液晶表示装置、情報機器、及び光拡散シートの製造方法

Publications (1)

Publication Number Publication Date
WO2023228983A1 true WO2023228983A1 (ja) 2023-11-30

Family

ID=88917888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019378 WO2023228983A1 (ja) 2022-05-27 2023-05-24 光拡散シート、バックライトユニット、液晶表示装置、情報機器、及び光拡散シートの製造方法

Country Status (3)

Country Link
JP (1) JP7389296B1 (ja)
TW (1) TW202403355A (ja)
WO (1) WO2023228983A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004538506A (ja) * 2001-08-03 2004-12-24 スリーエム イノベイティブ プロパティズ カンパニー 微細複製構造を有する光学フィルム
WO2008020514A1 (fr) * 2006-08-17 2008-02-21 Konica Minolta Holdings, Inc. Appareil émetteur de lumière en surface
JP2010117707A (ja) * 2008-10-16 2010-05-27 Asahi Kasei E-Materials Corp 光拡散板及び直下型点光源バックライト装置
JP2011029163A (ja) * 2009-06-24 2011-02-10 Nippon Zeon Co Ltd 面光源装置、照明器具及びバックライト装置
JP2011227231A (ja) * 2010-04-19 2011-11-10 Toppan Printing Co Ltd 光学シート、光学シート組合せ体、バックライトユニット及びディスプレイ装置
JP2012047912A (ja) * 2010-08-25 2012-03-08 Dainippon Printing Co Ltd プリズムシート、面光源装置及び液晶表示装置
JP2013225058A (ja) * 2012-04-23 2013-10-31 Asahi Kasei E-Materials Corp 光学板及び直下型点光源バックライト装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004538506A (ja) * 2001-08-03 2004-12-24 スリーエム イノベイティブ プロパティズ カンパニー 微細複製構造を有する光学フィルム
WO2008020514A1 (fr) * 2006-08-17 2008-02-21 Konica Minolta Holdings, Inc. Appareil émetteur de lumière en surface
JP2010117707A (ja) * 2008-10-16 2010-05-27 Asahi Kasei E-Materials Corp 光拡散板及び直下型点光源バックライト装置
JP2011029163A (ja) * 2009-06-24 2011-02-10 Nippon Zeon Co Ltd 面光源装置、照明器具及びバックライト装置
JP2011227231A (ja) * 2010-04-19 2011-11-10 Toppan Printing Co Ltd 光学シート、光学シート組合せ体、バックライトユニット及びディスプレイ装置
JP2012047912A (ja) * 2010-08-25 2012-03-08 Dainippon Printing Co Ltd プリズムシート、面光源装置及び液晶表示装置
JP2013225058A (ja) * 2012-04-23 2013-10-31 Asahi Kasei E-Materials Corp 光学板及び直下型点光源バックライト装置

Also Published As

Publication number Publication date
JP7389296B1 (ja) 2023-11-29
JP2023174578A (ja) 2023-12-07
TW202403355A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
KR102199264B1 (ko) 광학 시트, 백라이트 유닛, 액정 표시 장치 및 정보 기기
CN109387979B (zh) 缓冲片及平板显示器
JP2017107193A (ja) 上用光拡散シート及びバックライトユニット
JP2023143938A (ja) 拡散シート、バックライトユニット、液晶表示装置及び情報機器
JP2023165732A (ja) 光拡散シート、バックライトユニット、液晶表示装置、情報機器、及び光拡散シートの製造方法
JP7389296B1 (ja) 光拡散シート、バックライトユニット、液晶表示装置、情報機器、及び光拡散シートの製造方法
JP7368430B2 (ja) 光拡散シート、バックライトユニット、液晶表示装置、情報機器、及び光拡散シートの製造方法
TWI685705B (zh) 緩衝片及平板顯示器
WO2023228684A1 (ja) 光拡散シート、バックライトユニット、液晶表示装置、及び情報機器
WO2023162358A1 (ja) 複合光拡散シート、バックライトユニット、液晶表示装置、及び情報機器
WO2023080123A1 (ja) 光拡散シート、バックライトユニット、液晶表示装置、情報機器、及び光拡散シートの製造方法
JP2023174543A (ja) 光拡散シート、バックライトユニット、液晶表示装置、及び情報機器
WO2022196162A1 (ja) 光拡散シート、バックライトユニット、液晶表示装置及び情報機器
JP7429248B2 (ja) 光学シート積層体、バックライトユニット、液晶表示装置、情報機器、及びバックライトユニットの製造方法
CN116547473A (zh) 光扩散片、背光单元、液晶显示装置、信息设备及光扩散片的制造方法
JP7436560B2 (ja) 光拡散シート、バックライトユニット、液晶表示装置及び情報機器
JP2023126072A (ja) 複合光拡散シート、バックライトユニット、液晶表示装置、及び情報機器
WO2023053643A1 (ja) 光学シート積層体、バックライトユニット、液晶表示装置、情報機器、及びバックライトユニットの製造方法
JP2023113017A (ja) 光拡散シート、バックライトユニット、液晶表示装置及び情報機器
JP2023068607A (ja) 光拡散シート、バックライトユニット、液晶表示装置、情報機器、及び光拡散シートの製造方法
JP2022144447A (ja) 光拡散シート、バックライトユニット、液晶表示装置及び情報機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811855

Country of ref document: EP

Kind code of ref document: A1