WO2023228835A1 - ホットメルト接着シート - Google Patents

ホットメルト接着シート Download PDF

Info

Publication number
WO2023228835A1
WO2023228835A1 PCT/JP2023/018420 JP2023018420W WO2023228835A1 WO 2023228835 A1 WO2023228835 A1 WO 2023228835A1 JP 2023018420 W JP2023018420 W JP 2023018420W WO 2023228835 A1 WO2023228835 A1 WO 2023228835A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt adhesive
hot melt
adhesive sheet
resin
epoxy resin
Prior art date
Application number
PCT/JP2023/018420
Other languages
English (en)
French (fr)
Inventor
涼汰 ▲高▼畠
聡寛 田渕
Original Assignee
日東シンコー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東シンコー株式会社 filed Critical 日東シンコー株式会社
Publication of WO2023228835A1 publication Critical patent/WO2023228835A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0284Organic resins; Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hot melt adhesive sheet.
  • the polyurethane adhesive contains a polyester polyol or an acrylic polyol as a main ingredient, and a polyisocyanate as a crosslinking agent, and by promoting a crosslinking reaction between the main ingredient and the crosslinking agent. It contains polyurethane (so-called polyurethane prepolymer) having a certain chain length as a main material, and contains an isocyanate-based crosslinking agent as a crosslinking agent. Some are used by proceeding with a crosslinking reaction with a crosslinking agent and curing.
  • Patent Document 1 describes an adhesive having excellent moist heat resistance.
  • the hot melt adhesive is often used in the form of a hot melt adhesive sheet, especially from the viewpoint of excellent handling properties.
  • the hot melt adhesive sheet usually includes a base layer made of a polymer sheet, and an adhesive layer laminated on the base layer and made of the hot melt adhesive.
  • the adhesive layer of a hot melt adhesive sheet has improved acid resistance, alcohol resistance, etc., such demands have not been met. Furthermore, the adhesive layer of the hot melt adhesive sheet is also required to be able to secure sufficient adhesion to the adherend by thermocompression bonding.
  • the present invention has been made in view of the problems of the prior art, and its objective is to provide excellent adhesion to adherends, as well as resistance to hot water, acid, and alcohol.
  • An object of the present invention is to provide a hot melt adhesive sheet having an adhesive layer having excellent properties.
  • the hot melt adhesive sheet according to the present invention is A hot melt adhesive sheet comprising a base material and an adhesive layer formed of a hot melt adhesive and laminated on at least one side of the base material,
  • the hot melt adhesive includes a crosslinked adhesive composition containing a crosslinking agent, the adhesive composition containing a polyurethane resin, an epoxy resin, and an isocyanate crosslinking agent,
  • the polyurethane resin contains a polyester urethane resin having an aromatic polyester skeleton
  • the epoxy resin contains an unmodified epoxy resin having an epoxy equivalent of 300 g/eq or more and 1500 g/eq or less.
  • 1 is a schematic cross-sectional view showing the configuration of a hot melt adhesive sheet according to an embodiment of the present invention.
  • 1 is a schematic cross-sectional view showing a state in which a hot melt adhesive sheet according to an embodiment of the present invention is attached to a solid electrolyte membrane of a polymer electrolyte fuel cell and used.
  • the hot melt adhesive sheet 10 includes a base material 10a and an adhesive layer 10b formed of a hot melt adhesive, which is laminated on one side of the base material 10a.
  • This is a hot melt adhesive sheet comprising an adhesive layer 10b.
  • the adhesive layer 10b is laminated only on one side of the base material 10a, but the adhesive layer 10b may be laminated on the other side of the base material 10a. That is, the hot melt adhesive sheet 10 may be a hot melt adhesive sheet in which adhesive layers 10b are laminated on both sides of a base material 10a.
  • the hot melt adhesive includes a crosslinked adhesive composition containing a crosslinking agent, and the adhesive composition includes a polyurethane resin, an epoxy resin, and an isocyanate. Contains a crosslinking agent.
  • the polyurethane resin contains a polyester urethane resin having an aromatic polyester skeleton.
  • the epoxy resin contains a non-modified epoxy resin having an epoxy equivalent of 300 g/eq or more and 1500 g/eq or less.
  • the polyurethane resin will be referred to as a polyurethane resin (A)
  • the epoxy resin will be referred to as an epoxy resin (B)
  • the isocyanate crosslinking agent will be referred to as an isocyanate crosslinking agent (C).
  • the polyurethane resin (A) is made by urethane bonding reactive components containing a polyol component (a) having two or more hydroxyl groups in one molecule and a polyisocyanate component (b) having two or more isocyanate groups in one molecule. This is what you get.
  • the polyurethane resin (A) contains a polyester polyurethane resin having an aromatic polyester skeleton.
  • the polyester polyurethane resin means one obtained by reacting a polyester containing a hydroxyl group (corresponding to the polyol component (a) above) with a polyisocyanate component (b). That is, in this specification, the polyester urethane resin is a urethane bond of a hydroxyl group-containing polyester and a polyisocyanate component (b).
  • hydroxyl group-containing polyester a polyester obtained by a condensation reaction between a polyhydric carboxylic acid and a polyhydric alcohol can be used.
  • polycarboxylic acids examples include phthalic acid, isophthalic acid, terephthalic acid, maleic acid, itaconic acid, fumaric acid, tetrahydrophthalic acid, hexahydrophthalic acid, adipic acid, sebacic acid, azelaic acid, trimellitic acid, and methylcyclohexene.
  • examples include tricarboxylic acid, pyromellitic acid, dimer acids derived from unsaturated fatty acids, and acid anhydrides thereof.
  • polyhydric alcohol examples include ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, 1,4-butanediol, 1,3-butanediol, neopentyl glycol, pentamethylene glycol, and hexamethylene. Examples include glycol, heptamethylene glycol, and octamethylene glycol.
  • the polyhydric alcohol may be a polyhydric alcohol having a carboxyl group (hereinafter also referred to as a carboxyl group-containing polyhydric alcohol). Examples of the carboxyl group-containing polyhydric alcohol include dimethylolpropionic acid, dimethylolbutanoic acid, diphenolic acid, and the like. Further, the polyhydric alcohol may be modified with a caprolactone compound such as ⁇ -caprolactam.
  • Examples of the polyisocyanate component (b) to be reacted with the hydroxyl group-containing polyester include aliphatic isocyanate compounds, alicyclic isocyanate compounds, and aromatic isocyanate compounds.
  • Examples of the aliphatic isocyanate compound include hexamethylene diisocyanate, isopropylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, xylylene diisocyanate, and the like.
  • Examples of the alicyclic isocyanate compound include isophorone diisocyanate, methylcyclohexane diisocyanate, lysine diisocyanate, and cyclohexane-1,4-diisocyanate.
  • aromatic isocyanate compound examples include tolylene diisocyanate, 1,5-naphthylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-dibenzyl diisocyanate, and tetraalkyldiphenylmethane.
  • the polyester urethane resin is a polyester urethane resin having an aromatic polyester skeleton.
  • the aromatic polyester skeleton can be provided in the polyester urethane resin by using phthalic acid, isophthalic acid, terephthalic acid, or the like as the polyvalent carboxylic acid when obtaining the hydroxyl group-containing polyester.
  • the polyester urethane resin exhibits high hydrophobicity. Therefore, the adhesive layer 10b containing such a polyester urethane resin , the hydrophobicity is improved. Thereby, the adhesive layer 10b has excellent hot water resistance, acid resistance, and alcohol resistance.
  • Byron (registered trademark) UR series manufactured by Toyobo Co., Ltd. and the like.
  • Byron (registered trademark) UR series manufactured by Toyobo Co., Ltd. it is preferable to use Byron (registered trademark) UR-3200 and UR-3210 as commercial products.
  • Byron (registered trademark) UR-3210 is a toluene-free version of Byron (registered trademark) UR-3200. Therefore, in consideration of minimizing the amount of volatile organic compounds (VOC) generated, it is preferable to use Vylon (registered trademark) UR-3210 as a commercially available product.
  • VOC volatile organic compounds
  • the polyester urethane resin having an aromatic polyester skeleton has a glass transition temperature Tg of 10° C. or lower. Since the polyester urethane resin having an aromatic polyester skeleton has the above-described structure, when it is included in the adhesive layer 10b, the adhesive layer 10b becomes good for adherends such as the base material 10a. It becomes possible to exhibit adhesive properties.
  • the base material 10a include a PEN (polyethylene naphthalate) film, a perfluorocarbon sulfonic acid resin sheet (film), and a PPS (polyphenylene sulfide) film. Furthermore, since the polyester urethane resin has the above-described structure, the adhesive layer 10b has excellent toughness. This makes the adhesive layer 10b difficult to break even when an external force is applied to the adhesive layer 10b.
  • the glass transition temperature Tg is more preferably 5°C or lower, even more preferably 0°C or lower, even more preferably -2°C or lower. Further, the glass transition temperature is preferably -30°C or higher, more preferably -20°C or higher, even more preferably -10°C or higher, even more preferably -5°C or higher. preferable.
  • Vylon (registered trademark) UR-3200 and UR-3210 have an aromatic polyester skeleton and have a glass transition temperature Tg of 10° C. or lower.
  • the glass transition temperature Tg can be measured using, for example, a DSC device. More specifically, the sample (polyester urethane resin) was heated at a rate of 5°C/min while flowing nitrogen gas from a temperature 30K or more lower than the expected glass transition temperature Tg to a temperature 30K or more higher than the expected glass transition temperature Tg.
  • the glass transition temperature Tg can be determined from the DSC curve obtained upon heating.
  • the glass transition temperature Tg can be determined based on the method described in JIS K7121:1987 "Method for measuring transition temperature of plastics".
  • the polyurethane resin (A) may contain polyurethane resins other than the polyester urethane resin.
  • the polyurethane resin other than the polyester urethane resin various known ones can be used, but the polyol component (a) contains a structural unit derived from a polyol (a1) having a carbon number of 8 or more in the skeleton. It is preferable that
  • the polyurethane resin other than the polyester urethane resin preferably contains a hydroxyl group-containing polyurethane resin having a hydroxyl group in order to react with the isocyanate crosslinking agent (C). Further, it is preferable that the hydroxyl group-containing polyurethane resin has a hydroxyl group at the end.
  • the hydroxyl value of the hydroxyl group-containing polyurethane resin is preferably 0.1 mgKOH/g or more and 20 mgKOH/g or less, more preferably 1 mgKOH/g or more and 15 mgKOH/g or less.
  • the polyol component (a) more preferably contains a general polyol (a2) together with a polyol (a1) having a carbon number of 8 or more in the skeleton.
  • a general polyol (a2) may be simply called polyol (a2).
  • the polyol (a1) having 8 or more carbon atoms in the skeleton means a polyol having 8 or more carbon atoms between hydroxyl groups, and 8 or more carbon atoms between hydroxyl groups are heteroatoms.
  • the polyol (a1) having a carbon number of 8 or more in the skeleton is preferably a polycarbonate polyol. Further, in the polyol (a1) having a carbon number of 8 or more in the skeleton, the number of heteroatoms contained in the portion containing 8 or more carbons is preferably 2 or less. Furthermore, the polyol (a1) having a carbon number of 8 or more in the skeleton preferably has a residue obtained by removing a plurality of hydrogen atoms from a saturated or unsaturated hydrocarbon having 8 or more carbon atoms in the molecule. . Moreover, it is preferable that the polyol (a1) having a skeleton having 8 or more carbon atoms has an alkylene group having 6 or more carbon atoms.
  • Examples of the polyol (a1) having a carbon number of 8 or more in the skeleton include dicarboxylic acids (sebacic acid (10 carbon atoms), azelaic acid (9 carbon atoms), isophthalic acid (8 carbon atoms), terephthalic acid (8 carbon atoms)
  • Examples include polyester polyols produced by condensation polymerization of monomers containing glycols (1,9-nonanediol (9 carbon atoms), 1,4-bishydroxymethylcyclohexane (8 carbon atoms), etc.) .
  • polystyrene (a1) having a carbon number of 8 or more in the skeleton poly(1,4-cyclohexane dimethylene carbonate) diol (carbon number 8), polyoctamethylene carbonate diol (carbon number 8), polynonamethylene
  • polycarbonate polyols such as carbonate diol (9 carbon atoms) and polydecamethylene carbonate diol (10 carbon atoms), and random/block copolymers of monomers containing these.
  • a polyol derived from a dimer acid can also be mentioned.
  • the dimer acid is a dicarboxylic acid having 36 carbon atoms obtained by dimerizing an unsaturated fatty acid having 18 carbon atoms such as oleic acid or linoleic acid, and is a fatty acid derived from plants.
  • a typical structure of the dimer acid is represented by the following formula (1).
  • the dimer acid may include trimer acid.
  • Trimer acid is a 54-carbon tricarboxylic acid obtained by trimerizing the above-mentioned 18-carbon unsaturated fatty acid, and is also produced as a by-product during dimer acid production, and commercially available dimer acids usually do not contain trimer acid. I'm here.
  • Dimer diol which is a polyol derived from dimer acid, is a polyol with 36 carbon atoms obtained by reducing the carboxy group of the dimer acid to a hydroxyl group.
  • the polyol may or may not have an unsaturated bond in its molecule.
  • Specific examples of such dimer polyols include dimer diols and the like.
  • trimer triol is a polyol obtained by reducing the carboxyl group of trimer acid to a hydroxyl group.
  • Commercially available dimer diols usually contain trimer triols. Therefore, the dimer acid-derived polyol, dimer polyol, and dimer diol may contain trimer triol.
  • polyolefin polyol can also be mentioned as the polyol (a1) having a carbon number of 8 or more in the skeleton.
  • a polyolefin polyol is a polymer obtained by polymerizing one or more types of polyolefins each having a plurality of hydroxyl groups. Specific examples of such polyolefin polyols include polyethylene butylene diol, polybutadiene diol, and hydrogenated polybutadiene diol. These are polyols with extremely long carbon chains because their carbon chains polymerize with each other.
  • the adhesive layer 10b of the hot-melt adhesive sheet 10 uses, as the polyurethane resin (A), a polyurethane resin having a structural unit derived from the polyol (a1) having a carbon number of 8 or more in the skeleton (in detail, the polyurethane resin described above).
  • the hydrophobicity of the adhesive layer 10b is improved compared to one containing no structural unit derived from a polyol (a1) having a carbon number of 8 or more in the skeleton. can be improved.
  • such an adhesive layer 10b has excellent hot water resistance, acid resistance, and alcohol resistance.
  • polyol (a2) conventionally known polyols used in the synthesis of polyurethane resins can be used.
  • Specific examples of the polyol (a2) include polyester polyols, polyether polyols, polycarbonate polyols, and other polyols.
  • polyester polyols examples include aliphatic dicarboxylic acids (for example, succinic acid, adipic acid, glutaric acid, etc.) and low molecular weight glycols (for example, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1, 4-butylene glycol, 1,6-hexamethylene glycol, neopentyl glycol, etc.).
  • the above polyester polyol may be copolymerized with a dicarboxylic acid or glycol having 8 or more carbon atoms.
  • polyester polyols include polyethylene adipate diol, polybutylene adipate diol, polyhexamethylene adipate diol, polyneopentyl adipate diol, polyethylene/butylene adipate diol, polyneopentyl/hexyl adipate diol, poly-3- Examples include methylpentane adipate diol, polybutylene isophthalate diol, polycaprolactone diol, and poly-3-methylvalerolactone diol. Polyester polyols have better heat resistance than polyether polyols. Therefore, polyester polyol is more advantageous than polyether polyol in making the resulting adhesive layer 10b superior in heat resistance.
  • polyether polyols include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and random/block copolymers thereof.
  • Polyether polyols have better hydrolysis resistance than polyester polyols. Therefore, polyether polyol is more advantageous than polyester polyol in providing the resulting adhesive layer 10b with excellent hydrolysis resistance.
  • polycarbonate polyols include polytetramethylene carbonate diol, polypentamethylene carbonate diol, polyneopentyl carbonate diol, polyhexamethylene carbonate diol, and random/block copolymers thereof.
  • the polycarbonate polyol as described above may be copolymerized with a diol having 8 or more carbon atoms.
  • polyurethane resins other than the polyester urethane resin can be provided with structural units of carbonate diol.
  • polycarbonate polyol has excellent hydrolysis resistance and heat resistance. Therefore, it is advantageous in that the obtained adhesive layer 10b has excellent hydrolysis resistance and heat resistance.
  • polyhexamethylene carbonate is preferred from the viewpoint of cost and easy availability as a material.
  • polystyrene resin examples include acrylic polyol, epoxy polyol, polyether ester polyol, siloxane-modified polyol, ⁇ , ⁇ -polymethyl methacrylate diol, ⁇ , ⁇ -polybutyl methacrylate diol, and siloxane-modified polyol. can.
  • a polycarbonate polyol with excellent hydrolysis resistance and heat resistance. It is preferable to use Further, from the viewpoint of cost and availability as a material, it is particularly preferable to use polyhexamethylene carbonate among the polycarbonate polyols.
  • the number average molecular weight Mn of the polyol (a1) and the polyol (a2) is not particularly limited, but is preferably 500 or more and 6000 or less. Since the number average molecular weight Mn of the polyol (a1) and the polyol (a2) is within the above numerical range, in the adhesive layer 10b of the hot melt adhesive sheet 10 of this embodiment, the cohesive force due to the urethane bond is increased. It becomes easier to express. As a result, the adhesive of this embodiment has high mechanical properties. Furthermore, if the crystalline polyol has an excessively large number average molecular weight Mn, a whitening phenomenon may occur in the adhesive layer 10b when formed into a film such as the adhesive layer 10b.
  • the polyol (a1) and the said polyol (a2) may each be used individually by 1 type, and may be used in combination of 2 or more types.
  • the polyol (a1) is preferably blended in a proportion of 10% by mass or more and 60% by mass or less when the polyol component (a) is 100% by mass.
  • the hot melt adhesive according to the present embodiment can have sufficient hot water resistance, acid resistance, and alcohol resistance.
  • the compatibility between the urethane resin (A) and the epoxy resin (B) is improved, and the resulting hot melt adhesive is , polyethylene terephthalate film, polyethylene naphthalate film, polybutylene terephthalate film, and resin films formed from perfluorocarbon sulfonic acid resin.
  • the polyol component (a) is a copolymer of a monomer having a carbon number of 8 or more in the skeleton and a monomer having a carbon number of 7 or less in the skeleton
  • a monomer having a carbon number of 8 or more in the skeleton Parts by mass are calculated as parts by mass of the polyol (a1), and parts by mass of the monomer having a carbon number of 7 or less in the skeleton are calculated as parts by mass of the polyol (a2).
  • a short chain diol (a3) can be used as necessary.
  • the short chain diol (a3) include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,6-hexamethylene Aliphatic glycols such as glycol and neopentyl glycol and their alkylene oxide low molar adducts (number average molecular weight Mn less than 500 by terminal functional group determination method); 1,4-bishydroxymethylcyclohexane, 2-methyl-1,1-cyclohexane Alicyclic glycols such as dimethanol and their alkylene oxide low molar adducts (number average molecular weight Mn less than 500, same as above); Aromatic glycols such as xylylene glycol and their alkylene oxide low molar adduct
  • a polyhydric alcohol compound when producing a polyurethane resin other than the polyester urethane resin, can also be used as a material for the polyurethane resin other than the polyester urethane resin, similar to the short chain diol (a3).
  • the polyhydric alcohol compounds include glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, tris-(2-hydroxyethyl)isocyanurate, 1,1,1-trimethylolethane, 1,1, Examples include 1-trimethylolpropane.
  • a hydroxyl group-containing compound (a4) having a carboxyl group may be used.
  • the hydroxyl group-containing compound (a4) having a carboxyl group usually has two or more hydroxyl groups in one molecule. Further, the hydroxyl group-containing compound (a4) having a carboxyl group usually has two or more hydroxyl groups in one molecule, so it reacts with the polyisocyanate component (b) having two or more isocyanate groups in one molecule, A polyurethane resin is obtained.
  • Examples of the hydroxyl group-containing compound (a4) having a carboxyl group include dimethylolpropanoic acid, dimethylolbutanoic acid, low molar alkylene oxide adducts thereof (number average molecular weight Mn less than 500), and low molar adducts of ⁇ -caprolactone (number average molecular weight Mn less than 500). (average molecular weight Mn less than 500), half esters derived from acid anhydride and glycerin, and a monomer containing a hydroxyl group and an unsaturated group, and a monomer containing a carboxyl group and an unsaturated group, which are derived by free radical reaction.
  • Examples include compounds such as Among these various compounds, it is preferable to use dimethylolpropanoic acid and dimethylolbutanoic acid, and it is particularly preferable to use dimethylolpropanoic acid. These compounds may be used alone or in combination of two or more.
  • the number average molecular weight Mn means a value measured by a terminal functional group assay method.
  • the various compounds described above are examples of preferred compounds in the present invention. Therefore, the hydroxyl group-containing compound (a4) having a carboxyl group used in the present invention is not limited to the various compounds described above. Therefore, in addition to the above-mentioned various compounds, any of the hydroxyl group-containing compounds (a4) having a carboxyl group that are currently commercially available and easily available in the market can be used in the present invention.
  • polyisocyanate component (b) conventionally known polyisocyanate components used in the production of polyurethane resins can be used.
  • specific examples of the polyisocyanate component (b) include toluene-2,4-diisocyanate, toluene-2,6-diisocyanate, mixtures thereof, 4-methoxy-1,3-phenylene diisocyanate, 4-isopropyl-1 , 3-phenylene diisocyanate, 4-chloro-1,3-phenylene diisocyanate, 4-butoxy-1,3-phenylene diisocyanate, 2,4-diisocyanate diphenyl ether, 4,4'-methylenebis(phenylene isocyanate) (MDI), and Aromatic diisocyanates such as crude or polymeric MDI, jurylene diisocyanate, xylylene diisocyanate (XDI), 1,5-naphthalene diisocyanate, benzidine diisocyanate, o
  • aromatic isocyanates from the viewpoint of obtaining the adhesive layer 10b of the hot melt adhesive sheet 10 which is industrially stable, inexpensive, and has excellent heat resistance, and toluene-2 , 4-diisocyanate, toluene-2,6-diisocyanate, mixtures thereof, 4,4'-methylenebis(phenylene isocyanate) (MDI), and crude or polymeric MDI.
  • aromatic isocyanate an aromatic isocyanate
  • a polyurethane resin other than the polyester urethane resin can be provided with a structural unit of aromatic diisocyanate.
  • These polyisocyanate components (b) may be used alone or in combination of two or more.
  • Method for producing polyurethane resin (A) Regarding the method for producing the polyurethane resin (A), the method for producing the polyester urethane resin will be explained first, and then the method for producing polyurethane resins other than the polyester urethane resin will be explained.
  • the polyester urethane resin can be produced by reacting a hydroxyl group-containing polyester with a polyisocyanate component (b).
  • the reaction between the hydroxyl group-containing polyester and the polyisocyanate component (b) can be carried out by a conventionally known method.
  • the polyester urethane resin has an aromatic polyester skeleton.
  • the polyester urethane resin having an aromatic polyester skeleton can be implemented by using phthalic acid, isophthalic acid, terephthalic acid, etc. as the polyhydric carboxylic acid when obtaining the hydroxyl group-containing polyester. .
  • Polyurethane resins other than polyester urethane resins can be manufactured by conventionally known polyurethane manufacturing methods. Below, a method for producing a urethane resin other than polyester urethane resin using a polyol (a1) having a carbon number of 8 or more in the skeleton will be described. Note that even when the polyol (a1) having a carbon number of 8 or more in the skeleton is not used, polyurethane resins other than polyester urethane resins can be produced in the same manner as described below.
  • the polyol (a1) having a carbon number of 8 or more in the skeleton, the polyol (a2), and the polyol (a2) are reacted as reaction components.
  • a reaction composition containing the isocyanate component (b) and a short chain diol (a3) used as a chain extender if necessary is reacted to obtain a polyurethane resin other than the polyester urethane resin.
  • the hydroxyl group-containing compound (a4) having a carboxyl group may be used as necessary.
  • the reaction composition may generally have a blending composition in which the equivalent ratio of isocyanate groups to hydroxyl groups is 0.8 to 1.25. Further, the reaction may be carried out by a one-shot method or a multi-stage method, usually at 20 to 150°C, preferably 60 to 110°C.
  • the mass average molecular weight Mw of the polyurethane resin other than the polyester polyurethane resin obtained as described above is preferably 1,000 or more and 100,000 or less.
  • the hot melt adhesive containing the polyurethane resin (A) has properties such as adhesion to the base material, hot water resistance, acid resistance, and alcohol resistance. It will be more effective.
  • the mass average molecular weight Mw of the polyurethane resin other than the polyester urethane resin means a value measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the mass average molecular weight Mw of a polyurethane resin other than the polyester urethane resin can be measured, for example, using the following apparatus and conditions.
  • Measuring device and measurement conditions /equipment Product name “HLC-8020” (manufactured by Tosoh Corporation) ⁇ Column: Product name “TSKgel G2000HXL”, “G3000HXL”, “G4000GXL” (manufactured by Tosoh Corporation) ⁇ Solvent: THF ⁇ Flow rate: 1.0ml/min ⁇ Sample concentration: 2g/L ⁇ Injection volume: 100 ⁇ L ⁇ Temperature: 40°C ⁇ Detector: Model number "RI-8020” (manufactured by Tosoh Corporation) ⁇ Standard material: TSK standard polystyrene (manufactured by Tosoh Corporation)
  • a catalyst can be used as necessary in the synthesis of the polyester urethane resin and polyurethane resins other than the polyester urethane resin.
  • the catalyst include salts of metals and organic or inorganic acids such as dibutyltin laurate, dioctyltin laurate, stannath octoate, zinc octylate, and tetra-n-butyl titanate, organometallic derivatives, triethylamine, and the like. organic amines, diazabicycloundecene catalysts, etc.
  • the catalyst accelerates the synthesis reaction of the polyester urethane resin and polyurethane resins other than the polyester urethane.
  • the catalyst when used in excess, there is a risk of inducing a decomposition reaction that decomposes the polyester urethane resin and substances other than the polyurethane resin other than the polyester. There is a risk that the heat resistance will be inferior. Therefore, when using the catalyst, it is preferable to use an appropriate amount of the catalyst.
  • the polyester urethane resin and polyurethane resins other than the polyester urethane resin may be synthesized without using an organic solvent, or may be synthesized using an organic solvent.
  • an organic solvent that is inactive toward isocyanate groups or an organic solvent that is less active toward isocyanate groups than the reaction components can be used.
  • Specific examples of the organic solvent include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; toluene, xylene, Swazol (trade name, manufactured by Cosmo Oil Co., Ltd.), Solvesso (trade name, manufactured by Exxon Chemical Co., Ltd.), etc.
  • Aromatic hydrocarbon solvents such as n-hexane; alcohol solvents such as methanol, ethanol, and isopropyl alcohol; ether solvents such as dioxane and tetrahydrofuran; ethyl acetate, butyl acetate, isobutyl acetate, etc.
  • glycol ether ester solvents such as pionate
  • amide solvents such as dimethylformamide and dimethylacetamide
  • lactam solvents such as N-methyl-2-pyrrolidone.
  • toluene methyl ethyl ketone, and ethyl acetate from the viewpoint of increasing the solubility of the polyurethane resin and from the viewpoint of easy volatilization when obtaining a hot melt adhesive.
  • the epoxy resin (B) contains an unmodified epoxy resin having an epoxy equivalent of 300 g/eq or more and 1500 g/eq or less.
  • the epoxy equivalent may be 350 g/eq or more, or 400 g/eq or more. Further, the epoxy equivalent may be 1000 g/eq or less.
  • the unmodified epoxy resin means an epoxy resin that has not been modified with rubber or the like.
  • the epoxy equivalent is intended to be a value determined according to JIS K 7236.
  • unmodified epoxy resin examples include bisphenol A epoxy resin, bisphenol F epoxy resin, and bisphenol AD epoxy resin.
  • bisphenol A type epoxy resin examples include, for example, Mitsubishi Chemical's product name "JER 1001" (epoxy equivalent is 450 to 500 g/eq) and "JER 1002".
  • the said unmodified epoxy resin may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the epoxy resin (B) may contain a rubber-modified epoxy resin in addition to the unmodified epoxy resin.
  • the adhesive layer 10b of the hot melt adhesive sheet 10 according to the present embodiment contains the rubber-modified epoxy resin as the epoxy resin (B) in addition to the non-modified epoxy resin. is attached to an adherend (e.g., PEN film, perfluorocarbon sulfonic acid resin sheet, PPS film, etc.) and exposed to hot water at 95°C, dilute sulfuric acid (pH 2) at 95°C, or at 95°C. Even after being immersed in a water-ethylene glycol mixed solution (mixing ratio of ethylene glycol is 50% by volume) for a long time of 1000 hours, peeling of the adhesive layer 10b from the adherend is easily suppressed.
  • adherend e.g., PEN film, perfluorocarbon sulfonic acid resin sheet, PPS film, etc.
  • the rubber-modified epoxy resin means a compound that has at least one epoxy group in its molecule and has a structure derived from rubber.
  • the rubber-modified epoxy resins may be used alone or in combination of two or more.
  • Examples of the rubber-modified epoxy resin include a reaction product of a non-modified epoxy resin and rubber.
  • the unmodified epoxy resin for example, the bisphenol A type epoxy resin, the bisphenol F type epoxy resin, the bisphenol AD type epoxy resin, etc. can be used.
  • the unmodified epoxy resin By setting the epoxy equivalent of the unmodified epoxy resin to 300 g/eq or more and 1500 g/eq or less, the unmodified epoxy resin can be crosslinked with an appropriate crosslinking density in the crosslinking reaction using the isocyanate crosslinking agent (C). I can do it. Thereby, the adhesive layer 10b containing the unmodified epoxy resin having an epoxy equivalent of 300 g/eq or more and 1500 g/eq or less can exhibit sufficient adhesiveness to the adherend. In addition, if the epoxy equivalent of the unmodified epoxy resin exceeds 1500 g/eq, the amount of epoxy groups per unit mass will not be sufficient. This makes it impossible to crosslink the unmodified epoxy resin.
  • the adhesive layer 10b contains the unmodified epoxy resin with an epoxy equivalent exceeding 1500 g/eq, the adhesive layer 10b will not have sufficient strength, which is not preferable.
  • the epoxy equivalent of the unmodified epoxy resin is less than 300 g/eq, the amount of epoxy groups per unit mass will be too large. The crosslinking density of the epoxy resin becomes too high. Therefore, when the adhesive layer 10b contains the unmodified epoxy resin having an epoxy equivalent of less than 300 g/eq, the adhesive layer 10b becomes hard and brittle because the crosslinking density of the unmodified epoxy resin becomes too high. As a result, sufficient adhesion to the adherend cannot be ensured, which is not preferable.
  • the rubber examples include natural rubber, acrylonitrile butadiene rubber (NBR), carboxyl group-terminated acrylonitrile butadiene rubber (CTBN), amino group-terminated acrylonitrile butadiene rubber (ATBN), styrene butadiene rubber (SBR), hydrogenated nitrile rubber ( HNBR), ethylene propylene rubber (EPDM), acrylic rubber (ACM), butyl rubber (IIR), and butadiene rubber.
  • NBR acrylonitrile butadiene rubber
  • CBN carboxyl group-terminated acrylonitrile butadiene rubber
  • ATBN amino group-terminated acrylonitrile butadiene rubber
  • SBR styrene butadiene rubber
  • HNBR hydrogenated nitrile rubber
  • EPDM ethylene propylene rubber
  • ACM acrylic rubber
  • IIR butyl rubber
  • butadiene rubber preferably has at its end a functional group capable of reacting with epoxy groups, such as an amino group
  • the rubber-modified epoxy resin is a reaction product of an epoxy resin and acrylonitrile butadiene rubber (NBR) (NBR-modified epoxy resin), an epoxy resin and a carboxyl group-terminated acrylonitrile resin, from the viewpoint of easy availability and reactivity with epoxy groups.
  • NBR acrylonitrile butadiene rubber
  • a reaction product with butadiene rubber (CTBN-modified epoxy resin) and a reaction product between an epoxy resin and amino group-terminated acrylonitrile butadiene rubber (ATBN-modified epoxy resin) are preferable, and among these, NBR-modified epoxy resin is particularly preferred. It is preferable.
  • the product name "Adeka Resin EPR-1415-1" manufactured by Adeka Corporation can be mentioned.
  • the method for producing the rubber-modified epoxy resin is not particularly limited as long as it is a method that allows the epoxy resin and the rubber to react, and various known production methods can be employed.
  • the physical properties of the rubber-modified epoxy resin are not particularly limited, but from the viewpoint of ease of handling and adhesive properties, it is preferable that the epoxy equivalent is 150 g/eq or more and 1000 g/eq.
  • the epoxy resin (B) may be contained in an amount of 10 parts by mass or more, 20 parts by mass or more, or 30 parts by mass or more with respect to 100 parts by mass of the polyurethane resin (A). Good too. Further, the epoxy resin (B) may be contained in an amount of 60 parts by mass or less, or 50 parts by mass or less with respect to 100 parts by mass of the polyurethane resin (A). Furthermore, among the epoxy resins (B), the unmodified epoxy resin is preferably contained in an amount of 10 parts by mass or more, and preferably 20 parts by mass or more, based on 100 parts by mass of the polyurethane resin (A). It is more preferable.
  • the unmodified epoxy resin is preferably contained in an amount of 40 parts by mass or less, more preferably 30 parts by mass or less, based on 100 parts by mass of the polyurethane resin (A).
  • the rubber-modified epoxy resin is preferably contained in an amount of 5 parts by mass or more, and preferably 10 parts by mass or more with respect to 100 parts by mass of the polyurethane resin (A). More preferably, it is contained in an amount of 15 parts by mass or more.
  • the rubber-modified epoxy resin is preferably contained in an amount of 30 parts by mass or less, more preferably 20 parts by mass or less, per 100 parts by mass of the polyurethane resin (A).
  • the ratio of the mass ratio of the non-modified epoxy resin to the mass ratio of the rubber-modified epoxy is , 1.1 or more, 1.2 or more, or 1.3 or more. Further, the ratio of the mass ratio of the non-modified epoxy to the mass ratio of the rubber-modified epoxy may be 3.0 or less, 2.0 or less, or 1.5 or less. Good too.
  • the isocyanate-based crosslinking agent (C) is not particularly limited, but conventionally used ones include those having polyfunctional isocyanate groups such as isocyanurates, biurets, adducts, and polymeric bodies. Any known material can be used.
  • dimer of 2,4-tolylene diisocyanate, triphenylmethane triisocyanate, tris-(p-isocyanate phenyl) thiophosphite polyfunctional aromatic isocyanate
  • polyfunctional aromatic aliphatic isocyanate polyfunctional aliphatic
  • block polyisocyanates such as isocyanates, fatty acid-modified polyfunctional aliphatic isocyanates, and blocked polyfunctional aliphatic isocyanates, and polyisocyanate prepolymers.
  • isocyanate-based crosslinking agents (C) as long as they are aromatic, diphenylmethane diisocyanate, tolylene diisocyanate, and xylylene diisocyanate are preferred. If it is aliphatic, modified products such as hexamethylene diisocyanate and isophorone diisocyanate are preferred. Moreover, as the isocyanate-based crosslinking agent (C), one containing three or more isocyanate groups in one molecule is preferable.
  • isocyanate-based crosslinking agent (C) polymers of the polyisocyanate, adducts with other compounds, and urethane preforms obtained by reacting a low molecular weight polyol and a polyamine so that the molecular terminal becomes an isocyanate can be used. Polymers and the like are also preferably used.
  • xylylene diisocyanate examples of commercially available xylylene diisocyanate include "Takenate D-110N" manufactured by Mitsui Takeda Chemical Co., Ltd.
  • the isocyanate crosslinking agent (C) is contained in an amount of 1 part by mass or more based on 100 parts by mass of the polyurethane resin (A). is preferred, more preferably 5 parts by mass or more, and even more preferably 7 parts by mass.
  • the isocyanate crosslinking agent (C) is preferably contained in an amount of 30 parts by mass or less, more preferably 20 parts by mass or less, based on 100 parts by mass of the polyurethane resin (A). It is more preferable that the content is less than 1 part by mass.
  • the isocyanate-based crosslinking agent (C) is contained in the above mass ratio, so that the adhesive layer 10b can be attached to an adherend (e.g. , PEN film, perfluorocarbon sulfonic acid resin sheet, PPS film, etc.) in 95°C hot water, 95°C dilute sulfuric acid (pH 2), or 95°C water-ethylene glycol mixture. Even after being immersed in a solution (the mixing ratio of ethylene glycol is 50% by volume) for a long time of 1000 hours, peeling of the adhesive layer 10b from the adherend is suppressed. That is, the adhesive layer 10b of the hot melt adhesive sheet 10 has excellent long-term hot water resistance, long-term acid resistance, and long-term alcohol resistance.
  • adherend e.g. , PEN film, perfluorocarbon sulfonic acid resin sheet, PPS film, etc.
  • the adhesive layer 10b of the hot melt adhesive sheet 10 according to the present embodiment has excellent adhesion to an adherend and also has excellent hot water resistance, acid resistance, and alcohol resistance. We speculate as follows.
  • the adhesive layer 10b of the hot melt adhesive sheet 10 is formed of a hot melt adhesive, and the hot melt adhesive has an aromatic polyester skeleton as a polyurethane resin (A).
  • the epoxy resin (B) contains a non-modified epoxy resin (bisphenol A type epoxy resin, etc.) with an epoxy equivalent of 300 g/eq or more and 1500 g/eq or less, and an isocyanate crosslinking agent (C). Contains.
  • the polyester urethane resin having an aromatic polyester skeleton and the unmodified epoxy resin having an epoxy equivalent of 300 g/eq or more and 1500 g/eq or less are combined with an isocyanate crosslinking agent (C). It is cross-linked.
  • the polyester urethane resin having an aromatic polyester skeleton and the unmodified epoxy resin having an epoxy equivalent of 300 g/eq or more and 1500 g/eq or less is contained in a crosslinked state with the isocyanate crosslinking agent (C).
  • the polyester urethane resin having an aromatic polyester skeleton exhibits high hydrophobicity. Therefore, since the adhesive layer 10b contains the polyester urethane resin having an aromatic polyester skeleton, the adhesive layer 10b has improved hydrophobicity. As a result, the adhesive layer 10b is considered to have excellent hot water resistance, acid resistance, and alcohol resistance.
  • the adhesive layer 10b of the hot melt adhesive sheet 10 according to the present embodiment has excellent adhesion to the adherend, and is also excellent in hot water resistance, acid resistance, and alcohol resistance.
  • the adherend to which the adhesive layer 10b of the hot melt sheet 10 according to the present embodiment is adhered is a membrane/electrode assembly (MEA) 20 of a polymer electrolyte fuel cell. This will be further explained using an example.
  • MEA membrane/electrode assembly
  • the membrane/electrode assembly (MEA) 20 which is the adherend, allows hydrogen gas to permeate from the negative electrode side to the positive electrode side, and generates electricity by causing the oxygen supplied to the positive electrode side to react with the hydrogen. It is configured so that it can be done.
  • a positive electrode 202 and a negative electrode 203 are laminated on both opposing surfaces of a solid electrolyte membrane 201, respectively.
  • the positive electrode 202 includes a positive electrode catalyst layer 202a and a positive electrode gas diffusion layer 202b laminated on the positive electrode catalyst layer 202a, and the positive electrode catalyst layer 202a is laminated on one side of the solid electrolyte membrane 201.
  • the negative electrode 203 includes a negative electrode catalyst layer 203a and a negative electrode gas diffusion layer 203b laminated on the negative electrode catalyst layer 203a, and the negative electrode catalyst layer 203a is laminated on the other side of the solid electrolyte membrane 201.
  • the positive electrode catalyst layer 202a and the negative electrode catalyst layer 203a are formed to have smaller planar dimensions than the solid electrolyte membrane 201, and the positive electrode gas diffusion layer 202b and the negative electrode gas diffusion layer 203b are formed to have a smaller planar dimension than the solid electrolyte membrane 201.
  • Both the layer 202a and the negative electrode catalyst layer 203a are formed so that their planar dimensions are small. That is, in the membrane/electrode assembly (MEA), the planar dimensions of the positive electrode 202 and the negative electrode 203 are smaller than the planar dimensions of the solid electrolyte membrane 201.
  • the solid electrolyte membrane 201 is placed on the positive electrode side (one side) of the membrane/electrode assembly (MEA) 20.
  • the solid electrolyte membrane 201 is provided as a negative electrode catalyst layer on the negative electrode side (the other surface side) of the membrane/electrode assembly (MEA) 20.
  • a negative electrode side electrolyte membrane exposed region 201b is formed at the outer periphery, extending outward from 203a and exposing the surface of the solid electrolyte membrane 201.
  • 202a1 is formed.
  • the positive electrode catalyst layer exposed region 202a1 is formed inside the positive electrode side electrolyte membrane exposed region 201a and outside the positive electrode gas diffusion layer 202b.
  • the positive electrode side electrolyte membrane exposed region 201a is formed in an annular shape so as to go around the outer periphery of the membrane/electrode assembly (MEA) 20.
  • the positive electrode side catalyst layer exposed region 202a1 is formed in an annular shape smaller than the positive electrode side electrolyte membrane exposed region 201a. That is, on the positive electrode side of the membrane/electrode assembly (MEA), there is a positive electrode catalyst layer on the inside of the first boundary line L1, which is the boundary between the positive electrode electrolyte membrane exposed region 201a and the positive electrode catalyst layer exposed region 202a1.
  • a second boundary line L2 is formed between the exposed region 202a1 and the positive electrode gas diffusion layer 202b.
  • the negative electrode side catalyst layer exposed region 203a1 On the negative electrode side of the membrane/electrode assembly (MEA) 20, there is a negative electrode side catalyst layer exposed region 203a1 where the negative electrode catalyst layer 203a extends outward from the negative electrode gas diffusion layer 203b. is formed.
  • the negative electrode catalyst layer exposed region 203a1 is formed inside the negative electrode side electrolyte membrane exposed region 201b and outside the negative electrode gas diffusion layer 203b.
  • the negative electrode side electrolyte membrane exposed region 201b is formed in an annular shape so as to go around the outer periphery of the membrane/electrode assembly (MEA) 20.
  • the negative electrode side catalyst layer exposed region 203a1 is formed in an annular shape smaller than the negative electrode side electrolyte membrane exposed region 201b.
  • a fourth boundary line L4 is formed as a boundary line between the exposed region 203a1 and the negative electrode gas diffusion layer 203b.
  • the first hot melt adhesive sheet 10 is bonded to the positive electrode side of the membrane/electrode assembly (MEA) 20, and the first hot melt adhesive sheet 10 is bonded to the negative electrode side of the membrane/electrode assembly (MEA) 20.
  • Two hot melt adhesive sheets 10, including a second hot melt adhesive sheet 10 to be adhered, are used as a subgasket material of a polymer electrolyte fuel cell.
  • the first hot melt adhesive sheet 10 has an annular shape, and when stacked on the membrane/electrode assembly (MEA) 20, the outer peripheral edge is outside the membrane/electrode assembly (MEA) 20, and the inner peripheral edge has a shape that fits within the positive electrode side catalyst layer exposed region 202a1 and the negative electrode side catalyst layer exposed region 203a1. That is, the hollow portion of the first hot melt adhesive sheet 10 has a shape that is one size larger than the positive electrode gas diffusion layer 202b.
  • the second hot melt adhesive sheet 10 also has the same shape as the first hot melt adhesive sheet 10.
  • first hot melt adhesive sheet 10 and the second hot melt adhesive sheet 10 directly bond the outer peripheral portion of the adhesive layer 10b outside the membrane/electrode assembly (MEA) 20. This is used as the subgasket material.
  • the first hot melt adhesive sheet 10 has an inner circumferential portion other than the outer circumferential portion bonded to the second hot melt adhesive sheet 10 that is bonded to the outer circumferential portion of the membrane/electrode assembly (MEA) 20, and the positive electrode It is bonded in a range from the side electrolyte membrane exposed area 201a to the positive electrode side catalyst layer exposed area 202a1 beyond the first boundary line L1.
  • the second hot melt adhesive sheet 10 is also bonded in the same manner as the first hot melt adhesive sheet 10.
  • the hot melt adhesive sheet 10 By adhering (adhering) the hot melt adhesive sheet 10 to the membrane/electrode assembly (MEA) 20 as described above, a portion of the positive electrode gas can pass through the positive electrode side electrolyte membrane exposed region 201a, and the negative electrode gas Since a part of the negative electrode side electrolyte membrane exposed region 201b can pass through the negative electrode side electrolyte membrane exposed region 201b, it is possible to suppress the performance of the polymer electrolyte fuel cell from deteriorating.
  • the membrane/electrode assembly (MEA) 20 As described above, in the polymer electrolyte fuel cell, hydrogen and oxygen react in the membrane/electrode assembly (MEA) 20 to generate electricity. Then, as described above, when hydrogen and oxygen react, the membrane/electrode assembly (MEA) 20 reaches a relatively high temperature (eg, 95° C.).
  • a relatively high temperature eg, 95° C.
  • the central portion of the membrane/electrode assembly (MEA) 20 is used to circulate antifreeze contained in a radiator via a conduit.
  • the pipe is sufficiently cooled by cooling, the pipe line is not normally provided up to the edge of the membrane/electrode assembly (MEA) 20, so the edge of the membrane/electrode assembly (MEA) 20 is It will continue to maintain high temperatures.
  • the antifreeze when the antifreeze is being circulated, a part of the antifreeze may leak from the pipe, and the antifreeze that leaked from the pipe may be attached to the adhesive attached to the edge side of the solid electrolyte membrane 201. It may come into contact with the agent layer 10b. Since the antifreeze solution usually contains polyethylene glycol and water as liquid components, in such a case, the adhesive layer 10b is brought into contact with the polyethylene glycol and water at a high temperature.
  • the membrane/electrode assembly (MEA) 20 since hydrogen ions (H + ) undergo mass transfer within the membrane/electrode assembly (MEA) 20, the membrane/electrode assembly (MEA) 20 It shows strong acidity equivalent to about 0.1 to 0.5M dilute sulfuric acid. In such a case, the adhesive layer 10b attached to the edge side of the solid electrolyte membrane 201 is exposed to strong acidity at high temperatures.
  • the adhesive layer 10b is configured as described above, so the adhesive layer 10b has long-term hot water resistance, long-term acid resistance, and It has excellent long-term alcohol resistance. Therefore, when the hot melt adhesive sheet according to this embodiment is used as a subgasket material in a polymer electrolyte fuel cell installed in an automobile, as described above, the adhesive layer 10b becomes water-resistant at a high temperature of 95°C. Even if the adhesive layer 10b is exposed to strongly acidic conditions at high temperatures such as 95° C., the adhesiveness with the solid electrolyte membrane 201 can be maintained for a long time (1000 hours). I can do it. Note that, as described later, the solid electrolyte membrane 201 is usually made of a fluororesin such as perfluorocarbon sulfonic acid.
  • the positive electrode catalyst layer 202a and the negative electrode catalyst layer 203a are generally made of a catalyst supporting material such as a carbon material supporting a catalyst, a proton conductive polymer, and a catalyst ink containing a solvent. It is formed using a composition.
  • the solid electrolyte membrane 201 of the membrane/electrode assembly (MEA) 20 is made of, for example, a fluororesin such as perfluorocarbon sulfonic acid resin.
  • a fluororesin such as perfluorocarbon sulfonic acid resin.
  • the perfluorocarbon sulfonic acid resin include "Nafion” (trade name) manufactured by DuPont, "Flemion” (trade name) manufactured by Asahi Kasei Corporation, "Aciplex” (trade name) manufactured by Asahi Glass Co., Ltd., and the like.
  • the perfluorocarbon sulfonic acid resin is, for example, a resin having a polymer structure represented by the following formula (1).
  • the positive electrode catalyst layer 202a and the negative electrode catalyst layer 203a are layers containing catalyst particles.
  • Examples of the catalyst particles contained in the positive electrode catalyst layer 202a include platinum.
  • Examples of the catalyst particles contained in the negative electrode catalyst layer 203a include platinum compounds.
  • Examples of the platinum compound include alloys of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, and iron.
  • the positive electrode gas diffusion layer 202b and the negative electrode gas diffusion layer 203b are made of a porous conductive base material.
  • the porous conductive base material include carbon paper and carbon cloth.
  • hot melt adhesive sheet 10 can also be used in a redox flow battery.
  • Hot-melt adhesive sheets used in redox flow batteries are used to suppress electrolyte permeation.
  • a hot melt adhesive sheet comprising a base material and an adhesive layer formed of a hot melt adhesive and laminated on at least one side of the base material,
  • the hot melt adhesive includes a crosslinked adhesive composition containing a crosslinking agent, the adhesive composition containing a polyurethane resin, an epoxy resin, and an isocyanate crosslinking agent,
  • the polyurethane resin contains a polyester urethane resin having an aromatic polyester skeleton,
  • the epoxy resin contains an unmodified epoxy resin having an epoxy equivalent of 300 g/eq or more and 1500 g/eq or less.
  • the adhesive layer of the hot melt adhesive sheet has excellent adhesion to the adherend, and also has excellent hot water resistance, acid resistance, and alcohol resistance.
  • polyurethane resin further includes a polyurethane resin having a structural unit derived from a polyol having a carbon number of 8 or more in the skeleton.
  • the adhesive layer of the hot melt adhesive sheet has excellent adhesion to the adherend, and also has excellent hot water resistance, acid resistance, and alcohol resistance.
  • the polyurethane resin having a structural unit derived from a polyol having a carbon number of 8 or more in the skeleton contains a hydroxyl group-containing polyurethane resin having a hydroxyl group
  • the adhesive layer of the hot melt adhesive sheet has excellent adhesion to the adherend, and also has excellent hot water resistance, acid resistance, and alcohol resistance.
  • the adhesive layer of the hot melt adhesive sheet has excellent adhesion to the adherend, and also has excellent hot water resistance, acid resistance, and alcohol resistance.
  • the mass average molecular weight Mw of the polyurethane resin having a structural unit derived from a polyol having a carbon number of 8 or more in the skeleton is 1,000 or more and 100,000 or less, according to any one of (2) to (4) above. Hot melt adhesive sheet.
  • the adhesive layer of the hot melt adhesive sheet has excellent adhesion to the adherend, and also has excellent hot water resistance, acid resistance, and alcohol resistance.
  • the adhesive layer of the hot melt adhesive sheet has excellent adhesion to the adherend, and also has excellent hot water resistance, acid resistance, and alcohol resistance.
  • the adhesive layer of the hot melt adhesive sheet has excellent adhesion to the adherend, and also has excellent hot water resistance, acid resistance, and alcohol resistance.
  • the hot melt adhesive sheet according to the present invention is not limited to the above embodiments. Further, the hot melt adhesive sheet according to the present invention is not limited by the above-mentioned effects. The hot melt adhesive sheet according to the present invention can be modified in various ways without departing from the gist of the present invention.
  • Example 1 The following components were mixed in the proportions shown in Table 1 below to obtain a composition for a hot melt adhesive layer according to Example 1.
  • polyurethane resin having a structural unit derived from a polyol (a1) having a carbon number of 8 or more in the skeleton hereinafter also referred to as polyurethane resin A1
  • polyurethane resin A1 ⁇ Polyester urethane resin (trade name: "Vylon (registered trademark) UR-3210" manufactured by Toyobo Co., Ltd., hereinafter also referred to as polyurethane resin A2)
  • JER1001 manufactured by Mitsubishi Chemical Corporation, which is a bisphenol A type epoxy resin (epoxy equivalent is 450 to 500 g/eq.
  • epoxy resin B1 ⁇ Rubber-modified epoxy resin (product name: ADEKA Resin EPR-1415-1, manufactured by ADEKA Co., Ltd.; hereinafter also referred to as epoxy resin B2) ⁇ Isocyanate crosslinking agent (C) (trade name “Takenate D-110N” manufactured by Mitsui Takeda Chemical Co., Ltd.)
  • epoxy resin B2 ⁇ Rubber-modified epoxy resin
  • epoxy resin B2 ADEKA Resin EPR-1415-1, manufactured by ADEKA Co., Ltd.
  • Isocyanate crosslinking agent (C) trade name “Takenate D-110N” manufactured by Mitsui Takeda Chemical Co., Ltd.
  • the obtained resin solution AA1 has a solid content of 30% by mass, and the polyurethane resin A1 has a hydroxyl value of 2.5 mgKOH/g and a polyol (a1) having a carbon number of 8 or more in the skeleton is 29.7% by mass. Met. Moreover, the mass average molecular weight of polyurethane resin A1 measured by GPC was 72,000.
  • composition for a hot melt adhesive layer according to Example 1 was obtained as follows in more detail.
  • a mixed solution is obtained by mixing resin solution AA1 and epoxy resin solution BB1 such that polyurethane resin A1 and epoxy resin B1 have the blending ratio shown in Table 1 below.
  • the polyurethane resin A2, the epoxy resin B2, and the isocyanate crosslinking agent (C) are completely dissolved in the mixed solution.
  • Example 2 A composition for a hot melt adhesive layer according to Example 2 was obtained in the same manner as in Example 1 except that the epoxy resin B2 was not added.
  • Example 3 Example 1 except that the product name "JER1003" manufactured by Mitsubishi Chemical Corporation (epoxy equivalent is 670 to 770 g/eq) was used as the bisphenol A epoxy resin instead of the product name "JER1001" manufactured by Mitsubishi Chemical Corporation. In the same manner as above, a composition for a hot melt adhesive layer according to Example 3 was obtained.
  • Example 4 A composition for a hot melt adhesive layer according to Example 4 was obtained in the same manner as in Example 3 except that the epoxy resin B2 was not added.
  • Example 5 Example 1 except that the product name "JER1004" manufactured by Mitsubishi Chemical Corporation (epoxy equivalent is 875 to 975 g/eq) was used as the bisphenol A type epoxy resin instead of the product name "JER1001" manufactured by Mitsubishi Chemical Corporation. In the same manner as above, a composition for a hot melt adhesive layer according to Example 5 was obtained.
  • Example 6 A composition for a hot melt adhesive layer according to Example 6 was obtained in the same manner as in Example 5 except that the epoxy resin B2 was not added.
  • Example 1 Example 1 except that the product name "JER1007” manufactured by Mitsubishi Chemical Corporation (epoxy equivalent is 1750 to 2200 g/eq) was used as the bisphenol A epoxy resin instead of the product name "JER1001" manufactured by Mitsubishi Chemical Corporation. In the same manner as above, a composition for a hot melt adhesive layer according to Comparative Example 1 was obtained.
  • Comparative example 2 A composition for a hot melt adhesive layer according to Comparative Example 2 was obtained in the same manner as Comparative Example 1 except that the epoxy resin B2 was not added.
  • Comparative example 4 A composition for a hot melt adhesive layer according to Comparative Example 4 was obtained in the same manner as Comparative Example 3 except that the epoxy resin B2 was not added.
  • Comparative example 6 A composition for a hot melt adhesive layer according to Comparative Example 6 was obtained in the same manner as Comparative Example 5 except that the epoxy resin B2 was not added.
  • Comparative example 7 A composition for a hot melt adhesive layer according to Comparative Example 7 was obtained in the same manner as in Example 1 except that no epoxy resin was added.
  • Comparative example 8 A hot melt adhesive layer composition according to Comparative Example 8 was obtained in the same manner as Comparative Example 7 except that the epoxy resin B2 was not added.
  • the hot melt adhesive layer composition of each example was diluted with methyl ethyl ketone (MEK) so that the solid content was 30% by mass.
  • MEK methyl ethyl ketone
  • a diluted hot melt adhesive layer composition was applied to the entire surface of one side of a PEN film (length: 210 mm, width: 150 mm, thickness: 100 ⁇ m, Teonex: manufactured by Toyobo Film Solutions Co., Ltd.), and after application. After drying at 100° C. for 1 minute, the film was left in an oven at 40° C. for 48 hours to advance a curing reaction (crosslinking reaction) to obtain a PEN film with a hot melt adhesive layer. The coating was carried out so that the thickness of the hot melt adhesive layer after drying was 20 ⁇ m.
  • first adhesive sheet Two PEN films with hot melt adhesive layers of each example were prepared, and the two PEN films with hot melt adhesive layers were stacked so that the hot melt adhesive layers were in contact with each other. Using a laminator adjusted to 140° C., two PEN films with hot melt adhesive layers of each example were bonded together by thermocompression bonding to produce a first adhesive sheet according to each example.
  • the PEN film with the hot melt adhesive layer of each example and the perfluorocarbon sulfonic acid resin sheet were bonded together by thermocompression bonding to produce a second adhesive sheet according to each example. did.
  • Alcohol resistance 1 For the first adhesive sheet of each example, a test piece with a size of 10 mm width x 80 mm length was cut out from the first adhesive sheet of each example, and the test piece was placed in a water-ethylene glycol mixed solution (ethylene glycol) at 95°C. The test specimens were immersed in a mixture of 50% by volume of coal for 1000 hours, and after cooling to room temperature, the alcohol resistance of each specimen was evaluated using the following criteria. - Excellent: No peeling was observed after immersion. - Fair: No peeling is observed after immersion, but some lifting is observed. - Not acceptable: Peeling is observed after immersion.
  • test piece with a width of 10 mm x length of 80 mm was cut out from the second adhesive sheet of each example, and the test piece was immersed in dilute sulfuric acid of pH 2 at 95 ° C. for 1000 hours, After cooling to room temperature, each test specimen was evaluated for acid resistance based on the following criteria. - Excellent: No peeling was observed after immersion. - Fair: No peeling is observed after immersion, but some lifting is observed. - Not acceptable: Peeling is observed after immersion.
  • the initial adhesive strength of the first adhesive sheet (adhesive sheet in which a hot melt adhesive layer is sandwiched between two PEN films) of each example was evaluated using an autograph.
  • a test piece with a size of 10 mm width x 80 mm length was cut out from the first adhesive sheet of each example, and the adhesive strength of the test piece was measured using an autograph.
  • Those with an adhesive strength of 3 N/10 mm or more were evaluated as excellent, and those with an adhesive strength of less than 3 N/10 mm were evaluated as poor.
  • Comparative Example 1, Comparative Example 3, Comparative Example 5, and Comparative Example 7 all contain epoxy resin B2 (rubber-modified epoxy resin), whereas Comparative Example 2, Comparative Example 4, and Comparative Example Example 6 and Comparative Example 8 differ in that both do not contain epoxy resin B2 (rubber-modified epoxy resin). From this, Comparative Example 1, Comparative Example 3, Comparative Example 5, and Comparative Example 7 have improved hot water resistance, acid resistance, and alcohol resistance by including epoxy resin B2 (rubber-modified epoxy resin). It is presumed that he did.
  • 10 hot melt adhesive sheet 20 membrane/electrode assembly (MEA), 201 solid electrolyte membrane, 202 positive electrode, 203 negative electrode, 10a base material, 10b adhesive layer, 201a positive electrode side electrolyte membrane exposed area, 201b negative electrode side electrolyte membrane exposed area, 202a positive electrode catalyst layer, 202b positive electrode gas diffusion layer, 203a negative electrode catalyst layer, 203b negative electrode gas diffusion layer, 202a1 positive electrode side Catalyst layer exposed area, 203a1 Negative electrode side catalyst layer exposed area, L1 first boundary line, L2 second boundary line, L3 third boundary line, L4 fourth boundary line.
  • MEA membrane/electrode assembly

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明に係るホットメルト接着シートは、基材と、ホットメルト接着剤で形成された接着剤層であって、前記基材の少なくとも一方面に積層された接着剤層と、を備えるホットメルト接着シートであって、前記ホットメルト接着剤は、架橋剤を含む接着剤組成物の架橋物を含み、前記接着剤組成物は、ポリウレタン樹脂、エポキシ樹脂、及び、イソシアネート系架橋剤を含有し、前記ポリウレタン樹脂は、芳香族ポリエステル骨格を有するポリエステルウレタン樹脂を含有し、前記エポキシ樹脂は、エポキシ当量が300g/eq以上1500g/eq以下の非変性エポキシ樹脂を含有する。

Description

ホットメルト接着シート 関連出願の相互参照
 本願は、日本国特願2022-087187号の優先権を主張し、その開示内容は、引用によって本願明細書の記載に組み込まれる。
 本発明は、ホットメルト接着シートに関する。
 従来、各種プラスチック用の接着剤として、低温域(例えば、-10℃~15℃)での接着安定性、並びに、常温域(25±10℃)での接着性、柔軟性、加工性、及び、各種分子設計の容易さから、ポリウレタン系の接着剤が多く使われている。
 前記ポリウレタン系の接着剤としては、主剤として、ポリエステルポリオールやアクリルポリオールを含み、かつ、架橋剤として、ポリイソシアネートを含んでおり、前記主剤と前記架橋剤との間で架橋反応を進行させることによりウレタン結合を生成させて用いられるものや、主剤として、ある程度の鎖長を有するポリウレタン(いわゆる、ポリウレタンプレポリマー)を含み、かつ、架橋剤として、イソシアネート系架橋剤を含んでおり、前記主剤と前記架橋剤との間で架橋反応を進行させ硬化させることにより用いられるものがある。
 また、主剤としてポリウレタン樹脂を含み、エポキシ樹脂、および、イソシアネート系架橋剤を含有した二液性の接着剤として、下記特許文献1には、耐湿熱性に優れた接着剤が記載されている。
 近年、下記特許文献1に記載されたような液状の接着剤に比べて、取り扱い性に優れるとの観点から、部材の接着にホットメルト接着剤を利用する機会が増えている。
 前記ホットメルト接着剤は、特に取り扱い性に優れるという観点から、ホットメルト接着シートの形態で用いられることが多い。
 前記ホットメルト接着シートは、通常、ポリマーシートで形成された基材層と、該基材層上に積層され、前記ホットメルト接着剤で形成された接着剤層とを備えている。
国際公開第2013/157604号
 耐湿熱性(耐熱水性)の向上を図ることは、引用文献1に記載されたような二液性の接着剤だけではなく、ホットメルト接着シートの接着剤層にも求められている。
 また、ホットメルト接着シートの接着剤層には、耐酸性、耐アルコール性などを向上させることが求められているものの、そのような要望は満たされていない。
 さらに、ホットメルト接着シートの接着剤層には、熱圧着により十分に被着体との密着性を確保できることも要求される。
 本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、被着体との密着性に優れ、かつ、耐熱水性、耐酸性、耐アルコール性にも優れる接着剤層を有するホットメルト接着シートを提供することである。
 本発明に係るホットメルト接着シートは、
 基材と、ホットメルト接着剤で形成された接着剤層であって、前記基材の少なくとも一方面に積層された接着剤層と、を備えるホットメルト接着シートであって、
 前記ホットメルト接着剤は、架橋剤を含む接着剤組成物の架橋物を含み、前記接着剤組成物は、ポリウレタン樹脂、エポキシ樹脂、及び、イソシアネート系架橋剤を含有し、
 前記ポリウレタン樹脂は、芳香族ポリエステル骨格を有するポリエステルウレタン樹脂を含有し、
 前記エポキシ樹脂は、エポキシ当量が300g/eq以上1500g/eq以下の非変性エポキシ樹脂を含有する。
本発明の一実施形態に係るホットメルト接着シートの構成を示す概略断面図。 本発明の一実施形態に係るホットメルト接着シートを固体高分子型燃料電池の固体電解質膜に取り付けて使用した状態を示す概略断面図。
 以下、図面を参照しながら、本発明の一実施形態に係るホットメルト接着シートについて説明する。
 以下では、本発明の一実施形態を、単に、本実施形態と称することがある。
 図1に示したように、本実施形態に係るホットメルト接着シート10は、基材10aと、ホットメルト接着剤で形成された接着剤層10bであって、基材10aの一方面に積層された接着剤層10bと、を備えるホットメルト接着シートである。
 図1に示したホットメルト接着シート10では、基材10aの一方面にのみ接着剤層10bが積層されているが、接着剤層10bは基材10aの他方面に積層されていてもよい。
 すなわち、ホットメルト接着シート10は、基材10aの両面に接着剤層10bが積層されたホットメルト接着シートであってもよい。
 本実施形態に係るホットメルト接着シート10においては、前記ホットメルト接着剤は、架橋剤を含む接着剤組成物の架橋物を含み、前記接着剤組成物は、ポリウレタン樹脂、エポキシ樹脂、及び、イソシアネート系架橋剤を含有する。
 本実施形態に係るホットメルト接着シート10においては、前記ポリウレタン樹脂は、芳香族ポリエステル骨格を有するポリエステルウレタン樹脂を含有する。
 本実施形態に係るホットメルト接着シート10においては、前記エポキシ樹脂は、エポキシ当量が300g/eq以上1500g/eq以下の非変性エポキシ樹脂を含有する。
 以下では、ポリウレタン樹脂をポリウレタン樹脂(A)と称し、エポキシ樹脂をエポキシ樹脂(B)と称し、イソシアネート系架橋剤をイソシアネート系架橋剤(C)と称する。
(ポリウレタン樹脂(A))
 ポリウレタン樹脂(A)は、1分子中に2以上の水酸基を有するポリオール成分(a)と、1分子中に2以上のイソシアネート基を有するポリイソシアネート成分(b)とを含む反応成分をウレタン結合させて得られるものである。
 上で説明したように、本実施形態に係るホットメルト接着シート10においては、ポリウレタン樹脂(A)は、芳香族ポリエステル骨格を有するポリエステルポリウレタン樹脂を含有する。
 本明細書において、前記ポリエステルポリウレタン樹脂とは、水酸基を有する水酸基含有ポリエステル(上記のポリオール成分(a)に相当)に、ポリイソシアネート成分(b)を反応させて得られるものを意味する。
 すなわち、本明細書において、前記ポリエステルウレタン樹脂とは、水酸基を有する水酸基含有ポリエステルとポリイソシアネート成分(b)とのウレタン結合物である。
 前記水酸基含有ポリエステルとしては、多価カルボン酸と多価アルコールとの縮合反応により得られるポリエステルを用いることができる。
 前記多価カルボン酸としては、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、イタコン酸、フマル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、アジピン酸、セバシン酸、アゼライン酸、トリメリット酸、メチルシクロヘキセントリカルボン酸、または、ピロメリット酸、不飽和脂肪酸から誘導されたダイマー酸類や、これらの酸無水物などが挙げられる。
 前記多価アルコールとしては、エチレングルコール、プロピレングリコール、ジエチレングルコール、トリエチレングルコール、ポリエチレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、ネオペンチルグリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ヘプタメチレングリコール、オクタメチレングリコールなどが挙げられる。
 また、前記多価アルコールは、カルボキシル基を有する多価アルコール(以下、カルボキシル基含有多価アルコールともいう)であってもよい。
 カルボキシル基含有多価アルコールとしては、ジメチロールプロピオン酸、ジメチロールブタン酸、ジフェノール酸などが挙げられる。
 さらに、前記多価アルコールは、ε-カプロラクタムなどのカプロラクトン化合物によって変性されたものであってもよい。
 前記水酸基含有ポリエステルに反応させる前記ポリイソシアネート成分(b)としては、脂肪族イソシアネート化合物、脂環族イソシアネート化合物や、芳香族イソシアネート化合物が挙げられる。
 前記脂肪族イソシアネート化合物としては、ヘキサメチレンジイソシアネート、イソプロピレンジイソシアネート、メチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、キシリレンジイソシアネートなどが挙げられる。
 前記脂環族イソシアネート化合物としては、イソホロンジイソシアネート、メチルシクロヘキサンジイソシアネート、リジンジイソシアネート、シクロヘキサン-1,4-ジイソシアネートなどが挙げられる。
 前記芳香族イソシアネート化合物としては、トリレンジイソシアネート、1,5-ナフチレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、4,4’-ジベンジルジイソシアネート、テトラアルキルジフェニルメタンイソシアネート、ジアルキルジフェニルメタンジイソシアネート、1,3’-フェニレンジイソシアネート、1,4’-フェニレンジイソシアネートなどが挙げられる。
 ここで、本実施形態に係るホットメルト接着シート10においては、前記ポリエステルウレタン樹脂は、芳香族ポリエステル骨格を有するポリエステルウレタン樹脂である。
 前記芳香族ポリエステル骨格は、前記水酸基含有ポリエステルを得るに際し、前記多価カルボン酸として、フタル酸、イソフタル酸、テレフタル酸などを用いることにより、前記ポリエステルウレタン樹脂に備えさせることができる。
 上記のように、前記ポリエステルウレタン樹脂が芳香族ポリエステル骨格を有していると、該ポリエステルウレタン樹脂は高い疎水性を示すものとなることから、このようなポリエステルウレタン樹脂を含む接着剤層10bは、疎水性が向上されたものとなる。
 これにより、接着剤層10bは、耐熱水性、耐酸性、及び、耐アルコール性に優れるものとなる。
 前記ポリエステルポリウレタン樹脂の市販品としては、東洋紡社製のバイロン(登録商標)URシリーズなどが挙げられる。
 東洋紡社製のバイロン(登録商標)URシリーズの中でも、市販品としては、バイロン(登録商標)UR-3200及びUR-3210を用いることが好ましい。
 なお、バイロン(登録商標)UR-3210は、バイロン(登録商標)UR-3200のトルエンフリー品である。
 そのため、揮発性有機化合物(VOC)の発生量を可能な限り少なくすることを考慮すると、市販品としては、バイロン(登録商標)UR-3210を用いることが好ましい。
 芳香族ポリエステル骨格を有する前記ポリエステルウレタン樹脂は、ガラス転移温度Tgが10℃以下であることがより好ましい。
 芳香族ポリエステル骨格を有する前記ポリエステルウレタン樹脂が上記のごとき構成を備えていることにより、接着剤層10bに含ませたときに、接着剤層10bは基材10aなどの被着体などに良好なる接着性を発揮し得るものとなる。
 基材10aとしては、PEN(ポリエチレンナフタレート)フィルム、パーフルオロカーボンスルホン酸樹脂シート(フィルム)、PPS(ポリフェニレンサルファイド)フィルムなどが挙げられる。
 また、前記ポリエステルウレタン樹脂が上記のごとき構成を備えていることにより、接着剤層10bは靭性に優れるものとなる。
 これにより、接着剤層10bに外力が加わった場合においても、接着剤層10bは破壊され難いものとなる。
 前記ガラス転移温度Tgは、5℃以下であることがより好ましく、0℃以下であることがさらに好ましく、-2℃以下であることがよりさらに好ましい。
 また、前記ガラス転移温度は、-30℃以上であることが好ましく、-20℃以上であることがより好ましく、-10℃以上であることがさらに好ましく、-5℃以上であることがよりさらに好ましい。
 なお、バイロン(登録商標)UR-3200及びUR-3210は、芳香族ポリエステル骨格を有していて、ガラス転移温度Tgが10℃以下のものである。
 ガラス転移温度Tgは、例えば、DSC装置を用いて測定することができる。
 より具体的には、予想されるガラス転移温度Tgよりも30K以上低い温度から30K以上高い温度までの間、窒素ガスを流しながら5℃/minの昇温条件で試料(ポリエステルウレタン樹脂)を昇温させた際に得られるDSC曲線から、前記ガラス転移温度Tgを求めることができる。
 ガラス転移温度Tgは、JIS K7121:1987「プラスチックの転移温度測定方法」に記載されている方法に基づいて求めることができる。
 前記ポリウレタン樹脂(A)は、前記ポリエステルウレタン樹脂以外のポリウレタン樹脂を含んでいてもよい。
 前記ポリエステルウレタン樹脂以外のポリウレタン樹脂としては、各種公知のものを用いることができるが、前記ポリオール成分(a)として、骨格の炭素数が8以上のポリオール(a1)に由来する構成単位を含有していることが好ましい。
 前記ポリエステルウレタン樹脂以外のポリウレタン樹脂は、イソシアネート系架橋剤(C)と反応するために、水酸基を有する水酸基含有ポリウレタン樹脂を含有することが好ましい。
 また、前記水酸基含有ポリウレタン樹脂は、末端に水酸基を有していることが好ましい。
 前記水酸基含有ポリウレタン樹脂の水酸基価は、0.1mgKOH/g以上20mgKOH/g以下であることが好ましく、1mgKOH/g以上15mgKOH/g以下であることがより好ましい。
 前記ポリエステルウレタン樹脂以外のポリウレタン樹脂では、ポリオール成分(a)は、骨格の炭素数が8以上を有するポリオール(a1)と共に一般的なポリオール(a2)を含有することがより好ましい。
 なお、以下では、一般的なポリオール(a2)を、単に、ポリオール(a2)と称することがある。
 本明細書において、骨格の炭素数が8以上を有するポリオール(a1)とは、水酸基の間の炭素の数が8以上のポリオールを意味し、水酸基の間の8以上の炭素は、ヘテロ原子を介して結合していてもよく、隣り合う炭素どうしが飽和結合していても不飽和結合していてもよいポリオールを意味する。
 骨格の炭素数が8以上を有するポリオール(a1)は、ポリカーボネートポリオールであることが好ましい。
 また、骨格の炭素数が8以上を有するポリオール(a1)においては、8以上の炭素を含む部分に含まれるヘテロ原子の数は、2以下であることが好ましい。
 さらに、骨格の炭素数が8以上を有するポリオール(a1)は、炭素数8以上の飽和または不飽和の炭化水素から複数の水素原子を除いた残基が分子中に存在していることが好ましい。
 また、骨格の炭素数が8以上を有するポリオール(a1)は、炭素数6以上のアルキレン基を有していることが好ましい。
 骨格の炭素数が8以上を有するポリオール(a1)としては、ジカルボン酸(セバシン酸(炭素数10)、アゼライン酸(炭素数9)、イソフタル酸(炭素数8)、テレフタル酸(炭素数8)など)と、グリコール(1,9-ノナンジオール(炭素数9)、1,4 -ビスヒドロキシメチルシクロヘキサン(炭素数8)など)と、を含むモノマーを縮重合した、ポリエステルポリオールなどが例示される。
 また、骨格の炭素数が8以上を有するポリオール(a1)としては、ポリ(1,4-シクロヘキサンジメチレンカーボネート)ジオール(炭素数8)、ポリオクタメチレンカーボネートジオール(炭素数8)、ポリノナメチレンカーボネートジオール(炭素数9)、ポリデカメチレンカーボネートジオール(炭素数10)などのポリカーボネートポリオール、及び、これらを含むモノマーのランダム/ブロック共重合体などが挙げられる。
 また、骨格の炭素数が8以上を有するポリオール(a1)としては、ダイマー酸に由来するポリオールも挙げることができる。
 前記ダイマー酸は、オレイン酸やリノール酸等の炭素数18の不飽和脂肪酸を二量化して得られる炭素数36のジカルボン酸であり、植物由来の脂肪酸である。
 前記ダイマー酸の代表的な構造は下記式(1)で表される。
 前記ダイマー酸は、トリマー酸を含んでいてもよい。
 トリマー酸は上記炭素数18の不飽和脂肪酸を三量化して得られる炭素数54のトリカルボン酸であり、ダイマー酸製造の際にも副生し、市販のダイマー酸は、通常、トリマー酸を含んでいる。
Figure JPOXMLDOC01-appb-C000001
 ダイマー酸に由来するポリオールであるダイマージオールは、上記ダイマー酸のカルボキシ基を水酸基に還元して得られる炭素数36のポリオールである。
 該ポリオールは、その分子中に不飽和結合を有していてもよいし、有していなくてもよい。
 このようなダイマーポリオールの具体例としては、ダイマージオール等を挙げることができる。
 トリマートリオールも同様に、トリマー酸のカルボキシル基を水酸基に還元して得られるポリオールである。
 市販のダイマージオールは、通常、トリマートリオールを含んでいる。
 そのため、ダイマー酸由来のポリオール、ダイマーポリオール及びダイマージオールは、トリマートリオールを含んでいてもよい。
 また、骨格の炭素数が8以上を有するポリオール(a1)としては、ポリオレフィンポリオールも挙げることができる。
 ポリオレフィンポリオールは、複数の水酸基を有する1種以上のポリオレフィンどうしが重合された重合体である。
 このようなポリオレフィンポリオールの具体例としては、ポリエチレンブチレンジオール、ポリブタジエンジオール、及び水素化ポリブタジエンジオール等を挙げることができる。
 これらは炭素鎖同士が重合するため、炭素鎖が極めて長いポリオールである。
 ホットメルト接着シート10の接着剤層10bが、ポリウレタン樹脂(A)として、上記のような、骨格の炭素数が8以上のポリオール(a1)に由来する構成単位を有するポリウレタン樹脂(詳しくは、前記ポリエステルウレタン樹脂以外のポリウレタン樹脂)を含むことにより、骨格の炭素数が8以上のポリオール(a1)に由来する構成単位を有さないものを含むものと比べて、接着剤層10bの疎水性を向上させることができる。
 これにより、このような接着剤層10bは、耐熱水性、耐酸性、及び、耐アルコール性に優れるものとなる。
 前記ポリオール(a2)としては、ポリウレタン樹脂の合成の際に用いられる従来公知のポリオールを用いることができる。
 前記ポリオール(a2)の具体例としては、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、その他のポリオールなどを挙げることができる。
 ポリエステルポリオールとしては、脂肪族系ジカルボン酸(例えば、コハク酸、アジピン酸、グルタル酸など)と、低分子量グリコール(例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブチレングリコール、1,6-ヘキサメチレングリコール、ネオペンチルグリコールなど)と、を縮重合したものが例示される。
 上記のようなポリエステルポリオールを、炭素数が8以上のジカルボン酸やグリコールと共重合させてもよい。
 このようなポリエステルポリオールの具体例としては、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリヘキサメチレンアジペートジオール、ポリネオペンチルアジペートジオール、ポリエチレン/ブチレンアジペートジオール、ポリネオペンチル/ヘキシルアジペートジオール、ポリ-3-メチルペンタンアジペートジオール、ポリブチレンイソフタレートジオール、ポリカプロラクトンジオール、ポリ-3-メチルバレロラクトンジオールなどを挙げることができる。
 ポリエステルポリオールは、ポリエーテルポリオールに比べ、耐熱性に優れている。
 従って、ポリエステルポリオールは、得られる接着剤層10bを耐熱性に優れたものとする上において、ポリエーテルポリオールよりも有利である。
 ポリエーテルポリオールの具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、及びこれらのランダム/ブロック共重合体などを挙げることができる。
 ポリエーテルポリオールは、ポリエステルポリオールに比べ、耐加水分解性に優れている。
 従って、ポリエーテルポリオールは、得られる接着剤層10bを耐加水分解性に優れたものとする上において、ポリエステルポリオールよりも有利である。
 ポリカーボネートポリオールの具体例としては、ポリテトラメチレンカーボネートジオール、ポリペンタメチレンカーボネートジオール、ポリネオペンチルカーボネートジオール、ポリヘキサメチレンカーボネートジオール及びこれらのランダム/ブロック共重合体などを挙げることができる。
 上記のようなポリカーボネートポリオールを、炭素数が8以上のジオールと共重合させてもよい。
 ポリカーボネートポリオールとして、上記のごとき各種ポリカーボネートジオールを用いることにより、前記ポリエステルウレタン樹脂以外のポリウレタン樹脂にカーボネートジオールの構成単位を備えさせることができる。
 ここで、ポリカーボネートポリオールは、耐加水分解性および耐熱性に優れる。
 そのため、得られる接着剤層10bを、耐加水分解性および耐熱性に優れるものとする点において有利である。
 ポリカーボネートポリオールの中でも、ポリヘキサメチレンカーボネートが、コストの観点や、材料としての入手のし易さの観点から好適である。
 その他のポリオールの具体例としては、アクリルポリオール、エポキシポリオール、ポリエーテルエステルポリオール、シロキサン変性ポリオール、α,ω-ポリメチルメタクリレートジオール、α,ω-ポリブチルメタクリレートジオール、シロキサン変性ポリオールなどを挙げることができる。
 前記ポリオール(a2)について上で説明した内容をまとめると、得られるホットメルト接着シート10の接着剤層10bを耐熱水性に優れるものとする観点から、耐加水分解性及び耐熱性に優れたポリカーボネートポリオールを用いることが好ましい。
 また、コストや材料としての入手し易さの観点から、前記ポリカーボネートポリオールの中でも、ポリヘキサメチレンカーボネートを用いることが特に好ましい。
 前記ポリオール(a1)及び前記ポリオール(a2)の数平均分子量Mn(末端官能基定量法による)は、特に限定されないが、500以上6000以下であることが好ましい。
 前記ポリオール(a1)及び前記ポリオール(a2)の数平均分子量Mnが上記のごとき数値範囲内であることにより、本実施形態のホットメルト接着シート10の接着剤層10bにおいて、ウレタン結合による凝集力が発現し易くなる。
 これにより、本実施形態の接着剤は、機械特性が高いものとなる。
 また、結晶性ポリオールは、数平均分子量Mnが大きすぎると、接着剤層10bのような被膜状とした際に、接着剤層10bに白化現象が引き起こされることがある。
 そのため、前記ポリオール(a1)及び前記ポリオール(a2)として、結晶性ポリオールを単独で使用する場合には、数平均分子量Mnが3,000 以下のものを使用することが好ましい。
 なお、前記ポリオール(a1)及び前記ポリオール(a2)は、それぞれ一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 前記ポリオール(a1)は、前記ポリオール成分(a)を100質量%としたときに、10質量%以上60質量%以下の割合で配合されていることが好ましい。
 前記ポリオール(a1)が10質量%以上の割合で配合されていることにより、本実施形態に係るホットメルト接着剤を十分な耐熱水性、耐酸性、耐アルコール性を有するものとすることができる。
 また、前記ポリオール(a1)が60質量%以下の割合で配合されていることにより、ウレタン樹脂(A)とエポキシ樹脂(B)との相溶性が良好となるとともに、得られるホットメルト接着剤を、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、及び、パーフルオロカーボンスルホン酸樹脂で形成された樹脂フィルムに対する密着性に優れたものとすることができる。
 なお、前記ポリオール成分(a)が骨格の炭素数が8以上を有するモノマーと骨格の炭素数が7以下を有するモノマーとの共重合体の場合は、骨格の炭素数が8以上を有するモノマーの質量部を前記ポリオール(a1)の質量部として算出し、骨格の炭素数が7以下を有するモノマーの質量部を前記ポリオール(a2)の質量部として算出する。
 前記ポリオール成分(a)としては、前記ポリオール(a1)及び前記ポリオール(a2)に加えて、必要に応じて、短鎖ジオール(a3)を用いることができる。
 前記短鎖ジオール(a3)の具体例としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、1,6-ヘキサメチレングリコール、ネオペンチルグリコールなどの脂肪族グリコールやそのアルキレンオキシド低モル付加物(末端官能基定量法による数平均分子量Mn500未満);1,4-ビスヒドロキシメチルシクロヘキサン、2-メチル-1,1-シクロヘキサンジメタノールなどの脂環式グリコールやそのアルキレンオキシド低モル付加物(数平均分子量Mn500未満、同上);キシリレングリコールなどの芳香族グリコールやそのアルキレンオキシド低モル付加物(数平均分子量Mn500未満、同上);ビスフェノールA、チオビスフェノール、スルホンビスフェノールなどのビスフェノールやそのアルキレンオキシド低モル付加物(数平均分子量Mn500未満、同上)などを挙げることができる。
 上記のごとき短鎖ジオール(a3)の中でも、エチレングリコール、1,3-プロピレングリコール、1,3- ブチレングリコール、1,4-ブチレングリコール、1 ,6-ヘキサメチレングリコール、ネオペンチルグリコールなどを用いることが好ましく、エチレングリコール、1,3- ブチレングリコール、1,4-ブチレングリコールを用いることが特に好ましい。
 これらの短鎖ジオール(a3)は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 なお、前記ポリエステルウレタン樹脂以外のポリウレタン樹脂を生成する際には、前記ポリエステルウレタン樹脂以外のポリウレタン樹脂の材料として、前記短鎖ジオール(a3)と同様に、多価アルコール系化合物を用いることもできる。
 前記多価アルコール系化合物の具体例としては、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリトリトール、トリス-(2-ヒドロキシエチル)イソシアヌレート、1,1,1-トリメチロールエタン、1,1,1-トリメチロールプロパンなどを挙げることができる。
 必要に応じて、カルボキシル基を有する水酸基含有化合物(a4)を使用してもよい。
 前記カルボキシル基を有する水酸基含有化合物(a4)は、通常、1分子中に2以上の水酸基を有する。
 また、前記カルボキシル基を有する水酸基含有化合物(a4)は、通常、1分子中に2以上の水酸基を有するので、1分子中に2以上のイソシアネート基を有するポリイソシアネート成分(b)と反応し、ポリウレタン樹脂が得られる。
 前記カルボキシル基を有する水酸基含有化合物(a4)としては、ジメチロールプロパン酸、ジメチロールブタン酸、それらのアルキレンオキシド低モル付加物(数平均分子量Mn500未満)や、γ-カプロラクトン低モル付加物(数平均分子量Mn500未満)、酸無水物とグリセリンから誘導されるハーフエステル類、水酸基と不飽和基を含有するモノマーと、カルボキシル基及び不飽和基を含有するモノマーとをフリーラジカル反応させることにより誘導される化合物などが挙げられる。
 これらの各種化合物の中でも、ジメチロールプロパン酸やジメチロールブタン酸を使用することが好ましく、ジメチロールプロパン酸を使用することが特に好ましい。
 これらの化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 ここで、前記数平均分子量Mnは、末端官能基定量法で測定した値を意味する。
 なお、上記した各種化合物は、本発明において好ましい化合物の例示である。
 したがって、本発明において使用される前記カルボキシル基を有する水酸基含有化合物(a4)は、上記した各種化合物に限定される訳ではない。
 そのため、上記した各種化合物以外にも、現在市販されていて、市場において容易に入手できるカルボキシル基を有する水酸基含有化合物(a4)は、いずれも本発明において使用できる。
 前記ポリイソシアネート成分(b)としては、ポリウレタン樹脂の製造に用いられている従来公知のポリイソシアネート成分を用いることができる。
 前記ポリイソシアネート成分(b)の具体例としては、トルエン-2,4-ジイソシアネート、トルエン-2,6-ジイソシアネート、それらの混合体、4-メトキシ-1,3-フェニレンジイソシアネート、4-イソプロピル-1,3-フェニレンジイソシアネート、4-クロル-1,3-フェニレンジイソシアネート、4-ブトキシ-1,3-フェニレンジイソシアネート、2,4-ジイソシアネートジフェニルエーテル、4,4’-メチレンビス(フェニレンイソシアネート)(MDI)、及びクルード又はポリメリックMDI、ジュリレンジイソシアネート、キシリレンジイソシアネート(XDI)、1,5-ナフタレンジイソシアネート、ベンジジンジイソシアネート、o-ニトロベンジジンジイソシアネート、4,4-ジイソシアネートジベンジルなどの芳香族ジイソシアネート;メチレンジイソシアネート、1,4-テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,10-デカメチレンジイソシアネートなどの脂肪族ジイソシアネート;1,4-シクロヘキシレンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、1,5-テトラヒドロナフタレンジイソシアネート、イソフォロンンジイソシアネート、水添XDIなどの脂環式ジイソシアネート;これらのジイソシアネートと、低分子量のポリオールとを、末端がイソシアネートとなるように反応させて得られるポリウレタンプレポリマーなどを挙げることができる。
 これらポリイソシアネート成分(b)の中でも、工業上安定的に、廉価で耐熱性に優れるホットメルト接着シート10の接着剤層10bを得るといった観点から、芳香族イソシアネートを用いることが好ましく、トルエン-2,4-ジイソシアネート、トルエン-2,6-ジイソシアネート、それらの混合体、4,4’-メチレンビス(フェニレンイソシアネート)(MDI)、及びクルード又はポリメリックMDIを用いることが特に好ましい。
 前記ポリイソシアネート成分(b)として、芳香族イソシアネートを用いることにより、前記ポリエステルウレタン樹脂以外のポリウレタン樹脂に芳香族ジイソシアネートの構成単位を備えさせることができる。
 これらのポリイソシアネート成分(b)は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
(ポリウレタン樹脂(A)の製造方法)
 ポリウレタン樹脂(A)の製造方法について、以下、まず、ポリエステルウレタン樹脂の製造方法を説明した上で、ポリエステルウレタン樹脂以外のポリウレタン樹脂の製造方法を説明する。
 ポリエステルウレタン樹脂は、水酸基を含有する水酸基含有ポリエステルに、ポリイソシアネート成分(b)を反応させることにより製造することができる。
 前記水酸基含有ポリエステルと前記ポリイソシアネート成分(b)との反応は、従来公知の方法で実施することができる。
 なお、上で説明したように、本実施形態に係るホットメルト接着シート10においては、ポリエステルウレタン樹脂は、芳香族ポリエステル骨格を有している。
 前記ポリエステルウレタン樹脂が芳香族ポリエステル骨格を有するものとすることは、前記水酸基含有ポリエステルを得るに際して、前記多価カルボン酸として、フタル酸、イソフタル酸、テレフタル酸などを用いることにより実施することができる。
 ポリエステルウレタン樹脂以外のポリウレタン樹脂は、従来公知のポリウレタンの製造方法により製造することができる。
 以下では、骨格の炭素数が8以上を有するポリオール(a1)を用いて、ポリエステルウレタン樹脂以外のウレタン樹脂を製造する方法について説明する。
 なお、骨格の炭素数が8以上を有するポリオール(a1)を用いない場合でも、下記と同様にして、ポリエステルウレタン樹脂以外のポリウレタン樹脂を製造することができる。
 まず、分子内に活性水素を含まない有機溶剤の存在下又は不存在下で、反応成分として、前記骨格の炭素数が8以上を有するポリオール(a1)と、前記ポリオール(a2)と、前記ポリイソシアネート成分(b)と、鎖伸長剤として必要に応じて用いられる短鎖ジオール(a3)と、を含む反応用組成物を反応させて、ポリエステルウレタン樹脂以外のポリウレタン樹脂を得る。
 また、ポリエステルウレタン樹脂以外のポリウレタン樹脂を得るに際しては、必要に応じて、前記カルボキシル基を有する水酸基含有化合物(a4)用いてもよい。
 前記反応用組成物は、一般的にはイソシアネート基と水酸基の当量比が0.8~1.25の配合組成とすればよい。
 また、反応はワンショット法又は多段法により、通常20~150℃、好ましくは60~110℃で実施すればよい。
 上記のようにして得られるポリエステルポリウレタン樹脂以外のポリウレタン樹脂の質量平均分子量Mwは、1,000以上100,000以下であることが好ましい。
 質量平均分子量Mwが上記数値範囲内であることにより、該ポリウレタン樹脂(A)を含むホットメルト接着剤は、基材への密着性、耐熱水性、耐酸性、及び、耐アルコール性などの特性がより有効に発揮されるものとなる。
 なお、前記ポリエステルウレタン樹脂以外のポリウレタン樹脂の質量平均分子量Mwは、ゲル浸透クロマトグラフィー(GPC)によって測定した値を意味する。
 前記ポリエステルウレタン樹脂以外のポリウレタン樹脂の質量平均分子量Mwは、例えば、以下の装置、条件にて測定することができる。
 
測定装置及び測定条件
・機器装置:商品名「HLC-8020」(東ソー社製)
・カラム:商品名「TSKgel G2000HXL」、「G3000HXL」、「G4000GXL」(東ソー社製)
・溶媒:THF
・流速:1.0ml/min
・試料濃度:2g/L
・注入量:100μL
・温度:40℃
・検出器:型番「RI-8020」(東ソー社製)
・標準物質:TSK標準ポリスチレン(東ソー社製)
 本実施形態では、前記ポリエステルウレタン樹脂及び前記ポリエステルウレタン樹脂以外のポリウレタン樹脂の合成において、必要に応じて触媒を使用できる。
 前記触媒としては、例えば、ジブチルチンラウレート、ジオクチルチンラウレート、スタナスオクトエート、オクチル酸亜鉛、テトラn-ブチルチタネートなどの金属と有機酸又は無機酸との塩、有機金属誘導体、トリエチルアミンなどの有機アミン、ジアザビシクロウンデセン系触媒などが挙げられる。
 前記触媒は、前記ポリエステルウレタン樹脂及び前記ポリエステルウレタン以外のポリウレタン樹脂の合成反応を促進する。
 一方で、前記触媒を過剰に使用すると、前記ポリエステルウレタン樹脂及び前記ポリエステル以外のポリウレタン樹脂以外の物質を分解する分解反応を誘発するおそれがあり、その結果、得られるホットメルト接着剤が、長時間の耐熱性に劣るものとなるおそれがある。
 そのため、前記触媒を用いる場合には、前記触媒を適量用いることが好ましい。
 前記ポリエステルウレタン樹脂及び前記ポリエステルウレタン樹脂以外のポリウレタン樹脂は、有機溶剤を用いずに合成してもよいし、有機溶剤を用いて合成してもよい。
 前記有機溶剤としては、イソシアネート基に対して不活性な有機溶剤、又はイソシアネート基に対して反応成分よりも低活性な有機溶剤を用いることができる。
 前記有機溶剤の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶剤;トルエン、キシレン、スワゾール(商品名、コスモ石油社製)、ソルベッソ(商品名、エクソン化学社製)などの芳香族系炭化水素溶剤;n-ヘキサンなどの脂肪族系炭化水素溶剤;メタノール、エタノール、イソプロピルアルコールなどのアルコール系溶剤;ジオキサン、テトラヒドロフランなどのエーテル系溶剤;酢酸エチル、酢酸ブチル、酢酸イソブチルなどのエステル系溶剤;炭酸ジメチル、炭酸ジエチル、炭酸エチレンなどの炭酸エステル系溶剤;エチレングリコールエチルエーテルアセテ-ト、プロピレングリコールメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテート、エチル-3-エトキシプロピオネートなどのグリコールエーテルエステル系溶剤;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド系溶剤;N-メチル-2-ピロリドンなどのラクタム系溶剤などを挙げることができる。
 特にトルエン、メチルエチルケトン、酢酸エチルが、ポリウレタン樹脂の溶解性を高める観点や、ホットメルト接着剤を得るときに揮発させ易い観点などから好ましい。
(エポキシ樹脂(B))
 上記したように、エポキシ樹脂(B)は、エポキシ当量が300g/eq以上1500g/eq以下の非変性エポキシ樹脂を含有している。
 前記エポキシ当量は、350g/eq以上であってもよいし、400g/eq以上であってもよい。
 また、前記エポキシ当量は、1000g/eq以下であってもよい。
 なお、非変性エポキシ樹脂とは、ゴムなどで変性されていないエポキシ樹脂を意味する。
 また、前記エポキシ当量とは、JIS K 7236により求められる値を意図している。
 前記非変性エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及び、ビスフェノールAD型エポキシ樹脂などが挙げられる。
 これらの非変性エポキシ樹脂の中でも、ビスフェノールA型エポキシ樹脂を用いることが好ましい。
 エポキシ当量が300g/eq以上1500g/eq以下のビスフェノールA型エポキシ樹脂の市販品としては、例えば、三菱化学社製の商品名「JER 1001」(エポキシ当量は450~500g/eq)、「JER 1002」(エポキシ当量は600~700g/eq)、「JER 1003」(エポキシ当量は670~770g/eq)、「JER 1055」(エポキシ当量は800~900g/eq)、「JER 1004」(エポキシ当量は875~975g/eq)、及び、「JER 1004AF」(エポキシ当量は875~975g/eq)などが挙げられる。
 なお、前記非変性エポキシ樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 エポキシ樹脂(B)は、前記非変性エポキシ樹脂に加えて、ゴム変性エポキシ樹脂を含有していてもよい。
 本実施形態に係るホットメルト接着シート10の接着剤層10bが、エポキシ樹脂(B)として、前記非変性エポキシ樹脂に加えて、前記ゴム変性エポキシ樹脂を含有していることにより、接着剤層10bを被着体(例えば、PENフィルム、パーフルオロカーボンスルホン酸樹脂シート、PPSフィルムなど)に被着させた状態で、95℃の熱水中、95℃の希硫酸(pH2)中や、95℃の水-エチレングルコール混合溶液中(エチレングリコールの混合割合は50体積%)に1000時間という長時間浸漬させた後においても、接着剤層10bが前記被着体から剥離されることが抑制され易くなる。
 なお、前記ゴム変性エポキシ樹脂とは、分子内に少なくとも1個のエポキシ基を有し、ゴムに由来する構造を有する化合物を意味する。
 前記ゴム変性エポキシ樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記ゴム変性エポキシ樹脂としては、例えば、非変性エポキシ樹脂とゴムとの反応物が挙げられる。
 前記非変性エポキシ樹脂としては、例えば、前記ビスフェノールA型エポキシ樹脂、前記ビスフェノールF型エポキシ樹脂、前記ビスフェノールAD型エポキシ樹脂などを用いることができる。
 前記非変性エポキシ樹脂のエポキシ当量が300g/eq以上1500g/eq以下であることにより、イソシアネート系架橋剤(C)を用いた架橋反応において、前記非変性エポキシ樹脂を適度な架橋密度で架橋させることができる。
 これにより、エポキシ当量が300g/eq以上1500g/eq以下の前記非変性エポキシ樹脂を含む接着剤層10bは、被着体に対して十分な接着性を発揮し得るものとなる。
 なお、前記非変性エポキシ樹脂のエポキシ当量が1500g/eqを超えると、単位質量当たりのエポキシ基の量が十分ではなくなることから、イソシアネート系架橋剤(C)を用いた架橋反応において十分な架橋密度で前記非変性エポキシ樹脂を架橋することができなくなる。
 そのため、エポキシ当量が1500g/eqを超える前記非変性エポキシ樹脂を、接着剤層10bが含む場合においては、該接着剤層10bは、十分な強度が得られなくなるので好ましくない。
 また、前記非変性エポキシ樹脂のエポキシ当量が300g/eq未満であると、単位質量当たりのエポキシ基の量が多くなり過ぎることから、イソシアネート系架橋剤(C)を用いた架橋反応において前記非変性エポキシ樹脂の架橋密度が高くなり過ぎる。
 そのため、エポキシ当量が300g/eq未満の前記非変性エポキシ樹脂を、接着剤層10bが含む場合においては、該接着剤層10bは、前記非変性エポキシ樹脂による架橋密度が高くなり過ぎて硬脆くなり、その結果、被着体との接着性を十分に確保できなくなることから好ましくない。
 前記ゴムとしては、例えば、天然ゴム、アクリロニトリルブタジエンゴム(NBR)、カルボキシル基末端アクリロニトリルブタジエンゴム(CTBN)、アミノ基末端アクリルニトリルブタジエンゴム(ATBN)、スチレンブタジエンゴム(SBR)、水素添加ニトリルゴム(HNBR)、エチレンプロピレンゴム(EPDM)、アクリルゴム(ACM)、ブチルゴム(IIR)、ブタジエンゴムなどが挙げられる。
 前記ゴムは、エポキシ基との反応性の点から、アミノ基、水酸基、カルボキシル基などのエポキシ基と反応し得る官能基を末端に有しているものが好ましい。
 前記ゴム変性エポキシ樹脂は、入手が容易あることやエポキシ基との反応性の点から、エポキシ樹脂とアクリロニトリルブタジエンゴム(NBR)との反応物(NBR変性エポキシ樹脂)、エポキシ樹脂とカルボキシル基末端アクリロニトリルブタジエンゴムとの反応物(CTBN変性エポキシ樹脂)、エポキシ樹脂とアミノ基末端アクリロニトリルブタジエンゴムとの反応物(ATBN変性エポキシ樹脂)であることが好ましく、これらの中でも、特に、NBR変性エポキシ樹脂であることが好ましい。
 なお、前記NBR変性エポキシ樹脂の市販品としては、アデカ社製の商品名「アデカレジンEPR-1415-1」が挙げられる。
 また、前記ゴム変性エポキシ樹脂の製造方法は、前記エポキシ樹脂と前記ゴムとを反応させることができる方法であれば特に限定されず、各種公知の製造方法を採用することができる。
 前記ゴム変性エポキシ樹脂の物性は特に限定されるものではないが、取り扱い性や接着特性などの点から、エポキシ当量が150g/eq以上1000g/eqのものであることが好ましい。
 エポキシ樹脂(B)は、ポリウレタン樹脂(A)の100質量部に対して、10質量部以上含まれていてもよく、20質量部以上含まれていてもよく、30質量部以上含まれていてもよい。
 また、エポキシ樹脂(B)は、ポリウレタン樹脂(A)の100質量部に対して、60質量部以下含まれていてもよく、50質量部以下含まれていてもよい。
 さらに、エポキシ樹脂(B)の中でも、前記非変性エポキシ樹脂は、ポリウレタン樹脂(A)の100質量部に対して、10質量部以上含まれていることが好ましく、20質量部以上含まれていることがより好ましい。
 また、前記非変性エポキシ樹脂は、ポリウレタン樹脂(A)の100質量部に対して、40質量部以下含まれていることが好ましく、30質量部以下含まれていることがより好ましい。
 さらに、エポキシ樹脂(B)の中でも、前記ゴム変性エポキシ樹脂は、ポリウレタン樹脂(A)の100質量部に対して、5質量部以上含まれていることが好ましく、10質量部以上含まれていることがより好ましく、15質量部以上含まれていることがさらに好ましい。
 また、前記ゴム変性エポキシ樹脂は、ポリウレタン樹脂(A)の100質量部に対して、30質量部以下含まれていることが好ましく、20質量部以下含まれていることがより好ましい。
 さらに、前記エポキシ樹脂(B)が、前記非変性エポキシ樹脂及び前記ゴム変性エポキシ樹脂の両方を含んでいる場合には、前記ゴム変性エポキシの質量比率に対する前記非変性エポキシ樹脂の質量比率の比は、1.1以上であってもよいし、1.2以上であってもよいし、1.3以上であってもよい。
 また、前記ゴム変性エポキシの質量比率に対する前記非変性エポキシの質量比率の比は、3.0以下であってもよいし、2.0以下であってもよいし、1.5以下であってもよい。
(イソシアネート系架橋剤(C))
 前記イソシアネート系架橋剤(C)としては、特に限定されるものではないが、イソシアヌレート体、ビューレット体、アダクト体、ポリメリック体といった多官能のイソシアネート基を有するもの等、従来から使用されている公知のものを使用することができる。
 例えば、2,4-トルイレンジイソシアネートの二量体、トリフェニルメタントリイソシアネート、トリス-(p-イソシアネートフェニル) チオフォスファイト、多官能芳香族イソシアネート、多官能芳香族脂肪族イソシアネート、多官能脂肪族イソシアネート、脂肪酸変性多官能脂肪族イソシアネート、ブロック化多官能脂肪族イソシアネートなどのブロック型ポリイソシアネート、ポリイソシアネートプレポリマーなどが挙げられる。
 これらのイソシアネート系架橋剤(C)のうち、芳香族系のものであれば、ジフェニルメタンジイソシアネート、トリレンジイソシアネートおよびキシリレンジイソシアネートが好ましい。
 脂肪族系のものであれば、ヘキサメチレンジイソシアネートおよびイソホロンジイソシアネートなどの変性体が好ましい。
 また、イソシアネート系架橋剤(C)としては、1分子中にイソシアネート基を3個以上含むものが好ましい。
 さらに、イソシアネート系架橋剤(C)としては、前記ポリイソシアネートの多量体や他の化合物との付加体、さらには低分子量のポリオールとポリアミンとを分子末端がイソシアネートとなるように反応させたウレタンプレポリマーなども好ましく使用される。
 上記各種のイソシアネート系架橋剤(C)の中でも、キシリレンジイソシアネートを用いることが好ましい。
 前記キシリレンジイソシアネートの市販品としては、例えば、三井武田ケミカル社製の商品名「タケネートD-110N」が挙げられる。
 本実施形態のホットメルト接着シート10の接着剤層10bにおいては、前記イソシアネート系架橋剤(C)は、前記ポリウレタン樹脂(A)の100質量部に対して、1質量部以上含有されていることが好ましく、5質量部以上含有されていることがより好ましく、7質量部含有されていることがさらに好ましい。
 前記イソシアネート系架橋剤(C)は、前記ポリウレタン樹脂(A)の100質量部に対して、30質量部以下含有されていることが好ましく、20質量部以下含有されていることがより好ましく、15質量部以下含有されていることがさらに好ましい。
 本実施形態に係るホットメルト接着シート10の接着剤層10bにおいて、前記イソシアネート系架橋剤(C)が上記のような質量割合で含有されていることにより、接着剤層10bを被着体(例えば、PENフィルム、パーフルオロカーボンスルホン酸樹脂シート、PPSフィルムなど)に被着させた状態で、95℃の熱水中、95℃の希硫酸(pH2)中や、95℃の水-エチレングルコール混合溶液中(エチレングリコールの混合割合は50体積%)に1000時間という長時間浸漬させた後においても、接着剤層10bが前記被着体から剥離されることが抑制される。
 すなわち、ホットメルト接着シート10の接着剤層10bは、長時間耐熱水性、長時間耐酸性、及び、長時間耐アルコール性に優れるものとなる。
 本実施形態に係るホットメルト接着シート10の接着剤層10bが、被着体との密着性に優れ、かつ、耐熱水性、耐酸性、耐アルコール性にも優れる理由について、本発明者らは、以下のように推察している。
 上記したように、本実施形態に係るホットメルト接着シート10の接着剤層10bは、ホットメルト接着剤で形成されており、該ホットメルト接着剤は、ポリウレタン樹脂(A)として、芳香族ポリエステル骨格を有するポリエステルウレタン樹脂を含み、エポキシ樹脂(B)として、エポキシ当量が300g/eq以上1500g/eq以下の非変性エポキシ樹脂(ビスフェノールA型エポキシ樹脂など)を含むとともに、イソシアネート系架橋剤(C)を含んでいる。
 そして、接着剤層10b中においては、芳香族ポリエステル骨格を有する前記ポリエステルウレタン樹脂、及び、エポキシ当量が300g/eq以上1500g/eq以下の前記非変性エポキシ樹脂は、イソシアネート系架橋剤(C)によって架橋されている。
 すなわち、本実施形態に係るホットメルト接着シート10の接着剤層10bにおいては、芳香族ポリエステル骨格を有する前記ポリエステルウレタン樹脂、及び、エポキシ当量が300g/eq以上1500g/eq以下の前記非変性エポキシ樹脂は、イソシアネート系架橋剤(C)によって架橋された状態となって含まれている。
 ここで、上で説明したように、芳香族ポリエステル骨格を有する前記ポリエステルウレタン樹脂は、高い疎水性を示す。
 そのため、接着剤層10bが芳香族ポリエステル骨格を有する前記ポリエステルウレタン樹脂を含むことにより、該接着剤層10bは疎水性が向上されたものとなる。
 これにより、接着剤層10bは、耐熱水性、耐酸性、及び、耐アルコール性に優れるものとなると考えられる。
 また、接着剤層10bに含まれる非変性エポキシ樹脂のエポキシ当量が300g/eq以上1500g/eq以下であると、前記非変性エポキシ樹脂は、接着剤層10bにおいて、イソシアネート系架橋剤(C)によって適度な架橋密度で架橋されるようになる。
 これにより、接着剤層10bは、被着体に対する良好なる接着性を示すようになると考えられる。
 以上により、本実施形態に係るホットメルト接着シート10の接着剤層10bは、被着体との密着性に優れ、かつ、耐熱水性、耐酸性、耐アルコール性にも優れるものとなると考えられる。
 次に、図2を参照しながら、本実施形態に係るホットメルトシート10の接着剤層10bを接着させる被着体を、固体高分子型燃料電池の膜/電極接合体(MEA)20とする場合を例に挙げてさらに説明する。
 前記被着体たる膜/電極接合体(MEA)20は、負極側から正極側に向けて水素ガスを透過させるとともに正極側に供給された酸素と前記水素とを反応させて電気を生じさせることができるように構成されている。
 図2に示したように、膜/電極接合体(MEA)20では、固体電解質膜201の互いに対向する両面に、正極202及び負極203がそれぞれ積層されている。
 正極202は、正極触媒層202aと正極触媒層202a上に積層された正極ガス拡散層202bとを備えており、正極触媒層202aが固体電解質膜201の一方面に積層されている。
 負極203は、負極触媒層203aと負極触媒層203a上に積層された負極ガス拡散層203bとを備えており、負極触媒層203aが固体電解質膜201の他方面に積層されている。
 図2に示したように、正極触媒層202a及び負極触媒層203aは、固体電解質膜201よりも平面寸法が小さくなるように形成され、正極ガス拡散層202b及び負極ガス拡散層203bは、正極触媒層202a及び負極触媒層203aとも平面寸法が小さくなるように形成されている。
 すなわち、膜/電極接合体(MEA)においては、正極202及び負極203の平面寸法が、固体電解質膜201の平面寸法よりも小さくなっている。
 上記のように、正極202の平面寸法が固体電解質膜201の平面寸法よりも小さくなることにより、膜/電極接合体(MEA)20の正極側(一方面側)には、固体電解質膜201が正極触媒層202aよりも外側に延出して固体電解質膜201が表面露出している正極側電解質膜露出領域201aが外周部に形成されている。
 また、負極203の平面寸法が固体電解質膜201の平面寸法よりも小さくなることにより、膜/電極接合体(MEA)20の負極側(他方面側)には、固体電解質膜201が負極触媒層203aよりも外側に延出して固体電解質膜201が表面露出している負極側電解質膜露出領域201bが外周部に形成されている。
 また、膜/電極接合体(MEA)20の正極側には、正極触媒層202aが正極ガス拡散層202bよりも外側に延出して正極触媒層202aが表面露出している正極側触媒層露出領域202a1が形成されている。
 正極側触媒層露出領域202a1は、正極側電解質膜露出領域201aの内側、かつ、正極ガス拡散層202bの外側に形成されている。
 本実施形態においては、正極側電解質膜露出領域201aは、膜/電極接合体(MEA)20の外周部を周回するように環状に形成されている。
 正極側触媒層露出領域202a1は、正極側電解質膜露出領域201aよりも小さい環状に形成されている。
 すなわち、膜/電極接合体(MEA)の正極側には、正極側電解質膜露出領域201aと正極側触媒層露出領域202a1との境界線である第1境界線L1の内側に、正極側触媒層露出領域202a1と正極ガス拡散層202bとの境界線である第2境界線L2が形成されている。
 膜/電極接合体(MEA)20の負極側には、負極触媒層203aが負極ガス拡散層203bよりも外側に延出している負極触媒層203aが表面露出している負極側触媒層露出領域203a1が形成されている。
 負極側触媒層露出領域203a1は、負極側電解質膜露出領域201bの内側、かつ、負極ガス拡散層203bの外側に形成されている。
 本実施形態においては、負極側電解質膜露出領域201bは、膜/電極接合体(MEA)20の外周部を周回するように環状に形成されている。
 負極側触媒層露出領域203a1は、負極側電解質膜露出領域201bよりも小さい環状に形成されている。
 すなわち、膜/電極接合体(MEA)20の負極側には、負極側電解質膜露出領域201bと負極側触媒層露出領域203a1との境界線である第3境界線L3の内側に負極側触媒層露出領域203a1と負極ガス拡散層203bとの境界線である第4境界線L4が形成されている。
 図2に示された使用状態においては、膜/電極接合体(MEA)20の正極側に接着される第1のホットメルト接着シート10と、膜/電極接合体(MEA)20の負極側に接着される第2のホットメルト接着シート10との2枚のホットメルト接着シート10が、固体高分子型燃料電池のサブガスケット材として用いられている。
 第1のホットメルト接着シート10は、環状であり、膜/電極接合体(MEA)20に重ねた際に外周縁が膜/電極接合体(MEA)20よりも外側になり、かつ、内周縁が正極側触媒層露出領域202a1及び負極側触媒層露出領域203a1に収まる形状を有している。
 すなわち、第1のホットメルト接着シート10の中抜き部分は、正極ガス拡散層202bよりも一回り大きな形状を有している。
 第2のホットメルト接着シート10も、第1のホットメルト接着シート10と同様の形状を有している。
 本実施形態においては、第1のホットメルト接着シート10と第2のホットメルト接着シート10とが、膜/電極接合体(MEA)20よりも外側において接着剤層10bの外周部を直に接着させて、前記サブガスケット材として用いられる。
 第1のホットメルト接着シート10は、第2のホットメルト接着シート10と接着している外周部以外の内周部が膜/電極接合体(MEA)20の外周部に接着されており、正極側電解質膜露出領域201aから第1境界線L1を越えて正極側触媒層露出領域202a1に至る範囲に接着されている。
 第2のホットメルト接着シート10も、第1のホットメルト接着シート10と同様に接着されている。
 ホットメルト接着シート10を、上記のように、膜/電極接合体(MEA)20に接着(被着)させることにより、正極ガスの一部が正極側電解質膜露出領域201aを透過でき、負極ガスの一部が負極側電解質膜露出領域201bを透過できるので、固体高分子型燃料電池としての性能が低下することを抑制できる。
 先に説明したように、固体高分子型燃料電池では、膜/電極接合体(MEA)20において、水素と酸素とが反応して電気が生成される。
 そして、上記のように、水素と酸素とが反応すると、膜/電極接合体(MEA)20は、比較的高温(例えば、95℃)に達するようになる。
 前記固体高分子型燃料電池が自動車の動力源として搭載される場合においては、膜/電極接合体(MEA)20の中央部分は、管路を経由してラジエータに収容された不凍液を循環させることにより十分に冷却されるものの、通常、膜/電極接合体(MEA)20の端縁部分までは前記管路は配されていないので、膜/電極接合体(MEA)20の端縁部分は、高温を維持し続けるようになる。
 また、前記不凍液を循環させているときに、前記不凍液の一部が前記管路から漏れ出てしまって、前記管路から漏れ出した前記不凍液が固体電解質膜201の端縁側に取り付けられた接着剤層10bと接触してしまうことがある。
 前記不凍液は、通常、液分として、ポリエチレングリコール及び水を含んでいることから、このような場合には、接着剤層10bは、高温において、ポリエチレングルコール及び水と接触された状態となる。
 さらに、先に説明した、電気が生成される反応においては、膜/電極接合体(MEA)20中を水素イオン(H)が物質移動するため、膜/電極接合体(MEA)20は、0.1~0.5M程度の希硫酸に相当する強酸性を示すようになる。
 このような場合、固体電解質膜201の端縁側に取り付けられた接着剤層10bは、高温において、強酸性下に曝されるようになる。
 ここで、本実施形態に係るホットメルト接着シート10では、接着剤層10bは先に説明したように構成されているので、接着剤層10bは、長時間耐熱水性、長時間耐酸性、及び、長時間耐アルコール性に優れるものとなっている。
 したがって、自動車に搭載された固体高分子型燃料電池において、本実施形態に係るホットメルト接着シートをサブガスケット材として用いた場合に、上記のように、95℃といった高温で接着剤層10bが水やアルコールと接触したり、95℃といった高温で接着剤層10bが強酸性下に曝されたりしても、長時間(1000時間)に亘って、固体電解質膜201との接着性を維持することができる。
 なお、固体電解質膜201は、後述するように、通常、パーフルオロカーボンスルホン酸などのフッ素樹脂で形成されたものである。
 なお、膜/電極接合体(MEA)20において、正極触媒層202a及び負極触媒層203aは、一般に、触媒を担持した炭素材料などの触媒担持材料、プロトン伝導性ポリマー、及び、溶媒を含む触媒インキ組成物を用いて形成されるものである。
 膜/電極接合体(MEA)20の固体電解質膜201は、例えば、パーフルオロカーボンスルホン酸樹脂などのフッ素樹脂で形成されている。
 前記パーフルオロカーボンスルホン酸樹脂としては、デュポン社製の商品名「ナフィオン」、旭化成株式会社製の商品名「フレミオン」、旭硝子株式会社製の商品名「アシプレックス」などが挙げられる。
 パーフルオロカーボンスルホン酸樹脂は、例えば、下記式(1)に示されるポリマー構造を有する樹脂である。
 下記式(1)におけるm、n、および、xについて、例えば、前記「ナフィオン」では、m≧1、n=2、x=5~13.5であり、前記「アシプレックス」では、m=0,1、n=2~5、x=1.5~14であり、前記「フレミオン」では、m=0,1、n=1~5である。
Figure JPOXMLDOC01-appb-C000002
 正極触媒層202a及び負極触媒層203aは、触媒粒子を含有する層である。
 正極触媒層202aに含有される触媒粒子としては、白金が挙げられる。
 負極触媒層203aに含有される触媒粒子としては、白金化合物が挙げられる。
 前記白金化合物としては、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、及び、鉄からなる群から選ばれる少なくとも1種の金属と、白金との合金が挙げられる。
 正極ガス拡散層202b及び負極ガス拡散層203bは、多孔質の導電性基材から構成されている。
 前記多孔質の導電性基材としては、例えば、カーボンペーパーやカーボンクロスなどが挙げられる。
 また、本実施形態に係るホットメルト接着シート10は、レドックス・フロー電池においても用いることができる。
 レドックス・フロー電池に用いるホットメルト接着シートは、電解液の透過を抑えるために用いられる。
 本明細書によって開示される事項は、以下のものを含む。
(1)
 基材と、ホットメルト接着剤で形成された接着剤層であって、前記基材の少なくとも一方面に積層された接着剤層と、を備えるホットメルト接着シートであって、
 前記ホットメルト接着剤は、架橋剤を含む接着剤組成物の架橋物を含み、前記接着剤組成物は、ポリウレタン樹脂、エポキシ樹脂、及び、イソシアネート系架橋剤を含有し、
 前記ポリウレタン樹脂は、芳香族ポリエステル骨格を有するポリエステルウレタン樹脂を含有し、
 前記エポキシ樹脂は、エポキシ当量が300g/eq以上1500g/eq以下の非変性エポキシ樹脂を含有する
 ホットメルト接着シート。
 斯かる構成によれば、前記ホットメルト接着シートの接着剤層は、被着体との密着性に優れ、かつ、耐熱水性、耐酸性、耐アルコール性にも優れるものとなる。
(2)
 前記ポリウレタン樹脂は、骨格の炭素数が8以上のポリオールに由来する構成単位を有するポリウレタン樹脂をさらに含む
 上記(1)に記載のホットメルト接着シート。
 斯かる構成によれば、前記ホットメルト接着シートの接着剤層は、被着体との密着性により優れ、かつ、耐熱水性、耐酸性、耐アルコール性により優れるものとなる。
(3)
 骨格の炭素数が8以上のポリオールに由来する構成単位を有する前記ポリウレタン樹脂は、水酸基を有する水酸基含有ポリウレタン樹脂を含有し、
 前記水酸基含有ポリウレタン樹脂の水酸基価は、0.1mgKOH/g以上20mgKOH/g以下である
 上記(2)に記載のホットメルト接着シート。
 斯かる構成によれば、前記ホットメルト接着シートの接着剤層は、被着体との密着性により優れ、かつ、耐熱水性、耐酸性、耐アルコール性により優れるものとなる。
(4)
 骨格の炭素数が8以上のポリオールに由来する構成単位を有する前記ポリウレタン樹脂は、芳香族ジイソシアネートを構成単位として有する
 上記(2)または(3)に記載のホットメルト接着シート。
 斯かる構成によれば、前記ホットメルト接着シートの接着剤層は、被着体との密着性により優れ、かつ、耐熱水性、耐酸性、耐アルコール性により優れるものとなる。
(5)
 骨格の炭素数が8以上のポリオールに由来する構成単位を有する前記ポリウレタン樹脂の質量平均分子量Mwは、1,000以上100,000以下である
 上記(2)乃至(4)のいずれかに記載のホットメルト接着シート。
 斯かる構成によれば、前記ホットメルト接着シートの接着剤層は、被着体との密着性により優れ、かつ、耐熱水性、耐酸性、耐アルコール性により優れるものとなる。
(6)
 前記ポリエステルウレタン樹脂は、ガラス転移温度Tgが10℃以下である
 上記(1)乃至(5)のいずれかに記載のホットメルト接着シート。
 斯かる構成によれば、前記ホットメルト接着シートの接着剤層は、被着体との密着性により優れ、かつ、耐熱水性、耐酸性、耐アルコール性により優れるものとなる。
(7)
 前記非変性エポキシ樹脂は、ビスフェノールA型エポキシ樹脂である
 上記(1)乃至(6)のいずれかに記載のホットメルト接着シート。
 斯かる構成によれば、前記ホットメルト接着シートの接着剤層は、被着体との密着性により優れ、かつ、耐熱水性、耐酸性、耐アルコール性により優れるものとなる。
(8)
 固体高分子型燃料電池の固体電解質膜に接着させて用いられる
 上記(1)乃至(7)のいずれかに記載のホットメルト接着シート。
 本発明に係るホットメルト接着シートは、上記実施形態に限定されるものではない。また、本発明に係るホットメルト接着シートは、上記した作用効果によって限定されるものでもない。本発明に係るホットメルト接着シートは、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
(実施例1)
 以下の成分を下記表1に示した配合割合となるように混合して、実施例1に係るホットメルト接着剤層用組成物を得た。
 
・骨格の炭素数が8以上を有するポリオール(a1)に由来する構成単位を有するポリウレタン樹脂(以下、ポリウレタン樹脂A1ともいう)
・ポリエステルウレタン樹脂(東洋紡社製の商品名「バイロン(登録商標)UR-3210」。以下、ポリウレタン樹脂A2ともいう)
・ビスフェノールA型エポキシ樹脂である三菱化学社製の商品名「JER1001」(エポキシ当量は450~500g/eq。以下、エポキシ樹脂B1ともいう)
・ゴム変性エポキシ樹脂(アデカ社製の商品名「アデカレジンEPR-1415-1」。以下、エポキシ樹脂B2ともいう)
・イソシアネート系架橋剤(C)(三井武田ケミカル社製の商品名「タケネートD-110N」)
 
 なお、ポリウレタン樹脂A1は、以下のようにして合成したものを用い、エポキシ樹脂B1は、以下のようにして溶解させて用いた。
[ポリウレタン樹脂A1の合成]
 撹拌機、還流冷却管、温度計、窒素吹き込み管、及びマンホールを備えた反応容器を用意した。
 反応容器の内部を窒素で置換しながら、両末端水酸基のポリヘキサメチレンカーボネートジオール(デュラノール:T6002 旭化成ケミカルズ(株)製)300.0g、ポリシクロヘキサンジメタノール/ヘキサンジオール共重合カーボネートジオール(商品名「ETERNACOLLUM-90(3/1)」、宇部興産社製、水酸基価=112.2mgKOH/g、シクロヘキサンジメタノール/ヘキサンジオール=3/1モル比)200.0g、1,3-ブチレングリコール10.0gを仕込んだ。
 次いで、溶剤としてメチルエチルケトン(MEK)207.3gを仕込み、系内を撹拌した。
 系内が均一となった後、50℃下で4,4’-ジフェニルメタンジイソシアネート(MDI)111.8gを仕込み、80℃で反応させて反応液を得た。
 反応液を溶剤たるメチルエチルケトン(MEK)で希釈することにより反応液の粘度を調整し、赤外吸収スペクトル分析で測定される遊離イソシアネート基による2,270cm-1の吸収が消失するまで反応を進行させ、ポリウレタン樹脂A1を含む樹脂溶液AA1を得た。
 得られた樹脂溶液AA1は、固形分が30質量%であり、ポリウレタン樹脂A1は、水酸基価が2.5mgKOH/g、骨格の炭素数が8以上を有するポリオール(a1)が29.7質量%であった。
 また、GPCにより測定したポリウレタン樹脂A1の質量平均分子量は72,000であった。
[エポキシ樹脂B1の溶解]
 撹拌機、還流冷却管、温度計、窒素吹き込み管、及びマンホールを備えた反応容器を用意した。
 反応容器の内部を窒素で置換しながら、エポキシ樹脂B1(JER1001)400.0gを仕込み、撹拌しながら溶剤としてメチルエチルケトン(MEK)600.0gを仕込んだ。
 その後、系内を60℃に昇温してエポキシ樹脂B1を完全溶解させて、エポキシ樹脂B1の溶解品BB1(以下、エポキシ樹脂溶液BB1という)を得た。
 得られたエポキシ樹脂溶液BB1の固形分は40質量%であった。
 なお、実施例1に係るホットメルト接着剤層用組成物は、より詳しく説明すると、以下のようにして得た。
 
(1)樹脂溶液AA1及びエポキシ樹脂溶液BB1を、ポリウレタン樹脂A1及びエポキシ樹脂B1が下記表1の配合割合となるように混ぜ合わせて混合溶液を得る。
(2)該混合溶液に、ポリウレタン樹脂A2(ポリエステルウレタン樹脂)、エポキシ樹脂B2(ゴム変性エポキシ樹脂)、及び、イソシアネート系架橋剤(C)を、下記表1の配合割合となるように加える。
(3)前記混合溶液中に、前記ポリウレタン樹脂A2、前記エポキシ樹脂B2、及び、前記イソシアネート系架橋剤(C)を完全溶解させる。
Figure JPOXMLDOC01-appb-T000003
(実施例2)
 前記エポキシ樹脂B2を加えなかった以外は、実施例1と同様にして、実施例2に係るホットメルト接着剤層用組成物を得た。
(実施例3)
 ビスフェノールA型エポキシ樹脂として、三菱化学社製の商品名「JER1001」に代えて、三菱化学社製の商品名「JER1003」(エポキシ当量は670~770g/eq)を用いた以外は、実施例1と同様にして、実施例3に係るホットメルト接着剤層用組成物を得た。
(実施例4)
 前記エポキシ樹脂B2を加えなかった以外は、実施例3と同様にして、実施例4に係るホットメルト接着剤層用組成物を得た。
(実施例5)
 ビスフェノールA型エポキシ樹脂として、三菱化学社製の商品名「JER1001」に代えて、三菱化学社製の商品名「JER1004」(エポキシ当量は875~975g/eq)を用いた以外は、実施例1と同様にして、実施例5に係るホットメルト接着剤層用組成物を得た。
(実施例6)
 前記エポキシ樹脂B2を加えなかった以外は、実施例5と同様にして、実施例6に係るホットメルト接着剤層用組成物を得た。
(比較例1)
 ビスフェノールA型エポキシ樹脂として、三菱化学社製の商品名「JER1001」に代えて、三菱化学社製の商品名「JER1007」(エポキシ当量は1750~2200g/eq)を用いた以外は、実施例1と同様にして、比較例1に係るホットメルト接着剤層用組成物を得た。
(比較例2)
 前記エポキシ樹脂B2を加えなかった以外は、比較例1と同様にして、比較例2に係るホットメルト接着剤層用組成物を得た。
(比較例3)
 ビスフェノールA型エポキシ樹脂として、三菱化学社製の商品名「JER1001」に代えて、三菱化学社製の商品名「JER1256」(エポキシ当量は7500~8500g/eq)を用いた以外は、実施例1と同様にして、比較例3に係るホットメルト接着剤層用組成物を得た。
(比較例4)
 前記エポキシ樹脂B2を加えなかった以外は、比較例3と同様にして、比較例4に係るホットメルト接着剤層用組成物を得た。
(比較例5)
 ビスフェノールA型エポキシ樹脂としての三菱化学社製の商品名「JER1001」に代えて、ノボラック型エポキシ樹脂である三菱化学社製の商品名「JER157S70」(エポキシ当量200~220g/eq)を用いた以外は、実施例1と同様にして、比較例5に係るホットメルト接着剤層用組成物を得た。
(比較例6)
 前記エポキシ樹脂B2を加えなかった以外は、比較例5と同様にして、比較例6に係るホットメルト接着剤層用組成物を得た。
(比較例7)
 何らのエポキシ樹脂を加えなかった以外は、実施例1と同様にして、比較例7に係るホットメルト接着剤層用組成物を得た。
(比較例8)
 前記エポキシ樹脂B2を加えなかった以外は、比較例7と同様にして、比較例8に係るホットメルト接着剤層用組成物を得た。
[ホットメルト接着剤層用組成物の塗工]
 各例のホットメルト接着剤層用組成物を固形分30質量%となるように、メチルエチルケトン(MEK)を用いて希釈した。
 各例では、希釈したホットメルト接着剤層用組成物をPENフィルム(縦:210mm、横:150mm、厚み:100μm、テオネックス:東洋紡フィルムソリューション(株)製)の片面側全面に塗布し、塗布後100℃で1分間乾燥させた後、40℃のオーブン中に48時間放置して硬化反応(架橋反応)を進行させて、ホットメルト接着剤層付のPENフィルムを得た。
 塗工は、乾燥後のホットメルト接着剤層の厚みが20μmとなるように実施した。
[第1接着シートの作製]
 各例のホットメルト接着剤層付のPENフィルムを2枚用意し、ホットメルト接着剤層どうしが当接するように前記2枚のホットメルト接着剤層付のPENフィルムを重ね合せた。
 140℃に調整したラミネータを用いて、各例のホットメルト接着剤層付のPENフィルム2枚を熱圧着することで貼り合わせて、各例に係る第1接着シートを作製した。
[第2接着シートの作製]
 各例のホットメルト接着剤層付のPENフィルムのホットメルト接着剤層の露出面とパーフルオロカーボンスルホン酸樹脂シート(テトラフルオロエチレン/ パーフルオロ[2-(フルオスルホニルエトキシ)プロビルビニルエーテル]共重合体膜(デュポン社製、商品名“NAFIONN-115”))(該接ホットメルト着剤層付きフィルムと同形状)の一方面とが当接するように、各例のホットメルト接着剤層付のPENフィルムとパーフルオロカーボンスルホン酸樹脂シートとを重ね合わせた。
 140℃に調整したラミネータを用いて、各例のホットメルト接着剤層付のPENフィルムとパーフルオロカーボンスルホン酸樹脂シートとを熱圧着することで貼り合せて、各例に係る第2接着シートを作製した。
[耐熱水性1]
 各例の第1接着シートについて、各例の第1接着シートから幅10mm×長さ80mmの大きさの試験体を切り出して、該試験体を95℃の熱水中に1000時間浸漬させ、室温に冷却後各試験体について、以下の基準で、耐熱水性を評価した。
 
・優: 浸漬後に、剥離が認められない。
・可: 浸漬後に、剥離が認められないものの、一部浮きが見られる。
・不可: 浸漬後に、剥離が認められる。
[耐酸性1]
 各例の第1接着シートについて、各例の第1接着シートから幅10mm×長さ80mmの大きさの試験体を切り出して、該試験体を95℃のpH2の希硫酸に1000時間浸漬させ、室温に冷却後各試験体について、以下の基準で、耐酸性を評価した。
 
・優: 浸漬後に、剥離が認められない。
・可: 浸漬後に、剥離が認められないものの、一部浮きが見られる。
・不可: 浸漬後に、剥離が認められる。
[耐アルコール性1]
 各例の第1接着シートについて、各例の第1接着シートから幅10mm×長さ80mmの大きさの試験体を切り出して、該試験体を95℃の水-エチレングルコール混合溶液(エチレングルコールの混合割合は50体積%)に1000時間浸漬させ、室温に冷却後各試験体について、以下の基準で、耐アルコール性を評価した。
 
・優: 浸漬後に、剥離が認められない。
・可: 浸漬後に、剥離が認められないものの、一部浮きが見られる。
・不可: 浸漬後に、剥離が認められる。
[耐熱水性2]
 各例の第2接着シートについて、各例の第2接着シートから幅10mm×長さ80mmの大きさの試験体を切り出して、該試験体を95℃の熱水中に1000時間浸漬させ、室温に冷却後各試験体について、以下の基準で、耐熱水性を評価した。
 
・優: 浸漬後に、剥離が認められない。
・可: 浸漬後に、剥離が認められないものの、一部浮きが見られる。
・不可: 浸漬後に、剥離が認められる。
 各例の第2接着シートについて、各例の第2接着シートから幅10mm×長さ80mmの大きさの試験体を切り出して、該試験体を95℃のpH2の希硫酸に1000時間浸漬させ、室温に冷却後各試験体について、以下の基準で、耐酸性を評価した。
 
・優: 浸漬後に、剥離が認められない。
・可: 浸漬後に、剥離が認められないものの、一部浮きが見られる。
・不可: 浸漬後に、剥離が認められる。
[耐アルコール性2]
 各例の第2接着シートについて、各例の第2接着シートから幅10mm×長さ80mmの大きさの試験体を切り出して、該試験体を95℃の水-エチレングルコール混合溶液(エチレングルコールの混合割合は50体積%)に1000時間浸漬させ、室温に冷却後各試験体について、以下の基準で、耐アルコール性を評価した。
 
・優: 浸漬後に、剥離が認められない。
・可: 浸漬後に、剥離が認められないものの、一部浮きが見られる。
・不可: 浸漬後に、剥離が認められる。
[初期密着力]
 各例の第1接着シート(2枚のPENフィルムでホットメルト接着剤層を挟持した接着シート)について、オートグラフを用いて、初期密着力を評価した。
 各例の第1接着シートから幅10mm×長さ80mmの大きさの試験体を切り出して、該試験体について、オートグラフを用いて接着強度を測定した。
 そして、接着強度が3N/10mm以上であるものを優と評価し、接着強度が3N/10mm未満であるものを不可と評価した。
 上記の各評価結果を以下の表2に示した。
Figure JPOXMLDOC01-appb-T000004
 上記表2より、各実施例においては、第1接着シート及び第2接着シートともに、いずれの評価項目も優となっていることが分かる。
 また、各実施例においては、初期密着性の評価結果も優となっていることが分かる。
 これに対し、各比較例においては、いずれかの評価項目が可または不可となっていることが分かる。
 なお、表2において、各比較例の耐熱水性(耐熱水性1及び耐熱水性2)、耐酸性(耐酸性1及び2)、及び、耐アルコール性(耐アルコール性1及び耐アルコール性2)の項を見ると、比較例1、比較例3、比較例5、及び、比較例7の評価結果は「可」となっているのに対し、比較例2、比較例4、比較例6、及び、比較例8の評価結果は「不可」となっていることが分かる。
 そして、比較例1、比較例3、比較例5、及び、比較例7は、いずれも、エポキシ樹脂B2(ゴム変性エポキシ樹脂)を含んでいるのに対し、比較例2、比較例4、比較例6、及び、比較例8は、いずれも、エポキシ樹脂B2(ゴム変性エポキシ樹脂)を含んでいない点で異なっている。
 このことから、比較例1、比較例3、比較例5、及び、比較例7は、エポキシ樹脂B2(ゴム変性エポキシ樹脂)を含むことにより、耐熱水性、耐酸性、及び、耐アルコール性が向上したものと推察される。
 10 ホットメルト接着シート、20 膜/電極接合体(MEA)、201 固体電解質膜、202 正極、203 負極、
 10a 基材、10b 接着剤層、201a 正極側電解質膜露出領域、201b 負極側電解質膜露出領域、202a 正極触媒層、202b 正極ガス拡散層、203a 負極触媒層、203b 負極ガス拡散層、202a1 正極側触媒層露出領域、203a1 負極側触媒層露出領域、
 L1 第1境界線、L2 第2境界線、L3 第3境界線、L4 第4境界線。
 
 

Claims (8)

  1.  基材と、ホットメルト接着剤で形成された接着剤層であって、前記基材の少なくとも一方面に積層された接着剤層と、を備えるホットメルト接着シートであって、
     前記ホットメルト接着剤は、架橋剤を含む接着剤組成物の架橋物を含み、前記接着剤組成物は、ポリウレタン樹脂、エポキシ樹脂、及び、イソシアネート系架橋剤を含有し、
     前記ポリウレタン樹脂は、芳香族ポリエステル骨格を有するポリエステルウレタン樹脂を含有し、
     前記エポキシ樹脂は、エポキシ当量が300g/eq以上1500g/eq以下の非変性エポキシ樹脂を含有する
     ホットメルト接着シート。
  2.  前記ポリウレタン樹脂は、骨格の炭素数が8以上のポリオールに由来する構成単位を有するポリウレタン樹脂をさらに含む
     請求項1に記載のホットメルト接着シート。
  3.  骨格の炭素数が8以上のポリオールに由来する構成単位を有する前記ポリウレタン樹脂は、水酸基を有する水酸基含有ポリウレタン樹脂を含有し、
     前記水酸基含有ポリウレタン樹脂の水酸基価は、0.1mgKOH/g以上20mgKOH/g以下である
     請求項2に記載のホットメルト接着シート。
  4.  骨格の炭素数が8以上のポリオールに由来する構成単位を有する前記ポリウレタン樹脂は、芳香族ジイソシアネートを構成単位として有する
     請求項2または3に記載のホットメルト接着シート。
  5.  骨格の炭素数が8以上のポリオールに由来する構成単位を有する前記ポリウレタン樹脂の質量平均分子量Mwは、1,000以上100,000以下である
     請求項2乃至4のいずれか1項に記載のホットメルト接着シート。
  6.  芳香族ポリエステル骨格を有する前記ポリエステルウレタン樹脂は、ガラス転移温度Tgが10℃以下である
     請求項1乃至5のいずれか1項に記載のホットメルト接着シート。
  7.  前記非変性エポキシ樹脂は、ビスフェノールA型エポキシ樹脂である
     請求項1乃至6のいずれか1項に記載のホットメルト接着シート。
  8.  固体高分子型燃料電池の固体電解質膜に接着させて用いられる
     請求項1乃至7のいずれか1項に記載のホットメルト接着シート。
     
PCT/JP2023/018420 2022-05-27 2023-05-17 ホットメルト接着シート WO2023228835A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022087187A JP2023174368A (ja) 2022-05-27 2022-05-27 ホットメルト接着シート
JP2022-087187 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023228835A1 true WO2023228835A1 (ja) 2023-11-30

Family

ID=88919252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018420 WO2023228835A1 (ja) 2022-05-27 2023-05-17 ホットメルト接着シート

Country Status (3)

Country Link
JP (1) JP2023174368A (ja)
TW (1) TW202407069A (ja)
WO (1) WO2023228835A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254953A (ja) * 2009-03-31 2010-11-11 Dic Corp 感熱接着剤組成物および感熱接着シート
JP2014170632A (ja) * 2013-03-01 2014-09-18 Nittoshinko Corp シール材、及び、ホットメルト接着剤
JP2019112536A (ja) * 2017-12-25 2019-07-11 東洋インキScホールディングス株式会社 樹脂組成物、積層体、およびそれを用いた飲料缶
JP2019156925A (ja) * 2018-03-09 2019-09-19 三井化学株式会社 ラミネート接着剤および包装材
JP7231105B1 (ja) * 2022-03-30 2023-03-01 東洋インキScホールディングス株式会社 蓄電デバイス包装材用接着剤、蓄電デバイス包装材、蓄電デバイス用容器及び蓄電デバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254953A (ja) * 2009-03-31 2010-11-11 Dic Corp 感熱接着剤組成物および感熱接着シート
JP2014170632A (ja) * 2013-03-01 2014-09-18 Nittoshinko Corp シール材、及び、ホットメルト接着剤
JP2019112536A (ja) * 2017-12-25 2019-07-11 東洋インキScホールディングス株式会社 樹脂組成物、積層体、およびそれを用いた飲料缶
JP2019156925A (ja) * 2018-03-09 2019-09-19 三井化学株式会社 ラミネート接着剤および包装材
JP7231105B1 (ja) * 2022-03-30 2023-03-01 東洋インキScホールディングス株式会社 蓄電デバイス包装材用接着剤、蓄電デバイス包装材、蓄電デバイス用容器及び蓄電デバイス

Also Published As

Publication number Publication date
TW202407069A (zh) 2024-02-16
JP2023174368A (ja) 2023-12-07

Similar Documents

Publication Publication Date Title
TWI600736B (zh) 電池用包裝材用聚胺甲酸酯接著劑、電池用包裝材、電池用容器及電池
JP5976112B2 (ja) 硬化性導電性接着剤組成物、電磁波シールドフィルム、導電性接着フィルム、接着方法及び回路基板
JP5688077B2 (ja) 接着剤用樹脂組成物、これを含有する接着剤、接着性シートおよびこれを接着剤層として含むプリント配線板
KR101492489B1 (ko) 전지용 포장재, 전지용 용기 및 전지
JP5304152B2 (ja) 接着剤用樹脂組成物、これを含有する接着剤、接着シート及びこれを接着層として含むプリント配線板
WO2010074135A1 (ja) 接着剤用樹脂組成物、これを含有する接着剤、接着シート及びこれを接着層として含むプリント配線板
WO2023286644A1 (ja) 接着剤
KR102574334B1 (ko) 축전 디바이스용 포장재, 축전 디바이스용 용기, 및 축전 디바이스
JP2019099667A (ja) 積層シート形成用接着剤組成物
JP2011213936A (ja) 積層シート用接着剤組成物
JP7099593B1 (ja) 蓄電デバイス包装材用ポリウレタン接着剤、蓄電デバイス用包装材、蓄電デバイス用容器及び蓄電デバイス
WO2023228835A1 (ja) ホットメルト接着シート
JP6996546B2 (ja) 蓄電デバイス用包装材、蓄電デバイス用容器及び蓄電デバイス
JP2016121289A (ja) 接着剤
WO2023190463A1 (ja) ホットメルト接着シート
JP7231105B1 (ja) 蓄電デバイス包装材用接着剤、蓄電デバイス包装材、蓄電デバイス用容器及び蓄電デバイス
WO2023190462A1 (ja) ホットメルト接着シート
JP2023151039A (ja) ホットメルト接着剤
JP7190542B1 (ja) 接着剤
JP2024043757A (ja) ホットメルト接着シート
JP7416313B1 (ja) 蓄電デバイス包装材用接着剤、蓄電デバイス包装材、蓄電デバイス用容器及び蓄電デバイス
JP7305103B1 (ja) 蓄電デバイス包装材用接着剤、蓄電デバイス用包装材、蓄電デバイス用容器及び蓄電デバイス
KR20220166065A (ko) 축전 디바이스용 포장재, 축전 디바이스용 용기 및 축전 디바이스
CN115498342A (zh) 蓄电元件用包装材、蓄电元件用容器及蓄电元件
JP2000290349A (ja) 潜在硬化性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811708

Country of ref document: EP

Kind code of ref document: A1