WO2023227102A1 - 费托合成油耦合低碳醇醚含氧化合物生产低碳烯烃的方法 - Google Patents

费托合成油耦合低碳醇醚含氧化合物生产低碳烯烃的方法 Download PDF

Info

Publication number
WO2023227102A1
WO2023227102A1 PCT/CN2023/096506 CN2023096506W WO2023227102A1 WO 2023227102 A1 WO2023227102 A1 WO 2023227102A1 CN 2023096506 W CN2023096506 W CN 2023096506W WO 2023227102 A1 WO2023227102 A1 WO 2023227102A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
catalyst
low
reaction
fischer
Prior art date
Application number
PCT/CN2023/096506
Other languages
English (en)
French (fr)
Inventor
郝坤
陶智超
王新娟
张玲
郭艳
姜大伟
李江
徐智
李国强
侯瑞峰
杨勇
李永旺
Original Assignee
中科合成油技术股份有限公司
中科合成油内蒙古有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科合成油技术股份有限公司, 中科合成油内蒙古有限公司 filed Critical 中科合成油技术股份有限公司
Publication of WO2023227102A1 publication Critical patent/WO2023227102A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G55/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/864Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an alcohol
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G55/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
    • C10G55/02Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
    • C10G55/06Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one catalytic cracking step
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/80Mixtures of different zeolites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • the present invention relates to a method for converting Fischer-Tropsch synthetic oil products, and in particular to a method for producing low-carbon olefins from Fischer-Tropsch synthetic naphtha.
  • Low-carbon olefins ethylene and propylene are important basic chemical raw materials, and their demand is increasing.
  • ethylene and propylene are still mainly produced through petroleum routes.
  • C2-C4 low carbon light hydrocarbons and naphtha steam cracking are the main ways to produce ethylene and propylene.
  • the technology for producing low-carbon olefins from methanol has developed rapidly, which has alleviated the contradiction between supply and demand of ethylene and propylene to a certain extent.
  • methanol conversion coupled light hydrocarbons were derived based on the methanol-to-low-carbon olefins technology. Dehydrogenation and catalytic cracking of naphtha to produce olefins technology.
  • CN102276391B and CN106607089A disclose methods for catalytic conversion of methanol-coupled naphtha into low-carbon olefins
  • CN102531821B discloses a method for catalytic cracking of methanol-coupled naphtha to produce low-carbon olefins and aromatics
  • CN111233609A discloses a method for producing low-carbon olefins and aromatics by coupling naphtha.
  • a raw material conversion device that allows naphtha and methanol to be injected at the bottom of a bubbling fluidized bed or a turbulent fluidized bed for reaction, converting naphtha-containing raw materials into low-carbon olefins, aromatics and high-quality gasoline.
  • the above methods all use petroleum-based naphtha, and also require relatively pure methanol, which is not only limited by the reserves of natural petroleum, but also needs to be improved in terms of the yield of low-carbon olefins.
  • Fischer-Tropsch synthesis technology using synthesis gas as raw material has also developed rapidly in recent years, and million-ton coal indirect liquefaction technology has been commercialized.
  • Research in the industry on technology for producing low-carbon olefins from Fischer-Tropsch synthetic oils has also received widespread attention.
  • technology has been developed in the art to combine Fischer-Tropsch synthetic oil with conventional petroleum or its fractions to produce low carbon olefins.
  • CN105567299B discloses a method for producing low-carbon olefins from hydrocarbon oil composed of Fischer-Tropsch synthetic oil and heavy distillate oil
  • CN106609151B discloses a method for producing low-carbon olefins from Fischer-Tropsch synthetic oil, which method combines conventional oil with A first catalytic cracking reaction is carried out with a catalytic cracking catalyst, and then the reaction mixture obtained by the first catalytic cracking reaction is carried out with a Fischer-Tropsch synthetic oil for a second catalytic cracking reaction to finally obtain low carbon olefins.
  • CN105567307B discloses a method for producing low carbon olefins from Fischer-Tropsch synthetic oil. In this method, the Fischer-Tropsch synthetic oil is first subjected to a thermal cracking reaction to remove oxygen in the Fischer-Tropsch synthetic oil, and then the resulting reactant stream is contacted with a catalytic cracking catalyst. Catalytic cracking reaction.
  • CN112961701A discloses a method and device for co-producing high-octane gasoline and low-carbon olefins using Fischer-Tropsch synthetic oil.
  • CN110183296A discloses a method for using Fischer-Tropsch synthesis oil to produce low-carbon olefins and co-produce gasoline. This method introduces the C5/C6 fraction obtained from the Fischer-Tropsch synthesis unit into the methanol-to-olefins reactor, replacing part or all of the methanol-to-olefins reactor. Cyclic hydrocarbons of olefin units, a technology to produce low-carbon olefins by coupling the Fischer-Tropsch synthesis process and the methanol-to-propylene process.
  • Fischer-Tropsch synthesis naphtha and the light mixed alcohol by-product of Fischer-Tropsch synthesis are components with relatively low added value among the intermediate products of Fischer-Tropsch synthesis.
  • the current method of using Fischer-Tropsch synthesis of naphtha to produce olefins still mainly adopts the technical route of first hydrogenation and saturation and then steam cracking, which has shortcomings such as high hydrogen consumption, high energy consumption, and high methane selectivity.
  • the Fischer-Tropsch synthesis naphtha is mainly composed of linear olefins and linear alkanes, with more olefins and less alkanes, and the main composition of the by-product light mixed alcohol of Fischer-Tropsch synthesis is C1 -C4 alcohols and have olefin-like characteristics during the cracking process.
  • the present invention provides a method and device for converting Fischer-Tropsch naphtha coupling low-carbon alcohol ether oxygen-containing compounds to produce low-carbon olefins.
  • Fischer-Tropsch synthesis naphtha and optional low-carbon alcohol ether oxygen-containing compounds are first subjected to a coupling cracking reaction at a lower temperature, and then the mixed light hydrocarbons in the cracked product are reacted with low-carbon Alcohol ether oxygenates undergo deep cracking reactions at higher temperatures, thereby obtaining higher yields of low-carbon olefins and co-producing high-octane gasoline component oils.
  • the present invention provides a method for producing low-carbon olefins from Fischer-Tropsch synthesis of naphtha coupled with low-carbon alcohol ether oxygenates.
  • the method includes:
  • the low-carbon alcohol ether oxygenates and optional butenes and/or mixed light hydrocarbons are optionally atomized and then enter the second reactor, where they are contacted with the second catalyst to perform a deep cracking reaction to obtain the second reactant streams;
  • step (3) Separate the first reactant stream in step (1) and the second reactant stream in step (2) by sedimentation to obtain reaction product I, reaction product II and ungenerated catalyst;
  • step (3) Mix the reaction product I and the reaction product II in step (3) and carry out fractionation to obtain fuel gas, ethylene, propylene, butene, mixed light hydrocarbons and mixed heavy hydrocarbons; optionally, the butene and at least part of the mixed light hydrocarbons is returned to the second reactor for refining; and (5) the ungenerated catalyst in step (3) is optionally charred and regenerated after stripping to obtain a regenerated catalyst, so The regenerated catalyst is returned to the upper part of the first reactor and the bottom of the second reactor respectively.
  • At least a part of the mixed light hydrocarbons and the mixed heavy hydrocarbons in step (4) can be mixed to produce a high-octane gasoline component oil.
  • the present invention provides a device for implementing the above method, that is, a device for producing low-carbon olefins from Fischer-Tropsch synthetic naphtha coupled with low-carbon alcohol ether oxygenates.
  • the device includes a reverse regeneration system and Fractionation system, wherein the reverse system includes:
  • the settler being connected in fluid communication to the first reactor, the second reactor and the fractionation system;
  • a regenerator is connected in fluid communication to the first reactor, the second reactor and the stripping section.
  • ethylene and propylene can be obtained with a yield of more than 55%, and at the same time, high octane number can also be co-produced.
  • Gasoline component oil, and the methane yield is below 6%.
  • Fischer-Tropsch synthesis is an ultra-low sulfur process
  • the method and device of the present invention can be used to process Fischer-Tropsch synthesis naphtha and low-carbon alcohol ether oxygen-containing compounds to obtain a sulfur content of less than 2 ppm and a research octane number.
  • High-quality gasoline component oil above 92%.
  • the method of the present invention couples and converts Fischer-Tropsch synthesis naphtha and low-carbon alcohol ether oxygen-containing compounds, which is beneficial to reducing the emissions of organic hazardous wastes such as alcohols and ethers downstream of synthesis gas conversion, and easing the technical route of synthesis gas conversion.
  • Environmental protection pressure while also increasing the added value of alcohol and ether by-products.
  • the olefins in the Fischer-Tropsch naphtha can promote the "olefin cycle", which is beneficial to improving the ethylene production during the conversion of alcohol ether oxygenates. and propylene yield.
  • Figure 1 is a schematic diagram of a method and device for producing low-carbon olefins from Fischer-Tropsch synthesis of naphtha coupled with low-carbon alcohol ether oxygenates according to an embodiment of the present invention.
  • the first reactor 2. The first reaction settler; 3. 11. Stripping section; 4. The first inclined tube to be regenerated; 5. The burning tank; 6. The regenerator; 7. The first inclined tube for regeneration; 8. , return agent riser; 9, second reactor; 10, second reaction settler; 12, two inclined tubes to be produced; 13, two inclined tubes for regeneration; 14, product fractionation system.
  • lower olefins refers to ethylene, propylene and butylene.
  • high octane refers to a research octane number (RON) of 92 or above.
  • high-octane gasoline component oil refers to a mixture of mixed light hydrocarbons and mixed heavy hydrocarbons with an RON of 92 or above.
  • the present invention provides a method for producing low-carbon olefins from Fischer-Tropsch synthesis naphtha coupled with low-carbon alcohol ether oxygenates, and the method includes:
  • step (3) Separate the first reactant stream in step (1) and the second reactant stream in step (2) by sedimentation to obtain reaction product I, reaction product II and ungenerated catalyst;
  • step (3) Mix the reaction product I and the reaction product II in step (3) and carry out fractionation to obtain fuel gas, ethylene, propylene, butene, mixed light hydrocarbons and mixed heavy hydrocarbons; optionally, the butene And at least a part of the mixed light hydrocarbons is returned to the second reactor for recycling; and
  • step (3) The ungenerated catalyst in step (3) is optionally charred and regenerated after stripping to obtain a regenerated catalyst, which is returned to the upper part of the first reactor and the bottom of the second reactor respectively.
  • the first reactor is a bubbling bed reactor or a turbulent bed reactor.
  • the second reactor is a turbulent bed reactor or a fast bed reactor.
  • the Fischer-Tropsch synthesis naphtha in step (1) refers to the component with a distillation range of 20°C to 220°C in the product generated by the Fischer-Tropsch synthesis reaction of the synthesis gas.
  • the syngas can be obtained through gasification of carbon-containing resources, and the carbon-containing resources can be any carbon-containing resources, such as coal, natural gas or biomass.
  • the Fischer-Tropsch synthesis naphtha used in step (1) of the present invention can be a component of the product generated by the Fischer-Tropsch synthesis reaction of synthesis gas with a distillation range of 20°C-220°C.
  • the preferred distillation range is Components with a distillation range of 20°C to 180°C, more preferably components with a distillation range of 20°C to 150°C.
  • the "low-carbon alcohol ether oxygen-containing compound” refers to a C1-C4 oxygen-containing compound, for example, it can be an oxygen-containing compound such as methanol, ethanol, propanol, butanol, dimethyl ether, or Their mixtures (such as light mixed alcohols by-products of Fischer-Tropsch synthesis and/or light mixed alcohols by-products of synthesis gas to methanol).
  • step (1) and step (2) the compositions of the low-carbon alcohol ether oxygen-containing compounds used may be the same or different.
  • step (1) of the present invention only Fischer-Tropsch naphtha can be fed, or Fischer-Tropsch naphtha and low-carbon alcohol ether oxygen-containing compounds can be mixed and fed.
  • the mass ratio of low alcohol ether oxygenated compounds and Fischer-Tropsch naphtha is (0.1-6.0):1, preferably (0.5-4.0):1 .
  • Fischer-Tropsch naphtha and optional low-carbon alcohol ether oxygen-containing compounds can be atomized.
  • the atomization can be carried out using at least one atomizing gas: water vapor, nitrogen, C1-C4 gas or the gasified low-carbon alcohol ether oxygen-containing compound.
  • the atomization can be easily performed by a skilled person as needed.
  • Fischer-Tropsch naphtha and optional lower alcohol ether oxygenates are preheated before step (1).
  • the preheating temperature is 150°C-350°C, preferably 250°C-350°C.
  • Fischer-Tropsch naphtha and optional low-carbon alcohol ether oxygenates are in a gas state and can be fed directly without atomization.
  • the mixed light hydrocarbons refer to liquid products with a distillation range of less than 150°C, preferably 25-125°C, which mainly include C5-C8, preferably C6-C8, more preferably C7-C8 alkanes, olefins and aromatic hydrocarbons .
  • the mixed heavy hydrocarbons refer to liquid products with a distillation range greater than 125°C, preferably greater than 150°C, which include C8 and above alkanes, olefins and aromatic hydrocarbons.
  • step (2) at the beginning, butene can come from step (4) or be obtained commercially.
  • the mixed light hydrocarbons may come from step (4), or from the cracking products of Fischer-Tropsch synthesis naphtha in other processes in the art.
  • the mixed light hydrocarbons in step (2) are obtained from Fischer-Tropsch synthetic naphtha through steps 1, 3 and 4 of the present invention.
  • the mass ratio of butene, mixed light hydrocarbons and low alcohol ether oxygenated compounds is (0-5): (0-5): 1, preferably ( 0-2): (0-3): 1.
  • the atomization can be performed using at least one atomizing gas: water vapor, nitrogen, C1-C4 gas or the gasified low-carbon alcohol ether oxygen-containing compound.
  • the atomization can be easily performed by a skilled person as needed.
  • the low carbon alcohol ether oxygenates and optional butenes and mixed light hydrocarbons are preheated before step (2).
  • the preheating temperature is 150°C-350°C, preferably 250°C-350°C.
  • low-carbon alcohol ether oxygenates and optional mixed light hydrocarbons are in a gas state and can be fed directly without atomization.
  • the active components of the first catalyst and the second catalyst of the present invention are at least one selected from unmodified or modified eight-membered ring molecular sieves or ten-membered ring molecular sieves; preferably, The eight-membered ring molecular sieve or the ten-membered ring molecular sieve can be SAPO-34, SAPO-18, SSZ-13, ZSM-5, ZSM-11, IM-5, ITQ-13 and other molecular sieves.
  • the modifying element of the modified molecular sieve may be at least one selected from the group consisting of Zn, Ga, Cr, Fe, Co, Ni, Pt, Pd, Mn, Cu and P.
  • the active components of the first catalyst and the second catalyst account for 20 wt% to 60 wt% of the total weight of the catalyst on a dry basis.
  • the first catalyst and the second catalyst also contain a remaining amount of alumina and/or silica as a carrier.
  • the first catalyst is a mixed catalyst of a regenerated catalyst and a regenerated catalyst, wherein the carbon content of the first catalyst is 0.3-6.0 m%.
  • the second catalyst is a mixed catalyst of a regenerated catalyst and a regenerated catalyst, wherein the carbon content of the second catalyst is 0.0-3.0 m%.
  • the conditions of the coupling cleavage reaction are: temperature: 450°C-600°C, preferably 500°C-600°C; pressure: 0.03-0.30MPa, preferably 0.05-0.25MPa ; Heavy hourly space speed: 1-10h -1 , preferably 2-8h -1 ; Agent-oil ratio: 0.2-6, preferably 0.4-4.
  • the conditions for the deep pyrolysis reaction are: reaction temperature: 500°C-650°C, preferably 550°C-650°C; reaction pressure: 0.03-0.30MPa, preferably 0.05- 0.25MPa; gravity hourly space velocity 0.5-5h -1 , preferably 1-4h -1 ; agent-oil ratio: 3-30, preferably 4-20.
  • step (3) the first reactant stream in step (1) and the second reactant stream in step (2) are separately moved up (for example, up through a gas riser) for sedimentation separation.
  • the sedimentation separation can adopt conventional sedimentation separation operating parameters in this field.
  • step (4) After the fractionation in step (4), fuel gas, ethylene, propylene, butene, mixed light hydrocarbons and mixed heavy hydrocarbons can be obtained.
  • fuel gas refers to a gas component mainly containing C1-C4 alkanes.
  • the production of light olefins can be further increased.
  • all the butene in step (4) is returned to the second reactor of step (2) for recycling.
  • 0-80 wt% of the mixed light hydrocarbons in step (4) is returned to the second reactor of step (2) for recycling.
  • fractionation and stripping are performed using conventional operations in the art without special limitations.
  • the stripped spent catalyst is contacted with oxygen-containing gas to perform the optional burning and regeneration under the following conditions: the pressure is 0.03-0.30MPa, preferably 0.05 -0.25MPa; temperature is 550°C-750°C, preferably 600°C-700°C.
  • the oxygen-containing gas is air or oxygen-containing hot flue gas.
  • 20-100 wt% of the mixed light hydrocarbons remaining after refining are mixed with all the mixed heavy hydrocarbons to obtain high-octane gasoline component oil.
  • the regenerated catalyst is returned to the upper part of the first reactor and the bottom of the second reactor respectively. This is mainly because the first reactor is mainly used to cause the coupling cracking reaction of olefins and alcohol ethers in Fischer-Tropsch naphtha.
  • this reaction has relatively low requirements on reaction temperature and catalyst activity, and has relatively low requirements on the circulation amount of the regenerated catalyst, and the high-temperature and high-activity regenerated catalyst has a lower chance of contacting fresh raw materials when returning from the upper part, which is conducive to improving low-carbon
  • the selectivity of olefin products while the second reactor is mainly used for the deep cracking reaction of alkanes in Fischer-Tropsch naphtha that are not completely converted in the first reactor and alcohol ethers in low-carbon alcohol ether oxygenates, and the alkanes It is more stable than olefins, has relatively high requirements on reaction temperature and catalyst activity, and has relatively high requirements on the circulation amount of the regenerated catalyst, which is beneficial to promoting the conversion of alkanes. Therefore, by adopting a specific regenerated catalyst return strategy, the present invention makes the process of the present invention more stable and efficient, and runs more smoothly.
  • the present invention relates to a device for implementing the above-mentioned method for producing low-carbon olefins from Fischer-Tropsch synthetic naphtha coupled with low-carbon alcohol ether oxygenates, and the device includes a reverse regeneration system and a fractionation system, wherein,
  • the feedback system includes:
  • the settler being connected in fluid communication to the first reactor, the second reactor and the fractionation system;
  • a regenerator is connected in fluid communication to the first reactor, the second reactor and the stripping section.
  • the first reactor is a bubbling bed reactor or a turbulent bed reactor.
  • the second reactor is a turbulent bed reactor or a rapid bed reactor.
  • the first reactor and the second reactor may share a settler.
  • the first reactor and the second reactor are each connected to different settlers in fluid communication.
  • the first reactor is fluidly connected to a first reaction settler
  • the second reactor is fluidly connected to a second reaction settler.
  • first reactor and the second reactor are set up in parallel.
  • the first reactor and the second reactor share a set of regenerators.
  • the lower part of the regenerator can be connected to a burning tank for burning.
  • Figure 1 is a schematic flow diagram of a method for producing low-carbon olefins from Fischer-Tropsch synthesis naphtha coupled with low-carbon alcohol ether oxygen-containing compounds provided by the present invention.
  • feed I Fischer-Tropsch naphtha
  • optional feed II low-carbon alcohol ether oxygenated compounds
  • a coupled cleavage reaction occurs to obtain a first reactant stream.
  • the first reactant stream and the reacted to-be-generated catalyst go up, and are settled and separated (i.e., the oil agent is separated) in the first reaction settler 2 to obtain the first reaction product I and the to-be-generated catalyst.
  • the optional feed III (butene, mixed light hydrocarbons) and feed II (low carbon alcohol ether oxygenates) that are preheated to the appropriate feed temperature are optionally atomized and then enter the second reactor 9 , under the conditions of reaction temperature of 500°C-650°C, reaction pressure of 0.03-0.30MPa, gravity hourly space velocity of 0.5-5h -1 , and agent-oil ratio of 3-30, a deep cracking reaction occurs in contact with the second catalyst to obtain Second reactant stream.
  • the second reactant stream and the reacted to-be-generated catalyst are moved up through the gas riser, and sedimentation separation (ie, oil separation) is performed in the second reaction settler 10 to obtain the second reaction product II and the to-be-generated catalyst.
  • sedimentation separation ie, oil separation
  • the second reaction product II and the first reaction product I enter the product fractionation system 14 together for fractionation according to conventional methods in this field to obtain fuel gas, ethylene, propylene, butene, mixed light hydrocarbons and mixed heavy hydrocarbons, and all butenes are mixed with 0-80wt% of the mixed light hydrocarbons are returned to the second reactor for recycling.
  • the remaining mixed light hydrocarbons are blended with all the mixed heavy hydrocarbons to obtain gasoline component oil.
  • a method for producing low-carbon olefins by Fischer-Tropsch synthesis of naphtha coupled with low-carbon alcohol ether oxygenates includes:
  • step (3) Separate the first reactant stream in step (1) and the second reactant stream in step (2) by sedimentation to obtain reaction product I, reaction product II and ungenerated catalyst;
  • step (3) Mix the reaction product I and the reaction product II in step (3) and carry out fractionation to obtain fuel gas, ethylene, propylene, butene, mixed light hydrocarbons and mixed heavy hydrocarbons; optionally, the butene And at least a part of the mixed light hydrocarbons is returned to the second reactor for recycling; and
  • step (3) The ungenerated catalyst in step (3) is optionally charred and regenerated after stripping to obtain a regenerated catalyst, which is returned to the upper part of the first reactor and the bottom of the second reactor respectively.
  • step (1) and step (2) are the same or different.
  • step (1) the mass ratio of the low-carbon alcohol ether oxygenated compound to the Fischer-Tropsch naphtha is (0.1 -6.0):1.
  • step (1) the Fischer-Tropsch naphtha and optional low-carbon alcohol ether oxygen-containing compounds are preheated.
  • step (2) the mass ratio of butene, mixed light hydrocarbons and lower alcohol ether oxygenated compounds is (0-5): (0-5):1.
  • step (2) the low-carbon alcohol ether oxygenate and optional butene and mixed light hydrocarbons are preheated.
  • the modifying element of the modified molecular sieve is at least one selected from the following: Zn, Ga, Cr, Fe, Co, Ni, Pt, Pd, Mn, Cu and P.
  • the first catalyst is a mixed catalyst of a regenerated catalyst and a spent catalyst, wherein the carbon content of the first catalyst is 0.3-6.0 m% .
  • the second catalyst is a mixed catalyst of a regenerated catalyst and a spent catalyst, wherein the carbon content of the second catalyst is 0.0-3.0 m% .
  • step (1) the conditions of the coupling cleavage reaction are: temperature: 450°C-600°C; pressure: 0.03-0.30MPa; weight Hourly space speed: 1-10h -1 ; Agent-oil ratio: 0.2-6.
  • step (2) the conditions of the deep pyrolysis reaction are: reaction temperature: 500°C-650°C; reaction pressure: 0.03-0.30MPa ; Heavy hourly airspeed 0.5-5h -1 ; Agent-oil ratio: 3-30.
  • step (4) is returned to the second reactor of step (2) for recycling.
  • step (4) The method as described in any one of paragraphs 1-3, wherein 0-80 wt% of the mixed light hydrocarbons in step (4) is returned to the second reactor of step (2) for recycling.
  • step (5) the stripped spent catalyst is contacted with an oxygen-containing gas to perform the optional charring under the following conditions And regeneration: pressure is 0.03-0.30MPa; temperature is 550°C-750°C.
  • the settler being connected in fluid communication to the first reactor, the second reactor and the fractionation system;
  • a regenerator is connected in fluid communication to the first reactor, the second reactor and the stripping section.
  • regenerator is a coking tank and a regenerator connected in series.
  • the Fischer-Tropsch naphtha and methanol that have been preheated and gasified to 250°C are mixed and sent to the first turbulent bed reactor, where the mass ratio of methanol to Fischer-Tropsch naphtha is 2:1.
  • a reaction temperature of 500°C a reaction pressure of 0.15MPa, a gravity hourly space velocity of 8.0h -1 , and a catalyst-to-oil ratio of 2.4
  • a coupled cracking reaction occurs in contact with the first catalyst to obtain the first reactant stream.
  • the first reactant stream and the reacted catalyst go up, and are subjected to sedimentation separation (ie, oil separation) in the first reaction settler to obtain the first reaction product and the ungenerated catalyst.
  • sedimentation separation ie, oil separation
  • Butene, mixed light hydrocarbons and methanol that have been preheated and gasified to 300°C are mixed and sent to the second rapid bed reactor, where the mass ratio of butene, mixed light hydrocarbons and methanol is 0.4:1:1.
  • a reaction temperature of 620°C a reaction pressure of 0.15MPa, a gravity hourly space velocity of 3.0h -1 , and a catalyst-to-oil ratio of 6, a deep cracking reaction occurs in contact with the second catalyst to obtain the second reactant stream.
  • the second reactant stream and the reacted catalyst are moved up through the gas riser, and sedimentation separation (ie, oil separation) is performed in the second reaction settler to obtain the second reaction product and the ungenerated catalyst.
  • sedimentation separation ie, oil separation
  • the second reaction product and the first reaction product are sent to the product fractionation system together, and fractionation is carried out according to conventional methods in this field to obtain fuel gas, ethylene, propylene, butene, mixed light hydrocarbons and mixed heavy hydrocarbons, and all the butenes are mixed with the mixed 70wt% of the light hydrocarbons are returned to the second reactor for recycling.
  • the remaining 30 wt% mixed light hydrocarbons are blended with all the mixed heavy hydrocarbons to obtain gasoline component oil.
  • the first catalyst deactivated by carbon deposits in the first reactor is transported to the coking tank and the regenerator through the inclined pipe to be steamed after the oil separation is completed in the first reaction settler; the second reaction After the second catalyst inactivated by carbon deposits in the second reaction settler completes oil separation, it is steam stripped and transported to the coking tank and regenerator through the inclined tube 2; when the pressure is 0.15MPa and the temperature is Air is introduced under the condition of 650°C for catalyst regeneration.
  • the restored catalyst enters the upper part of the first reactor and the bottom of the second reactor through the regeneration inclined pipe 1, the return agent riser and the regeneration inclined pipe 2 respectively, and controls the first catalyst
  • the carbon content is 4.3%, and the carbon content of the second catalyst is 1.6%, completing the cycle of the catalyst.
  • the Fischer-Tropsch naphtha and ethanol that have been preheated and gasified to 200°C are mixed and sent to the first bubbling bed reactor, where the mass ratio of ethanol to Fischer-Tropsch naphtha is 1.5:1.
  • a reaction temperature of 580°C a reaction pressure of 0.10MPa, a gravity hourly space velocity of 4.0h -1 , and a catalyst-to-oil ratio of 4.0
  • a coupled cracking reaction occurs in contact with the first catalyst to obtain the first reactant stream.
  • the first reactant stream and the reacted catalyst go up, and are subjected to sedimentation separation (ie, oil separation) in the first reaction settler to obtain the first reaction product and the ungenerated catalyst.
  • sedimentation separation ie, oil separation
  • Butene, mixed light hydrocarbons and ethanol that have been preheated and gasified to 250°C are mixed and sent to the second rapid bed reactor, where the mass ratio of butene, mixed light hydrocarbons and ethanol is 1.5:2:1.
  • a reaction temperature of 640°C a reaction pressure of 0.10MPa, a gravity hourly space velocity of 2.0h -1 , and a catalyst-to-oil ratio of 20
  • a deep cracking reaction occurs in contact with the second catalyst to obtain the second reactant stream.
  • the second reactant stream and the reacted catalyst are moved up through the gas riser, and sedimentation separation (ie, oil separation) is performed in the second reaction settler to obtain the second reaction product and the ungenerated catalyst.
  • the second reaction product and the first reaction product are sent to the product fractionation system together, and fractionation is carried out according to conventional methods in this field to obtain fuel gas, ethylene, propylene, butene, mixed light hydrocarbons and mixed heavy hydrocarbons, and all the butenes are mixed with the mixed 50wt% of the light hydrocarbons are returned to the second reactor for recycling.
  • the remaining 50 wt% mixed light hydrocarbons and all the mixed heavy hydrocarbons are blended to obtain gasoline component oil.
  • the first catalyst deactivated by carbon deposits in the first reactor is transported to the coking tank and the regenerator through the inclined pipe to be steamed after the oil separation is completed in the first reaction settler; the second reaction After the second catalyst inactivated by carbon deposits in the second reaction settler completes oil separation, it is steam stripped and transported to the coking tank and regenerator through the second inclined tube to be regenerated; when the pressure is 0.10MPa and the temperature is Oxygen-containing hot flue gas is introduced under the condition of 700°C for catalyst regeneration.
  • the restored catalyst enters the upper part of the first reactor and the bottom of the second reactor through the regeneration inclined tube 1, the return agent riser and the regeneration inclined tube 2 respectively. Control the carbon content of the first catalyst to 3.5% and the carbon content of the second catalyst to 1.3% to complete the cycle of the catalyst.
  • Fischer-Tropsch naphtha and dimethyl ether that have been preheated and gasified to 250°C are mixed and sent to the first turbulent bed reactor, where the mass ratio of dimethyl ether to Fischer-Tropsch naphtha is 1:1 .
  • a reaction temperature of 500°C a reaction pressure of 0.20MPa, a gravity hourly space velocity of 6.0h -1 , and a catalyst-to-oil ratio of 0.5
  • a coupled cracking reaction occurs in contact with the first catalyst to obtain the first reactant stream.
  • the first reactant stream and the reacted catalyst go up, and are subjected to sedimentation separation (ie, oil separation) in the first reaction settler to obtain the first reaction product and the ungenerated catalyst.
  • sedimentation separation ie, oil separation
  • the dimethyl ether that has been preheated and vaporized to 320°C is fed into the second rapid bed reactor.
  • a reaction temperature of 600°C a reaction pressure of 0.20MPa, a gravity hourly space velocity of 4.0h -1 , and a catalyst-to-oil ratio of 10
  • a deep cracking reaction occurs in contact with the second catalyst to obtain the second reactant stream.
  • the second reactant stream and the reacted catalyst are moved up through the gas riser, and sedimentation separation (ie, oil separation) is performed in the second reaction settler to obtain the second reaction product and the ungenerated catalyst.
  • sedimentation separation ie, oil separation
  • the second reaction product and the first reaction product are sent to the product fractionation system together, and fractionation is carried out according to conventional methods in this field to obtain fuel gas, ethylene, propylene, butene, mixed light hydrocarbons and mixed heavy hydrocarbons, and all the butenes are mixed with the mixed 50wt% of the light hydrocarbons are returned to the second reactor for recycling.
  • the remaining 50 wt% mixed light hydrocarbons are blended with all the mixed heavy hydrocarbons to obtain gasoline component oil.
  • the first catalyst deactivated by carbon deposits in the first reactor is transported to the coking tank and the regenerator through the inclined pipe to be steamed after the oil separation is completed in the first reaction settler; the second reaction After the second catalyst inactivated by carbon deposits in the second reaction settler completes oil separation, it is steam stripped and transported to the coking tank and regenerator through the inclined tube 2; when the pressure is 0.20MPa and the temperature is Oxygen-containing hot flue gas is introduced under the condition of 650°C for catalyst regeneration.
  • the restored catalyst enters the upper part of the first reactor and the bottom of the second reactor through the regeneration inclined tube 1, the return agent riser and the regeneration inclined tube 2 respectively. Control the carbon content of the first catalyst to 2.8% and the carbon content of the second catalyst to 0.3% to complete the cycle of the catalyst.
  • the Fischer-Tropsch synthesis naphtha and Fischer-Tropsch synthesis by-product light mixed alcohol that are preheated and gasified to 300°C are mixed and sent to the first turbulent bed reactor, where the Fischer-Tropsch synthesis by-product light mixed alcohol is mixed with the Fischer-Tropsch synthesis by-product light mixed alcohol.
  • the mass ratio of naphtha is 0.5:1.
  • a reaction temperature of 520°C a reaction pressure of 0.25MPa, a gravity hourly space velocity of 2.0h -1 , and a catalyst-to-oil ratio of 1.8
  • a coupled cracking reaction occurs in contact with the first catalyst to obtain the first reactant stream.
  • the first reactant stream and the reacted catalyst go up, and are subjected to sedimentation separation (ie, oil separation) in the first reaction settler to obtain the first reaction product and the ungenerated catalyst.
  • the Fischer-Tropsch synthesis by-product light mixed alcohol which is preheated and gasified to 350°C, is sent to the second turbulent bed reactor.
  • a reaction temperature of 560°C a reaction pressure of 0.25MPa, a gravity hourly space velocity of 1.0h -1 , and a catalyst-to-oil ratio of 8
  • a deep cracking reaction occurs in contact with the second catalyst to obtain the second reactant stream.
  • the second reactant stream and the reacted catalyst are moved up through the gas riser, and sedimentation separation (ie, oil separation) is performed in the second reaction settler to obtain the second reaction product and the ungenerated catalyst.
  • sedimentation separation ie, oil separation
  • the second reaction product and the first reaction product are sent to the product fractionation system together, and fractionation is carried out according to conventional methods in this field to obtain fuel gas, ethylene, propylene, butene, mixed light hydrocarbons and mixed heavy hydrocarbons, and all the butenes are mixed with the mixed 40wt% of the light hydrocarbons are returned to the second reactor for recycling.
  • the remaining 60 wt% mixed light hydrocarbons are blended with all the mixed heavy hydrocarbons to obtain gasoline component oil.
  • the first catalyst deactivated by carbon deposits in the first reactor is transported to the coking tank and the regenerator through the inclined pipe to be steamed after the oil separation is completed in the first reaction settler; the second reaction After the second catalyst inactivated by carbon deposits in the second reaction settler completes oil separation, it is steam stripped and transported to the coking tank and regenerator through the second inclined tube to be regenerated; when the pressure is 0.25MPa and the temperature is Air is introduced under the condition of 680°C for catalyst regeneration.
  • the restored catalyst enters the upper part of the first reactor and the bottom of the second reactor through the regeneration inclined pipe 1, the return agent riser and the regeneration inclined pipe 2 respectively, and controls the first catalyst
  • the carbon content is 1.4%
  • the carbon content of the second catalyst is 0.2%, completing the cycle of the catalyst.
  • the Fischer-Tropsch synthesis naphtha that has been preheated and gasified to 200°C and the by-product light mixed alcohol from synthesis gas to methanol are mixed and sent to the first bubbling bed reactor, where the light mixed alcohol by-product from synthesis gas to methanol is mixed with the by-product light mixed alcohol from synthesis gas to methanol.
  • the mass ratio of naphtha to naphtha is 3.0:1.
  • a reaction temperature of 560°C, a reaction pressure of 0.05MPa, a gravity hourly space velocity of 10.0h -1 , and a catalyst-to-oil ratio of 3.2 Under the conditions of a reaction temperature of 560°C, a reaction pressure of 0.05MPa, a gravity hourly space velocity of 10.0h -1 , and a catalyst-to-oil ratio of 3.2, a coupled cracking reaction occurs in contact with the first catalyst to obtain the first reactant stream.
  • the first reactant stream and the reacted catalyst go up, and are subjected to
  • Butene, mixed light hydrocarbons, and the by-product light mixed alcohol from synthesis gas to methanol that are preheated and gasified to 250°C are mixed and sent to the second turbulent bed reactor, where butene, mixed light hydrocarbons, and synthesis gas to methanol are mixed.
  • the mass ratio of the by-product light mixed alcohol is 0.8:0.5:1. Under the conditions of a reaction temperature of 580°C, a reaction pressure of 0.05MPa, a gravity hourly space velocity of 5.0h -1 , and a catalyst-to-oil ratio of 15, a deep cracking reaction occurs in contact with the second catalyst to obtain the second reactant stream.
  • the second reactant stream and the reacted catalyst are moved up through the gas riser, and sedimentation separation (ie, oil separation) is performed in the second reaction settler to obtain the second reaction product and the ungenerated catalyst.
  • the second reaction product and the first reaction product are sent to the product fractionation system together, and fractionation is carried out according to conventional methods in this field to obtain fuel gas, ethylene, propylene, butene, mixed light hydrocarbons and mixed heavy hydrocarbons, and all the butenes are mixed with the mixed 40wt% of the light hydrocarbons are returned to the second reactor for recycling.
  • the remaining 60 wt% mixed light hydrocarbons are blended with all the mixed heavy hydrocarbons to obtain gasoline component oil.
  • the first catalyst deactivated by carbon deposits in the first reactor is transported to the coking tank and the regenerator through the inclined pipe to be steamed after the oil separation is completed in the first reaction settler; the second reaction After the deactivated catalyst with carbon deposits in the second reaction settler completes oil separation in the second reaction settler, it is steam stripped and transported to the coking tank and regenerator through the second inclined tube to be regenerated; at a pressure of 0.05MPa and a temperature of 620°C Oxygen-containing hot flue gas is introduced under the conditions for catalyst regeneration.
  • the restored catalyst enters the upper part of the first reactor and the bottom of the second reactor through the regeneration inclined tube one, the return agent riser and the regeneration inclined tube two respectively. Control the second
  • the carbon content of the first catalyst is 0.3%, and the carbon content of the second catalyst is 0.1%, completing the cycle of the catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了由费托合成石脑油耦合低碳醇醚类含氧化合物生产低碳烯烃的方法,以及用于实施上述方法的装置。具体而言,本发明的方法通过使费托合成石脑油和任选的低碳醇醚类含氧化合物先在较低温度下发生耦合裂解反应,然后使任选的裂解产物中的丁烯、混合轻烃与低碳醇醚类含氧化合物在较高温度下发生深度裂解反应,从而得到较高收率的低碳烯烃同时联产高辛烷值的汽油组分油。本发明的方法简单、可行,有利于实现合成气转化过程中的低附加值中间产品的高效利用,可以以55%以上的收率得到乙烯和丙稀并联产高辛烷值的汽油组分油,甲烷产率在6%以下;而且有利于降低合成气转化下游醇、醚等有机危废物的排放,同时还能提高了醇、醚副产物附加值。

Description

费托合成油耦合低碳醇醚含氧化合物生产低碳烯烃的方法
相关申请的引用
本申请要求于2022年05月26日向中华人民共和国国家知识产权局提交的第202210581273.4号中国专利申请的优先权和权益,在此将其全部内容以援引的方式整体并入文本中。
技术领域
本发明涉及费托合成油品的转化方法,具体涉及由费托合成石脑油生产低碳烯烃的方法。
背景技术
低碳烯烃乙烯和丙烯是重要的基础化工原料,其需求量在不断增加。当前乙烯、丙烯仍然主要通过石油路线生产。其中,C2-C4低碳轻烃和石脑油蒸汽裂解是生产乙烯和丙烯的主要途径。近年来,甲醇制低碳烯烃技术发展迅速,一定程度上缓解了乙烯和丙烯的供需矛盾。
为了解决低碳轻烃和石脑油蒸汽裂解过程中能耗高、甲烷和焦炭产率高、原料利用率低等问题,在甲醇制低碳烯烃技术基础上,衍生出了甲醇转化耦合轻烃脱氢和石脑油催化裂解制烯烃技术。例如,CN102276391B和CN106607089A公开了甲醇耦合石脑油催化转化为低碳烯烃的方法;CN102531821B公开了甲醇耦合石脑油催化裂解生产低碳烯烃和芳烃的方法;以及CN111233609A公开了一种含有石脑油的原料转化装置,该装置使得石脑油和甲醇在鼓泡流化床或湍动流化床底部注入进行反应,将含石脑油的原料转化为低碳烯烃、芳烃和高品质汽油。但是,上述方法均采用了石油基石脑油,并且还需要相对纯度的甲醇,这不仅受制于天然石油的储量,并且在低碳烯烃的收率方面也有待提高。
另一方面,以合成气为原料的费托合成技术近年来也得到了迅速的发展,百万吨级的煤炭间接液化技术已实现了商业化的运行。业内针对费托合成油品生产低碳烯烃技术的研究也得到了广泛关注。为此,本领域开发了将费托合成油与常规石油或其馏分组合生产低碳烯烃的技术。例如,CN105567299B公开了一种由费托合成油和重质馏分油组成的烃油生产低碳烯烃的方法;CN106609151B公开了一种由费托合成油生产低碳烯烃的方法,该方法将常规石油与催化裂化催化剂进行第一催化裂化反应,接着将第一催化裂化反应所得的反应混合物与费托合成油进行第二催化裂化反应,最终得到低碳烯烃。
此外,技术人员还开发了主要采用费托合成油及其馏分生产低碳烯烃的技术。CN105567307B公开了一种由费托合成油生产低碳烯烃的方法,该方法将费托合成油先进行热裂化反应脱除费托合成油中的氧,然后将所得反应物流与催化裂化催化剂接触进行催化裂化反应。CN112961701A公开了一种利用费托合成油品联产高辛烷值汽油和低碳烯烃的方法和装置。
另外,CN110183296A公开了一种利用费托合成油生产低碳烯烃并联产汽油的方法,该方法将费托合成单元所得到的C5/C6馏分引入甲醇制烯烃反应器,替代部分或全部甲醇制烯烃单元的循环烃,通过将费托合成工艺和甲醇制丙烯工艺耦合来生产低碳烯烃的技术。
然而,在上述采用石油基油品或者费托合成油品生产低碳烯烃的技术中,主要针对石油基油品或费托合成油品或它们的馏分进行催化裂解,并未考虑使用其它物料、尤其是煤化工中的低附加值产品甚至是副产品来生产低碳烯烃。
费托合成石脑油和费托合成副产的轻混醇是费托合成中间产品中附加值相对较低的组分。另外,当前使用费托合成石脑油来制烯烃的途径仍然主要采用了先加氢饱和再蒸汽裂解的技术路线,这存在氢耗高、能耗高、甲烷选择性高等不足。而且,目前未见有费托合成副产的轻混醇生产低碳烯烃的技术报道。因此,如何更好地利用煤化工中的低附加值产品以更经济高效的方式高收率地生产低碳烯烃是一个函待解决的问题。
发明内容
为解决上述现有技术中存在的问题,结合费托合成石脑油主要组成为直链烯烃和直链烷烃且烯烃多、烷烃少的特点,以及费托合成副产轻混醇主要组成为C1-C4醇类并在裂解过程中具有类烯烃的特点,本发明提供了一种费托合成石脑油耦合低碳醇醚类含氧化合物转化生产低碳烯烃的方法和装置。
本发明所述的方法通过使费托合成石脑油和任选的低碳醇醚类含氧化合物先在较低温度下发生耦合裂解反应,然后使裂解产物中的混合轻烃再与低碳醇醚类含氧化合物在较高温度下发生深度裂解反应,从而可得到较高收率的低碳烯烃同时联产高辛烷值的汽油组分油。
一方面,本发明提供了由费托合成石脑油耦合低碳醇醚类含氧化合物生产低碳烯烃的方法,所述方法包括:
(1)将费托合成石脑油与任选的低碳醇醚类含氧化合物混合,经任选的雾化后进入第一反应器,与第一催化剂接触进行耦合裂解反应,得到第一反应物流;
(2)使低碳醇醚类含氧化合物与任选的丁烯和/或混合轻烃经任选的雾化后进入第二反应器,与第二催化剂接触进行深度裂解反应,得到第二反应物流;
(3)将步骤(1)中的第一反应物流和步骤(2)中的第二反应物流分别进行沉降分离,得到反应产物I、反应产物Ⅱ和待生催化剂;
(4)将步骤(3)中的反应产物Ⅰ与反应产物Ⅱ混合后进行分馏,得到燃料气、乙烯、丙烯、丁烯、混合轻烃和混合重烃;任选地,将所述丁烯和混合轻烃中的至少一部分返回第二反应器内进行回炼;以及(5)将步骤(3)中的待生催化剂经汽提后进行任选的烧焦以及再生,得到再生催化剂,所述再生催化剂分别返回第一反应器上部和第二反应器底部。
在优选的实施方式中,可将步骤(4)中的混合轻烃的至少一部分和混合重烃混合生产高辛烷值的汽油组分油。
另一方面,本发明提供了用于实施上述方法的装置,即用于由费托合成石脑油耦合低碳醇醚类含氧化合物生产低碳烯烃的装置,所述装置包括反再系统和分馏系统,其中,所述反再系统包括:
第一反应器;
第二反应器;
沉降器,所述沉降器以流体连通的方式连接至所述第一反应器、所述第二反应器和所述分馏系统;
汽提段,所述汽提段以流体连通的方式连接至所述沉降器;以及
再生器,所述再生器以流体连通的方式连接至所述第一反应器、所述第二反应器和所述汽提段。
本发明提供的技术方案具有如下有益效果:
(1)采用本发明的装置和方法加工费托合成石脑油和低碳醇醚类含氧化合物可以以55%以上的收率得到乙烯和丙稀,同时还可以联产高辛烷值的汽油组分油,并且甲烷产率在6%以下。
(2)由于费托合成为超低硫过程,使得采用本发明的方法和装置加工费托合成石脑油和低碳醇醚类含氧化合物可以得到硫含量在2ppm以下、研究法辛烷值在92以上的优质汽油组分油。
(3)本发明的方法将费托合成石脑油与低碳醇醚类含氧化合物耦合转化,有利于降低合成气转化下游醇、醚等有机危废物的排放,缓解合成气转化技术路线的环保压力,同时还能提高了醇、醚副产物附加值。
(4)当费托石脑油与醇醚类含氧化合物共进料时,费托石脑油中的烯烃可促进“烯烃循环”,有利于提高醇醚类含氧化合物转化过程中的乙烯和丙烯收率。
(5)在本发明中通过将再生催化剂返回至第一反应器上部和第二反应器底部,使得本发明的工艺更稳定并且运行更平稳。
本发明的其它特征和优点将在随后的具体实施方式部分予以说明,但不限于此。
附图说明
附图是说明书的一部分,与具体实施方式一起提供了对本发明的进一步解释,但并不是对本发明的限制。
图1为根据本发明的实施方式的所述由费托合成石脑油耦合低碳醇醚类含氧化合物生产低碳烯烃的方法及装置的示意图。
附图标记说明
1,第一反应器;2,第一反应沉降器;3、11,汽提段;4,待生斜管一;5,烧焦罐;6,再生器;7,再生斜管一;8,返剂立管;9,第二反应器;10,第二反应沉降器;12,待生斜管二;13,再生斜管二;14,产物分馏系统。
具体实施方式
以下对本发明的具体实施方式进行详细说明。此处所描述的具体实施方式仅用于说明和解释本发明,但并不用于限制本发明。
在本发明中,除非另有定义,术语“任选的”和“任选地”表示其所修饰的对象或事件存在或者不存在、或发生或者不发生。
除非另有明确定义,本文中使用的术语“低碳烯烃”是指乙烯、丙烯和丁烯。
除非另有明确定义,本文中使用的术语“高辛烷值”是指研究法辛烷值(RON)在92以上。
除非另有明确定义,本文中使用的术语“高辛烷值的汽油组分油”是指RON在92以上的混合轻烃和混合重烃的混合物。
在一方面中,本发明提供了由费托合成石脑油耦合低碳醇醚类含氧化合物生产低碳烯烃的方法,所述方法包括:
(1)将费托合成石脑油与任选的低碳醇醚类含氧化合物混合,经任选的雾化后进入第一反应器,与第一催化剂接触进行耦合裂解反应,得到第一反应物流;
(2)使低碳醇醚类含氧化合物和任选的丁烯和/或混合轻烃经任选的雾化后进入第二反应器,与第二催化剂接触进行深度裂解反应,得到第二反应物流;
(3)将步骤(1)中的第一反应物流和步骤(2)中的第二反应物流分别进行沉降分离,得到反应产物I、反应产物Ⅱ和待生催化剂;
(4)将步骤(3)中的反应产物Ⅰ与反应产物Ⅱ混合后进行分馏,得到燃料气、乙烯、丙烯、丁烯、混合轻烃和混合重烃;任选地,将所述丁烯和混合轻烃中的至少一部分返回至第二反应器内进行回炼;以及
(5)将步骤(3)中的待生催化剂经汽提后进行任选的烧焦以及再生,得到再生催化剂,所述再生催化剂分别返回第一反应器上部和第二反应器底部。
在一些实施方式中,所述第一反应器为鼓泡床反应器或湍动床反应器。
在一些实施方式中,所述第二反应器为湍动床反应器或快速床反应器。
在本发明中,步骤(1)中的费托合成石脑油是指合成气经费托合成反应生成的产物中馏程为20℃-220℃的组分。在本发明中,所述合成气可经由含碳资源气化获得,所述含碳资源可为任何含碳资源,例如煤、天然气或生物质。
在优选的实施方式中,本发明步骤(1)中所用的费托合成石脑油可为合成气经费托合成反应生成的产物中馏程为20℃-220℃的组分、优选馏程为20℃-180℃的组分、更优选馏程为20℃-150℃的组分。
在一些实施方式中,所述“低碳醇醚类含氧化合物”是指C1-C4的含氧化合物,例如,可以为甲醇、乙醇、丙醇、丁醇、二甲醚等含氧化合物或其混合物(例如费托合成副产的轻混醇和/或合成气制甲醇副产的轻混醇)。
在步骤(1)和步骤(2)中,所使用的低碳醇醚类含氧化合物的组成可相同或不同。
在本发明的步骤(1)中,可仅以费托合成石脑油进行进料,也可将费托合成石脑油与低碳醇醚类含氧化合物混合进料。
在优选的实施方式中,在步骤(1)中,低碳醇醚类含氧化合物与费托合成石脑油的质量比例为(0.1-6.0):1,优选为(0.5-4.0):1。
在步骤(1)中,为了使原料更好的同催化剂进行接触发生反应,可对费托合成石脑油和任选的低碳醇醚类含氧化合物进行雾化。所述雾化可使用至少一种雾化气体来进行:水蒸汽、氮气、C1-C4气体或者气化后的所述低碳醇醚类含氧化合物。所述雾化可由技术人员根据需要容易地进行。
在优选的实施方式中,在步骤(1)之前,对费托合成石脑油和任选的低碳醇醚类含氧化合物进行预热。在优选的实施方式中,所述预热温度为150℃-350℃、优选250℃-350℃。例如,在一些实施方式中,在所述预热后费托合成石脑油和任选的低碳醇醚类含氧化合物即处于气体状态,可直接进行进料,而无需雾化。
在本发明中,所述混合轻烃是指馏程小于150℃、优选25-125℃的液体产品,其中主要包含C5-C8、优选C6-C8、更优选C7-C8的烷烃、烯烃和芳烃。在本发明中,所述混合重烃是指馏程大于125℃、优选大于150℃的液体产品,其中包含C8及C8以上烷烃、烯烃和芳烃。
在步骤(2)中,在开始阶段,丁烯可来自步骤(4),也可由商购获得。所述混合轻烃可来自步骤(4),或者来自本领域中其它工艺过程中费托合成石脑油的裂解产物。例如,在开始阶段,在步骤(2)中所述混合轻烃由费托合成石脑油经本发明的步骤1、步骤3和步骤4获得。
在优选的实施方式中,在步骤(2)中,丁烯、混合轻烃与低碳醇醚类含氧化合物的质量比例为(0-5):(0-5):1,优选为(0-2):(0-3):1。
在步骤(2)中,所述雾化可使用至少一种雾化气体来进行:水蒸汽、氮气、C1-C4气体或者气化后的所述低碳醇醚类含氧化合物。所述雾化可由技术人员根据需要容易地进行。
在优选的实施方式中,在步骤(2)之前,对低碳醇醚类含氧化合物和任选的丁烯、混合轻烃进行预热。在优选的实施方式中,所述预热温度为150℃-350℃、优选250℃-350℃。例如,在所述预热后低碳醇醚类含氧化合物和任选的混合轻烃即处于气体状态,可直接进行进料,而无需雾化。
在一些实施方式中,本发明所述的第一催化剂和第二催化剂的活性组分为选自未改性或改性的八元环分子筛或十元环分子筛中的至少一种;优选地,所述八元环分子筛或十元环分子筛可为SAPO-34、SAPO-18、SSZ-13、ZSM-5、ZSM-11、IM-5、ITQ-13等分子筛。
在一些优选的实施方式中,所述改性分子筛的改性元素可为选自Zn、Ga、Cr、Fe、Co、Ni、Pt、Pd、Mn、Cu和P中的至少一种。
在一些优选的实施方式中,所述第一催化剂和第二催化剂的活性组分按干基重量计占催化剂总重量的20wt%-60wt%。另外,优选地,除所述分子筛之外,所述第一催化剂和第二催化剂还含有剩余量的氧化铝和/或氧化硅作为载体。
在一些进一步的优选实施方式中,所述第一催化剂为再生催化剂与待生催化剂的混合催化剂,其中,所述第一催化剂的碳含量为0.3-6.0m%。在进一步优选的实施方式中,所述第二催化剂为再生催化剂与待生催化剂的混合催化剂,其中,所述第二催化剂的碳含量为0.0-3.0m%。
在优选的实施方式中,在步骤(1)中,所述耦合裂解反应的条件为:温度:450℃-600℃、优选500℃-600℃;压力:0.03-0.30MPa、优选0.05-0.25MPa;重时空速:1-10h-1、优选为2-8h-1;剂油比:0.2-6、优选0.4-4。
在优选的实施方式中,在步骤(2)中,所述深度裂解反应的条件为:反应温度:500℃-650℃、优选550℃-650℃;反应压力:0.03-0.30MPa、优选0.05-0.25MPa;重时空速0.5-5h-1、优选1-4h-1;剂油比:3-30、优选4-20。
在一些优选的实施方式中,在步骤(3)中,使步骤(1)中的第一反应物流和步骤(2)中的第二反应物流分别上行(例如经过气升管上行)进行沉降分离。所述沉降分离可采用本领域常规的沉降分离操作参数。
经过步骤(4)的分馏可得到燃料气、乙烯、丙烯、丁烯、混合轻烃和混合重烃。
在本发明中,术语“燃料气”是指主要包含C1-C4烷烃的气体组分。
在本发明中,通过将所述丁烯和混合轻烃中的至少一部分进行回炼,可以进一步增产低碳烯烃。在优选的实施方式中,将步骤(4)中的丁烯全部返回至步骤(2)的第二反应器进行回炼。在优选的实施方式中,将步骤(4)中的混合轻烃的0-80wt%返回步骤(2)的第二反应器内进行回炼。
在本文中,分馏和汽提均采用本领域常规的操作进行,而无需特别限制。
在一些实施方式中,在步骤(5)中,使汽提后的待生催化剂与含氧气体接触在如下条件下进行所述任选的烧焦以及再生:压力为0.03-0.30MPa、优选0.05-0.25MPa;温度为550℃-750℃,优选600℃-700℃。优选地,所述含氧气体为空气或含氧热烟气。
在一些优选的方式中,将用于回炼后剩余的混合轻烃的20-100wt%和所述全部的混合重烃混合,以得到高辛烷值的汽油组分油。在本发明的工艺中将再生催化剂分别返回第一反应器上部和第二反应器底部,这主要是因为第一反应器主要用于使费托石脑油中的烯烃和醇醚发生耦合裂解反应,该反应对反应温度和催化剂的活性要求相对较低,对再生催化剂的循环量要求相对更低,且高温高活性的再生催化剂从上部返回时接触新鲜原料的几率更低,有利于提高低碳烯烃产物的选择性;而第二反应器主要用于费托石脑油中在第一反应器内未完全转化的烷烃与低碳醇醚类含氧化合物中的醇醚发生深度裂解反应,烷烃较烯烃更稳定,对反应温度和催化剂的活性要求相对较高,对再生催化剂的循环量要求相对更高,有利于促进烷烃的转化。因此,本发明通过采用特定的再生催化剂返回策略,使得本发明的工艺更稳定高效,并且运行更平稳。
在另一方面,本发明涉及用于实施上述由费托合成石脑油耦合低碳醇醚类含氧化合物生产低碳烯烃的方法的装置,所述装置包括反再系统和分馏系统,其中,所述反再系统包括:
第一反应器;
第二反应器;
沉降器,所述沉降器以流体连通的方式连接至所述第一反应器、所述第二反应器和所述分馏系统;
汽提段,所述汽提段以流体连通的方式连接至所述沉降器;以及
再生器,所述再生器以流体连通的方式连接至所述第一反应器、所述第二反应器和所述汽提段。
在一些优选的实施方式中,所述第一反应器为鼓泡床反应器或湍动床反应器。
在一些优选的实施方式中,所述第二反应器为湍动床反应器或快速床反应器。
在一些优选的实施方式中,第一反应器和第二反应器可共用一个沉降器。在某些优选的实施方式中,第一反应器和第二反应器分别以流体连通的方式连接至不同的沉降器。例如,所述第一反应器以流体连通的方式连接至第一反应沉降器,而所述第二反应器以流体连通的方式连接至第二反应沉降器。
在进一步优选的实施方式中,所述第一反应器和所述第二反应器为并联设立。
在一些优选的实施方式中,所述第一反应器和所述第二反应器共用一套再生器。在一些进一步优选的实施方式中,所述再生器下部可连接烧焦罐用于烧焦。
以下结合附图1详细说明本发明提供的方法,但本发明并不因此而受到任何限制。
图1为本发明提供的由费托合成石脑油耦合低碳醇醚类含氧化合物生产低碳烯烃的方法的流程示意图。
如图1所示,将预热至适宜进料温度的进料I(费托合成石脑油)和任选的进料II(低碳醇醚类含氧化合物)经任选的雾化后进入第一反应器1,在反应温度为450℃-600℃,反应压力为0.03-0.30MPa,重时空速为1-10h-1,剂油比为0.2-6的条件下与第一催化剂接触发生耦合裂解反应,得到第一反应物流。第一反应物流和反应后的待生催化剂上行,在第一反应沉降器2中进行沉降分离(即油剂分离),得到第一反应产物I和待生催化剂。
将预热至适宜进料温度的任选的进料Ⅲ(丁烯、混合轻烃)和进料II(低碳醇醚类含氧化合物)经任选的雾化后进入第二反应器9,在反应温度为500℃-650℃,反应压力为0.03-0.30MPa,重时空速为0.5-5h-1、剂油比为3-30的条件下与第二催化剂接触发生深度裂解反应,得到第二反应物流。将第二反应物流和反应后的待生催化剂经过气升管上行,在第二反应沉降器10中进行沉降分离(即油剂分离),得到第二反应产物II和待生催化剂。
将第二反应产物II和第一反应产物I一起进入产物分馏系统14按照本领域常规的方法进行分馏得到燃料气、乙烯、丙烯、丁烯、混合轻烃和混合重烃,将全部丁烯与0-80wt%的混合轻烃返回至第二反应器回炼。将剩余部分的混合轻烃与全部混合重烃混兑得到汽油组分油。
其中,第一反应器1中积碳失活的待生催化剂在第一反应沉降器2中完成油剂分离后,经汽提段3蒸汽汽提后通过待生斜管一4输送至烧焦罐5和再生器6再生;第二反应器9中积碳失活的待生催化剂在第二反应沉降器10中完成油剂分离后,经汽提段11蒸汽汽提后通过待生斜管二12输送至烧焦罐5和再生器6再生;恢复活性的再生催化剂分别经过再生斜管一7、返剂立管8和再生斜管二13进入到第一反应器1上部和第二反应器9底部,完成催化剂的循环。
在本文中,除非另有说明,否则术语“包含、包括和含有(comprise、comprises和comprising)”或等同物为开放式表述,意味着除所列出的要素、组分和步骤外,还可涵盖其它未指明的要素、组分和步骤。
为了描述和公开的目的,以引用的方式将所有的专利、专利申请和其它已确定的出版物在此明确地并入本文。这些出版物仅因为它们的公开早于本申请的申请日而提供。所有关于这些文件的日期的声明或这些文件的内容的表述是基于申请者可得的信息,并且不构成任何关于这些文件的日期或这些文件的内容的正确性的承认。而且,在任何国家,在本文中对这些出版物的任何引用并不构成关于该出版物成为本领域的公知常识的一部分的认可。
本发明的示例性的技术方案可通过如下编号段落中的内容进行说明,但本发明的保护范围并不限于此:
1.一种由费托合成石脑油耦合低碳醇醚类含氧化合物生产低碳烯烃的方法,所述方法包括:
(1)将费托合成石脑油与任选的低碳醇醚类含氧化合物混合,经任选的雾化后进入第一反应器,与第一催化剂接触进行耦合裂解反应,得到第一反应物流;
(2)使低碳醇醚类含氧化合物和任选的丁烯和/或混合轻烃经任选的雾化后进入第二反应器,与第二催化剂接触进行深度裂解反应,得到第二反应物流;
(3)将步骤(1)中的第一反应物流和步骤(2)中的第二反应物流分别进行沉降分离,得到反应产物I、反应产物II和待生催化剂;
(4)将步骤(3)中的反应产物I与反应产物II混合后进行分馏,得到燃料气、乙烯、丙烯、丁烯、混合轻烃和混合重烃;任选地,将所述丁烯和混合轻烃中的至少一部分返回至所述第二反应器内进行回炼;以及
(5)将步骤(3)中的待生催化剂经汽提后进行任选的烧焦以及再生,得到再生催化剂,所述再生催化剂分别返回第一反应器上部和第二反应器底部。
2.如段落1所述的方法,其中,所述第一反应器为鼓泡床反应器或湍动床反应器。
3.如段落1所述的方法,其中,所述第二反应器为湍动床反应器或快速床反应器。
4.如段落1-3中任一项所述的方法,其中,步骤(1)和步骤(2)中的所述低碳醇醚类含氧化合物的组成相同或不同。
5.如段落1-3中任一项所述的方法,其中,在步骤(1)中,所述低碳醇醚类含氧化合物与所述费托合成石脑油的质量比例为(0.1-6.0):1。
6.如段落5所述的方法,其中,所述低碳醇醚类含氧化合物与所述费托合成石脑油的质量比例为(0.5-4.0):1。
7.如段落1-3中任一项所述的方法,其中,在步骤(1)之前,对所述费托合成石脑油和任选的低碳醇醚类含氧化合物进行预热。
8.如段落7所述的方法,其中,所述预热温度为150℃-350℃。
9.如段落8所述的方法,其中,所述预热温度为250℃-350℃。
10.如段落1-3中任一项所述的方法,其中,在步骤(2)中,丁烯、混合轻烃与低碳醇醚类含氧化合物的质量比例为(0-5):(0-5):1。
11.如段落10所述的方法,其中,丁烯、混合轻烃与低碳醇醚类含氧化合物的质量比例为(0-2):(0-3):1。
12.如段落1-3中任一项所述的方法,其中,在步骤(2)之前,对所述低碳醇醚类含氧化合物和任选的丁烯、混合轻烃进行预热。
13.如段落12所述的方法,其中,所述预热温度为150℃-350℃。
14.如段落13所述的方法,其中,所述预热温度为250℃-350℃。
15.如段落1-3中任一项所述的方法,其中,所述第一催化剂和第二催化剂的活性组分选自未改性或改性的八元环分子筛或十元环分子筛中的至少一种。
16.如段落15所述的方法,其中,所述八元环分子筛或十元环分子筛选自SAPO-34、SAPO-18、SSZ-13、ZSM-5、ZSM-11、IM-5和ITQ-13。
17.如段落15所述的方法,其中,所述改性分子筛的改性元素为选自如下中的至少一种:Zn、Ga、Cr、Fe、Co、Ni、Pt、Pd、Mn、Cu和P。
18.如段落16或17所述的方法,其中,所述第一催化剂和第二催化剂的活性组分按干基重量计占催化剂总重量的20wt%-60wt%。
19.如段落15所述的方法,其中,除所述分子筛之外,所述第一催化剂和第二催化剂还含有剩余量的氧化铝和/或氧化硅作为载体。
20.如段落1-3中任一项所述的方法,其中,所述第一催化剂为再生催化剂与待生催化剂的混合催化剂,其中,所述第一催化剂的碳含量为0.3-6.0m%。
21.如段落1-3中任一项所述的方法,其中,所述第二催化剂为再生催化剂与待生催化剂的混合催化剂,其中,所述第二催化剂的碳含量为0.0-3.0m%。
22.如段落1-3中任一项所述的方法,其中,在步骤(1)中,所述耦合裂解反应的条件为:温度:450℃-600℃;压力:0.03-0.30MPa;重时空速:1-10h-1;剂油比:0.2-6。
23.如段落22所述的方法,其中,所述耦合裂解反应的温度为500℃-600℃。
24.如段落22所述的方法,其中,所述耦合裂解反应的压力为0.05-0.25MPa。
25.如段落22所述的方法,其中,所述耦合裂解反应的重时空速为2-8h-1
26.如段落22所述的方法,其中,所述耦合裂解反应的剂油比为0.4-4。
27.如段落1-3中任一项所述的方法,其中,在步骤(2)中,所述深度裂解反应的条件为:反应温度:500℃-650℃;反应压力:0.03-0.30MPa;重时空速0.5-5h-1;剂油比:3-30。
28.如段落27所述的方法,其中,所述深度裂解反应的温度为550℃-650℃。
29.如段落27所述的方法,其中,所述深度裂解反应的压力为0.05-0.25MPa。
30.如段落27所述的方法,其中,所述深度裂解反应的重时空速为1-4h-1
31.如段落27所述的方法,其中,所述深度裂解反应的剂油比为4-20。
32.如段落1-3中任一项所述的方法,其中,将步骤(4)中的丁烯全部返回至步骤(2)的第二反应器进行回炼。
33.如段落1-3中任一项所述的方法,其中,将步骤(4)中的混合轻烃的0-80wt%返回步骤(2)的第二反应器内进行回炼。
34.如段落1-3中任一项所述的方法,其中,在步骤(5)中,使汽提后的待生催化剂与含氧气体接触在如下条件下进行所述任选的烧焦以及再生:压力为0.03-0.30MPa;温度为550℃-750℃。
35.如段落34所述的方法,其中,所述压力为0.05-0.25MPa。
36.如段落34所述的方法,其中,所述温度为600℃-700℃。
37.如段落34所述的方法,其中,所述含氧气体为空气或含氧热烟气。
38.如段落1-3中任一项所述的方法,其中,将用于回炼后剩余的混合轻烃和所述全部的混合重烃混合,以得到高辛烷值的汽油组分油。
39.一种用于实施段落1-38中任一项所述的方法的装置,所述装置包括反再系统和分馏系统,其中,所述反再系统包括:
第一反应器;
第二反应器;
沉降器,所述沉降器以流体连通的方式连接至所述第一反应器、所述第二反应器和所述分馏系统;
汽提段,所述汽提段以流体连通的方式连接至所述沉降器;以及
再生器,所述再生器以流体连通的方式连接至所述第一反应器、所述第二反应器和所述汽提段。
40.如段落39所述的装置,其中,所述第一反应器为鼓泡床反应器或湍动床反应器。
41.如段落39所述的装置,其中,所述第二反应器为湍动床反应器或快速床反应器。
42.如段落39-41中任一项所述的装置,其中,所述第一反应器和所述第二反应器共用一个沉降器;或者,所述第一反应器和所述第二反应器分别以流体连通的方式连接至不同的沉降器。
43.如段落39-41中任一项所述的装置,其中,所述第一反应器以流体连通的方式连接至第一反应沉降器,所述第二反应器以流体连通的方式连接至第二反应沉降器。
44.如段落39-41中任一项所述的装置,其中,所述第一反应器和所述第二反应器共用一套再生器。
45.如段落39-41中任一项所述的装置,其中,所述再生器下部连接烧焦罐用于烧焦。
46.如段落45所述的装置,其中,所述再生器为烧焦罐和再生器两段串联。
下面通过实例进一步说明本发明,但本发明并不限于此。
实施例
在以下实施例中,费托合成石脑油的相关性质见表1,费托合成副产的轻混醇和合成气制甲醇副产的轻混醇的相关性质见表2。
表1费托合成石脑油相关性质
表2费托合成副产的轻混醇和合成气制甲醇副产的轻混醇相关性质
表3催化剂中分子筛、改性元素类型和含量、组成以及表面积和孔体积
在以下实施例1、实施例2和实施例5中送入第二反应器的丁烯和混合轻烃均由当前的反应系统产生。
实施例1
在本实施例中,所使用的具体原料和催化剂见表1-3。
将预热气化至250℃的费托合成石脑油和甲醇混合后送入第一湍动床反应器,其中,甲醇与费托合成石脑油的质量比为2:1。在反应温度为500℃,反应压力为0.15MPa,重时空速为8.0h-1,剂油比为2.4的条件下与第一催化剂接触发生耦合裂解反应,得到第一反应物流。第一反应物流和反应后的催化剂上行,在第一反应沉降器中进行沉降分离(即油剂分离),得到第一反应产物和待生催化剂。
将预热气化至300℃的丁烯、混合轻烃和甲醇混合后送入第二快速床反应器,其中,丁烯、混合轻烃与甲醇的质量比为0.4:1:1。在反应温度为620℃,反应压力为0.15MPa,重时空速为3.0h-1、剂油比为6的条件下与第二催化剂接触发生深度裂解反应,得到第二反应物流。将第二反应物流和反应后的催化剂经过气升管上行,在第二反应沉降器进行沉降分离(即油剂分离),得到第二反应产物和待生催化剂。将第二反应产物和第一反应产物一起送入产物分馏系统,按照本领域常规的方法进行分馏得到燃料气、乙烯、丙烯、丁烯、混合轻烃和混合重烃,将全部丁烯与混合轻烃的70wt%返回至第二反应器回炼。将剩余30wt%的混合轻烃与全部混合重烃混兑得到汽油组分油。
其中,第一反应器中积碳失活的第一催化剂在第一反应沉降器完成油剂分离后,经过蒸汽汽提后通过待生斜管一输送至烧焦罐和再生器;第二反应器中积碳失活的第二催化剂在第二反应沉降器完成油剂分离后,经蒸汽汽提后通过待生斜管二输送至烧焦罐和再生器;在压力为0.15MPa,温度为650℃的条件下通入空气进行催化剂再生,恢复活性的催化剂分别经过再生斜管一、返剂立管和再生斜管二进入到第一反应器上部和第二反应器底部,控制第一催化剂碳含量为4.3%,第二催化剂碳含量为1.6%,完成催化剂的循环。
实施例2
在本实施例中,所使用的具体原料和催化剂见表4。
将预热气化至200℃的费托合成石脑油和乙醇混合后送入第一鼓泡床反应器,其中,乙醇与费托合成石脑油的质量比为1.5:1。在反应温度为580℃,反应压力为0.10MPa,重时空速为4.0h-1,剂油比为4.0的条件下与第一催化剂接触发生耦合裂解反应,得到第一反应物流。第一反应物流和反应后的催化剂上行,在第一反应沉降器中进行沉降分离(即油剂分离),得到第一反应产物和待生催化剂。
将预热气化至250℃的丁烯、混合轻烃和乙醇混合后送入第二快速床反应器,其中,丁烯、混合轻烃与乙醇的质量比为1.5:2:1。在反应温度为640℃,反应压力为0.10MPa,重时空速为2.0h-1、剂油比为20的条件下与第二催化剂接触发生深度裂解反应,得到第二反应物流。将第二反应物流和反应后的催化剂经过气升管上行,在第二反应沉降器进行沉降分离(即油剂分离),得到第二反应产物和待生催化剂。将第二反应产物和第一反应产物一起送入产物分馏系统,按照本领域常规的方法进行分馏得到燃料气、乙烯、丙烯、丁烯、混合轻烃和混合重烃,将全部丁烯与混合轻烃的50wt%返回至第二反应器回炼。将剩余50wt%混合轻烃与全部混合重烃混兑得到汽油组分油。
其中,第一反应器中积碳失活的第一催化剂在第一反应沉降器完成油剂分离后,经过蒸汽汽提后通过待生斜管一输送至烧焦罐和再生器;第二反应器中积碳失活的第二催化剂在第二反应沉降器完成油剂分离后,经蒸汽汽提后通过待生斜管二输送至烧焦罐和再生器;在压力为0.10MPa,温度为700℃的条件下通入含氧热烟气进行催化剂再生,恢复活性的催化剂分别经过再生斜管一、返剂立管和再生斜管二进入到第一反应器上部和第二反应器底部,控制第一催化剂碳含量为3.5%,第二催化剂碳含量为1.3%,完成催化剂的循环。
实施例3
在本实施例中,所使用的具体原料和催化剂见表4。
将预热气化至250℃的费托合成石脑油和二甲醚混合后送入第一湍动床反应器,其中,二甲醚与费托合成石脑油的质量比为1:1。在反应温度为500℃,反应压力为0.20MPa,重时空速为6.0h-1,剂油比为0.5的条件下与第一催化剂接触发生耦合裂解反应,得到第一反应物流。第一反应物流和反应后的催化剂上行,在第一反应沉降器中进行沉降分离(即油剂分离),得到第一反应产物和待生催化剂。
将预热气化至320℃的二甲醚送入第二快速床反应器。在反应温度为600℃,反应压力为0.20MPa,重时空速为4.0h-1、剂油比为10的条件下与第二催化剂接触发生深度裂解反应,得到第二反应物流。将第二反应物流和反应后的催化剂经过气升管上行,在第二反应沉降器进行沉降分离(即油剂分离),得到第二反应产物和待生催化剂。将第二反应产物和第一反应产物一起送入产物分馏系统,按照本领域常规的方法进行分馏得到燃料气、乙烯、丙烯、丁烯、混合轻烃和混合重烃,将全部丁烯与混合轻烃的50wt%返回至第二反应器回炼。将剩余50wt%的混合轻烃与全部混合重烃混兑得到汽油组分油。
其中,第一反应器中积碳失活的第一催化剂在第一反应沉降器完成油剂分离后,经过蒸汽汽提后通过待生斜管一输送至烧焦罐和再生器;第二反应器中积碳失活的第二催化剂在第二反应沉降器完成油剂分离后,经蒸汽汽提后通过待生斜管二输送至烧焦罐和再生器;在压力为0.20MPa,温度为650℃的条件下通入含氧热烟气进行催化剂再生,恢复活性的催化剂分别经过再生斜管一、返剂立管和再生斜管二进入到第一反应器上部和第二反应器底部,控制第一催化剂碳含量为2.8%,第二催化剂碳含量为0.3%,完成催化剂的循环。
实施例4
在本实施例中,所使用的具体原料和催化剂见表4。
将预热气化至300℃的费托合成石脑油和费托合成副产轻混醇混合后送入第一湍动床反应器,其中,费托合成副产轻混醇与费托合成石脑油的质量比为0.5:1。在反应温度为520℃,反应压力为0.25MPa,重时空速为2.0h-1,剂油比为1.8的条件下与第一催化剂接触发生耦合裂解反应,得到第一反应物流。第一反应物流和反应后的催化剂上行,在第一反应沉降器中进行沉降分离(即油剂分离),得到第一反应产物和待生催化剂。
将预热气化至350℃的费托合成副产轻混醇送入第二湍动床反应器。在反应温度为560℃,反应压力为0.25MPa,重时空速为1.0h-1、剂油比为8的条件下与第二催化剂接触发生深度裂解反应,得到第二反应物流。将第二反应物流和反应后的催化剂经过气升管上行,在第二反应沉降器进行沉降分离(即油剂分离),得到第二反应产物和待生催化剂。将第二反应产物和第一反应产物一起送入产物分馏系统,按照本领域常规的方法进行分馏得到燃料气、乙烯、丙烯、丁烯、混合轻烃和混合重烃,将全部丁烯与混合轻烃的40wt%返回至第二反应器回炼。将剩余60wt%的混合轻烃与全部混合重烃混兑得到汽油组分油。
其中,第一反应器中积碳失活的第一催化剂在第一反应沉降器完成油剂分离后,经过蒸汽汽提后通过待生斜管一输送至烧焦罐和再生器;第二反应器中积碳失活的第二催化剂在第二反应沉降器完成油剂分离后,经蒸汽汽提后通过待生斜管二输送至烧焦罐和再生器;在压力为0.25MPa,温度为680℃的条件下通入空气进行催化剂再生,恢复活性的催化剂分别经过再生斜管一、返剂立管和再生斜管二进入到第一反应器上部和第二反应器底部,控制第一催化剂碳含量为1.4%,第二催化剂碳含量为0.2%,完成催化剂的循环。
实施例5
在本实施例中,所使用的具体原料和催化剂见表4。
将预热气化至200℃的费托合成石脑油和合成气制甲醇副产轻混醇混合后送入第一鼓泡床反应器,其中,合成气制甲醇副产轻混醇与费托合成石脑油的质量比为3.0:1。在反应温度为560℃,反应压力为0.05MPa,重时空速为10.0h-1,剂油比为3.2的条件下与第一催化剂接触发生耦合裂解反应,得到第一反应物流。第一反应物流和反应后的催化剂上行,在第一反应沉降器中进行沉降分离(即油剂分离),得到第一反应产物和待生催化剂。
将预热气化至250℃的丁烯、混合轻烃和合成气制甲醇副产轻混醇混合后送入第二湍动床反应器,其中,丁烯、混合轻烃与合成气制甲醇副产轻混醇的质量比为0.8:0.5:1。在反应温度为580℃,反应压力为0.05MPa,重时空速为5.0h-1、剂油比为15的条件下与第二催化剂接触发生深度裂解反应,得到第二反应物流。将第二反应物流和反应后的催化剂经过气升管上行,在第二反应沉降器进行沉降分离(即油剂分离),得到第二反应产物和待生催化剂。将第二反应产物和第一反应产物一起送入产物分馏系统,按照本领域常规的方法进行分馏得到燃料气、乙烯、丙烯、丁烯、混合轻烃和混合重烃,将全部丁烯与混合轻烃的40wt%返回至第二反应器回炼。将剩余60wt%的混合轻烃与全部混合重烃混兑得到汽油组分油。
其中,第一反应器中积碳失活的第一催化剂在第一反应沉降器完成油剂分离后,经过蒸汽汽提后通过待生斜管一输送至烧焦罐和再生器;第二反应器中积碳失活的催化剂在第二反应沉降器完成油剂分离后,经蒸汽汽提后通过待生斜管二输送至烧焦罐和再生器;在压力为0.05MPa,温度为620℃的条件下通入含氧热烟气进行催化剂再生,恢复活性的催化剂分别经过再生斜管一、返剂立管和再生斜管二进入到第一反应器上部和第二反应器底部,控制第一催化剂碳含量为0.3%,第二催化剂碳含量为0.1%,完成催化剂的循环。
实施例1-实施例5的反应条件和产物分布见表4。
表4实施例1-实施例5的反应条件和产物分布
以上实施例中所述的收率均以进料中总烃含量为基准计算。
从表4列出的反应评价数据可以看出,采用本发明提供的方法和装置加工费托合成石脑油,能够得到较高低碳烯烃收率和超低硫的高辛烷值优质汽油组分油,充分显示了本发明的方法加工费托合成石脑油的优势。
[根据细则26改正 21.06.2023]
以上已详细描述了本发明的实施方案,对本领域技术人员来说很显然可以做很多改进和变化而不会背离本发明的基本精神,所有这些变化和改进都在本发明的保护范围之内。

Claims (46)

  1. 一种由费托合成石脑油耦合低碳醇醚类含氧化合物生产低碳烯烃的方法,所述方法包括:
    (1)将费托合成石脑油与任选的低碳醇醚类含氧化合物混合,经任选的雾化后进入第一反应器,与第一催化剂接触进行耦合裂解反应,得到第一反应物流;
    (2)使低碳醇醚类含氧化合物和任选的丁烯和/或混合轻烃经任选的雾化后进入第二反应器,与第二催化剂接触进行深度裂解反应,得到第二反应物流;
    (3)将步骤(1)中的第一反应物流和步骤(2)中的第二反应物流分别进行沉降分离,得到反应产物I、反应产物II和待生催化剂;
    (4)将步骤(3)中的反应产物I与反应产物II混合后进行分馏,得到燃料气、乙烯、丙烯、丁烯、混合轻烃和混合重烃;任选地,将所述丁烯和混合轻烃中的至少一部分返回至所述第二反应器内进行回炼;以及
    (5)将步骤(3)中的待生催化剂经汽提后进行任选的烧焦以及再生,得到再生催化剂,所述再生催化剂分别返回第一反应器上部和第二反应器底部。
  2. 如权利要求1所述的方法,其中,所述第一反应器为鼓泡床反应器或湍动床反应器。
  3. 如权利要求1所述的方法,其中,所述第二反应器为湍动床反应器或快速床反应器。
  4. 如权利要求1-3中任一项所述的方法,其中,步骤(1)和步骤(2)中的所述低碳醇醚类含氧化合物的组成相同或不同。
  5. 如权利要求1-3中任一项所述的方法,其中,在步骤(1)中,所述低碳醇醚类含氧化合物与所述费托合成石脑油的质量比例为(0.1-6.0):1。
  6. 如权利要求5所述的方法,其中,所述低碳醇醚类含氧化合物与所述费托合成石脑油的质量比例为(0.5-4.0):1。
  7. 如权利要求1-3中任一项所述的方法,其中,在步骤(1)之前,对所述费托合成石脑油和任选的低碳醇醚类含氧化合物进行预热。
  8. 如权利要求7所述的方法,其中,所述预热温度为150℃-350℃。
  9. 如权利要求8所述的方法,其中,所述预热温度为250℃-350℃。
  10. 如权利要求1-3中任一项所述的方法,其中,在步骤(2)中,丁烯、混合轻烃与低碳醇醚类含氧化合物的质量比例为(0-5):(0-5):1。
  11. 如权利要求10所述的方法,其中,丁烯、混合轻烃与低碳醇醚类含氧化合物的质量比例为(0-2):(0-3):1。
  12. 如权利要求1-3中任一项所述的方法,其中,在步骤(2)之前,对所述低碳醇醚类含氧化合物和任选的丁烯、混合轻烃进行预热。
  13. 如权利要求12所述的方法,其中,所述预热温度为150℃-350℃。
  14. 如权利要求13所述的方法,其中,所述预热温度为250℃-350℃。
  15. 如权利要求1-3中任一项所述的方法,其中,所述第一催化剂和第二催化剂的活性组分选自未改性或改性的八元环分子筛或十元环分子筛中的至少一种。
  16. 如权利要求15所述的方法,其中,所述八元环分子筛或十元环分子筛选自SAPO-34、SAPO-18、SSZ-13、ZSM-5、ZSM-11、IM-5和ITQ-13。
  17. 如权利要求15所述的方法,其中,所述改性分子筛的改性元素为选自如下中的至少一种:Zn、Ga、Cr、Fe、Co、Ni、Pt、Pd、Mn、Cu和P。
  18. 如权利要求16或17所述的方法,其中,所述第一催化剂和第二催化剂的活性组分按干基重量计占催化剂总重量的20wt%-60wt%。
  19. 如权利要求15所述的方法,其中,除所述分子筛之外,所述第一催化剂和第二催化剂还含有剩余量的 氧化铝和/或氧化硅作为载体。
  20. 如权利要求1-3中任一项所述的方法,其中,所述第一催化剂为再生催化剂与待生催化剂的混合催化剂,其中,所述第一催化剂的碳含量为0.3-6.0m%。
  21. 如权利要求1-3中任一项所述的方法,其中,所述第二催化剂为再生催化剂与待生催化剂的混合催化剂,其中,所述第二催化剂的碳含量为0.0-3.0m%。
  22. 如权利要求1-3中任一项所述的方法,其中,在步骤(1)中,所述耦合裂解反应的条件为:温度:450℃-600℃;压力:0.03-0.30MPa;重时空速:1-10h-1;剂油比:0.2-6。
  23. 如权利要求22所述的方法,其中,所述耦合裂解反应的温度为500℃-600℃。
  24. 如权利要求22所述的方法,其中,所述耦合裂解反应的压力为0.05-0.25MPa。
  25. 如权利要求22所述的方法,其中,所述耦合裂解反应的重时空速为2-8h-1
  26. 如权利要求22所述的方法,其中,所述耦合裂解反应的剂油比为0.4-4。
  27. 如权利要求1-3中任一项所述的方法,其中,在步骤(2)中,所述深度裂解反应的条件为:反应温度:500℃-650℃;反应压力:0.03-0.30MPa;重时空速0.5-5h-1;剂油比:3-30。
  28. 如权利要求27所述的方法,其中,所述深度裂解反应的温度为550℃-650℃。
  29. 如权利要求27所述的方法,其中,所述深度裂解反应的压力为0.05-0.25MPa。
  30. 如权利要求27所述的方法,其中,所述深度裂解反应的重时空速为1-4h-1
  31. 如权利要求27所述的方法,其中,所述深度裂解反应的剂油比为4-20。
  32. 如权利要求1-3中任一项所述的方法,其中,将步骤(4)中的丁烯全部返回至步骤(2)的第二反应器进行回炼。
  33. 如权利要求1-3中任一项所述的方法,其中,将步骤(4)中的混合轻烃的0-80wt%返回步骤(2)的第二反应器内进行回炼。
  34. 如权利要求1-3中任一项所述的方法,其中,在步骤(5)中,使汽提后的待生催化剂与含氧气体接触在如下条件下进行所述任选的烧焦以及再生:压力为0.03-0.30MPa;温度为550℃-750℃。
  35. 如权利要求34所述的方法,其中,所述压力为0.05-0.25MPa。
  36. 如权利要求34所述的方法,其中,所述温度为600℃-700℃。
  37. 如权利要求34所述的方法,其中,所述含氧气体为空气或含氧热烟气。
  38. 如权利要求1-3中任一项所述的方法,其中,将用于回炼后剩余的混合轻烃和所述全部的混合重烃混合,以得到高辛烷值的汽油组分油。
  39. 一种用于实施权利要求1-38中任一项所述的方法的装置,所述装置包括反再系统和分馏系统,其中,所述反再系统包括:
    第一反应器;
    第二反应器;
    沉降器,所述沉降器以流体连通的方式连接至所述第一反应器、所述第二反应器和所述分馏系统;
    汽提段,所述汽提段以流体连通的方式连接至所述沉降器;以及
    再生器,所述再生器以流体连通的方式连接至所述第一反应器、所述第二反应器和所述汽提段。
  40. 如权利要求39所述的装置,其中,所述第一反应器为鼓泡床反应器或湍动床反应器。
  41. 如权利要求39所述的装置,其中,所述第二反应器为湍动床反应器或快速床反应器。
  42. 如权利要求39-41中任一项所述的装置,其中,所述第一反应器和所述第二反应器共用一个沉降器;或者,所述第一反应器和所述第二反应器分别以流体连通的方式连接至不同的沉降器。
  43. 如权利要求39-41中任一项所述的装置,其中,所述第一反应器以流体连通的方式连接至第一反应沉降器,所述第二反应器以流体连通的方式连接至第二反应沉降器。
  44. 如权利要求39-41中任一项所述的装置,其中,所述第一反应器和所述第二反应器共用一套再生器。
  45. 如权利要求39-41中任一项所述的装置,其中,所述再生器下部连接烧焦罐用于烧焦。
  46. 如权利要求45所述的装置,其中,所述再生器为烧焦罐和再生器两段串联。
PCT/CN2023/096506 2022-05-26 2023-05-26 费托合成油耦合低碳醇醚含氧化合物生产低碳烯烃的方法 WO2023227102A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210581273.4A CN114989865B (zh) 2022-05-26 2022-05-26 费托合成油耦合低碳醇醚含氧化合物生产低碳烯烃的方法
CN202210581273.4 2022-05-26

Publications (1)

Publication Number Publication Date
WO2023227102A1 true WO2023227102A1 (zh) 2023-11-30

Family

ID=83029633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096506 WO2023227102A1 (zh) 2022-05-26 2023-05-26 费托合成油耦合低碳醇醚含氧化合物生产低碳烯烃的方法

Country Status (2)

Country Link
CN (1) CN114989865B (zh)
WO (1) WO2023227102A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114989865B (zh) * 2022-05-26 2024-01-30 中科合成油技术股份有限公司 费托合成油耦合低碳醇醚含氧化合物生产低碳烯烃的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1504542A (zh) * 2002-12-03 2004-06-16 中国科学院大连化学物理研究所 一种耦合的石油烃类催化裂解制取低碳烯烃的方法
US20050107482A1 (en) * 2003-11-19 2005-05-19 Van Egmond Cornelis F. Methanol and ethanol production for an oxygenate to olefin reaction system
CN105349179A (zh) * 2015-10-28 2016-02-24 中国石油大学(华东) 重质石油烃催化裂解与轻质石油烃蒸汽裂解组合工艺
CN109762597A (zh) * 2019-02-28 2019-05-17 中科合成油技术有限公司 一种由费托合成油相产品制汽油调和组分的方法
CN112480961A (zh) * 2020-10-26 2021-03-12 中科合成油技术有限公司 一种从费托合成油品生产高辛烷值汽油的方法和装置
CN112961701A (zh) * 2021-02-07 2021-06-15 中科合成油技术有限公司 由费托合成油品联产高辛烷值汽油和低碳烯烃的方法及装置
CN114989865A (zh) * 2022-05-26 2022-09-02 中科合成油技术股份有限公司 费托合成油耦合低碳醇醚含氧化合物生产低碳烯烃的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928598B (zh) * 2010-09-28 2013-05-01 上海应用技术学院 一种重油催化裂化集成含氧化合物转化生产汽油和丙烯的方法及系统
CN102320912B (zh) * 2011-06-03 2014-04-16 神华集团有限责任公司 最大化含氧化合物转化制备低碳烯烃工艺中的乙烯和丙烯总收率的方法
CN104177214B (zh) * 2014-08-27 2016-04-27 惠生工程(中国)有限公司 一种催化裂化富气和甲醇制烯烃反应产物混合分离方法
CN108017491B (zh) * 2016-11-04 2020-10-16 中国石油化工股份有限公司 混合轻烃芳构化的方法
CN108276238B (zh) * 2018-02-12 2021-02-02 浙江大学 费托合成轻油与甲醇共催化裂解制低碳烯烃的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1504542A (zh) * 2002-12-03 2004-06-16 中国科学院大连化学物理研究所 一种耦合的石油烃类催化裂解制取低碳烯烃的方法
US20050107482A1 (en) * 2003-11-19 2005-05-19 Van Egmond Cornelis F. Methanol and ethanol production for an oxygenate to olefin reaction system
CN105349179A (zh) * 2015-10-28 2016-02-24 中国石油大学(华东) 重质石油烃催化裂解与轻质石油烃蒸汽裂解组合工艺
CN109762597A (zh) * 2019-02-28 2019-05-17 中科合成油技术有限公司 一种由费托合成油相产品制汽油调和组分的方法
CN112480961A (zh) * 2020-10-26 2021-03-12 中科合成油技术有限公司 一种从费托合成油品生产高辛烷值汽油的方法和装置
CN112961701A (zh) * 2021-02-07 2021-06-15 中科合成油技术有限公司 由费托合成油品联产高辛烷值汽油和低碳烯烃的方法及装置
CN114989865A (zh) * 2022-05-26 2022-09-02 中科合成油技术股份有限公司 费托合成油耦合低碳醇醚含氧化合物生产低碳烯烃的方法

Also Published As

Publication number Publication date
CN114989865B (zh) 2024-01-30
CN114989865A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
US9481616B2 (en) Conversion of biomass feedstocks into hydrocarbon liquid transportation fuels
JP5293954B2 (ja) 接触分解において炭化水素原料から軽質オレフィンを増産する方法
CN101386787B (zh) 将含氧化物转化为汽油的方法
AU2010320947B2 (en) Method for generating hydrocarbons, in particular gasoline, from synthesis gas
CN105349172B (zh) 石脑油原料的催化裂解方法
CN103814114A (zh) 在下流式反应器中流化催化裂化链烷烃族石脑油
CN101522866A (zh) 利用轻质和混合轻质/重质进料的双提升管流化催化裂化反应器方法
CN105308008A (zh) 双提升管流化床方法和反应器
WO2023227102A1 (zh) 费托合成油耦合低碳醇醚含氧化合物生产低碳烯烃的方法
BRPI0802222A2 (pt) processo para produzir olefinas leves a partir de uma carga contendo triglicerìdeos
CN112961701B (zh) 由费托合成油品联产高辛烷值汽油和低碳烯烃的方法及装置
CN101074392B (zh) 一种利用两段催化裂解生产丙烯和高品质汽柴油的方法
CN105349173B (zh) 石脑油原料的催化裂解方法
CN110201609B (zh) 一种利用合成气加氢联产烯烃和芳烃的设备及方法
CN105441113B (zh) 石脑油原料的催化裂解方法
CN105567307B (zh) 一种由费托合成油生产低碳烯烃的方法
CN106609151B (zh) 一种生产低碳烯烃的方法
CN115010570B (zh) 由费托合成石脑油生产乙烯、丙烯和c4组分的方法
KR20230093312A (ko) 탄화수소 함유 원료 오일의 촉매 열분해에 의한 저탄소 올레핀 및 btx의 제조 방법 및 장치
WO2008026635A1 (fr) Procédé de craquage catalytique fluide
JP5399705B2 (ja) 流動接触分解方法
CN1696083A (zh) 低碳烷烃无氧直接转化的定向反应催化裂化方法
CN112725004B (zh) 一种从费托合成中间产品生产高辛烷值汽油的方法和装置
CN109852415B (zh) 一种强化流化催化裂化反应中双分子裂化的方法
CN116376591A (zh) 费托合成产品联产低碳烯烃和高辛烷值汽油的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811172

Country of ref document: EP

Kind code of ref document: A1