WO2023224454A1 - 양극 활물질 및 이의 제조방법 - Google Patents

양극 활물질 및 이의 제조방법 Download PDF

Info

Publication number
WO2023224454A1
WO2023224454A1 PCT/KR2023/006950 KR2023006950W WO2023224454A1 WO 2023224454 A1 WO2023224454 A1 WO 2023224454A1 KR 2023006950 W KR2023006950 W KR 2023006950W WO 2023224454 A1 WO2023224454 A1 WO 2023224454A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
metal oxide
transition metal
Prior art date
Application number
PCT/KR2023/006950
Other languages
English (en)
French (fr)
Inventor
이응주
이강현
이태영
정용조
김종필
백현희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2023224454A1 publication Critical patent/WO2023224454A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material and a method of manufacturing the same.
  • the high nickel positive electrode active material is produced in the form of secondary particles in which primary particles are aggregated.
  • active materials in the form of secondary particles cause side reactions due to microcracks occurring in the secondary particles during long-term charging and discharging, and the structure of the secondary particles collapses when the electrode density is increased to improve energy density. It has the disadvantage of causing a decrease in energy density and lifespan characteristics due to a decrease in active materials and electrolyte.
  • the single-particle type nickel-based positive electrode active material has the advantage that particles do not collapse even when the electrode density is vaporized for high energy density.
  • the single-particle type nickel-based positive electrode active material requires a relatively high firing temperature to manufacture it, the layered structure of R-3m is not properly maintained, and lithium escapes from the crystal structure, resulting in Fm-3m rock-salt such as NiO.
  • the ratio of NiO on the surface of the manufactured single particle increases.
  • Patent Document 1 KR 2019-0094529 A1
  • the problem to be solved by the present invention is to provide a positive electrode active material that has high electrode density and exhibits excellent lifespan characteristics and output characteristics.
  • Another problem to be solved by the present invention is to provide a method for manufacturing a positive electrode active material that has high electrode density and exhibits excellent lifespan characteristics and output characteristics.
  • the present invention provides a positive electrode active material.
  • the present invention provides a lithium transition metal oxide in the form of a single particle divided into a surface portion and a core; and a coating portion containing cobalt formed on the surface portion, and containing cobalt and nickel in an amount satisfying a Co/Ni value (mol/mol) of 0.1 to 0.8 based on the entire surface portion and the coating portion.
  • a positive electrode active material Provides a positive electrode active material.
  • the present invention provides the positive electrode active material according to (1) above, wherein the surface portion has a layered (R-3m) structure.
  • the present invention provides a positive electrode active material according to (1) or (2) above, wherein the surface portion is an area from 1 nm to 50 nm in depth from the outermost layer of the single particle lithium transition metal oxide toward the center. do.
  • the present invention provides the positive electrode active material according to any one of (1) to (3) above, wherein the nickel included in the surface portion has an average oxidation number of +2.36 to +3.00.
  • the present invention provides the positive electrode active material according to any one of (1) to (4) above, wherein the coating portion is formed on the outer surface of the surface portion in 10% to 100% of the total outer surface area of the surface portion. .
  • the present invention provides the positive electrode active material according to any one of (1) to (5) above, wherein the coating portion is located in an island shape on the outer surface of the surface portion.
  • the present invention provides the positive electrode active material according to any one of (1) to (6) above, wherein the coating portion includes a composition of LiCoO 2 .
  • the present invention provides the positive electrode active material according to any one of (1) to (7) above, wherein the lithium transition metal oxide is a lithium composite transition metal oxide containing nickel, cobalt, and manganese.
  • the present invention provides the positive electrode active material according to any one of (1) to (8) above, wherein the lithium transition metal oxide is a lithium composite transition metal oxide represented by the following formula (1).
  • M 1 is one or more selected from the group consisting of Mn and Al
  • M 2 is B, Ba, Ce, Cr, F, Mg, V, Ti, Fe, Zr, Zn, Si, Y, At least one selected from the group consisting of Nb, Ga, Sn, Mo, W, P, S, Sr, Ta, La and Hf, 1.0 ⁇ a ⁇ 1.3, 0.6 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4.
  • the present invention provides the positive electrode active material according to any one of (1) to (9) above, wherein the lithium transition metal oxide is a lithium composite transition metal oxide represented by the following formula (2).
  • the present invention provides a method for manufacturing the positive electrode active material.
  • the present invention includes the steps of 1) mixing single particle lithium transition metal oxide particles and a cobalt source; and 2) heat treating the mixture of step 1).
  • the present invention provides a method for producing a positive electrode active material in which an additional metal source is further mixed in step 1).
  • the present invention provides a method for producing a positive electrode active material according to (11) or (12) above, wherein the heat treatment in step 2) is performed at 500 to 800 ° C.
  • the positive electrode active material of the present invention is a positive electrode active material containing lithium transition metal oxide in the form of a single particle. It has a surface area with a reduced NiO layer including a coating area containing cobalt, so it has high electrode density and excellent life characteristics and Output characteristics can be demonstrated.
  • the term 'primary particle' refers to the smallest particle unit that can be distinguished as a single lump when observing the cross section of the positive electrode active material through a scanning electron microscope (SEM), and may be composed of a plurality of crystal grains.
  • the term 'secondary particle' refers to a secondary structure formed by agglomerating a plurality of primary particles.
  • the average particle diameter of the secondary particles can be measured using a particle size analyzer.
  • the term 'single particle form' can be used instead of the term 'single particle form', and refers to a form in contrast to the secondary particle form formed by agglomerating hundreds of primary particles manufactured by conventional methods.
  • the term 'single particle type positive electrode active material' or 'single particle type lithium transition metal oxide' is compared to the positive electrode active material in the form of secondary particles formed by agglomerating hundreds of primary particles manufactured by conventional methods.
  • Concepts include 1 to 50 particles, 1 to 40 particles, 1 to 30 particles, 1 to 20 particles, 1 to 15 particles, 1 particle. It refers to a positive electrode active material or lithium transition metal active material consisting of 1 to 10 particles or less, or 1 to 15 particles or less.
  • the term 'single crystal' may be used instead of the term 'single crystalline', and refers to a positive electrode active material or lithium transition metal oxide containing 50 or less crystal grains, specifically 1 to 30 crystal grains.
  • single crystal particles refer to particles in which the entire sample consists of only one grain or grain area.
  • the positive electrode active material or lithium transition metal oxide in the form of a single particle may exhibit characteristics similar to a single crystal particle as it contains a small number of crystal grains.
  • the 'single particle' refers to the minimum unit of particle recognized when observing the positive electrode active material through a scanning electron microscope, and the 'grain' or 'grain region' refers to the atoms in the sample being continuous and periodic in one direction. It means the area arranged as .
  • the crystal grains can be analyzed using an electron backscattering diffraction (ESBD) analyzer.
  • ESBD electron backscattering diffraction
  • the term 'average particle diameter (D 50 )' refers to the particle size at 50% of the cumulative volume distribution according to particle size.
  • the average particle diameter is measured by dispersing the powder to be measured in a dispersion medium and then introducing it into a commercially available laser diffraction particle size measuring device (for example, Microtrac's S3500) to measure the difference in diffraction patterns depending on the particle size when the particles pass through the laser beam.
  • D 50 can be measured by calculating the particle size distribution and calculating the particle diameter at a point that is 50% of the cumulative volume distribution according to the particle size in the measuring device.
  • the positive electrode active material of the present invention is a lithium transition metal oxide in the form of a single particle divided into a surface portion and a core; and cobalt formed on the surface portion, wherein cobalt and nickel are included in an amount that satisfies the Co/Ni value (mol/mol) of 0.1 to 0.8 based on the entire surface portion and coating portion.
  • the surface portion of the lithium transition metal oxide in the single particle form may have a layered (R-3m) structure, and has a high NiO content before the coating containing cobalt is formed on the surface portion, and the single particle form may have a layered (R-3m) structure.
  • the formation of NiO is induced by the high calcination temperature required in the production of lithium transition metal oxide.
  • NiO contained in the surface portion of the single particle lithium transition metal oxide may cause an increase in resistance, a decrease in energy density, and a decrease in output.
  • the positive electrode active material of the present invention includes a coating portion containing cobalt formed through a process of mixing the single particle form of lithium transition metal oxide and a cobalt source (raw material) and then heat treating the coating portion. It may be a layer formed as cobalt diffuses from the surface of a single particle of lithium transition metal oxide toward the center.
  • the NiO layer on the surface is converted into a nickel cobalt manganese (NCM) oxide layered structure, thereby reducing and eliminating causes such as increased resistance, lower energy density, and lower output, thereby providing excellent electrical performance. Chemical properties can be expressed.
  • the single particle lithium transition metal oxide is divided into a surface portion and a core portion.
  • the surface portion represents the outer shell of the single-particle form lithium transition metal oxide, and refers to a region having a constant thickness from the outermost layer of the single-particle form lithium transition metal oxide toward the center.
  • the single-particle form lithium refers to a region with a depth of 1 nm to 50 nm, specifically 5 to 30 nm, from the outermost layer of the transition metal oxide toward the center.
  • the core refers to the interior of the single particle lithium transition metal oxide excluding the surface portion.
  • the cobalt and nickel may specifically satisfy the Co/Ni value (mol/mol) of 0.15 to 0.80, 0.20 to 0.80, 0.10 to 0.75, and 0.15 to 0.80, and more specifically, 0.20 to 0.75 may be satisfied. If the Co/Ni value is lower than the above range, cobalt diffuses excessively into the single-particle lithium transition metal oxide particles, lowering the cobalt concentration in the surface layer, thereby demonstrating the effect of forming a coating containing cobalt. This is difficult, and a NiO degenerated layer may be formed again on the surface of the particle during the process of excessive diffusion of cobalt into the particle.
  • the coated cobalt may exist on the surface of the particle as a separate oxide in the form of Co 3 O 4 or lithium cobalt oxide (Li x CO y O z ).
  • the NiO degenerated layer of the particle-shaped lithium transition metal oxide is not sufficiently converted into a nickel cobalt manganese (NCM) oxide layered structure, and the unnecessary amount of coating formed on the surface of the lithium transition metal oxide acts as resistance or causes capacity reduction. It can be.
  • Nickel (Ni) included in the surface portion may have an average oxidation number of +2.36 to +3.00, and the average oxidation number of nickel included in the surface portion is specifically +2.36 to +2.95, +2.36 to +2.91, + It may be 2.37 to +2.95, more specifically +2.37 to +2.91.
  • the average oxidation number of nickel contained in the surface portion may vary depending on the coating amount of cobalt forming the coating portion, and when the above range is satisfied, an appropriate amount of coating portion is formed on the surface and the NiO degenerated layer of lithium transition metal oxide is formed of nickel cobalt.
  • NCM manganese
  • the surface portion may include a nickel cobalt manganese oxide layered structure converted from a NiO layer.
  • the average oxidation number of nickel (Ni) from the outermost layer of the single particle lithium transition metal oxide to a depth of 10 nm toward the center may be +2.50 to +3.00, specifically +2.50 to +2.95, +2.50 to + It may be 2.90, +2.50 to +2.88, +2.52 to +2.95, +2.52 to +2.90, +2.52 to +2.88, and more specifically, +2.54 to +2.86.
  • the average oxidation number of nickel satisfies the average oxidation number range of up to 10 nm, an appropriate reduction effect on the NiO degenerated layer of the single particle lithium transition metal oxide can be obtained.
  • the coating portion may be formed on the outer shell of the surface portion, that is, on the outermost surface of the single-particle form lithium transition metal oxide, and may be formed on part or all of the outer shell of the surface portion, and may be formed on a total outer shell area of the surface portion. As a standard, it may be formed at 10% to 100% (area%). Specifically, the coating portion may be formed on a portion of the outer shell of the surface portion, and may be formed on 30% to 90% of the total outer shell area of the surface portion.
  • the coating portion may be formed in an island shape on the outer surface of the surface portion.
  • the island shape means that it is discontinuously formed on the outer surface of the surface portion, that is, the coating portion may be partially dispersed and distributed on the outermost surface of the single particle lithium transition metal oxide.
  • the coating portion may include a composition of LiCoO 2 , and specifically, the coating portion may be included as an island-shaped LiCoO 2 on the outer surface of the surface portion.
  • the single particle may have an average particle diameter (D 50 ) of 0.1 ⁇ m to 10 ⁇ m.
  • D 50 average particle diameter
  • the average particle diameter of the single particles satisfies the above range, when they are aggregated to form a positive electrode active material or a lithium transition metal oxide in the form of single particles, it can have advantages in terms of rolling rate, electrode voids, etc., and the average particle diameter is within the above range. If it is too little or too much, performance may deteriorate in terms of electrode capacity, lifespan characteristics, resistance, etc.
  • the single particle lithium transition metal oxide may be a lithium composite transition metal oxide containing nickel (Ni), cobalt (Co), and manganese (Mn).
  • the single particle lithium transition metal oxide may be a lithium composite transition metal oxide represented by the following formula (1).
  • M 1 is one or more selected from the group consisting of Mn and Al
  • M 2 is B, Ba, Ce, Cr, F, Mg, V, Ti, Fe, Zr, Zn, Si, Y, At least one selected from the group consisting of Nb, Ga, Sn, Mo, W, P, S, Sr, Ta, La and Hf, 0.9 ⁇ a ⁇ 1.3, 0.6 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4.
  • the a represents the molar ratio of lithium in the lithium transition metal oxide, and may be 1.0 ⁇ a ⁇ 1.3, specifically 1.0 ⁇ a ⁇ 1.25, and more specifically 1.0 ⁇ a ⁇ 1.20.
  • the x represents the molar ratio of nickel among all transition metals, and may be 0.6 ⁇ x ⁇ 1.0, specifically 0.6 ⁇ x ⁇ 0.99 or 0.70 ⁇ x ⁇ 0.99, and more specifically 0.8 ⁇ x ⁇ 0.95.
  • the nickel content satisfies the above range, excellent capacity characteristics can be achieved.
  • the y represents the molar ratio of cobalt among all transition metals, and may be 0 ⁇ y ⁇ 0.40, specifically 0 ⁇ y ⁇ 0.35, and more specifically 0.01 ⁇ y ⁇ 0.30.
  • the z represents the molar ratio of the element M 1 among all transition metals, and may be 0 ⁇ z ⁇ 0.40, specifically 0 ⁇ z ⁇ 0.35, and more specifically 0.01 ⁇ z ⁇ 0.30.
  • the 1-xyz represents the molar ratio of M 2 among all transition metals, and may be 0 ⁇ 1-xyz ⁇ 0.4, specifically 0 ⁇ 1-xyz ⁇ 0.35, and more specifically 0 ⁇ 1-xyz ⁇ 0.30.
  • the lithium transition metal oxide may be a positive electrode active material that is a lithium composite transition metal oxide represented by the following formula (2).
  • the lithium transition metal oxide may be a lithium composite transition metal oxide represented by the following formula (3).
  • the positive electrode active material may have an average particle diameter (D 50 ) of 1 to 50 ⁇ m, taking into account the specific surface area and positive electrode mixture density, and may specifically have an average particle diameter (D 50 ) of 2 to 20 ⁇ m.
  • the positive electrode active material according to an example of the present invention may be a single particle type positive active material formed by agglomerating particles with an average particle diameter (D 50 ) of 0.1 ⁇ m to 10 ⁇ m. If the average particle diameter of the particles satisfies the above range, it may have advantages in rolling rate, electrode voids, etc., and if the average particle diameter is too small or excessive compared to the above range, performance may be deteriorated in electrode capacity, life characteristics, resistance, etc. there is.
  • the present invention also provides a method for manufacturing the positive electrode active material.
  • the positive electrode active material is prepared by: 1) mixing single particle lithium transition metal oxide particles and a cobalt source; and 2) heat-treating the mixture of step 1).
  • the cobalt source may be used in an amount of 0.1 mol% to 10 mol%, specifically 0.5 mol% to 5 mol%, and more specifically 1 mol% to 3 mol%, based on the positive electrode active material. If the cobalt source is used in an excessive amount compared to the above range, a sufficient coating may not be formed on the outer surface of the lithium transition metal oxide particle, and if the cobalt source is used in an excessive amount, a coating may be formed more than necessary or unreacted cobalt may be formed. The compound may remain on the particle surface, resulting in disadvantages such as increased resistance and reduced capacity.
  • step 1) a process of further mixing additional metal sources may be performed.
  • the additional metal source may be used together with the cobalt source to coat the surface of the single particle lithium transition metal oxide through a subsequent step.
  • the coating formed by the additional metal source may be mixed with the cobalt source and coated with the coating formed on the outer surface of the single particle-type lithium transition metal oxide particle, or may be formed as a separate coating.
  • the additional metal source may be coated on the surface of the single particle lithium transition metal oxide to form a metal oxide, lithium metal oxide, cobalt metal oxide, or lithium cobalt metal oxide.
  • the mixing in step 1) may be dry mixing, for example, mixing a powder-type cobalt source material with single-particle lithium transition metal oxide without a solvent.
  • dry mixing can be a simple mixing process, and can provide the benefits of cost reduction and quality stabilization by simplifying the process.
  • step 2) In the step of heat treating the mixture of step 1), cobalt diffuses toward the center from the surface of the single particle lithium transition metal oxide to form a coating portion.
  • an island-shaped coating part may be discontinuously formed on the surface of the lithium transition metal oxide.
  • heat treatment is performed after the single-particle lithium transition metal oxide particles and the cobalt (Co) source are dry mixed, so that the coating portion is formed in an island shape. You can.
  • the heat treatment in step 2) may be performed at 500°C to 800°C, specifically at 600°C to 800°C, and more specifically at 650°C to 750°C.
  • the surface area includes an oxidation number gradient layer in which the oxidation number of nickel increases in the outermost direction to demonstrate excellent effects on cell performance such as charge/discharge capacity, initial efficiency, and initial resistance. can do.
  • the heat treatment temperature in step 2) is low, the thickness of the coating part becomes thick and too much of the coating part is formed, making it difficult to achieve the benefits of forming the coating part as described above, and if the heat treatment temperature in step 2) is high, the cobalt Because the lithium transition metal oxide in the form of single particles is deeply doped, the coating may not be properly formed on the surface.
  • the heat treatment of step 2) may be performed for 2 hours to 12 hours, specifically 2 hours to 9 hours, and more specifically 2 hours to 6 hours.
  • the heat treatment is performed within the above time range, excellent productivity can be achieved and uniform firing can be achieved.
  • the cobalt source may be an oxide, hydroxide, oxyhydroxide, carbonate, sulfate, halide, sulfide, acetate, nitrate, carboxylate, or a combination thereof containing cobalt, such as Co(OH) 2 , CoOOH, Co(OCOCH) 3 ) 2 ⁇ 4H 2 O, Co(NO 3 ) 2 ⁇ 6H 2 O or Co(SO 4 ) 2 ⁇ 7H 2 O, etc., any one or a mixture of two or more of these may be used, specifically Co(OH) 2 may be used.
  • Said additional metal sources are, for example, Al, Ti, W, B, F, P, Mg, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb.
  • the additional metal source may be used in an amount such that the additional metal is 100 ppm to 50,000 ppm, specifically 200 ppm to 10,000 ppm, based on the total number of moles of metal in the positive electrode active material.
  • the additional metal is included in the above range, the effect of effectively suppressing side reactions with the electrolyte solution can be expected, and the electrochemical properties can be further improved.
  • the lithium transition metal oxide particles in the form of single particles are first fired by mixing a transition metal oxide precursor and a lithium raw material, and the calcined product produced by the first fired is disintegrated and then second fired. It may be manufactured.
  • a positive electrode containing the above-mentioned positive electrode active material is provided.
  • the positive electrode includes a positive electrode current collector, and a positive electrode active material layer formed on the positive electrode current collector and including the positive electrode active material described above.
  • the positive electrode current collector is not particularly limited as long as it is conductive without causing chemical changes in the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon, nickel, titanium on the surface of aluminum or stainless steel. , surface treated with silver, etc. may be used. Additionally, the positive electrode current collector may typically have a thickness of 3 to 500 ⁇ m, and fine irregularities may be formed on the surface of the current collector to increase the adhesion of the positive electrode active material. For example, it can be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven materials.
  • the positive electrode active material layer may include the previously described positive active material, a conductive material, and a binder.
  • the conductive material is used to provide conductivity to the electrode, and can be used without particular limitation as long as it does not cause chemical change and has electronic conductivity in the battery being constructed.
  • Specific examples include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; Metal powders or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, etc., of which one type alone or a mixture of two or more types may be used.
  • the conductive material may typically be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the binder serves to improve adhesion between positive electrode active material particles and adhesion between the positive active material and the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, and carboxymethyl cellulose (CMC). ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber.
  • PVDF polyvinylidene fluoride
  • PVDF-co-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene polymer
  • SBR sulfur-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styren
  • the positive electrode can be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode active material described above. Specifically, it can be manufactured by applying a composition for forming a positive electrode active material layer prepared by mixing or dispersing the above-mentioned positive electrode active material and, optionally, a binder and a conductive material in a solvent, onto a positive electrode current collector, followed by drying and rolling. At this time, the types and contents of the positive electrode active material, binder, and conductive material are the same as described above.
  • the solvent may be a solvent commonly used in the art, such as dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, or Water, etc. may be used, and one type of these may be used alone or a mixture of two or more types may be used.
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • acetone or Water, etc.
  • the amount of solvent used is sufficient to dissolve or disperse the positive electrode active material, conductive material, and binder in consideration of the application thickness and manufacturing yield of the slurry, and to have a viscosity that can exhibit excellent thickness uniformity when applied for subsequent positive electrode production. do.
  • the positive electrode may be manufactured by casting the composition for forming the positive electrode active material layer on a separate support and then laminating the film obtained by peeling from the support on a positive electrode current collector.
  • an electrochemical device including the anode is provided.
  • the electrochemical device may specifically be a battery, a capacitor, etc., and more specifically may be a lithium secondary battery.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned opposite the positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, and the positive electrode is as described above.
  • the lithium secondary battery may optionally further include a battery container that accommodates the electrode assembly of the positive electrode, negative electrode, and separator, and a sealing member that seals the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer located on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • it can be used on the surface of copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel. Surface treatment with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. can be used.
  • the negative electrode current collector may typically have a thickness of 3 to 500 ⁇ m, and like the positive electrode current collector, fine irregularities may be formed on the surface of the current collector to strengthen the bonding force of the negative electrode active material.
  • it can be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven materials.
  • the negative electrode active material layer optionally includes a binder and a conductive material along with the negative electrode active material.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon;
  • Metallic compounds that can be alloyed with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy;
  • Metal oxides that can dope and undope lithium such as SiO x (0 ⁇ x ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide;
  • a composite containing the above-described metallic compound and a carbonaceous material such as a Si-C composite or Sn-C composite, may be used, and any one or a mixture of two or more of these may be used.
  • low-crystalline carbon include soft carbon and hard carbon
  • high-crystalline carbon includes amorphous, plate-shaped, flaky, spherical, or fibrous natural graphite, artificial graphite, and Kish graphite.
  • High-temperature calcined carbon such as derived cokes is a representative example.
  • binder and conductive material may be the same as those previously described for the positive electrode.
  • the negative electrode active material layer is formed by applying and drying a negative electrode forming composition prepared by dispersing the negative electrode active material, and optionally a binder and a conductive material in a solvent, on a negative electrode current collector and drying it, or applying the negative electrode forming composition on a separate support. It can also be manufactured by casting on and then peeling from this support and laminating the obtained film onto the negative electrode current collector.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move. It can be used without particular restrictions as long as it is normally used as a separator in lithium secondary batteries, and in particular, it can be used for ion movement in the electrolyte. It is desirable to have low resistance and excellent electrolyte moisturizing ability.
  • porous polymer films for example, porous polymer films made of polyolefin polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these. A laminated structure of two or more layers may be used.
  • porous non-woven fabrics for example, non-woven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers, etc.
  • a coated separator containing a ceramic component or polymer material may be used to ensure heat resistance or mechanical strength, and may optionally be used in a single-layer or multi-layer structure.
  • electrolytes used in the present invention include organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel-type polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes that can be used in the production of lithium secondary batteries, and are limited to these. It doesn't work.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent includes ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, and ⁇ -caprolactone; Ether-based solvents such as dibutyl ether or tetrahydrofuran; Ketone-based solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate (propylene carbonate) Carbonate-based solvents such as PC); Alcohol-based solvents such as ethyl alcohol and isopropyl alcohol; nitriles such as R-CN (R is a C2 to C20 straight-
  • carbonate-based solvents are preferable, and cyclic carbonates (e.g., ethylene carbonate or propylene carbonate, etc.) with high ionic conductivity and high dielectric constant that can improve the charge/discharge performance of the battery, and low-viscosity linear carbonate-based compounds ( For example, ethylmethyl carbonate, dimethyl carbonate, diethyl carbonate, etc.) are more preferable.
  • cyclic carbonates e.g., ethylene carbonate or propylene carbonate, etc.
  • low-viscosity linear carbonate-based compounds For example, ethylmethyl carbonate, dimethyl carbonate, diethyl carbonate, etc.
  • excellent electrolyte performance can be obtained by mixing cyclic carbonate and chain carbonate in a volume ratio of about 1:1 to about 1:9.
  • the lithium salt can be used without particular restrictions as long as it is a compound that can provide lithium ions used in lithium secondary batteries.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN( C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of lithium salt is within the above range, the electrolyte has appropriate conductivity and viscosity, so excellent electrolyte performance can be achieved and lithium ions can move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and trifluoroethylene for the purpose of improving battery life characteristics, suppressing battery capacity reduction, and improving battery discharge capacity.
  • haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and trifluoroethylene
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, or aluminum trichloride may be further included. At this time, the additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery containing the positive electrode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity maintenance rate, and is therefore widely used in portable devices such as mobile phones, laptop computers, digital cameras, and hybrid electric vehicles ( It is useful in electric vehicle fields such as hybrid electric vehicle (HEV).
  • portable devices such as mobile phones, laptop computers, digital cameras, and hybrid electric vehicles ( It is useful in electric vehicle fields such as hybrid electric vehicle (HEV).
  • HEV hybrid electric vehicle
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack is a power tool; Electric vehicles, including electric vehicles (EV), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEV); Alternatively, it can be used as a power source for any one or more mid- to large-sized devices among power storage systems.
  • Electric vehicles including electric vehicles (EV), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEV);
  • PHEV plug-in hybrid electric vehicles
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, prismatic, pouch-shaped, or coin-shaped using a can.
  • the lithium secondary battery according to the present invention can not only be used in battery cells used as a power source for small devices, but can also be preferably used as a unit cell in medium to large-sized battery modules containing a plurality of battery cells.
  • the positive electrode active material precursor [composition: Ni 0.95 Co 0.03 Mn 0.02 (OH) 2 , average particle diameter (D 50 ) 3.5 ⁇ m] and LiOH as a lithium raw material were mixed at a molar ratio of 1:1.05, and incubated at a temperature of 850°C under an oxygen atmosphere. After producing a plastic product by first firing for 9 hours,
  • the calcined product was disintegrated and then calcined for a second time at a temperature of 750° C. in an oxygen atmosphere for 9 hours to produce lithium transition metal oxide in the form of single particles.
  • the single-particle lithium transition metal oxide prepared in Preparation Example 1 and the powder-type cobalt source Co(OH) 2 were mixed at a ratio of 98 mol% and 2 mol%.
  • the mixture was heat-treated at a temperature of 700°C for 5 hours to obtain a cake-shaped positive electrode active material, which was pulverized to prepare a powder-type single particle positive active material.
  • a single particle positive electrode active material in powder form was manufactured in the same manner as in Example 1, except that the mixture was heat treated at a temperature of 740°C.
  • a single particle positive electrode active material in powder form was manufactured in the same manner as in Example 1, except that the mixture was heat treated at a temperature of 660°C.
  • the single particle lithium transition metal oxide prepared in Preparation Example 1 was used as a single particle positive electrode active material.
  • a single particle positive electrode active material in powder form was manufactured in the same manner as in Example 1, except that the mixture was heat treated at 400° C. in Example 1.
  • a single particle positive electrode active material in powder form was manufactured in the same manner as in Example 1, except that the mixture was heat treated at 900° C. in Example 1.
  • the single-particle lithium transition metal oxide prepared in Preparation Example 1 and the powder-type cobalt source Co(OH) 2 were mixed at a ratio of 99.98 mol% and 0.02 mol%.
  • the mixture was heat-treated at a temperature of 750°C for 5 hours to obtain a cake-shaped positive electrode active material, which was pulverized to prepare a powder-type single particle positive active material.
  • the single-particle lithium transition metal oxide prepared in Preparation Example 1 and the powder-type cobalt source Co(OH) 2 were mixed at a ratio of 99.98 mol% and 0.02 mol%.
  • the mixture was heat-treated at a temperature of 700°C for 5 hours to obtain a cake-shaped positive electrode active material, which was pulverized to prepare a powder-type single particle positive active material.
  • the positive active material powder was made into a thin film sample with a thickness of 100 to 200 nm using FEI's Helios G4 UX FIB equipment, and then Ni L3 of the sample was analyzed using FEI's Titan G2 80-200 ChemiSTEM equipment and Gatan Continuum S EELS system. Energy loss spectrum was measured, and through nonlinear least-square fitting using Ni 2+ and Ni 3+ reference spectra, the average oxidation number of Ni on the surface from the outermost part of the positive electrode active material to a depth of 10 nm toward the center was determined. was measured.
  • the ratio of Co/Ni content on the surface of the positive electrode active material powder was measured to a depth of 10 nm through Electron Spectroscopy for Chemical Analysis (ESCA) using Thermo fisher's K-alpha XPS equipment, and the results are shown in Table 1. It was.
  • the Co/Ni value contained in the surface area from the outermost part of the positive active material to a depth of 10 nm toward the center satisfies a value of 0.1 to 0.80, and was suitable for manufacturing. It was confirmed that the cobalt content of the surface portion was relatively increased as the value was larger than the Co/Ni ratio of the single particle lithium transition metal oxide used.
  • the oxidation number of Ni contained in the surface portion up to 10 nm deep in Examples 1 to 3 was +2.60, +2.65, and +2.57, respectively, which is similar to the single particle lithium transition metal oxide of Preparation Example 1.
  • the oxidation number of Ni included increased as the ratio of cobalt in the surface part increased compared to the composition of the single particle form of lithium transition metal oxide due to the influence of the coating part containing cobalt, and the positive electrode active material It was confirmed that the degenerated layer of NiO, which had an oxidation state of +2 nickel present on the surface, was reduced.
  • the positive electrode active material of Comparative Example 1 was made by using the single-particle lithium transition metal oxide of Preparation Example 1 as the positive active material, and the positive active material of Comparative Example 3 was mixed with a cobalt source and heat treated at 900°C, and 10 nm The Co/Ni value contained in the surface part to the depth was smaller than 0.1, and the Ni contained in the surface part showed an oxidation number of less than +2.4.
  • the positive electrode active materials of Comparative Examples 4 and 5 were mixed with a small amount of cobalt source and then heat treated at 750°C and 700°C, respectively, and the Co/Ni value contained in the surface area up to a depth of 10 nm was greater than 0.1.
  • the Ni contained in the surface portion showed oxidation numbers of +2.25 and +2.27, respectively, which were less than +2.4, so the NiO type degenerated layer was not sufficiently converted to a nickel cobalt manganese (NCM) oxide layered structure, resulting in an appropriate NiO layer reduction effect. It was confirmed that was not obtained.
  • NCM nickel cobalt manganese
  • Comparative Example 2 showed a Co/Ni value of 0.68, confirming that cobalt was diffused to the outer shell of the positive electrode active material and a coating was formed. However, despite the formation of a sufficient amount of the coating, a degenerated layer in the form of NiO was formed on the nickel cobalt manganese. (NCM) It was confirmed that the appropriate NiO layer reduction effect was not obtained because the oxide layered structure was not sufficiently converted.
  • the positive electrode active materials of Comparative Examples 1 to 5 had a significant amount of NiO-type degenerated layer containing nickel with a +2 oxidation state present on the surface.
  • composition for forming a positive electrode active material layer prepared above was coated on one side of an aluminum foil current collector with a thickness of 20 ⁇ m, and dried at 135 ° C. for 3 hours to form a positive electrode active material layer.
  • the positive electrode active material layer was rolled using a roll pressing method, and after rolling, a positive electrode having a porosity of 20% of the positive active material layer was manufactured.
  • a positive electrode was manufactured in the same manner as the above method using the positive electrode active materials of Examples 2 and 3 and Comparative Examples 1 to 5, respectively, instead of the positive electrode active material prepared in Example 1.
  • a coin-shaped half-cell was manufactured using lithium metal as a cathode along with the anode.
  • Electrochemical properties were evaluated using the half-cell prepared above as follows.
  • the manufactured coin half cells were each charged at 25°C until a constant current (CC) of 0.2 C reached 4.25 V, and then charged at a constant voltage (CV) of 4.25 V for the first charge until the charging current reached 0.05 mAh.
  • the charging capacity was measured. After leaving it for 20 minutes, it was discharged at a constant current of 0.2 C until it reached 2.5 V, and the discharge capacity at the first cycle was measured. The charge/discharge efficiency of the first cycle was evaluated.
  • the positive electrode active materials of Examples 1 to 3 have a low initial resistance while exhibiting high discharge capacity and efficiency compared to the positive electrode active materials of Comparative Examples 1 to 5.
  • the coating part containing cobalt formed on the outer surface of the surface changes the NiO degenerated layer into an NCM structure with a relatively high cobalt concentration, thereby improving cation mixing and structural instability caused by collapse of the layered structure.
  • problems such as increased resistance, reduced capacity, and reduced output could be solved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 표면부 및 코어로 구분되는 단입자 형태의 리튬 전이금속 산화물; 및 상기 표면부 상에 형성된 코발트를 포함하는 코팅부를 포함하고, 상기 표면부 및 코팅부 전체를 기준으로 코발트 및 니켈을 Co/Ni 0.1 내지 0.8의 값(mol/mol)을 만족하는 양으로 포함하는 양극 활물질 및 그 제조방법에 관한 것이다.

Description

양극 활물질 및 이의 제조방법
본 발명은 2022년 05월 20일에 출원된 한국특허출원 제10-2022-0062252호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 양극 활물질 및 이의 제조방법에 관한 것이다.
최근 전기 자동차 등의 기술 발전에 따라 고용량 이차 전지에 대한 수요가 증가하고 있으며, 이에 따라 용량 특성이 우수한 하이 니켈(High Ni) 양극 활물질을 이용한 양극에 대한 연구가 활발하게 진행되고 있다.
하이 니켈 양극 활물질은 이를 제조하기 위하여 공침법(Co-precipitation)이 사용되므로 제조된 하이 니켈 양극 활물질은 1차입자가 뭉쳐진 2차입자의 형태를 갖게 된다. 그러나, 2차입자의 형태를 갖는 활물질은 장기간의 충방전과정에서 2차입자에 미세 균열이 발생하여 부반응을 유발하게 되며, 또한 2차입자는 에너지 밀도 향상을 위해 전극 밀도를 증가시킬 경우 2차입자의 구조 붕괴를 유발하여 활물질과 전해액 감소에 인한 에너지 밀도 저하 및 수명 특성 저하가 발생한다는 단점을 가진다.
이와 같은 2차 입자 형태의 하이 니켈 양극 활물질이 지니는 문제를 해결하기 위하여 최근에는 단입자형 니켈계 양극 활물질의 개발이 이루어지고 있다. 단입자형 니켈계 양극 활물질은 높은 에너지 밀도를 위해 전극 밀도를 증기시킬 경우에도 입자의 붕괴가 일어나지 않는 장점을 가진다. 그러나, 단입자형 니켈계 양극 활물질은 이를 제조하기 위해서 상대적으로 높은 소성 온도가 요구되므로, R-3m의 층상 구조가 제대로 유지되지 못하고 리튬이 결정 구조 밖으로 빠져나오면서 NiO와 같은 Fm-3m 락-솔트(rock-salt) 구조로 상변화가 일어나며 양극 활물질의 결정성이 떨어지면서, 제조된 단입자의 표면부에 NiO의 비율이 증가하게 되며, NiO의 증가에 따라 저항이 증가하고, 에너지 밀도 및 출력 저하가 발생하는 문제가 있다. 또한, 소성 온도가 낮아질 경우에는 과소성된 2차 입자 형태로 존재하여 수명 및 가스 발생 개선 효과가 단입자로부터 기대하던 수준에 미치지 못한다는 문제점을 가진다.
따라서, 높은 전극 밀도를 가지면서, 우수한 수명 특성 및 출력 특성을 나타내는 양극활물질에 대한 개발이 여전히 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) KR 2019-0094529 A1
본 발명이 해결하고자 하는 과제는 높은 전극 밀도를 가지면서, 우수한 수명 특성 및 출력 특성을 나타내는 양극활물질을 제공하는 것이다.
본 발명의 다른 해결하고자 하는 과제는 높은 전극 밀도를 가지면서, 우수한 수명 특성 및 출력 특성을 나타내는 양극활물질의 제조방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 양극 활물질을 제공한다.
(1) 본 발명은 표면부 및 코어로 구분되는 단입자 형태의 리튬 전이금속 산화물; 및 상기 표면부 상에 형성된 코발트를 포함하는 코팅부를 포함하고, 상기 표면부 및 코팅부 전체를 기준으로 코발트 및 니켈을 Co/Ni 0.1 내지 0.8의 값(mol/mol)을 만족하는 양으로 포함하는 양극 활물질을 제공한다.
(2) 본 발명은 상기 (1)에 있어서, 상기 표면부는 층상형(R-3m) 구조를 가지는 양극 활물질을 제공한다.
(3) 본 발명은 상기 (1) 또는 (2)에 있어서, 상기 표면부는 상기 단입자 형태의 리튬 전이금속 산화물의 최외각으로부터 중심 방향으로 깊이 1 nm 내지 50 nm까지의 영역인 양극 활물질을 제공한다.
(4) 본 발명은 상기 (1) 내지 (3) 중 어느 하나에 있어서, 상기 표면부가 포함하는 니켈은 +2.36 내지 +3.00의 평균 산화수를 갖는 양극 활물질을 제공한다.
(5) 본 발명은 상기 (1) 내지 (4) 중 어느 하나에 있어서, 상기 코팅부는 상기 표면부의 외각에 상기 표면부의 외각 총면적을 기준으로 10% 내지 100%에 형성되어 있는 양극 활물질을 제공한다.
(6) 본 발명은 상기 (1) 내지 (5) 중 어느 하나에 있어서, 상기 코팅부는 상기 표면부의 외각에 아일랜드 형태로 위치하는 양극 활물질을 제공한다.
(7) 본 발명은 상기 (1) 내지 (6) 중 어느 하나에 있어서, 상기 코팅부는 LiCoO2의 조성을 포함하는 양극 활물질을 제공한다.
(8) 본 발명은 상기 (1) 내지 (7) 중 어느 하나에 있어서, 상기 리튬 전이금속 산화물은 니켈, 코발트 및 망간을 포함하는 리튬 복합 전이금속 산화물인 양극 활물질을 제공한다.
(9) 본 발명은 상기 (1) 내지 (8) 중 어느 하나에 있어서, 상기 리튬 전이금속 산화물은 하기 화학식 1로 표시되는 리튬 복합 전이금속 산화물인 양극 활물질을 제공한다.
[화학식 1]
LiaNixCoyM1 zM2 1-x-y-zO2
상기 화학식 1에서, M1은 Mn 및 Al로 이루어진 군으로부터 선택된 1종 이상이고, M2는 B, Ba, Ce, Cr, F, Mg, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, P, S, Sr, Ta, La 및 Hf로 이루어진 군으로부터 선택된 1종 이상이며, 1.0≤a≤1.3, 0.6≤x<1.0, 0≤y≤0.4, 0≤z≤0.4이다.
(10) 본 발명은 상기 (1) 내지 (9) 중 어느 하나에 있어서, 상기 리튬 전이금속 산화물은 하기 화학식 2로 표시되는 리튬 복합 전이금속 산화물인 양극 활물질을 제공한다.
[화학식 2]
LiaNibCocMndM1 eO2
상기 화학식 2에서, M1은 Al, Zr, B, W, Mo, Cr, Nb, Mg, Hf, Ta, La, Ti, Sr, Ba, Ce, Sn, Y, Zn, F, P 및 S로 이루어진 군으로부터 선택된 1종 이상이며, 0.9≤a≤1.1, 0.8≤b<1, 0<c<0.2, 0<d<0.2, 0≤e<0.1, b+c+d+e=1이다.
또한, 상기 다른 과제를 해결하기 위하여, 본 발명은 상기 양극 활물질 제조방법을 제공한다.
(11) 본 발명은 1) 단입자 형태의 리튬 전이금속 산화물 입자 및 코발트 소스를 혼합하는 단계; 및 2) 상기 단계 1)의 혼합물을 열처리하는 단계를 포함하는 양극 활물질 제조방법을 제공한다.
(12) 본 발명은 상기 (11)에 있어서, 상기 단계 1)에서 추가 금속 소스를 더 혼합하는 양극 활물질 제조방법을 제공한다.
(13) 본 발명은 상기 (11) 또는 (12)에 있어서, 상기 단계 2)의 열처리는 500 내지 800℃에서 이루어지는 양극 활물질 제조방법을 제공한다.
본 발명의 양극 활물질은 단입자 형태의 리튬 전이금속 산화물을 포함하는 양극 활물질로서, 코발트를 포함하는 코팅부를 포함하여 NiO층이 감소된 표면부를 가지므로, 높은 전극 밀도를 가지면서, 우수한 수명 특성 및 출력 특성을 발휘할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 용어 '1차 입자'는 주사전자현미경(SEM)을 통해 양극 활물질의 단면을 관찰하였을 때 1개의 덩어리로 구별되는 최소 입자 단위를 의미하는 것으로, 복수개의 결정립으로 이루어질 수 있다.
본 발명에서 용어 '2차 입자'는 복수 개의 1차 입자가 응집되어 형성되는 2차 구조체를 의미한다. 상기 2차 입자의 평균입경은 입도 분석기를 이용하여 측정될 수 있다.
본 발명에서 용어 '단입자 형태'는 용어 '단입자형'으로 대체되어 사용될 수 있으며, 종래의 방법으로 제조된 수백개의 1차 입자들이 응집되어 형성되는 2차 입자 형태와 대비되는 형태를 의미한다. 또한, 본 발명에서 용어 '단입자형 양극 활물질' 또는 '단입자 형태의 리튬 전이금속 산화물'은 종래의 방법으로 제조된 수백개의 1차 입자들이 응집되어 형성되는 2차 입자 형태의 양극 활물질과 대비되는 개념으로 1개 내지 50개 이하의 입자, 1개 내지 40개 이하의 입자, 1개 내지 30개 이하의 입자, 1개 내지 20개 이하의 입자, 1개 내지 15개 이하의 입자, 1개 내지 10개 이하의 입자, 또는 1개 내지 15개 이하의 입자로 이루어진 양극 활물질 또는 리튬 전이금속 활물질을 의미한다.
본 발명에서 용어 '단결정'은 용어 '단결정성'으로 대체되어 사용될 수 있으며, 50개 이하, 구체적으로 1개 내지 30개의 결정립을 포함하는 양극 활물질 또는 리튬 전이금속 산화물을 의미한다. 통상적으로 단결정 입자는 전체 시료가 단 하나의 결정립(grain) 또는 그레인 영역으로 이루어진 입자를 나타낸다. 본 발명에서 양극 활물질 또는 단입자 형태의 리튬 전이금속 산화물은 소수의 결정립을 포함함에 따라 하나의 단결정 입자와 유사한 특성을 나타내는 것일 수 있다.
상기 '단입자'는 주사전자현미경을 통해 양극 활물질을 관측하였을 때 인식되는 입자의 최소 단위를 의미하며, 상기 '결정립(grain)' 또는 '그레인 영역'은 시료 내 원자들이 한 방향으로 연속적, 주기적으로 배열된 영역을 의미한다. 상기 결정립은 전자 후방 산란 회절(ESBD) 분석기를 이용하여 분석할 수 있다.
본 발명에서 용어 '평균입경(D50)'은 입경에 따른 체적 누적 분포의 50 % 지점에서의 입경을 의미한다. 상기 평균입경은 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac社의 S3500)에 도입하여 입자들이 레이저 빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출하고, 측정 장치에 있어서의 입경에 따른 체적 누적 분포의 50 %가 되는 지점에서의 입자 직경을 산출함으로써, D50을 측정할 수 있다.
본 발명의 양극 활물질은 표면부 및 코어로 구분되는 단입자 형태의 리튬 전이금속 산화물; 및 상기 표면부 상에 형성된 코발트를 포함하는 것으로, 상기 표면부 및 코팅부 전체를 기준으로 코발트 및 니켈을 Co/Ni 0.1 내지 0.8의 값(mol/mol)을 만족하는 양으로 포함하는 것이다.
상기 단입자 형태의 리튬 전이금속 산화물의 표면부는 층상형(R-3m) 구조를 가질 수 있고, 상기 코발트를 포함하는 코팅부가 표면부 상에 형성되기 전에는 높은 NiO 함량을 가지고 있으며, 상기 단입자 형태의 리튬 전이금속 산화물의 제조시 요구되는 높은 소성 온도에 의해 상기 NiO의 형성이 유도된다. 상기 단입자 형태의 리튬 전이금속 산화물의 표면부에 포함된 NiO는 저항의 증가, 에너지 밀도 및 출력 저하 등의 원인이 될 수 있다.
본 발명의 양극 활물질은 상기 단입자 형태의 리튬 전이금속 산화물과 코발트 소스(원료 물질)을 혼합한 후 열처리하는 과정을 통해 형성된 코발트를 포함하는 코팅부를 포함하는 것으로, 상기 코팅부는 상기 열처리 과정에서 상기 코발트가 단입자 형태의 리튬 전이금속 산화물의 표면에서 중심방향으로 확산되면서 형성된 층일 수 있다. 본 발명의 양극 활물질은 상기 코팅부를 형성하는 과정에서 표면부의 NiO 층이 니켈코발트망간(NCM) 산화물 층상 구조로 변환됨으로써, 저항 증가, 에너지 밀도 저하 및 출력 저하 등의 원인이 감소 및 제거되어 우수한 전기화학적 특성을 나타낼 수 있다.
상기 단입자 형태의 리튬 전이금속 산화물은 표면부 및 코어로 구분된다. 상기 표면부는 단입자 형태의 리튬 전이금속 산화물의 외각을 나타내는 것으로, 상기 단입자 형태의 리튬 전이금속 산화물의 최외각으로부터 중심 방향으로 일정한 두께를 갖는 영역을 의미하며, 구체적으로 상기 단입자 형태의 리튬 전이금속 산화물의 최외각으로부터 중심 방향으로 깊이 1 nm 내지 50 nm, 구체적으로 5 내지 30 nm까지의 영역을 의미한다.
또한, 상기 코어는 상기 단입자 형태의 리튬 전이금속 산화물에서 상기 표면부를 제외한 내부를 의미한다.
상기 표면부 및 코팅부 전체를 기준으로 상기 코발트 및 니켈은 Co/Ni 값(mol/mol)이 구체적으로 0.15 내지 0.80, 0.20 내지 0.80, 0.10 내지 0.75, 0.15 내지 0.80을 만족할 수 있고, 더욱 구체적으로 0.20 내지 0.75를 만족할 수 있다. 상기 Co/Ni 값이 상기 범위에 비해 과소할 경우 코발트가 단입자 형태의 리튬 전이금속 산화물 입자 내부로 과도하게 확산(diffusion)되어 표면층의 코발트 농도가 낮아져 코발트를 포함하는 코팅부 형성의 효과가 발휘되기 어렵고, 코발트가 입자 내부로 과도하게 확산되는 과정에서 상기 입자 표면에 NiO 퇴화층이 다시 형성될 수 있다. 또한, Co/Ni 값이 상기 범위에 비해 과대한 경우는 코팅된 코발트가 Co3O4 또는 리튬코발트 산화물(LixCOyOz) 형태의 별도 산화물로 입자 표면에 존재할 수 있으며, 이 경우 단입자 형태의 리튬 전이금속 산화물의 NiO 퇴화층이 니켈코발트망간(NCM) 산화물 층상 구조로 충분히 변환되지 못하고, 상기 리튬 전이금속 산화물의 표면에 형성된 불필요한 양의 코팅부가 저항으로 작용하거나 용량 감소의 원인이 될 수 있다.
상기 표면부에 포함된 니켈(Ni)은 +2.36 내지 +3.00의 평균 산화수를 가질 수 있고, 상기 표면부에 포함된 니켈의 평균 산화수는 구체적으로 +2.36 내지 +2.95, +2.36 내지 +2.91, +2.37 내지 +2.95, 더욱 구체적으로 +2.37 내지 +2.91일 수 있다. 상기 표면부에 포함된 니켈의 평균 산화수는 코팅부를 형성하는 코발트의 코팅량에 따라 변화될 수 있으며, 상기 범위를 만족할 때 표면에 적정량의 코팅부가 형성되어 리튬 전이금속 산화물의 NiO 퇴화층이 니켈코발트망간(NCM) 산화물 층상 구조로 충분히 변환됨으로써 NiO 퇴화층의 층상 구조 붕괴 등으로 인한 양이온 혼합(cation mixing)과 구조적 불안정성 문제가 일어나지 않도록 할 수 있다. 이에 따라, 상기 표면부는 NiO 층으로부터 변환된 니켈코발트망간 산화물 층상 구조를 포함할 수 있다.
상기 단입자 형태의 리튬 전이금속 산화물의 최외각으로부터 중심 방향으로 깊이 10 nm까지의 니켈(Ni)의 평균 산화수는 +2.50 내지 +3.00일 수 있고, 구체적으로 +2.50 내지 +2.95, +2.50 내지 +2.90, +2.50 내지 +2.88, +2.52 내지 +2.95, +2.52 내지 +2.90, +2.52 내지 +2.88일 수 있으며, 더욱 구체적으로 +2.54 내지 +2.86일 수 있다. 상기 니켈의 평균 산화수가 상기 10 nm까지의 평균 산화수 범위를 만족할 경우, 상기 단입자 형태의 리튬 전이금속 산화물의 NiO 퇴화층에 대한 적절한 감소 효과가 얻어질 수 있다.
상기 코팅부는 상기 표면부의 외각, 즉 상기 단입자 형태의 리튬 전이금속 산화물의 최외각 표면에 형성되어 있을 수 있고, 상기 표면부의 외각의 일부 또는 전부에 형성되어 있을 수 있으며, 상기 표면부의 외각 총면적을 기준으로 10% 내지 100%(면적%)에 형성되어 있을 수 있다. 구체적으로, 상기 코팅부는 상기 표면부의 외각 일부에 형성되어 있을 수 있고, 상기 표면부의 외각 총면적을 기준으로 30% 내지 90%에 형성되어 있을 수 있다.
상기 코팅부는 상기 표면부의 외각에 아일랜드 형태로 형성되어 있을 수 있다. 상기 아일랜드 형태는 상기 표면부의 외각에 불연속적으로 형성되어 있는 형태를 의미하며, 즉 상기 코팅부는 상기 단입자 형태의 리튬 전이금속 산화물의 최외각 표면에 부분적으로 분산되어 분포되어 있을 수 있다.
상기 코팅부는 LiCoO2의 조성을 포함할 수 있고, 구체적으로 상기 코팅부는 상기 표면부의 외각에 아일랜드 형태의 LiCoO2로서 포함될 수 있다.
본 발명의 일례에 따른 양극 활물질에 있어서, 상기 단입자는 평균 입경(D50)이 0.1 ㎛ 내지 10 ㎛인 것일 수 있다. 상기 단입자의 평균 입경이 상기 범위를 만족할 경우, 이들이 응집되어 양극 활물질 또는 단입자 형태의 리튬 전이금속 산화물을 형성했을 때, 압연율, 전극 공극 등에서 장점을 가질 수 있고, 평균 입경이 상기 범위에 비해 과소하거나 과대할 경우, 전극 용량, 수명 특성, 저항 등에서 성능이 저하될 수 있다.
상기 단입자 형태의 리튬 전이금속 산화물은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 리튬 복합 전이금속 산화물일 수 있다.
구체적으로, 상기 단입자 형태의 리튬 전이금속 산화물은 하기 화학식 1로 표시되는 리튬 복합 전이금속 산화물일 수 있다.
[화학식 1]
LiaNixCoyM1 zM2 1-x-y-zO2
상기 화학식 1에서, M1은 Mn 및 Al로 이루어진 군으로부터 선택된 1종 이상이고, M2는 B, Ba, Ce, Cr, F, Mg, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, P, S, Sr, Ta, La 및 Hf로 이루어진 군으로부터 선택된 1종 이상이며, 0.9≤a≤1.3, 0.6≤x<1.0, 0≤y≤0.4, 0≤z≤0.4이다.
상기 a는 리튬 전이금속 산화물 내 리튬의 몰비를 나타내는 것으로, 1.0≤a≤1.3, 구체적으로 1.0≤a≤1.25, 더욱 구체적으로 1.0≤a≤1.20일 수 있다.
상기 x는 전체 전이금속 중 니켈의 몰비를 나타내는 것으로, 0.6≤x<1.0, 구체적으로 0.6≤x≤0.99 또는 0.70≤x≤0.99, 더욱 구체적으로 0.8≤x≤0.95일 수 있다. 니켈 함유량이 상기 범위를 만족할 경우, 우수한 용량 특성을 구현할 수 있다.
상기 y는 전체 전이금속 중 코발트의 몰비를 나타내는 것으로, 0≤y≤0.40, 구체적으로 0≤y≤0.35, 더욱 구체적으로 0.01≤y≤0.30일 수 있다.
상기 z는 전체 전이금속 중 원소 M1의 몰비를 나타내는 것으로, 0≤z≤0.40, 구체적으로 0≤z<0.35, 더욱 구체적으로 0.01≤z≤0.30일 수 있다.
상기 1-x-y-z는 전체 전이금속 중 M2의 몰비를 나타내는 것으로, 0≤1-x-y-z≤0.4, 구체적으로 0≤1-x-y-z≤0.35, 더욱 구체적으로 0≤1-x-y-z≤0.30일 수 있다.
또한, 구체적으로 상기 리튬 전이금속 산화물은 하기 화학식 2로 표시되는 리튬 복합 전이금속 산화물인 양극 활물질일 수 있다.
[화학식 2]
LibNicCodMneM1 fO2
상기 화학식 2에서, M1은 Al, Zr, B, W, Mo, Cr, Nb, Mg, Hf, Ta, La, Ti, Sr, Ba, Ce, Sn, Y, Zn, F, P 및 S로 이루어진 군으로부터 선택된 1종 이상이며, 0.9≤b≤1.1, 0.8≤c<1, 0<d<0.2, 0<e<0.2, 0≤f<0.1, c+d+e+f=1이다.
또한, 구체적으로 상기 리튬 전이금속 산화물은 하기 화학식 3으로 표시되는 리튬 복합 전이금속 산화물일 수 있다.
[화학식 3]
LigNihCoiMnjO2
상기 화학식 3에서, 0.9≤g≤1.1, 0.8≤h<1, 0<i<0.2, 0<j<0.2, h+i+j=1이다.
상기 양극 활물질은 비표면적 및 양극 합제밀도를 고려하여 1 내지 50 ㎛의 평균입경(D50)을 가질 수 있으며, 구체적으로 2 내지 20 ㎛의 평균입경(D50)을 갖는 것일 수 있다. 본 발명의 일례에 따른 양극 활물질은 평균 입경(D50)이 0.1 ㎛ 내지 10 ㎛인 입자가 응집되어 형성된 단입자형 양극 활물질일 수 있다. 상기 입자의 평균 입경이 상기 범위를 만족할 경우, 압연율, 전극 공극 등에서 장점을 가질 수 있고, 평균 입경이 상기 범위에 비해 과소하거나 과대할 경우, 전극 용량, 수명 특성, 저항 등에서 성능이 저하될 수 있다.
본 발명은 또한 상기 양극 활물질의 제조방법을 제공한다.
상기 양극 활물질은 1) 단입자 형태의 리튬 전이금속 산화물 입자 및 코발트 소스를 혼합하는 단계; 및 2) 상기 단계 1)의 혼합물을 열처리하는 단계를 포함하는 제조방법에 따라 제조될 수 있다.
상기 단계 1)에서 상기 코발트 소스는 상기 양극 활물질을 기준으로 0.1 몰% 내지 10 몰%, 구체적으로 0.5 몰% 내지 5 몰%, 더욱 구체적으로 1 몰% 내지 3 몰%의 양으로 사용될 수 있다. 상기 코발트 소스가 상기 범위에 비해 과소량 사용될 경우, 상기 리튬 전이금속 산화물 입자의 표면부의 외각에 충분한 코팅부를 형성하지 못할 수 있고, 상기 코발트 소스가 과대량 사용될 경우 필요 이상 코팅부가 형성되거나 미반응 코발트 화합물이 입자 표면에 남아 저항 증가 및 용량 감소 등의 단점을 가져올 수 있다.
상기 단계 1)에서는 추가 금속 소스를 더 혼합하는 과정이 이루어질 수 있다. 상기 추가 금속 소스는 상기 코발트 소스와 함께 사용되어 이후의 단계를 거쳐 상기 단입자 형태의 리튬 전이금속 산화물의 표면부에 코팅될 수 있다. 상기 추가 금속 소스가 형성하는 코팅은 상기 코발트 소스가 상기 단입자 형태의 리튬 전이금속 산화물 입자의 표면부의 외각에 형성하는 코팅부에 혼합되어 함께 코팅되거나 또는 별개의 코팅으로 형성될 수 있다. 상기 추가 금속 소스는 상기 단입자 형태의 리튬 전이금속 산화물의 표면부에 코팅되어 금속 산화물, 리튬 금속 산화물, 코발트금속 산화물, 또는 리튬코발트금속 산화물 형태로 형성될 수 있다.
상기 단계 1)의 혼합은 건식 혼합일 수 있으며, 예컨대 용매 없이 단입자 형태의 리튬 전이금속 산화물에 파우더형의 코발트 소스 물질을 혼합하는 것일 수 있다. 이와 같은 건식 혼합은 단순 혼합 과정일 수 있으며, 공정의 단순화로 비용 절감 및 품질 안정화의 이점을 발휘할 수 있다.
2) 상기 단계 1)의 혼합물을 열처리하는 단계에서는 단입자 형태의 리튬 전이금속 산화물 표면에서 중심 방향으로 코발트가 확산되면서 코팅부가 형성된다. 상기 코팅부가 형성될 때, 리튬 전이금속 산화물의 표면에 아일랜드 형태의 코팅부가 불연속적으로 형성될 수 있다. 본 발명의 일 실시예에 따른 양극 활물질의 제조방법에서는, 상기 단입자 형태의 리튬 전이금속 산화물 입자와 코발트(Co) 소스가 건식 혼합된 후, 열처리가 수행되므로, 상기 코팅부가 아일랜드 형태로 형성될 수 있다.
상기 단계 2)의 열처리는 500℃ 내지 800℃에서 이루어질 수 있고, 구체적으로 600 ℃ 내지 800℃, 더욱 구체적으로 650 ℃ 내지 750℃에서 이루어질 수 있다.
상기 열처리 온도가 상기 범위를 만족할 경우, 열처리를 위한 승온 과정에서 단입자 형태의 리튬 전이금속 산화물 표면에 존재하던 코발트, 구체적으로 리튬 전이금속 산화물의 표면에 아일랜드 형태로 형성되어 LiCoO2 상으로 존재하던 코발트가 리튬 전이금속 산화물 내부로 적절한 깊이로 침투하여 퇴화층인 NiO층을 적절히 니켈코발트망간(NCM) 산화물 층상 구조로 변화시킬 수 있으며, 이에 따라 상기 단입자 형태의 리튬 전이금속 산화물의 표면부가 층상형(R-3m) 구조를 가지면서, 상기 표면부에 최외각 방향으로 니켈의 산화수가 증가하는 산화수 구배층이 포함되도록 하여 충방전 용량, 초기 효율, 초기 저항 등 셀 성능에서 우수한 효과를 발휘하도록 할 수 있다. 상기 단계 2)의 열처리 온도가 낮을 경우, 코팅부의 두께가 두꺼워지고 코팅부가 지나치게 많이 형성되어 전술한 바와 같은 코팅부 형성에 따른 이점이 발휘되기 어렵고, 상기 단계 2)의 열처리 온도가 높을 경우, 코발트가 단입자 형태의 리튬 전이금속 산화물 내부로 깊이 도핑되어 상기 표면부에 코팅부가 적절히 형성되지 못할 수 있다.
상기 단계 2)의 열처리는 2시간 내지 12시간, 구체적으로 2시간 내지 9시간, 더욱 구체적으로 2시간 내지 6시간 동안 수행될 수 있다. 상기 열처리가 상기 시간 범위 내로 수행될 경우 우수한 생산성을 나타낼 수 있고, 이와 함께 균일한 소성이 이루어지도록 할 수 있다.
상기 코발트 소스는 코발트를 포함하는 산화물, 수산화물, 옥시수산화물, 탄산염, 황산염, 할라이드, 황화물, 아세트산염, 질산염, 카르복시산염 또는 이들의 조합 등일 수 있으며, 예컨대 Co(OH)2, CoOOH, Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O 또는 Co(SO4)2ㆍ7H2O 등을 들 수 있고, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있으며, 구체적으로 Co(OH)2가 사용될 수 있다.
상기 추가 금속 소스는, 예컨대 Al, Ti, W, B, F, P, Mg, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si, Cr, Hf, Ta, La, Ba, Ce, Sn, Y 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 산화물, 수산화물, 옥시수산화물, 탄산염, 황산염, 할라이드, 황화물, 아세트산염, 질산염, 카르복시산염 또는 이들의 조합 등일 수 있으며, 구체적으로, ZnO, Al2O3, Al(OH)3, AlSO4, AlCl3, Al-이소프로폭사이드(Al-isopropoxide), AlNO3, TiO2, WO3, AlF, H2BO3, HBO2, H3BO3, H2B4O7, B2O3, C6H5B(OH)2, (C6H5O)3B, [(CH3(CH2)3O)3B, C3H9B3O6, (C3H7O3)B, Li3WO4, (NH4)10W12O41ㆍ5H2O, NH4H2PO4 등을 들 수 있으나, 이에 제한되는 것은 아니다.
상기 추가 금속 소스는 상기 추가 금속이 양극 활물질 내 전체 금속 몰수를 기준으로 100 ppm 내지 50,000 ppm, 구체적으로 200 ppm 내지 10,000 ppm이 되도록 하는 양으로 사용될 수 있다. 상기 추가 금속이 상기 범위로 포함될 경우, 전해액과의 부반응이 효과적으로 억제되는 효과가 기대될 수 있고, 전기 화학적 특성이 더욱 향상될 수 있다.
본 발명의 일례에 있어서, 상기 단입자 형태의 리튬 전이금속 산화물 입자는 전이금속산화물 전구체와 리튬원료물질을 혼합하여 1차 소성하고, 1차 소성에 의해 제조된 가소성품을 해쇄 후 2차 소성하여 제조된 것일 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기한 양극 활물질을 포함하는 양극을 제공한다.
구체적으로, 상기 양극은 양극집전체, 및 상기 양극집전체 위에 형성되며, 상기한 양극 활물질을 포함하는 양극 활물질층을 포함한다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 앞서 설명한 양극 활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 용매중에 혼합 또는 분산시켜 제조한 양극 활물질층 형성용 조성물을 양극집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극 활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또한, 다른 방법으로, 상기 양극은 상기 양극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
본 발명의 또 다른 일례에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극집전체 및 상기 음극집전체 상에 위치하는 음극활물질층을 포함한다.
상기 음극집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500 ㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극활물질층은 음극활물질과 함께 선택적으로 바인더 및 도전재를 포함한다.
상기 음극활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOx(0 < x < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또한, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
상기 음극활물질층은 일례로서 음극집전체 상에 음극활물질, 및 선택적으로 바인더 및 도전재를 용매중에 분산시켜 제조한 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극집전체 상에 라미네이션함으로써 제조될 수도 있다.
한편, 상기 리튬이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또한, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치 (pouch)형 또는 코인 (coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
실시예
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
제조예 1
양극 활물질 전구체[조성: Ni0.95Co0.03Mn0.02(OH)2, 평균입경(D50) 3.5 ㎛]와 리튬 원료 물질로 LiOH를 1:1.05의 몰비로 혼합하고, 산소 분위기 하 850℃의 온도에서 9시간 동안 1차 소성하여 가소성품을 제조한 후,
상기 가소성품을 해쇄 후 산소 분위기 하 750℃의 온도에서 9시간 동안 2차 소성하여 단입자 형태의 리튬 전이금속 산화물을 제조하였다.
실시예 1
제조예 1에서 제조된 단입자 형태의 리튬 전이금속 산화물 및 파우더 형태의 코발트 소스 Co(OH)2(화유 코발트사)를 98 몰% 및 2 몰%의 비율로 혼합하였다.
혼합물을 700℃의 온도로 5시간 동안 열처리하여 케이크(cake) 상태의 양극 활물질을 얻어 이를 분쇄하여 파우더 형태의 단입자형 양극 활물질을 제조하였다.
실시예 2
상기 실시예 1에서 혼합물을 740℃의 온도로 열처리한 것을 제외하고는 실시예 1과 마찬가지의 방법으로 파우더 형태의 단입자형 양극 활물질을 제조하였다.
실시예 3
상기 실시예 1에서 혼합물을 660℃의 온도로 열처리한 것을 제외하고는 실시예 1과 마찬가지의 방법으로 파우더 형태의 단입자형 양극 활물질을 제조하였다.
비교예 1
상기 제조예 1에서 제조된 단입자 형태의 리튬 전이금속 산화물을 단입자형 양극 활물질로 사용하였다.
비교예 2
상기 실시예 1에서 혼합물을 400℃의 온도로 열처리한 것을 제외하고는 실시예 1과 마찬가지의 방법으로 파우더 형태의 단입자형 양극 활물질을 제조하였다.
비교예 3
상기 실시예 1에서 혼합물을 900℃의 온도로 열처리한 것을 제외하고는 실시예 1과 마찬가지의 방법으로 파우더 형태의 단입자형 양극 활물질을 제조하였다.
비교예 4
제조예 1에서 제조된 단입자 형태의 리튬 전이금속 산화물 및 파우더 형태의 코발트 소스 Co(OH)2(화유 코발트사)를 99.98 몰% 및 0.02 몰%의 비율로 혼합하였다.
혼합물을 750℃의 온도로 5시간 동안 열처리하여 케이크(cake) 상태의 양극 활물질을 얻어 이를 분쇄하여 파우더 형태의 단입자형 양극 활물질을 제조하였다.
비교예 5
제조예 1에서 제조된 단입자 형태의 리튬 전이금속 산화물 및 파우더 형태의 코발트 소스 Co(OH)2(화유 코발트사)를 99.98 몰% 및 0.02 몰%의 비율로 혼합하였다.
혼합물을 700℃의 온도로 5시간 동안 열처리하여 케이크(cake) 상태의 양극 활물질을 얻어 이를 분쇄하여 파우더 형태의 단입자형 양극 활물질을 제조하였다.
실험예 1
1) EELS 측정 및 Ni 산화수 확인
양극 활물질 파우더를 FEI社의 Helios G4 UX FIB 장비를 이용하여 100 내지 200 nm 두께의 박막 시료로 만든 뒤, FEI社의 Titan G2 80-200 ChemiSTEM 장비와 Gatan Continuum S EELS system을 사용하여 시료의 Ni L3 Energy loss 스펙트럼을 측정하였으며, Ni2+와 Ni3+ 레퍼런스 스펙트럼을 활용한 비선형 리스트-스퀘어(nonlinear least-square) 피팅을 통하여 양극 활물질 최외곽으로부터 중심 방향으로 10 nm 깊이까지의 표면부의 Ni 평균 산화수를 측정하였다.
2) 표면부의 Co/Ni 측정
Thermo fisher社 K-alpha XPS 장비를 이용하여 Electron Spectroscopy for Chemical Analysis (ESCA) 분석을 통하여 10 nm 깊이까지의 양극 활물질 파우더 표면부의 Co/Ni 함량의 비율을 측정한 다음, 그 결과를 표 1에 나타내었다.
표면부의 Co/Ni 측정 (~10 nm) Ni 산화수 (~10 nm)
실시예 1 0.33 2.60
실시예 2 0.29 2.65
실시예 3 0.37 2.57
비교예 1 0.06 2.21
비교예 2 0.68 2.30
비교예 3 0.09 2.35
비교예 4 0.11 2.25
비교예 5 0.12 2.27
표 1을 참조하면, EELS 측정결과 실시예 1 내지 3의 경우 양극 활물질 최외곽으로부터 중심방향으로 10 nm 깊이까지의 표면부에 포함된 Co/Ni 값이 0.1 내지 0.80의 값을 만족하고 있으면서 제조에 사용된 단입자 형태의 리튬 전이금속 산화물의 Co/Ni 비율에 비해 큰 값을 가져 표면부의 코발트 함량이 상대적으로 증가하였음을 확인할 수 있었다. 또한, 실시예 1 내지 3의 10 nm 깊이까지의 표면부에 포함된 Ni의 산화수는 각각 +2.60, +2.65 및 +2.57의 값을 나타내었으며, 이는 제조예 1의 단입자 형태의 리튬 전이금속 산화물을 양극 활물질로 그대로 사용한 비교예 1의 양극 활물질의 표면부가 +2.21의 산화수를 갖는 Ni을 포함하는 것에 비해 높은 값을 나타내는 것이다. 이를 통해, 실시예 1 내지 3은 코발트를 포함하는 코팅부의 영향으로 단입자 형태의 리튬 전이금속 산화물의 조성에 비해 표면부에서의 코발트의 비율이 증가하면서 포함된 Ni의 산화수가 증가하였으며, 양극 활물질 표면부에 존재하던 니켈이 +2의 산화 상태를 갖는 NiO 형태의 퇴화층은 감소되었음을 확인할 수 있었다.
비교예 1의 양극 활물질은 제조예 1의 단입자 형태의 리튬 전이금속 산화물을 양극 활물질로 그대로 사용한 것이고, 비교예 3의 양극 활물질은 코발트 소스와의 혼합 후 열처리가 900℃에서 이루어진 것으로, 10 nm 깊이까지의 표면부에 포함된 Co/Ni 값이 0.1에 비해 작은 값을 나타내었고, 표면부에 함유된 Ni가 +2.4 미만의 산화수를 나타내었다. 또한, 비교예 4 및 5의 양극 활물질은 소량의 코발트 소스와 혼합 후, 열처리가 각각 750℃ 및 700℃에서 이루어진 것으로, 10 nm 깊이까지의 표면부에 포함된 Co/Ni 값은 0.1보다 큰 값을 나타내었지만, 표면부에 함유된 Ni가 각각 +2.25 및 +2.27의 산화수를 나타내어 +2.4 미만이어서 NiO 형태의 퇴화층이 니켈코발트망간 (NCM) 산화물 층상 구조로 충분히 전환되지 않아 적절한 NiO층 감소 효과가 얻어지지 못하였음을 확인할 수 있었다.
한편, 비교예 2는 Co/Ni 값이 0.68을 나타내어 양극 활물질의 외각에 코발트가 확산되며 코팅부가 형성되었음은 확인할 수 있었지만, 충분한 양의 코팅부의 형성에도 불구하고 NiO 형태의 퇴화층이 니켈코발트망간 (NCM) 산화물 층상 구조로 충분히 전환되지 않아 적절한 NiO층 감소 효과가 얻어지지 못하였음을 확인할 수 있었다.
이를 통해 비교예 1 내지 5의 양극 활물질은 표면부에 존재하는 +2가의 산화 상태를 갖는 니켈을 포함하고 있는 NiO 형태의 퇴화층이 상당량 존재하고 있음을 확인할 수 있었다.
실험예 2
양극의 제조
상기 실시예 1에서 제조된 양극 활물질을 이용하여, 도전재로 카본블랙(Denka社, DenkaBlack) 및 바인더로 PVdF(Kureha社, KF1300)를 95:3:2의 중량비(양극 활물질:도전재:바인더)로 용매(대정화금社, N-메틸피롤리돈(NMP))에 첨가하여 양극 활물질층 형성용 조성물을 제조하였다.
상기 제조된 양극 활물질층 형성용 조성물을 두께 20 ㎛인 알루미늄 호일 집전체의 일면에 코팅하고, 135 ℃에서 3 시간 동안 건조하여 양극 활물질층을 형성하였다. 이어서 상기 양극 활물질층에 대하여 롤 프레싱(Roll Perssing) 방식으로 압연하였고, 압연 후 양극 활물질층의 공극률이 20%인 양극을 제조하였다.
실시예 1에서 제조된 양극 활물질을 대신하여 각각 실시예 2 및 3과 비교예 1 내지 5의 양극 활물질을 이용하여 상기 방법과 마찬가지로 양극을 제조하였다.
상기 양극과 함께 리튬 금속을 음극으로 사용하여 코인 형태의 하프셀(coin half-cell)을 제조하였다.
전기화학적 특성 평가
상기에서 제조된 하프셀을 이용하여 하기와 같이 전기화학적 특성을 평가하였다.
제조된 코인 하프 셀들을 각각 25℃에서 0.2 C의 정전류(CC) 4.25 V가 될 때까지 충전하고, 이후 4.25 V의 정전압(CV)으로 충전하여 충전 전류가 0.05 mAh가 될 때까지 1회째 충전을 행하여 충전 용량을 측정하였다. 이후 20분간 방치한 다음 0.2 C의 정전류로 2.5 V가 될 때까지 방전하여 1사이클째의 방전 용량을 측정하였다. 상기 1사이클째의 충/방전 효율을 평가하였다.
동일 방법으로 만충전하고, 0.2 C 방전 전류를 10초간 인가하여 전류 인가 직전과 10초 후 전압의 차이를 전류로 나눠 초기 저항(DCIR)을 측정하였다.
충전용량
(mAh/g)
방전용량
(mAh/g)
효율
(%)
DCIR
(Ω)
실시예 1 244.1 215.3 88.2 22.1
실시예 2 243.8 215.7 88.5 21.6
실시예 3 224.5 214.5 87.7 22.4
비교예 1 240.5 206.1 85.7 28.9
비교예 2 240.7 206.1 85.6 28.6
비교예 3 241.3 207.2 85.9 25.8
비교예 4 241.2 208.3 86.2 26.3
비교예 5 240.9 210.1 86.5 25.7
상기 표 2를 참조하면, 실시예 1 내지 3의 양극 활물질은 비교예 1 내지 5의 양극 활물질에 비해 높은 방전용량과 효율을 나타내면서도 낮은 초기 저항을 가짐을 확인할 수 있다.
이를 통해, 표면부의 외각에 형성되어 있는 코발트를 포함하는 코팅부가 NiO 퇴화층을 상대적으로 코발트 농도가 높은 NCM 구조가 되도록 하여 층상 구조의 붕괴 등으로 인한 양이온 혼합(cation mixing)과 구조적 불안정성을 개선할 수 있고, 결과적으로 저항 증가, 용량 저하, 출력 저하 등의 문제를 해결할 수 있음을 확인할 수 있었다.

Claims (13)

  1. 표면부 및 코어로 구분되는 단입자 형태의 리튬 전이금속 산화물; 및
    상기 표면부 상에 형성된 코발트를 포함하는 코팅부를 포함하고,
    상기 표면부 및 코팅부 전체를 기준으로 코발트 및 니켈을 Co/Ni 0.1 내지 0.8의 값(mol/mol)을 만족하는 양으로 포함하는 양극 활물질.
  2. 제 1 항에 있어서,
    상기 표면부는 층상형(R-3m) 구조를 가지는 양극 활물질.
  3. 제 1 항에 있어서,
    상기 표면부는 상기 단입자 형태의 리튬 전이금속 산화물의 최외각으로부터 중심 방향으로 깊이 1 nm 내지 50 nm까지의 영역인 양극 활물질.
  4. 제 1 항에 있어서,
    상기 표면부가 포함하는 니켈은 +2.36 내지 +3.00의 평균 산화수를 갖는 양극 활물질.
  5. 제 1 항에 있어서,
    상기 코팅부는 상기 표면부의 외각에 상기 표면부의 외각 총면적을 기준으로 10% 내지 100%에 형성되어 있는 양극 활물질.
  6. 제 1 항에 있어서,
    상기 코팅부는 상기 표면부의 외각에 아일랜드 형태로 위치하는 양극 활물질.
  7. 제 1 항에 있어서,
    상기 코팅부는 LiCoO2의 조성을 포함하는 양극 활물질.
  8. 제 1 항에 있어서,
    상기 리튬 전이금속 산화물은 니켈, 코발트 및 망간을 포함하는 리튬 복합 전이금속 산화물인 양극 활물질.
  9. 제 1 항에 있어서,
    상기 리튬 전이금속 산화물은 하기 화학식 1로 표시되는 리튬 복합 전이금속 산화물인 양극 활물질:
    [화학식 1]
    LiaNixCoyM1 zM2 1-x-y-zO2
    상기 화학식 1에서, M1은 Mn 및 Al로 이루어진 군으로부터 선택된 1종 이상이고, M2는 B, Ba, Ce, Cr, F, Mg, V, Ti, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, P, S, Sr, Ta, La 및 Hf로 이루어진 군으로부터 선택된 1종 이상이며, 1.0≤a≤1.3, 0.6≤x<1.0, 0≤y≤0.4, 0≤z≤0.4이다.
  10. 제 1 항에 있어서,
    상기 리튬 전이금속 산화물은 하기 화학식 2로 표시되는 리튬 복합 전이금속 산화물인 양극 활물질:
    [화학식 2]
    LiaNibCocMndM1 eO2
    상기 화학식 2에서, M1은 Al, Zr, B, W, Mo, Cr, Nb, Mg, Hf, Ta, La, Ti, Sr, Ba, Ce, Sn, Y, Zn, F, P 및 S로 이루어진 군으로부터 선택된 1종 이상이며, 0.9≤a≤1.1, 0.8≤b<1, 0<c<0.2, 0<d<0.2, 0≤e<0.1, b+c+d+e=1이다.
  11. 1) 단입자 형태의 리튬 전이금속 산화물 입자 및 코발트 소스를 혼합하는 단계; 및
    2) 상기 단계 1)의 혼합물을 열처리하는 단계를 포함하는 제 1 항의 양극 활물질 제조방법.
  12. 제 11 항에 있어서,
    상기 단계 1)에서 추가 금속 소스를 더 혼합하는 양극 활물질 제조방법.
  13. 제 11 항에 있어서,
    상기 단계 2)의 열처리는 500 내지 800℃에서 이루어지는 양극 활물질 제조방법.
PCT/KR2023/006950 2022-05-20 2023-05-22 양극 활물질 및 이의 제조방법 WO2023224454A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0062252 2022-05-20
KR20220062252 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023224454A1 true WO2023224454A1 (ko) 2023-11-23

Family

ID=88835825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006950 WO2023224454A1 (ko) 2022-05-20 2023-05-22 양극 활물질 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR20230162574A (ko)
WO (1) WO2023224454A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120059608A (ko) * 2009-09-04 2012-06-08 도요타지도샤가부시키가이샤 리튬 2차 전지용 정극 활물질 및 그 이용
KR20190024680A (ko) * 2017-08-30 2019-03-08 삼성전자주식회사 복합양극활물질, 그 제조방법, 이를 포함한 양극 및 리튬전지
KR20190093547A (ko) * 2019-08-02 2019-08-09 울산과학기술원 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
KR20200022903A (ko) * 2018-08-24 2020-03-04 주식회사 엘지화학 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR102144056B1 (ko) * 2019-12-24 2020-08-12 주식회사 에스엠랩 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190094529A (ko) 2018-02-05 2019-08-14 동의대학교 산학협력단 층간 소음 알림 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120059608A (ko) * 2009-09-04 2012-06-08 도요타지도샤가부시키가이샤 리튬 2차 전지용 정극 활물질 및 그 이용
KR20190024680A (ko) * 2017-08-30 2019-03-08 삼성전자주식회사 복합양극활물질, 그 제조방법, 이를 포함한 양극 및 리튬전지
KR20200022903A (ko) * 2018-08-24 2020-03-04 주식회사 엘지화학 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20190093547A (ko) * 2019-08-02 2019-08-09 울산과학기술원 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
KR102144056B1 (ko) * 2019-12-24 2020-08-12 주식회사 에스엠랩 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지

Also Published As

Publication number Publication date
KR20230162574A (ko) 2023-11-28

Similar Documents

Publication Publication Date Title
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2019151834A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021107586A1 (ko) 인편상 흑연을 포함하는 이차전지용 양극 및 이를 포함하는 이차전지
WO2019225969A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021154021A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021187961A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2017095081A1 (ko) 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지
WO2019212321A1 (ko) 양극 활물질의 세정 방법, 이를 포함하는 양극 활물질의 제조 방법 및 이에 의해 제조된 양극 활물질
WO2019013511A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019017643A9 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021187907A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2021125535A1 (ko) 고온 수명 특성 향상에 최적화된 양극 및 이를 포함하는 이차전지
WO2021112606A1 (ko) 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법
WO2022203434A1 (ko) 양극 활물질의 제조방법
WO2016053051A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020067830A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021225316A1 (ko) 수분과의 반응성이 완화된 고-니켈 전극 시트 및 이의 제조방법
WO2021112607A1 (ko) 이차전지용 양극재의 제조방법
WO2021025464A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2019078685A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2022092477A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법
WO2021107363A1 (ko) 도핑 원소가 도핑된 리튬 니켈계 산화물을 포함하는 양극 활물질, 및 이를 포함하는 이차전지
WO2019066585A1 (ko) 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021075830A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 방법에 의해 제조된 리튬 이차전지용 양극 활물질

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807973

Country of ref document: EP

Kind code of ref document: A1