WO2023223643A1 - 架橋性アクリルゴム組成物 - Google Patents

架橋性アクリルゴム組成物 Download PDF

Info

Publication number
WO2023223643A1
WO2023223643A1 PCT/JP2023/009304 JP2023009304W WO2023223643A1 WO 2023223643 A1 WO2023223643 A1 WO 2023223643A1 JP 2023009304 W JP2023009304 W JP 2023009304W WO 2023223643 A1 WO2023223643 A1 WO 2023223643A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
break
acrylic rubber
rubber composition
hours
Prior art date
Application number
PCT/JP2023/009304
Other languages
English (en)
French (fr)
Inventor
智 齋藤
Original Assignee
ユニマテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニマテック株式会社 filed Critical ユニマテック株式会社
Publication of WO2023223643A1 publication Critical patent/WO2023223643A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters

Definitions

  • the present invention relates to a crosslinkable acrylic rubber composition. More specifically, the present invention relates to a crosslinkable acrylic rubber composition that can minimize deterioration in mechanical properties of a crosslinked product due to thermal oxidative deterioration.
  • Typical anti-aging agents for rubber members include phenol-based anti-aging agents and amine-based anti-aging agents.
  • amine-based anti-aging agents are used in rubber members that are used in higher temperature environments.
  • amine-based antiaging agents typified by 4,4'-bis( ⁇ , ⁇ -dimethylbenzyl)diphenylamine are used as antiaging agents (Patent Documents 1 to 4).
  • Patent Document 5 describes that phenothiazine-based anti-aging agents are effective as anti-aging agents for rubber materials.
  • This document describes (A) a diene rubber, (B) a bismaleimide compound, and (C) the following phenothiazine as a rubber material that has excellent vulcanization properties, mechanical properties, and heat aging properties and is particularly suitable for anti-vibration rubber applications. containing compounds are disclosed.
  • R 1 , R 2 hydrogen atom, C 1 to C 8 alkyl group optionally substituted with an aromatic ring, alkoxy group, Halogen atom, cyano group
  • R 3 Hydrogen atom, C 1 to C 6 chain or cyclic alkyl group, vinyl group, aromatic group m, n: 0 to 2 Phenothiazine compounds in which the sulfur atom at the 5th position is -SO 2 - are also known, and are described, for example, in Patent Document 6.
  • Patent Document 6 describes a fused heterocyclic compound represented by the following general formula and an organic material composition containing the same, which is suitable for organic materials such as polymers that are susceptible to oxidative, thermal, or light-induced degradation. On the other hand, it is stated that it is possible to impart high processing stability, heat resistance, and long life.
  • Non-Patent Documents 1 and 2 exemplify anti-aging agents Nocrac G-1 (Ouchi Shinko Kagaku Kogyo Products) and APMA (Seiko Kagaku Products), which have polymerizable unsaturated groups.
  • Patent Documents 10 and 11 a method of crosslinking acrylic rubber in the coexistence of 4-aminodiphenylamine is known (Patent Documents 10 and 11), but in this method, there is a concern that 4-aminodiphenylamine may deteriorate compression set resistance.
  • the present inventors have developed a crosslinkable acrylic rubber composition consisting of an acrylic rubber containing an antiaging component and a carboxyl group, a phenothiazine antiaging agent, a crosslinking agent, and a crosslinking accelerator, to improve the heat resistance of acrylic rubber.
  • a crosslinkable acrylic rubber composition consisting of an acrylic rubber containing an antiaging component and a carboxyl group, a phenothiazine antiaging agent, a crosslinking agent, and a crosslinking accelerator, to improve the heat resistance of acrylic rubber.
  • studies were conducted with the aim of suppressing the remarkable softening deterioration seen in the early stages of thermal oxidative deterioration of acrylic rubber whose main raw material is ethyl acrylate, and the remarkable hardening deterioration seen in the later stages.
  • the present invention has been made in view of the above-mentioned problems, and suppresses the remarkable softening deterioration seen in the early stage of thermal oxidative deterioration of crosslinked acrylic rubber and the remarkable hardening deterioration seen in the latter stage, and improves its mechanical strength.
  • An object of the present invention is to provide a crosslinkable acrylic rubber composition that minimizes the decrease in .
  • the object of the present invention is to (A) general formula [I] (where R 1 is a monovalent aliphatic hydrocarbon group with 1 to 20 carbon atoms, R 2 is a hydrogen atom or a methyl group, and A is a direct bond, an oxygen atom or a sulfur atom).
  • An acrylic elastomer copolymer composed of a copolymerizable anti-aging agent, an alkyl (meth)acrylate monomer and/or an alkoxyalkyl (meth)acrylate monomer, and an ⁇ , ⁇ -unsaturated carboxylic acid monomer.
  • R 3 is a hydrogen atom, a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or the following general formula [III]
  • R 5 is a monovalent aliphatic hydrocarbon group with 1 to 20 carbon atoms
  • R 4 is an aralkyl group having 7 to 20 carbon atoms
  • C polyvalent amine crosslinking agent
  • D Achieved by a crosslinkable acrylic rubber composition containing a crosslinking accelerator.
  • the acrylic elastomer copolymer used in the crosslinkable acrylic rubber composition of the present invention includes an anti-aging component in the polymer side chain, and the copolymer itself is stabilized against thermal oxidative deterioration.
  • the copolymer itself is stabilized against thermal oxidative deterioration.
  • it is possible to prevent the volatilization of anti-aging components into the air or the extraction of anti-aging components by liquid media such as oils and fats or organic solvents, resulting in a variety of effects. It has features that allow the life of acrylic elastomer molded parts to be extended even under degraded environments.
  • the phenothiazine-based anti-aging agent constituting the composition of the present invention has the effect of suppressing significant curing deterioration in the late stage of thermal oxidative deterioration of the crosslinked acrylic rubber copolymerized with the copolymerizable anti-aging agent.
  • a molded member formed by crosslinking the crosslinkable acrylic rubber composition of the present invention exhibits an excellent effect in that deterioration of its mechanical properties can be minimized throughout the thermal oxidative deterioration process.
  • the rate of change in elongation at break (black bar) after a combined test consisting of toluene immersion (room temperature, 168 hours) and air heating (190°C, 300 hours) is compared to the rate of change in elongation at break (black bar) after air heating aging test (190°C, 300 hours). It is compared with the rate of change in elongation at break (white bar) of .
  • the crosslinkable acrylic rubber composition of the present invention is (A) General formula [I] (where R 1 is a monovalent aliphatic hydrocarbon group with 1 to 20 carbon atoms, R 2 is a hydrogen atom or a methyl group, and A is a direct bond, an oxygen atom or a sulfur atom).
  • An acrylic elastomer copolymer composed of a copolymerizable anti-aging agent, an alkyl (meth)acrylate monomer and/or an alkoxyalkyl (meth)acrylate monomer, and an ⁇ , ⁇ -unsaturated carboxylic acid monomer.
  • R 3 is a hydrogen atom, a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or the following general formula [III]
  • R 5 is a monovalent aliphatic hydrocarbon group with 1 to 20 carbon atoms
  • R 4 is an aralkyl group having 7 to 20 carbon atoms
  • (meth)acrylate refers to acrylate or methacrylate.
  • the copolymerizable anti-aging agent represented by the general formula [I] used in the acrylic elastomer copolymer (A) component can be easily produced from phenothiazine, phenoxazine, carbazole, etc.
  • An example of the manufacturing method is shown below. After N-alkylation in the first step, the aromatic ring is formylated or acetylated, and then the carbonyl group is converted into an olefin, thereby producing the desired copolymerizable anti-aging agent.
  • copolymerizable anti-aging agents include, for example: etc.
  • the copolymerizable anti-aging agent [I] contains 100% by weight of the alkyl (meth)acrylate and/or alkoxyalkyl (meth)acrylate monomer. It is used in a proportion of about 0.05 to 5 parts by weight, preferably about 0.1 to 3 parts by weight. If it is used in a proportion smaller than this, a sufficient anti-aging effect cannot be expected; on the other hand, even if it is used in a proportion greater than this, no improvement in the anti-aging effect is expected and it is uneconomical.
  • the alkyl (meth)acrylate monomer and/or alkoxyalkyl (meth)acrylate monomer constituting the acrylic elastomer copolymer of the present invention include alkyl (meth)acrylate having an alkyl group having 1 to 8 carbon atoms; At least one type of (meth)acrylate selected from aralkyl (meth)acrylates having an aralkyl group having 7 to 20 carbon atoms and alkoxyalkyl (meth)acrylates having an alkoxyalkyl group having 2 to 8 carbon atoms is used.
  • alkyl (meth)acrylates examples include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, n-hexyl (meth)acrylate, 2 - Ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, cyclohexyl (meth)acrylate, etc. are used, and two or more of these can also be used in combination, preferably two types: ethyl acrylate, ethyl acrylate, and butyl acrylate. of alkyl acrylates are used.
  • aralkyl (meth)acrylate benzyl (meth)acrylate or the like is used, for example.
  • alkoxyalkyl (meth)acrylates examples include methoxymethyl (meth)acrylate, methoxyethyl (meth)acrylate, ethoxyethyl (meth)acrylate, n-butoxyethyl (meth)acrylate, ethoxypropyl (meth)acrylate, and methoxyethyl (meth)acrylate.
  • Ethoxyethyl (meth)acrylate, ethoxyethoxyethyl (meth)acrylate, etc. are used.
  • the ⁇ , ⁇ -unsaturated carboxylic acid monomer constituting the acrylic elastomer copolymer may be monobasic ⁇ , ⁇ -unsaturated carboxylic acid, dibasic ⁇ , ⁇ -unsaturated carboxylic acid or Dibasic ⁇ , ⁇ -unsaturated carboxylic acid monoalkyl esters are mentioned.
  • Examples of monobasic ⁇ , ⁇ -unsaturated carboxylic acids include acrylic acid and methacrylic acid.
  • dibasic ⁇ , ⁇ -unsaturated carboxylic acids examples include maleic acid, fumaric acid, itaconic acid, and citraconic acid.
  • dibasic ⁇ , ⁇ -unsaturated carboxylic acid monoalkyl esters include monoalkyl esters of maleic acid, fumaric acid, itaconic acid, and citraconic acid. Specific examples include monomethyl maleate, monoethyl maleate, mono-n-propyl maleate, mono-isopropyl maleate, mono-n-butyl maleate, mono-isobutyl maleate, mono-n-hexyl maleate, monocyclohexyl maleate, and fumaric acid.
  • Examples include monomethyl, monoethyl fumarate, mono n-propyl fumarate, monoisopropyl fumarate, mono n-butyl fumarate, monoisobutyl fumarate, mono n-hexyl fumarate, and monocyclohexyl fumarate.
  • the crosslinking site monomer in the acrylic elastomer copolymer (A) component is copolymerized in a proportion of 0.1 to 5% by weight, preferably 0.5 to 3% by weight.
  • acrylic elastomer copolymer (A) In addition to the main components of the acrylic elastomer copolymer (A), other polymerizable unsaturated monomers may be used as necessary.
  • polymerizable unsaturated monomers examples include styrene, ⁇ -methylstyrene, 3-methylstyrene, 4-methylstyrene, 1-vinylnaphthalene, 2-vinylnaphthalene, acrylonitrile, methacrylonitrile, acrylamide, and vinyl acetate. , methyl vinyl ether, ethyl vinyl ether, ethylene, propylene, piperylene, butadiene, isoprene, chloroprene, cyclopentadiene, vinyl chloride, vinylidene chloride, and the like.
  • the acrylic elastomer copolymer component (A) is produced by a common acrylic rubber copolymerization method.
  • the copolymerization reaction can be carried out by any method such as emulsion polymerization, suspension polymerization, solution polymerization, or bulk polymerization, but emulsion polymerization or suspension polymerization is preferably used, and the temperature is about -10 to 100°C. , preferably at a temperature of about 5-80°C.
  • organic peroxides or hydroperoxides such as benzoyl peroxide, dicumyl peroxide, tert-butyl hydroperoxide, cumyl hydroperoxide, p-methylene hydroperoxide, azobisisobutyl Diazo compounds such as lonitrile and azobisisobutyramidine, ammonium salts represented by ammonium persulfate, peroxide salts such as sodium salts and potassium salts, and the like are used alone or as a redox system.
  • organic peroxides or hydroperoxides such as benzoyl peroxide, dicumyl peroxide, tert-butyl hydroperoxide, cumyl hydroperoxide, p-methylene hydroperoxide, azobisisobutyl Diazo compounds such as lonitrile and azobisisobutyramidine, ammonium salts represented by ammonium persulfate, peroxide salts such as sodium salts and potassium salts
  • an anionic or nonionic surfactant is used as an aqueous solution, the pH of which is adjusted with an acid or a base as necessary, and buffered with an inorganic salt.
  • the polymerization reaction is continued until the conversion of the monomer mixture reaches 90% or more.
  • the obtained aqueous latex can be produced by a salt-acid coagulation method, a method using salts such as calcium chloride, magnesium sulfate, sodium sulfate, ammonium sulfate, etc., a method using boron compounds such as boric acid or borax, a coagulation method by heat, and a freeze coagulation method.
  • the resulting copolymer is thoroughly washed with water and dried.
  • This acrylic rubber has a Mooney viscosity PML 1+4 (100° C.) of about 5 to 100, preferably about 20 to 80.
  • Component (A) acrylic elastomer copolymer contains a copolymerizable anti-aging agent represented by general formula [I] 0.1 to 5% by weight, alkyl (meth)acrylate and/or alkoxyalkyl (meth)acrylate monomer 90 -99.8% by weight, ⁇ , ⁇ -unsaturated carboxylic acid monomer 0.1-5% by weight, preferably copolymerizable anti-aging agent represented by general formula [I] 0.3-3% by weight, alkyl (meth)acrylate and/or alkoxyalkyl (meth)acrylate monomer 94 to 99.2% by weight, crosslinking site monomer 0.5 to 3% by weight, preferably with the general formula [I]
  • An acrylic elastomer copolymer composed of the copolymerizable anti-aging agent shown above, an alkyl acrylate monomer, and an ⁇ , ⁇ -unsaturated carboxylic acid monomer is used.
  • a phenothiazine anti-aging agent represented by the general formula [II] is used as the component (B) which is a constituent component of the composition of the present invention.
  • R 3 is a hydrogen atom, a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or the following general formula [III]
  • R 5 is a monovalent aliphatic hydrocarbon group with 1 to 20 carbon atoms
  • R 4 is an aralkyl group having 7 to 20 carbon atoms
  • R 3 being an aliphatic hydrocarbon group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n- Heptyl group, n-octyl group, n-nonyl group, n-undecyl group, n-pentadecyl group, n-heptadecyl group, isopropyl group, 2-butyl group, 2-pentyl group, 3-pentyl group, 2-hexyl group , 3-hexyl group, 2-heptyl group, 3-heptyl group, 4-heptyl group, 2-octyl group, 3-octyl group, 4-octyl group, tert-butyl group, 1,1-dimethyl-1-propyl group, 1,1-dimethyl-1-butyl group, 1,1-
  • R 3 being an aralkyl group having 7 to 20 carbon atoms include benzyl group, ⁇ -methylbenzyl group, and 9-fluorenylmethyl group.
  • R 5 is a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  • aliphatic hydrocarbon groups having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-undecyl group, n-pentadecyl group, n-heptadecyl group, isopropyl group, 2-butyl group, 2-pentyl group, 3-pentyl group, 2-hexyl group, 3-hexyl group, 2- Heptyl group, 3-heptyl group, 4-heptyl group, 2-octyl group, 3-octyl group, 4-octyl group, tert-butyl group, 1,1-dimethyl-1-propyl
  • monovalent aliphatic hydrocarbon groups having 4 to 20 carbon atoms and in which the carbon at the ⁇ -position with respect to the carbonyl group is a tertiary carbon are preferred, such as tertiary butyl group, 1,1-dimethylpropyl group, 1,1-dimethyl-1-butyl group, 1,1-dimethyl-1-pentyl group, 1,1-dimethyl-1-hexyl group, 3-methyl-3-pentyl group, 3-ethyl-3-pentyl group , 3-methyl-3-hexyl group, 2-ethylhexyl group, 1-methyl-1-cyclopentyl group, 1-methyl-1-cyclohexyl group, 1-adamantyl group, etc. are mentioned as preferable groups.
  • Examples of the aralkyl group represented by R 4 include a benzyl group, an ⁇ -methylbenzyl group, and an ⁇ , ⁇ -dimethylbenzyl group, with an ⁇ , ⁇ -dimethylbenzyl group being particularly preferred.
  • a phenothiazine anti-aging agent in which R 3 is a hydrogen atom can be produced by the method described in Patent Document 6.
  • phenothiazine is reacted with ⁇ -methylstyrene in the presence of an acidic catalyst to form 3,7-bis( ⁇ , ⁇ -dimethylbenzyl)-10H-phenothiazine (hereinafter abbreviated as CD-S), and then treated with an oxidizing agent.
  • CD-S 3,7-bis( ⁇ , ⁇ -dimethylbenzyl)-10H-phenothiazine-5,5-dioxide
  • CD-S is treated with a base, and then N- After alkylation, the desired phenothiazine antiaging agent can be produced by oxidizing the sulfur atom.
  • CD-SO 2 obtained in Patent Document 6 may be reacted with a base and then reacted with a halide of an aliphatic hydrocarbon having 1 to 20 carbon atoms.
  • R 3 is an acyl group represented by the general formula [III], it can be produced by the method described in Patent Document 12. Specifically, the desired phenothiazine anti-aging agent is produced by N-acylating CD-S with an acyl halide in the presence of a basic organic compound or basic inorganic compound, and then oxidizing the sulfur atom. Can be done.
  • phenothiazine anti-aging agent represented by the general formula [III] include: 3,7-bis( ⁇ , ⁇ -dimethylbenzyl)-10H-phenothiazine-5,5-dioxide, 10-methyl-3,7-bis( ⁇ , ⁇ -dimethylbenzyl)-10H-phenothiazine-5,5-dioxide, 10-n-propyl-3,7-bis( ⁇ , ⁇ -dimethylbenzyl)-10H-phenothiazine-5,5-dioxide, 10-isopropyl-3,7-bis( ⁇ , ⁇ -dimethylbenzyl)-10H-phenothiazine-5,5-dioxide, 10-benzyl-3,7-bis( ⁇ , ⁇ -dimethylbenzyl)-10H-phenothiazine-5,5-dioxide, 10-pivaloyl-3,7-bis( ⁇ , ⁇ -dimethylbenzyl)-10H-phenothiazine-5,5-dioxide
  • the phenothiazine anti-aging agent (B) is used in an amount of about 0.01 to 5 parts by weight, preferably about 0.1 to 5 parts by weight, per 100 parts by weight of the acrylic elastomer copolymer (A). If the amount of anti-aging agent is less than this, the mechanical properties of the crosslinked acrylic rubber will deteriorate significantly due to thermal oxidative deterioration. In particular, it is difficult to suppress significant curing deterioration in the latter stages of thermal oxidative deterioration.
  • Component polyvalent amine crosslinking agents include aliphatic polyvalent amine compounds, carbonates of aliphatic polyvalent amine compounds, aliphatic polyvalent amine compounds whose amino groups are protected with organic groups, and aromatic polyvalent amines. Compounds etc. can be used.
  • Examples of aliphatic polyvalent amine compounds include hexamethylene diamine. Furthermore, examples of carbonates of aliphatic polyvalent amine compounds include hexamethylene diamine carbamate. Examples of the aliphatic polyvalent amine whose amino group is protected with an organic group include N,N'-dicinnamylidene-1,6-hexanediamine and the compound disclosed in Patent Document 11.
  • aromatic polyvalent amine compounds examples include 4,4′-methylenedianiline, m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenyl ether, and 4,4′-bis(4-aminophenoxy)biphenyl.
  • Examples include dianiline, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, and 4,4'-diaminobenzanilide.
  • polyvalent amine compounds listed above can be used alone or in combination of two or more, and are preferably hexamethylene diamine carbamate, 4,4'-diaminodiphenyl ether, 2,2-bis[4 -(4-aminophenoxy)phenyl]propane is used.
  • the amount of the crosslinking agent added is appropriately adjusted depending on the desired crosslinking rate, mechanical strength of the crosslinked product, compression set resistance, and thermal oxidation resistance.
  • the polyvalent amine crosslinking agent (C) is used in an amount of about 0.01 to 5 parts by weight, preferably about 0.05 to 3 parts by weight, based on 100 parts by weight of the acrylic elastomer copolymer (A). If the amount of the polyvalent amine crosslinking agent is less than this, no improvement in compression set resistance is expected. On the other hand, if more than this amount is used, there is a risk that the heat oxidation deterioration resistance of the acrylic rubber will deteriorate.
  • crosslinking promoter (D) examples include crosslinking promoters such as a guanidine compound, a diazabicycloalkene compound, or an organic acid salt thereof.
  • guanidine compound examples include tetramethylguanidine, tetraethylguanidine, 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, and the like. Preferably it is 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine or a combination thereof.
  • diazabicycloalkene compound 1,8-diazabicyclo[5.4.0]-7-undecene is preferred.
  • organic acid salt of a diazabicycloalkene compound an organic acid salt of 1,8-diazabicyclo[5.4.0]-7-undecene is preferable.
  • Examples of the organic acid used in the organic acid salt of 1,8-diazabicyclo[5.4.0]-7-undecene include organic monobasic acids and organic dibasic acids.
  • organic monobasic acids examples include n-hexanoic acid, n-heptanoic acid, n-octanoic acid, 2-ethylhexanoic acid, n-capric acid, n-lauric acid, p-toluenesulfonic acid, phenol, and the like.
  • organic dibasic acids include adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, terephthalic acid, orthophthalic acid, and phthalic acid. Carboxylic or dicarboxylic acids are preferred.
  • the crosslinking accelerator component (D) is used in an amount of about 0.1 to 5 parts by weight, preferably about 0.3 to 3 parts by weight, based on 100 parts by weight of the acrylic elastomer copolymer component (A). If the amount of the crosslinking accelerator is less than this, the crosslinking rate may be significantly reduced, the mechanical properties of the acrylic rubber after crosslinking may be reduced, and the mechanical properties may be reduced after heat aging. On the other hand, if more than this is used, there is a risk that the heat oxidation deterioration resistance or compression set resistance of the acrylic rubber will deteriorate.
  • the crosslinkable acrylic rubber composition of the present invention may contain, as necessary, fillers, processing aids, plasticizers, softeners, colorants, stabilizers, adhesion aids, mold release agents, conductivity imparting agents, etc. Contains various additives such as thermal conductivity imparting agent, surface non-adhesive agent, tackifier, flexibility imparting agent, heat resistance improver, flame retardant, ultraviolet absorber, oil resistance improver, scorch inhibitor, lubricant, etc. can do.
  • silica such as basic silica and acidic silica
  • metal oxides such as zinc oxide, calcium oxide, titanium oxide, and aluminum oxide
  • metal hydroxides such as magnesium hydroxide, aluminum hydroxide, and calcium hydroxide
  • Carbonates such as magnesium carbonate, aluminum carbonate, calcium carbonate, barium carbonate
  • Silicates such as magnesium silicate, calcium silicate, sodium silicate, aluminum silicate
  • Sulfates such as aluminum sulfate, calcium sulfate, barium sulfate
  • Metal sulfides such as molybdenum disulfide, iron sulfide, copper sulfide; synthetic hydrotalcite, diatomaceous earth, asbestos, lithopone (zinc sulfide/barium sulfide), graphite, carbon black (MT carbon black, SRF carbon black, FEF carbon) carbon fluoride, calcium fluoride, coke, fine quartz powder, zinc white, talc, mica powder, wollastonite, carbon fiber,
  • Processing aids include higher fatty acids such as stearic acid, oleic acid, palmitic acid, and lauric acid; higher fatty acid salts such as sodium stearate and zinc stearate; higher fatty acid amides such as stearic acid amide and oleic acid amide; Higher fatty acid esters such as ethyl, higher aliphatic amines such as stearylamine and oleylamine; Petroleum waxes such as carnauba wax and ceresin wax; Polyglycols such as ethylene glycol, glycerin and diethylene glycol; Aliphatic hydrocarbons such as vaseline and paraffin; Examples include silicone oil, silicone polymer, low molecular weight polyethylene, phthalate esters, phosphate esters, rosin, (halogenated) dialkylamine, (halogenated) dialkyl sulfone, and surfactants.
  • higher fatty acids such as stearic acid, oleic acid, palmitic acid
  • plasticizers include epoxy resins, phthalic acid derivatives, and sebacic acid derivatives.
  • softeners include lubricating oils, process oils, coal tar, castor oil, and calcium stearate.
  • antiaging agents include phenylene. Examples include diamines, phosphates, quinolines, cresols, phenols, and dithiocarbamate metal salts.
  • crosslinkable acrylic rubber composition of the present invention which consists of acrylic rubber, a phenothiazine anti-aging agent, a crosslinking agent, and a crosslinking accelerator, and is mixed with a Banbury mixer, a pressure kneader, Mixed using an open roll or the like.
  • the crosslinking of the obtained crosslinkable mixture is carried out by primary crosslinking at about 120 to 250°C for about 1 to 60 minutes and, if necessary, oven crosslinking (secondary crosslinking) at about 120 to 200°C for about 1 to 20 hours. It will be done.
  • This highly viscous liquid was dissolved in 250 ml of toluene and poured into a 1000 ml three-necked flask equipped with a magnetic stirrer, a thermometer, and a reflux condenser. Next, 80 g of acetic acid and 107 g of 30% hydrogen peroxide solution were sequentially added and reacted at 100° C. for 2 hours.
  • Reference example 4 [Production of acrylic elastomer copolymer A] In a separable flask equipped with a thermometer, stirrer, nitrogen gas inlet tube and Dimroth condenser, Water 187 parts by weight Sodium lauryl sulfate 2 Polyoxyethylene lauryl ether 2 Charge monomer mixture Ethyl acrylate [EA] 97.4 ⁇ Mono-n-butyl fumarate [MBF] 1.6 ⁇ Compound (a) of Reference Example 1 1.0 After charging and thoroughly removing oxygen from the system by replacing it with nitrogen gas, Sodium formaldehyde sulfoxylate 0.008 parts by weight (Fuji Film Wako Pure Chemical Industries product Rongalit) Tertiary butyl hydroperoxide 0.0047 ⁇ (NOF product Perbutyl H69) was added to start the polymerization reaction at room temperature, and the reaction was continued until the polymerization conversion rate reached 90% or more.
  • the obtained aqueous latex was coagulated with a 10% by weight aqueous sodium sulfate solution, washed with water, and dried to obtain acrylic rubber A.
  • the Mooney viscosity PML 1+4 (100°C) of the obtained acrylic rubber elastomer copolymer A was 31.
  • Reference comparative example 1 Acrylic rubber B was obtained by carrying out a copolymerization reaction in the same manner as in Reference Example 4, except that the following monomer mixture was used.
  • the obtained acrylic elastomer copolymer B had a Mooney viscosity PML l+4 (100°C) of 32.
  • the mole fraction composition is determined from the formula of Reference Example 4, Compound (a): 0.20 mol%, EA + MBF: 99.80 mol% Met. In addition, the approximate weight fraction composition is obtained from the formula of Reference Example 4, Compound (a): 0.5% by weight, EA+MBF: 99.5% by weight.
  • the mole fraction composition is determined from the formula of Reference Example 4, Compound (a): 0.31 mol%, EA + BA + MBF: 99.69 mol% Met.
  • the approximate weight fraction composition is obtained from the following formula, Compound (a): 0.7% by weight, EA+BA+MBF: 99.3% by weight.
  • Compound (a) of Reference Example 1 0.5 ⁇
  • the mole fraction composition was determined from the formula of Reference Example 4, compound (a): 0.24 mol%, EA+BA+MBF: 99.76 mol% Met. Further, the approximate weight fraction composition was determined from the formula of Reference Example 6: Compound (a): 0.5% by weight, EA+BA+MBF: 99.5% by weight.
  • Acrylic elastomer copolymer A 100 parts by weight SRF carbon black (Tokai Carbon Products Seast GS) 60 Stearic acid (Miyoshi oil products TST) 1 Polyoxyethylene stearyl ether phosphate 0.5 ⁇ (Toho Chemical Industries Phosphanol RL-210) Crosslinking accelerator (Safic-Alcan product Vulcofac ACT55) 1 Hexamethylene diamine carbamate (Unimatec product Cheminox AC6F) 0.6 ⁇ CD-SO 2 -PIV 1 ⁇
  • acrylic elastomer copolymer A, SRF carbon black, stearic acid, and polyoxyethylene stearyl ether phosphoric acid were mixed in a Banbury mixer. The obtained mixture and the remaining components were mixed using an open roll to obtain a crosslinkable acrylic rubber composition.
  • Heat aging test - oil immersion - air heat aging combined test An air heating aging test was conducted at 175°C for 150 hours in accordance with JIS K6257, which corresponds to ISO 188, and JIS K6257, which corresponds to ISO 1817, was conducted.
  • K6258 we conducted an oil (IRM903 oil) immersion test at 150°C for 168 hours, and in addition, we conducted a JIS immersion test that corresponds to ISO 188.
  • Comparative example 2 In Example 1, acrylic elastomer copolymer B was used instead of acrylic elastomer copolymer A.
  • Comparative example 3 In Comparative Example 2, 1 part by weight of 4,4'-bis( ⁇ , ⁇ -dimethylbenzyl)diphenylamine (Nocrack CD, a product of Ouchi Shinko Kagaku Kogyo) was used instead of CD-SO 2 -PIV.
  • Nocrack CD a product of Ouchi Shinko Kagaku Kogyo
  • Example 2 In Example 1, the following components were used as a crosslinkable acrylic rubber composition.
  • Acrylic elastomer copolymer C 100 parts by weight SRF carbon black (Seest GS) 70 Stearic acid (TST) 1 ⁇ Polyoxyethylene stearyl ether phosphate 0.5 ⁇ (Phosphanol RL-210)
  • Crosslinking accelerator (Vulcofac ACT55) 1 2,2-bis[4-(4-aminophenoxy)phenyl]propane 1.2 ⁇ (Tokyo Kasei Kogyo products) CD-SO 2 1 ⁇
  • Comparative example 6 In Comparative Example 5, 1 part by weight of 4,4'-bis( ⁇ , ⁇ -dimethylbenzyl)diphenylamine (Nocrac CD) was used instead of CD-SO 2 .
  • Example 3 In Example 1, the following components were used as a crosslinkable acrylic rubber composition.
  • Acrylic elastomer copolymer D 100 parts by weight SRF carbon black (Seest GS) 70 Stearic acid (TST) 1 ⁇ Polyoxyethylene stearyl ether phosphate 0.5 ⁇ (Phosphanol RL-210) Stearylamine (Fermin 80S) 1 ⁇ Crosslinking accelerator (Vulcofac ACT55) 1 Hexamethylene diamine carbamate (Cheminox AC6F) 0.6 ⁇ CD-SO 2 1 ⁇
  • Comparative example 9 In Comparative Example 8, 1 part by weight of 4,4'-bis( ⁇ , ⁇ -dimethylbenzyl)diphenylamine (Nocrac CD) was used instead of CD-SO 2 .
  • Example 4 In Example 1, the following components were used as a crosslinkable acrylic rubber composition, and the crosslinked acrylic rubber composition was subjected to a toluene immersion-air heating aging composite test.
  • Acrylic elastomer copolymer F 100 parts by weight SRF carbon black (Seest GS) 70 Stearic acid (TST) 1 ⁇ Polyoxyethylene stearyl ether phosphate 0.5 ⁇ (Phosphanol RL-210)
  • Crosslinking accelerator Vulcofac ACT55
  • CD-SO 2 1 ⁇
  • Toluene immersion-air heating aging combined test After conducting a toluene immersion test at room temperature for 168 hours in accordance with JIS K6258, which corresponds to ISO 1817, the toluene was removed from the test piece by air drying, and then 190 °C
  • Comparative example 12 In Comparative Example 11, 1 part by weight of 4,4'-bis( ⁇ , ⁇ -dimethylbenzyl)diphenylamine (Nocrac CD) was used instead of CD-SO 2 .
  • ⁇ Eb which indicates the degree of extraction of anti-aging agent from the crosslinked product by oil immersion test, was calculated from the following formula, and it was -12 for Example 1 and -10 for Comparative Example 1.
  • Comparative Example 2 was -25
  • Comparative Example 3 was -95.
  • ⁇ Eb ⁇ Eb (change rate of elongation at break in combined air heating aging test - oil immersion test - air heating aging test) - ⁇ Eb (change rate in elongation at break in air heating aging test for 300 hours at 190°C)
  • Example 4 ⁇ Eb, which indicates the degree of extraction of the antiaging agent from the crosslinked product by the toluene immersion test, was calculated using the following formula. -7, Comparative Example 11 was -28, and Comparative Example 12 was -38.
  • ⁇ Eb ⁇ Eb (change rate of elongation at break in toluene immersion test - air heating aging combined test) - ⁇ Eb (rate of change in elongation at break in 190°C, 300 hours air heating aging test)
  • Example 1 and Comparative Example 1 the anti-aging component is chemically bonded to the acrylic elastomer copolymer, so it is presumed that it escapes extraction by oil, and as a result, the decrease in elongation at break is suppressed.
  • Ru. (4) It is considered that the larger the absolute value of ⁇ Eb, which indicates the degree of extraction of the anti-aging agent from the cross-linked product in the toluene immersion test, is, the more the anti-aging agent is extracted and the lower the residual rate in the cross-linked product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A) 一般式〔I〕 (R1:炭素数1~20の一価の脂肪族炭化水素基、R2:水素原子またはメチル基、A:直接結合、酸素原子または硫黄原子)で表される共重合性老化防止剤、アルキル(メタ)アクリレート単量体および/またはアルコキシアルキル(メタ)アクリレート単量体およびα、β不飽和カルボン酸単量体から構成されるアクリルエラストマー共重合体、(B)フェノチアジン系老化防止剤、(C)多価アミン架橋剤および(D) 架橋促進剤を含有してなる架橋性アクリルゴム組成物。

Description

架橋性アクリルゴム組成物
 本発明は、架橋性アクリルゴム組成物に関する。さらに詳しくは、熱酸化劣化による架橋物の機械的物性の低下を最小限に抑えることを可能とする架橋性アクリルゴム組成物に関する。
 地球規模の気候変動対策およびエネルギーの効率利用の観点から、自動車エンジンに代表される内燃機関で排出される二酸化炭素およびNOxガス等の排出量規制が一層厳しくなる傾向にある。その対応策として、自動車エンジンには高出力化、高熱効率化および排出ガスの低減と無害化が要求され、このためエンジンルーム内の温度は上昇する傾向にある。それに伴い、その周辺で使用されるゴム、プラスチックス等の高分子材料には、さらなる耐熱性の向上が求められている。
 具体例として、エンジンの燃費改善を目的としたターボチャージャーシステムを搭載した車両の普及が進んでいる。このターボチャージャーからインタークーラやエンジンに導かれる空気は高温高圧であることから、これを輸送するゴム製ホース材料には高い耐熱性が求められている。
 このように、自動車のエンジンに使用される高分子材料の使用環境の高温化や長寿命化の要求に伴い、その対策として例えばゴム製品部材の原料ゴム自体の耐熱性を向上させる取り組みや、適切な老化防止剤をゴム製品部材に添加することが行われている。
 ゴム部材の代表的な老化防止剤としては、フェノール系老化防止剤やアミン系老化防止剤が用いられ、特により高温の使用環境下で用いられるゴム部材ではアミン系老化防止剤が用いられる。
 例えば、アクリルゴムの場合、老化防止剤として、4,4′-ビス(α,α-ジメチルベンジル)ジフェニルアミンによって代表されるアミン系老化防止剤が用いられている(特許文献1~4)。
 また、アクリルゴム自体の耐熱性を向上させる取り組みとして、架橋部位単量体を活性塩素含有不飽和単量体からα,β-不飽和カルボン酸単量体に変えることにより、高温環境下の使用に耐え得る強固な架橋構造を形成させることが行われている。
 しかしながら、原料ゴム自体の耐熱性向上およびアミン系老化防止剤をもってしても、昨今の耐熱要求を十分に満足することはできない。
 特許文献5では、ゴム材料の老化防止剤としてフェノチアジン系老化防止剤が有効であることが記載されている。
 この文献には、加硫特性、機械的特性および熱老化特性にすぐれ、防振ゴム用途に特に好適なゴム材料として、(A)ジエン系ゴム、(B)ビスマレイミド化合物および(C)下記フェノチアジン化合物を含有するものが開示されている。
Figure JPOXMLDOC01-appb-I000004
           R1、R2:水素原子、芳香族環で置換されてもよい
               C1~C8のアルキル基、アルコキシ基、
               ハロゲン原子、シアノ基
             R3:水素原子、C1~C6の鎖状または環状の
               アルキル基、ビニル基、芳香族基
            m、n:0~2
5位の硫黄原子が-SO2-のフェノチアジン化合物も知られており、例えば特許文献6に記載されている。
 特許文献6には、下記一般式で示される縮合複素環化合物およびそれを含有する有機材料組成物が記載されており、酸化的、熱的あるいは光誘発性崩壊を受け易いポリマー等の有機材料に対し、高い加工安定性、耐熱性、長寿命を付与することが可能であると述べられている。
Figure JPOXMLDOC01-appb-I000005
         Y:化学的な単結合、-S(=O)-、-SO2-
       Ra、Rb:置換基を有してもよいC1~C30有機基
       Za、Zb:化学的な単結合、-SO2-
       X1、X2:水素原子、ハロゲン原子、アルキル基、シアノ基、
           ニトロ基、-OR1、-O-CO-R1、-CO-OR1、-O-CO-OR1
           -NR2R3、-NR2-CO-R1、-CO-NR2R3、-O-CO-NR2R3
        n、m:0~2、ただしいずれか一方は0ではない
 また、ゴム部材からのアミン系老化防止剤の揮散を防止するため、アミン系老化防止剤の高分子量化および高融点化の検討がなされている。しかしながら、老化防止剤の高分子量化、高融点化に伴い、ゴムに対する分散性およびゴム内部での移行性が低下するなどの問題がある。
 老化防止剤の揮散を防止し、高温環境下におけるゴム部品の長寿命化を図る目的のため、重合性不飽和基を有する老化防止剤を原料ゴムに共重合する方法も検討されている(特許文献7)。
 例えば、非特許文献1~2には重合性不飽和基を有する老化防止剤ノクラックG-1(大内新興化学工業製品)やAPMA(精工化学製品)が例示されている。
Figure JPOXMLDOC01-appb-I000006
 しかしながら、上記老化防止剤では、ジフェニルアミノ基のラジカル重合禁止作用により、重合性不飽和単量体とのラジカル共重合は実用的に困難である。
 また、エラストマー性重合体の変性反応により、ジフェニルアミノ構造を重合体に導入する方法がいくつか開示されている。例えば、オレフィン系不飽和基を有するエラストマーの側鎖をヒドロホルミル化した後、ジフェニルアミノ基を導入する方法(特許文献8)、ジエン系共重合体に遊離基発生剤の存在下で無水マレイン酸を付加させた後、ジフェニルアミノ基を導入する方法(特許文献9)などが知られている。しかしながら、これらの方法は、もととなる共重合体を製造した後にジフェニルアミノ基を導入する変性工程がさらに必要となり、製造コストの面から実用的ではない。
 さらに、4-アミノジフェニルアミン共存下でアクリルゴムを架橋する方法が知られているが(特許文献10および11)、この方法では4-アミノジフェニルアミンが耐圧縮永久歪特性を悪化させる懸念がある。
 このように従来技術では、原料ゴム自体の耐熱性向上、各種老化防止剤の性能向上および熱老化防止成分を原料ゴムに化学的に結合させる方法の何れをもってしても、昨今の耐熱要求を十分に満足することはできない。
特開平11-21411号公報 WO 2011/58918 A1 特開2010-254579号公報 WO 2006/001299 A1 特開2015-227402公報 WO 2011/093443 A1 特開2009-209268号公報 特開平4-264106号公報 特開平5-230132号公報 WO 2020/158132 A1 特開2009-84514号公報 特開2020-111552号公報
Rubber Chem.Technol.,46巻,106頁(1973) Rubber Chem.Technol.,52巻,883頁(1979)
 上記の問題に対して、本発明者等は老化防止成分およびカルボキシル基を含有するアクリルゴム、フェノチアジン系老化防止剤、架橋剤および架橋促進剤からなる架橋性アクリルゴム組成物により、アクリルゴムの耐熱性向上を図れないか否かについての検討を行った。特に、エチルアクリレートを主要原料とするアクリルゴムの熱酸化劣化初期にみられる顕著な軟化劣化およびその後期にみられる顕著な硬化劣化を抑制することを目的として検討を行った。
 本発明は、上述の課題に鑑みてなされたものであり、アクリルゴム架橋物の熱酸化劣化初期にみられる顕著な軟化劣化およびその後期にみられる顕著な硬化劣化を抑制し、その機械的強度の低下を最小限に抑える架橋性アクリルゴム組成物を提供することにある。
 かかる本発明の目的は、(A) 一般式〔I〕
Figure JPOXMLDOC01-appb-I000007
(ここで、R1は炭素数1~20の一価の脂肪族炭化水素基であり、R2は水素原子またはメチル基であり、Aは直接結合、酸素原子または硫黄原子である)で表される共重合性老化防止剤、アルキル(メタ)アクリレート単量体および/またはアルコキシアルキル(メタ)アクリレート単量体およびα,β-不飽和カルボン酸単量体から構成されるアクリルエラストマー共重合体、
(B) 一般式〔II〕で表されるフェノチアジン系老化防止剤
Figure JPOXMLDOC01-appb-I000008
〔ここで、R3は水素原子、炭素数1~20の一価の脂肪族炭化水素基、炭素数7~20のアラルキル基または下記一般式〔III〕
Figure JPOXMLDOC01-appb-I000009
(ここで、R5は炭素数1~20の一価の脂肪族炭化水素基である)
で表されるアシル基であり、R4は炭素数7~20のアラルキル基である〕、
(C) 多価アミン架橋剤
および
(D) 架橋促進剤
を含有してなる架橋性アクリルゴム組成物によって達成される。
 本発明の架橋性アクリルゴム組成物に用いられるアクリルエラストマー共重合体は、高分子側鎖に老化防止成分を内包し、共重合体自体が熱酸化劣化に対して安定化されている。また、それを架橋してなる成形部材においては、空気中への老化防止成分の揮散、または油脂や有機溶剤等の液状媒質による老化防止成分の抽出を防止することができ、結果的に多様な劣化環境下おけるアクリルエラストマー成形部材の長寿命化を可能とする特徴を備えている。
 また、高分子側鎖に化学的に結合した老化防止成分の架橋作用により、熱酸化劣化初期にみられる軟化劣化を抑制し、機械的強度の低下を抑制することができる。
 さらに、本発明の組成物を構成するフェノチアジン系老化防止剤は、共重合性老化防止剤が共重合されたアクリルゴム架橋物の熱酸化劣化後期において、顕著な硬化劣化を抑制する効果を奏する。結果的に、本発明の架橋性アクリルゴム組成物を架橋してなる成形部材は、熱酸化劣化過程全般を通してその機械的物性の低下を最小限にすることができるといったすぐれた効果を奏する。
190℃におけるアクリルゴム架橋物の100%モジュラスの経時変化を、図式化(実施例1:-●-、比較例1:- - ● - -、比較例2:- -▲- -、比較例3:- - ◆ - -、;図1~3共通)したものである。 190℃におけるアクリルゴム架橋物の破断時強度の経時変化を、図式化したものである。 190℃におけるアクリルゴム架橋物の破断時伸びの経時変化を、図式化したものである。 空気加熱(175℃、150時間)、IRM903オイル浸漬(150℃、168時間)および空気加熱(190℃、300時間)からなる複合試験を行った後の破断時強度変化率(黒棒)を、空気加熱老化試験(190℃、300時間)後の破断時強度変化率(白棒)と比較したものである。 空気加熱(175℃、150時間)、IRM903オイル浸漬(150℃、168時間)および空気加熱(190℃、300時間)からなる複合試験を行った後の破断時伸び変化率(黒棒)を、空気加熱老化試験(190℃、300時間)後の破断時伸び変化率(白棒)と比較したものである。 190℃におけるアクリルゴム架橋物の100%モジュラスの経時変化を、図式化(実施例2:-●-、比較例4:- - ● - -、比較例5:- -▲- -、比較例6:- - ◆ - -、;図6~8共通)したものである。 190℃におけるアクリルゴム架橋物の破断時強度の経時変化を、図式化したものである。 190℃におけるアクリルゴム架橋物の破断時伸びの経時変化を、図式化したものである。 190℃におけるアクリルゴム架橋物の100%モジュラスの経時変化を、図式化(実施例3:-●-、比較例7:- - ● - -、比較例8:- -▲- -、比較例9:- - ◆ - -、;図9~11共通)したものである。 190℃におけるアクリルゴム架橋物の破断時強度の経時変化を、図式化したものである。 190℃におけるアクリルゴム架橋物の破断時伸びの経時変化を、図式化したものである。 190℃におけるアクリルゴム架橋物の100%モジュラスの経時変化を、図式化(実施例4:-●-、比較例10:- - ● - -、比較例11:- -▲- -、比較例12:- - ◆ - -、;図12~14共通)したものである。 190℃におけるアクリルゴム架橋物の破断時強度の経時変化を、図式化したものである。 190℃におけるアクリルゴム架橋物の破断時伸びの経時変化を、図式化したものである。 トルエン浸漬(室温、168時間)および空気加熱(190℃、300時間)からなる複合試験を行った後の破断時伸び変化率(黒棒)を、空気加熱老化試験(190℃、300時間)後の破断時伸び変化率(白棒)と比較したものである。
 本発明の架橋性アクリルゴム組成物は、
(A) 一般式〔I〕
Figure JPOXMLDOC01-appb-I000010
(ここで、R1は炭素数1~20の一価の脂肪族炭化水素基であり、R2は水素原子またはメチル基であり、Aは直接結合、酸素原子または硫黄原子である)で表される共重合性老化防止剤、アルキル(メタ)アクリレート単量体および/またはアルコキシアルキル(メタ)アクリレート単量体およびα,β-不飽和カルボン酸単量体から構成されるアクリルエラストマー共重合体、
(B) 一般式〔II〕で表されるフェノチアジン系老化防止剤
Figure JPOXMLDOC01-appb-I000011
〔ここで、R3は水素原子、炭素数1~20の一価の脂肪族炭化水素基、炭素数7~20のアラルキル基または下記一般式〔III〕
Figure JPOXMLDOC01-appb-I000012
(ここで、R5は炭素数1~20の一価の脂肪族炭化水素基である)
で表されるアシル基であり、R4は炭素数7~20のアラルキル基である〕、
(C) 多価アミン架橋剤
および
(D) 架橋促進剤
を含有して構成される。ここで、(メタ)アクリレートはアクリレートまたはメタクリレートを指している。
 (A)成分アクリルエラストマー共重合体に用いられる一般式〔I〕で表される共重合性老化防止剤は、フェノチアジン、フェノキサジン、カルバゾール等から容易に製造することができる。製造法の一例を以下に示す。
 
Figure JPOXMLDOC01-appb-I000013
 
第一工程でN-アルキル化した後、芳香環をホルミル化またはアセチル化し、次いでカルボニル基をオレフィンに変換することにより、目的とする共重合性老化防止剤を製造することができる。
 共重合性老化防止剤の具体例としては、例えば
Figure JPOXMLDOC01-appb-I000014
等が挙げられる。
 共重合性老化防止剤と重合性不飽和単量体との共重合に際し、共重合性老化防止剤〔I〕は、アルキル(メタ)アクリレートおよび/またはアルコキシアルキル(メタ)アクリレート単量体100重量部に対して約0.05~5重量部、好ましくは約0.1~3重量部の割合で用いられる。これより少ない割合で用いられると、十分な老化防止効果が見込まれず、一方これより多い割合で用いられたとしても、老化防止効果の向上は見込まれず、不経済である。
 本発明のアクリルエラストマー共重合体を構成するアルキル(メタ)アクリレート単量体および/またはアルコキシアルキル(メタ)アクリレート単量体としては、炭素数1~8のアルキル基を有するアルキル(メタ)アクリレート、炭素数7~20のアラルキル基を有するアラルキル(メタ)アクリレートおよび炭素数2~8のアルコキシアルキル基を有するアルコキシアルキル(メタ)アクリレートから選ばれる少なくとも1種類の(メタ)アクリレートが用いられる。
 アルキル(メタ)アクリレートとしては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等が用いられ、これらは2種以上を併用することもでき、好ましくはエチルアクリレート、エチルアクリレートおよびブチルアクリレートの2種類のアルキルアクリレートが用いられる。
 アラルキル(メタ)アクリレートとしては、例えばベンジル(メタ)アクリレート等が用いられる。
 また、アルコキシアルキル(メタ)アクリレートとしては、例えばメトキシメチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、n-ブトキシエチル(メタ)アクリレート、エトキシプロピル(メタ)アクリレート、メトキシエトキシエチル(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート等が用いられる。
 (A)成分アクリルエラストマー共重合体を構成するα,β-不飽和カルボン酸単量体としては、一塩基性α,β-不飽和カルボン酸、二塩基性α,β-不飽和カルボン酸または二塩基性α,β-不飽和カルボン酸モノアルキルエステルが挙げられる。
 一塩基性α,β-不飽和カルボン酸としては、アクリル酸、メタクリル酸等が挙げられる。
 二塩基性α,β-不飽和カルボン酸としては、マレイン酸、フマル酸、イタコン酸、シトラコン酸等が挙げられる。
 二塩基性α,β-不飽和カルボン酸モノアルキルエステルとしては、マレイン酸、フマル酸、イタコン酸、シトラコン酸のモノアルキルエステル等が挙げられる。具体例として、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノn-プロピル、マレイン酸モノイソプロピル、マレイン酸モノn-ブチル、マレイン酸モノイソブチル、マレイン酸モノn-ヘキシル、マレイン酸モノシクロヘキシル、フマル酸モノメチル、フマル酸モノエチル、フマル酸モノn-プロピル、フマル酸モノイソプロピル、フマル酸モノn-ブチル、フマル酸モノイソブチル、フマル酸モノn-ヘキシル、フマル酸モノシクロヘキシル等が挙げられる。
 (A)成分アクリルエラストマー共重合体中の架橋部位単量体は、0.1~5重量%、好ましくは0.5~3重量%の割合で共重合される。
 また、(A)成分アクリルエラストマー共重合体の主要成分以外に、必要に応じて他の重合性不飽和単量体を用いることができる。
 重合性不飽和単量体としては、例えばスチレン、α-メチルスチレン、3-メチルスチレン、4-メチルスチレン、1-ビニルナフタレン、2-ビニルナフタレン、アクリロニトリル、メタクリロニトリル、アクリル酸アミド、酢酸ビニル、メチルビニルエーテル、エチルビニルエーテル、エチレン、プロピレン、ピペリレン、ブタジエン、イソプレン、クロロプレン、シクロペンタジエン、塩化ビニル、塩化ビニリデン等が挙げられる。
 (A)成分アクリルエラストマー共重合体は、一般的なアクリルゴムの共重合方法によって製造される。共重合反応は、乳化重合法、けん濁重合法、溶液重合法、塊状重合法など任意の方法で行ない得るが、好ましくは乳化重合法またはけん濁重合法が用いられ、約-10~100℃、好ましくは約5~80℃の温度で反応が行われる。
 反応の重合開始剤としては、ベンゾイルパーオキサイド、ジクミルパーオキサイド、第3ブチルヒドロパーオキサイド、クミルヒドロパーオキサイド、p-メチレンヒドロパーオキサイド等の有機パーオキサイドまたはヒドロパーオキサイド、アゾビスイソブチロニトリル、アゾビスイソブチルアミジン等のジアゾ化合物、過硫酸アンモニウムによって代表されるアンモニウム塩、ナトリウム塩、カリウム塩等の過酸化物塩などが単独であるいはレドックス系として用いられる。
 特に好ましい乳化重合法に用いられる乳化剤としては、アニオン系またはノニオン系の界面活性剤が、必要に応じて酸または塩基によりpH調整され、無機塩で緩衝溶液とした水溶液などとして用いられる。
 重合反応は、単量体混合物の転化率が90%以上に達する迄継続される。得られた水性ラテックスは、塩-酸凝固法、塩化カルシウム、硫酸マグネシウム、硫酸ナトリウム、硫酸アンモニウム等の塩を用いる方法、ホウ酸、ホウ砂等のホウ素化合物を用いる方法、熱による凝固法、凍結凝固法などによって凝固させ、得られた共重合体は十分に水洗、乾燥される。このアクリルゴムは、約5~100、好ましくは約20~80のムーニー粘度 PML1+4(100℃)を有する。
 (A)成分アクリルエラストマー共重合体は、一般式〔I〕で表される共重合性老化防止剤 0.1~5重量%、アルキル(メタ)アクリレートおよび/またはアルコキシアルキル(メタ)アクリレート単量体 90~99.8重量%、α,β-不飽和カルボン酸単量体0.1~5重量%、好ましくは一般式〔I〕で表される共重合性老化防止剤 0.3~3重量%、アルキル(メタ)アクリレートおよび/またはアルコキシアルキル(メタ)アクリレート単量体 94~99.2重量%、架橋部位単量体 0.5~3重量%の共単量体割合で共重合されたものあり、好ましくは一般式〔I〕で表される共重合性老化防止剤、アルキルアクリレート単量体およびα,β-不飽和カルボン酸単量体から構成されるアクリルエラストマー共重合体が用いられる。
 本発明の組成物の構成成分である(B)成分としては、一般式〔II〕で表されるフェノチアジン系老化防止剤が用いられる。
Figure JPOXMLDOC01-appb-I000015
〔ここで、R3は水素原子、炭素数1~20の一価の脂肪族炭化水素基、炭素数7~20のアラルキル基または下記一般式〔III〕
Figure JPOXMLDOC01-appb-I000016
(ここで、R5は炭素数1~20の一価の脂肪族炭化水素基である)
で表されるアシル基であり、R4は炭素数7~20のアラルキル基である〕
 R3が炭素数1~20の脂肪族炭化水素基である場合の具体例として、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-ウンデシル基、n-ペンタデシル基、n-ヘプタデシル基、イソプロピル基、2-ブチル基、2-ペンチル基、3-ペンチル基、2-ヘキシル基、3-ヘキシル基、2-ヘプチル基、3-ヘプチル基、4-ヘプチル基、2-オクチル基、3-オクチル基、4-オクチル基、第3ブチル基、1,1-ジメチル-1-プロピル基、1,1-ジメチル-1-ブチル基、1,1-ジメチル-1-ペンチル基、1,1-ジメチル-1-ヘキシル基、3-メチル-3-ペンチル基、3-エチル-3-ペンチル基、3-メチル-3-ヘキシル基、2-エチルヘキシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、1-メチル-1-シクロペンチル基、1-メチル-1-シクロヘキシル基、1-アダマンチル基等が挙げられる。
 R3が炭素数7~20のアラルキル基である場合の具体例として、ベンジル基、α-メチルベンジル基、9-フルオレニルメチル基等が挙げられる。
 R5は、炭素数1~20の一価の脂肪族炭化水素基である。
 炭素数1~20の脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-ウンデシル基、n-ペンタデシル基、n-ヘプタデシル基、イソプロピル基、2-ブチル基、2-ペンチル基、3-ペンチル基、2-ヘキシル基、3-ヘキシル基、2-ヘプチル基、3-ヘプチル基、4-ヘプチル基、2-オクチル基、3-オクチル基、4-オクチル基、第3ブチル基、1,1-ジメチル-1-プロピル基、1,1-ジメチル-1-ブチル基、1,1-ジメチル-1-ペンチル基、1,1-ジメチル-1-ヘキシル基、3-メチル-3-ペンチル基、3-エチル-3-ペンチル基、3-メチル-3-ヘキシル基、2-エチルヘキシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、1-メチル-1-シクロペンチル基、1-メチル-1-シクロヘキシル基、1-アダマンチル基等が挙げられる。
 特に炭素数が4~20であり、カルボニル基に対してα位の炭素が3級炭素である一価の脂肪族炭化水素基が好ましく、例えば第3ブチル基、1,1-ジメチルプロピル基、1,1-ジメチル-1-ブチル基、1,1-ジメチル-1-ペンチル基、1,1-ジメチル-1-ヘキシル基、3-メチル-3-ペンチル基、3-エチル-3-ペンチル基、3-メチル-3-ヘキシル基、2-エチルヘキシル基、1-メチル-1-シクロペンチル基、1-メチル-1-シクロヘキシル基、1-アダマンチル基等が好ましい基として挙げられる。
 R4で表されるアラルキル基としては、ベンジル基、α-メチルベンジル基、α,α-ジメチルベンジル基が挙げられ、特にα,α-ジメチルベンジル基が好ましい。
 R3が水素原子であるフェノチアジン系老化防止剤は、特許文献6記載の方法によって製造することができる。例えば、フェノチアジンに酸性触媒存在下α-メチルスチレンを作用させ、3,7-ビス(α,α-ジメチルベンジル)-10H-フェノチアジン(以下、CD-Sと略称する)とした後、酸化剤により硫黄原子を酸化することにより、3,7-ビス(α,α-ジメチルベンジル)-10H-フェノチアジン-5,5-ジオキサイド(以下、CD-SO2と略称する)を製造することができる。
 R3が炭素数1~20の脂肪族炭化水素基であるフェノチアジン系老化防止剤の場合、CD-Sに塩基を作用させ、次いで炭素数1~20の脂肪族炭化水素のハロゲン化物によりN-アルキル化した後、硫黄原子を酸化することにより所望のフェノチアジン老化防止剤を製造することができる。また、特許文献6で得られるCD-SO2に塩基を作用させ、次いで炭素数1~20の脂肪族炭化水素のハロゲン化物を反応させてもよい。
 R3が一般式〔III〕で表されるアシル基の場合、特許文献12記載の方法により製造することができる。具体的には、塩基性有機化合物または塩基性無機化合物の存在下、CD-Sをアシルハロゲン化物によりN-アシル化した後、硫黄原子を酸化することにより所望のフェノチアジン老化防止剤を製造することができる。
 また、CD-SO2から同様の方法により、N-アシル化して製造することもできる。
 一般式〔III〕で表されるフェノチアジン系老化防止剤の具体例としては、
3,7-ビス(α,α-ジメチルベンジル)-10H-フェノチアジン-5,5-ジオキサイド、
10-メチル-3,7-ビス(α,α-ジメチルベンジル)-10H-フェノチアジン-5,5-ジオキサイド、
10-n-プロピル-3,7-ビス(α,α-ジメチルベンジル)-10H-フェノチアジン-5,5-ジオキサイド、
10-イソプロピル-3,7-ビス(α,α-ジメチルベンジル)-10H-フェノチアジン-5,5-ジオキサイド、
10-ベンジル-3,7-ビス(α,α-ジメチルベンジル)-10H-フェノチアジン-5,5-ジオキサイド、
10-ピバロイル-3,7-ビス(α,α-ジメチルベンジル)-10H-フェノチアジン-5,5-ジオキサイド、
10-(2,2-ジメチルブタノイル)-3,7-ビス(α,α-ジメチルベンジル)-10H-フェノチアジン-5,5-ジオキサイド、
10-(1-アダマンタンカルボニル)-3,7-ビス(α,α-ジメチルベンジル)-10H-フェノチアジン-5,5-ジオキサイド等が挙げられる。
 (B)成分フェノチアジン系老化防止剤は、(A)成分アクリルエラストマー共重合体100重量部に対して約0.01~5重量部、好ましくは約0.1~5重量部用いられる。老化防止剤がこれより少ないと、架橋後のアクリルゴムが熱酸化劣化により著しい機械的物性の低下を招くようになる。特に、熱酸化劣化後期における著しい硬化劣化を抑制することは困難である。一方、これより多く用いられても、熱酸化劣化初期の軟化劣化を助長する恐れがあるばかりでなく、さらなる熱酸化劣化後期における硬化劣化抑制効果は見込まれず、不経済である。
 (C)成分多価アミン架橋剤としては、脂肪族多価アミン化合物、脂肪族多価アミン化合物の炭酸塩、アミノ基が有機基で保護された脂肪族多価アミン化合物、芳香族多価アミン化合物等を用いることができる。
 脂肪族多価アミン化合物としては、例えばヘキサメチレンジアミンが挙げられる。また、脂肪族多価アミン化合物の炭酸塩としては、ヘキサメチレンジアミンカーバメートが挙げられる。アミノ基が有機基で保護された脂肪族多価アミンとしては、N,N′-ジシンナミリデン-1,6-ヘキサンジアミンまたは特許文献11に開示された化合物が挙げられる。
 芳香族多価アミン化合物としては、例えば4,4′-メチレンジアニリン、m-フェニレンジアミン、p-フェニレンジアミン、4,4′-ジアミノジフェニルエーテル、4,4′-ビス(4-アミノフェノキシ)ビフェニル、m-キシリレンジアミン、p-キシリレンジアミン、1,3,5-ベンゼントリアミン、4,4′-(m-フェニレンジイソプロピリデン)ジアニリン、4,4′-(p-フェニレンジイソプロピリデン)ジアニリン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、4,4′-ジアミノベンズアニリド等が挙げられる。
 上記に挙げた多価アミン化合物は単独で用いることもできるし、二つ以上を組み合わせて用いることもでき、好ましくはヘキサメチレンジアミンカーバメート、4,4′-ジアミノジフェニルエーテル、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパンが用いられる。
 上記架橋剤の添加量は、所望の架橋速度、架橋物の機械的強度、耐圧縮永久歪性および耐熱酸化劣化性に応じて適宜調整される。
 (C)成分多価アミン架橋剤は、(A)成分アクリルエラストマー共重合体100重量部に対して約0.01~5重量部、好ましくは約0.05~3重量部用いられる。多価アミン架橋剤がこれより少ないと、耐圧縮永久歪特性の改善は見込まれない。一方、これより多く用いられると、アクリルゴムの耐熱酸化劣化特性の悪化を招く恐れがある。
 (D)成分架橋促進剤としては、グアニジン化合物、ジアザビシクロアルケン化合物またはその有機酸塩等の架橋促進剤等が挙げられる。
 グアニジン化合物としては、テトラメチルグアニジン、テトラエチルグアニジン、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン等が挙げられる。好ましくは1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジンまたはそれらの組み合わせである。
 ジアザビシクロアルケン化合物としては、1,8-ジアザビシクロ〔5.4.0〕-7-ウンデセンが好ましい。
 ジアザビシクロアルケン化合物の有機酸塩としては、1,8-ジアザビシクロ〔5.4.0〕-7-ウンデセンの有機酸塩が好ましい。
 1,8-ジアザビシクロ〔5.4.0〕-7-ウンデセンの有機酸塩に用いられる有機酸としては、有機一塩基酸または有機二塩基酸が挙げられる。
 有機一塩基酸としては、n-ヘキサン酸、n-ヘプタン酸、n-オクタン酸、2-エチルヘキサン酸、n-カプリン酸、n-ラウリン酸、p-トルエンスルホン酸、フェノール等が挙げられる。有機二塩基酸としては、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、テレフタル酸、オルトフタル酸、フタル酸等が挙げられ、炭素数6~18のモノカルボン酸またはジカルボン酸が好ましい。
 (D)成分架橋促進剤は、(A)成分アクリルエラストマー共重合体100重量部に対して約0.1~5重量部、好ましくは約0.3~3重量部用いられる。架橋促進剤がこれより少ないと、架橋速度の著しい低下、架橋後のアクリルゴムの機械的物性の低下および熱老化後の機械的物性の低下を招くことがある。一方、これより多く用いられると、アクリルゴムの耐熱酸化劣化の悪化または耐圧縮永久歪特性の悪化を招く恐れがある。
 本発明の架橋性アクリルゴム組成物には、必要に応じて、例えば、充填剤、加工助剤、可塑剤、軟化剤、着色剤、安定剤、接着助剤、離型剤、導電性付与剤、熱伝導性付与剤、表面非粘着剤、粘着付与剤、柔軟性付与剤、耐熱性改善剤、難燃剤、紫外線吸収剤、耐油性向上剤、スコーチ防止剤、滑剤等の各種添加剤を配合することができる。
 充填剤としては、塩基性シリカ、酸性シリカ等のシリカ;酸化亜鉛、酸化カルシウム、酸化チタン、酸化アルミニウム等の金属酸化物;水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム等の金属水酸化物;炭酸マグネシウム、炭酸アルミニウム、炭酸カルシウム、炭酸バリウム等の炭酸塩;ケイ酸マグネシウム、ケイ酸カルシウム、ケイ酸ナトリウム、ケイ酸アルミニウム等のケイ酸塩;硫酸アルミニウム、硫酸カルシウム、硫酸バリウム等の硫酸塩;二硫化モリブデン、硫化鉄、硫化銅等の金属硫化物;合成ハイドロタルサイト、ケイ藻土、アスベスト、リトポン(硫化亜鉛/硫化バリウム)、グラファイト、カーボンブラック(MTカーボンブラック、SRFカーボンブラック、FEFカーボンブラック等)、フッ化カーボン、フッ化カルシウム、コークス、石英微粉末、亜鉛華、タルク、雲母粉末、ウォラストナイト、炭素繊維、アラミド繊維、各種ウィスカー、ガラス繊維、有機補強剤、有機充填剤等が挙げられる。
 加工助剤としては、ステアリン酸、オレイン酸、パルミチン酸、ラウリン酸等の高級脂肪酸;ステアリン酸ナトリウム、ステアリン酸亜鉛等の高級脂肪酸塩;ステアリン酸アミド、オレイン酸アミド等の高級脂肪酸アミド;オレイン酸エチル等の高級脂肪酸エステル、ステアリルアミン、オレイルアミン等の高級脂肪族アミン;カルナバワックス、セレシンワックス等の石油系ワックス;エチレングリコール、グリセリン、ジエチレングリコール等のポリグリコール;ワセリン、パラフィン等の脂肪族炭化水素;シリコーン系オイル、シリコーン系ポリマー、低分子量ポリエチレン、フタル酸エステル類、リン酸エステル類、ロジン、(ハロゲン化)ジアルキルアミン、(ハロゲン化)ジアルキルスルフォン、界面活性剤等が挙げられる。
 可塑剤としては、例えばエポキシ樹脂、フタル酸誘導体やセバシン酸誘導体等が、軟化剤としては、例えば潤滑油、プロセスオイル、コールタール、ヒマシ油、ステアリン酸カルシウム等が、老化防止剤としては、例えばフェニレンジアミン類、フォスフェート類、キノリン類、クレゾール類、フェノール類、ジチオカルバメート金属塩等が挙げられる。
 必要に応じて使用される上記の配合剤は、アクリルゴム、フェノチアジン系老化防止剤、架橋剤および架橋促進剤からなる本発明の架橋性アクリルゴム組成物に配合され、バンバリーミキサや加圧ニーダ、オープンロール等を用いて混和される。得られた架橋性混和物の架橋は、約120~250℃、約1~60分間の一次架橋および必要に応じて約120~200℃、約1~20時間のオーブン架橋(二次架橋)が行われる。
 次に、実施例により本発明を具体的に説明する。なお、本発明は効果を含めてこの実施例に限定されるものではない。
 参考例1
 化合物(a)の製造
Figure JPOXMLDOC01-appb-I000017
化合物(a)は、下記の方法により製造した。
Figure JPOXMLDOC01-appb-I000018
 〔第1工程〕〔PTZ〕→(a-1):
 マグネット攪拌子、温度計、滴下ロート、窒素ガス導入管および排出管を備えた容量1000mlの四口フラスコに、フェノチアジン〔PTZ〕60.0g(301ミリモル)、N,N-ジメチルホルムアミド300mlを投入し、窒素雰囲気下の系内の温度を5℃以下に冷却した。系内温度を10℃以下に保ちながら、水素化ナトリウム10.9g(452ミリモル)を加えて1時間反応させた。系内温度を20℃以下に保ちながら、ヨードメタン51.3g(361ミリモル)を滴下し、さらに1時間反応を行った。反応終了後、反応混合物を飽和塩化ナトリウム水溶液に加えた。析出した無色の固体をロ別し、酢酸エチルに溶解させた。これを飽和塩化ナトリウム水溶液で洗浄した後、有機層を無水硫酸マグネシウムで乾燥し、次いで不溶物をロ別した。ロ液から揮発性成分を減圧下で留去し、粗生成物を67.8g(粗収率106%)得た。エタノールを用いて再結晶することにより、10-メチル-10H-フェノチアジン(a-1)を、無色の針状結晶として59.9g(収率93%)得た。
Figure JPOXMLDOC01-appb-I000019
   1H NMR(400MHz、Acetone-d6、δ ppm):
                 3.39 (s、3H、N-CH 3)
                 6.91-6.98 (m、4H、Ar)
                 7.14 (dd、J=7.6Hz、J=1.6Hz、2H、Ar)
                 7.21 (td、J=7.6Hz、J=1.6Hz、2H、Ar)
 
 〔第2工程〕(a-1)→(a-2):
 マグネット攪拌子、滴下ロート、温度計、ガス導入口-ガス排出口および還流冷却管を備えた容量500mlの四口フラスコに、N,N-ジメチルホルムアミド210mlを投入した。窒素雰囲気下で、系内の内温を10℃以下に保ちながら、ホスホリルクロリド129.2g(843ミリモル)を滴下して加え、さらに30分間反応を行った。次に、上記第1工程で得られたN-メチル-10H-フェノチアジン(a-1) 30g(141ミリモル)加え、60℃で24時間反応を行った。反応終了後、内容物を酢酸ナトリウム水溶液中に注ぎ、さらに炭酸水素ナトリウムを加えて中和した。得られた水溶液から、酢酸エチルを用いて生成物を抽出し、有機層を飽和塩化ナトリウム水溶液で1回洗浄した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をロ別した後、ロ液から揮発性成分を減圧下で留去し、赤色の油状物質として粗生成物33.8g(粗収率99%)を得た。粗生成物から、酢酸エチルを溶出液とするカラムクロマトグラフィー(担体:ワコーゲルC300)により低Rf成分を除去することで、黄色の固体として目的とする低Rf成分除去粗生成物を33.6g(収率98%)得た。さらに70mlの酢酸エチルを用いて再結晶することにより、黄色結晶として10-メチル-10H-フェノチアジン-3-カルボアルデヒド(a-2)を30.1g(収率88%)得た。
Figure JPOXMLDOC01-appb-I000020
   1H NMR(400MHz、Acetone d6、δ ppm):
                 3.49 (s、3H、N-CH 3)
                 7.00-7.06 (m、2H、Ar)
                 7.10 (d、J=8.4Hz、1H 、Ar)
                 7.15-7.19(m、1H、Ar)
                 7.22-7.28(m、1H、Ar)
                 7.61(d、J=1.6Hz、1H、Ar)
                 7.75(dd、J=8.4Hz、J=1.6Hz、1H、Ar)
                 9.85(s、1H、-CHO)
 〔第3工程〕(a-2)→(a):
 マグネット攪拌子、温度計、ガス導入管およびガス排出管を備えた容量500mlの四口フラスコに、テトラヒドロフラン220mlを投入し、反応容器内を窒素で置換しながら内温を10℃以下に冷却した。カリウム第3ブトキシド8.4g(74.9ミリモル)、次いでメチルトリフェニルホスホニウムブロミド26.9g(75.3ミリモル)を加えて30分間反応を行った。これに化合物(a-2)15.0g(62.2ミリモル)を加えて、10~30℃で2時間反応させた。得られた反応混合物を飽和塩化ナトリウム水溶液に加え、生成物をジクロロメタンで抽出した。無水硫酸マグネシウムで乾燥した後不溶物をロ別し、ロ液から減圧下で揮発性成分を留去し、残留物を35.1g得た。残留物について、ジクロロメタンを溶出液とするカラムクロマトグラフィー(担体:ワコーゲルC300)を行い、トリフェニルホスフィンオキシドを除去した後、エタノールを用いて再結晶を行い、淡黄色の固体として化合物(a)を8.7g(収率58%)得た。
 
   1H NMR(400MHz、CDCl3、δ ppm):
              3.37 (s、3H、N-CH 3)
              5.14 (d、J=10.8Hz、1H、CH 2=CH-Ph(フェニル
                 基に対してトランス))
              5.61 (d、J=17.6Hz、1H、CH 2=CH-Ph (フェニル
                 基に対してシス))
              6.59 (dd、J=10.8Hz、17.6Hz、1H、CH2=CH-Ph)
              6.75 (d、J=8.4Hz、1H、Ar)
              6.81 (d、J=9.2Hz、1H、Ar)
              6.92 (td、J=7.6Hz、1.2Hz、1H、Ar)
              7.11-7.23 (m、4H、Ar)
  参考例2
 10-ピバロイル-3,7-ビス(α,α-ジメチルベンジル)-10H-フェノチアジン-5,5-ジオキサイド〔CD-SO2-PIV〕の製造
Figure JPOXMLDOC01-appb-I000021
 マグネット攪拌子、温度計、窒素ガス導入口と排出口および還流冷却管を備えた容量1000mlの四口フラスコに、フェノチアジン 119.6g(0.6モル)、p-トルエンスルホン酸 2.88gおよびトルエン 480mlを投入し、80℃に昇温した後、α-メチルスチレン 141.9g(1.2モル)を加え、窒素ガス雰囲気下で1時間反応させた。
 反応混合物を室温まで冷却した後、減圧下でトルエンを留去し、紫色固体状の反応生成物265.5gを得た。これを1500mlのエタノールで再結晶することにより、薄赤紫色の結晶として粗製3,7-ビス(α,α-ジメチルベンジル)-10H-フェノチアジン〔CD-S〕 179g(収率68%)が得られた。さらに、この粗製CD-S をエタノールで再度再結晶し、無色鱗片状の結晶として精製CD-S 161gを得た。
 マグネット攪拌子、温度計および還流冷却管を備えた容量500mlの三口フラスコに、粗製CD-S 68.7g(158ミリモル)、ピバロイルクロリド 24.8g(206ミリモル)およびピリジン 60gを順次投入し、120℃で1.5時間反応させた。得られた反応混合物から減圧下でピリジンを留去し、次いで残留物をジクロロメタン 300mlに溶解した。有機層を飽和塩化ナトリウム水溶液300mlで3回洗浄し、無水硫酸マグネシウムで乾燥した。硫酸マグネシウムをロ過した後、ロ液から揮発性成分を減圧留去し、赤色の高粘性液体81.7gを得た。
 この高粘性液体をトルエン250mlに溶解し、マグネット攪拌子、温度計および還流冷却管を備えた容量1000mlの三口フラスコ中に投入した。次いで、酢酸80gおよび30%過酸化水素水107gを順次投入し、100℃で2時間反応させた。
 内容物を室温まで冷却した後、上層のトルエン層を取出し、減圧下で揮発性物質を留去した。得られた淡赤色固体89gを、エタノール/トルエン(容積比9:1)混合溶媒で再結晶し、無色の針状結晶としてCD-SO2-PIV 70.3g(CD-Sを基準とした収率81%)を得た。
 
   1H NMR(300MHz、CDCl3、δ ppm):
               1.22 (s、9H、-C(CH 3)3)
               1.71 (s、12H、-C(CH 3)2-)
               7.19~7.30 (m、12H)
               7.42 (d、J=9.0Hz、2H)
               8.03 (d、J=1.8Hz、2H)
参考例3
 3,7-ビス(α,α-ジメチルベンジル)-10H-フェノチアジン-5,5-ジオキサイド〔CD-SO2〕の製造
Figure JPOXMLDOC01-appb-I000022
 マグネット攪拌子、温度計、窒素ガス導入口と排出口および還流冷却管を備えた容量500mlの四口フラスコに、フェノチアジン 24.9g(0.125モル)、p-トルエンスルホン酸 0.6gおよびトルエン 115mlを投入し、80℃に昇温した後、α-メチルスチレン 29.5g(0.25モル)を加え、窒素ガス雰囲気下で1時間反応させた。
 次に、反応混合物に酢酸30gを加えた後、30%過酸化水素水42.5gを5回に分けて加え、さらに80℃で2時間反応させた。内容物を室温まで冷却し静置した後、上層のトルエン層を500mlのメタノール中に注いだ。室温で一夜放置後、淡黄色の結晶として粗製CD-SO2 42.5g(収率72%)を得た。これをエタノールで再結晶し、淡黄色の針状結晶としてCD-SO2 38g(収率65%)を得た。
 参考例4
〔アクリルエラストマー共重合体Aの製造〕
 温度計、撹拌機、窒素ガス導入管およびジムロート冷却管を備えたセパラブルフラスコ内に、
       水                      187重量部
       ラウリル硫酸ナトリウム             2 〃
       ポリオキシエチレンラウリルエーテル       2 〃
       仕込み単量体混合物
        アクリル酸エチル〔EA〕           97.4 〃
        フマル酸モノn-ブチル〔MBF〕         1.6 〃
        参考例1の化合物(a)             1.0 〃
を仕込み、窒素ガス置換を行って系内の酸素を十分に除去した後、
       ナトリウムホルムアルデヒドスルホキシレート 0.008重量部
         (富士フィルム和光純薬工業製品ロンガリット)
       第3ブチルハイドロパーオキサイド       0.0047 〃
         (日油製品パーブチルH69)
を加えて、室温条件下で重合反応を開始させ、重合転化率が90%以上になる迄反応を継続した。得られた水性ラテックスを、10重量%硫酸ナトリウム水溶液で凝析させた後、水洗、乾燥してアクリルゴムAを得た。得られたアクリルゴムエラストマー共重合体Aのムーニー粘度 PML1+4(100℃)は、31であった。
 そのモル分率組成は、lH-NMR(400MHz、Acetone d6、δ ppm)より下式より求め、
化合物(a):0.41モル%、
EA+MBF  :99.59モル%
であった。
α:6.5-7.5ppmのシグナルの積分値
β:3.2-5.0ppmのシグナルの積分値
化合物(a)(モル%)=200×α/ (2α+7β) 
EA+MBF(モル%)=100-化合物(a)
また、近似的な重量分率組成は下式より求め、
化合物(a):1.0重量%、EA+MBF:99.0重量%であった。
化合物(a)(重量%)=(化合物(a)(モル%)×239.34×100)
          /〔化合物(a)(モル%)×239.34+(EA+MBF(モル%))×
          100.8)〕
EA+MBF(重量%)=100-化合物(a)(重量%)
 参考比較例1
 下記仕込み単量体混合物を用いた以外は、参考例4と同様に共重合反応を行い、アクリルゴムBを得た。得られたアクリルエラストマー共重合体Bのムーニー粘度PMLl+4(100℃)は、32であった。
      仕込み単量体混合物
       アクリル酸エチル〔EA〕            98.4重量部
       フマル酸モノn-ブチル〔MBF〕          1.6 〃
 参考例5
 〔アクリルエラストマー共重合体Cの製造〕
 下記仕込み単量体混合物を用いた以外は、参考例4と同様に共重合反応を行い、アクリルゴムCを得た。得られたアクリルエラストマー共重合体Cのムーニー粘度PMLl+4(100℃)は、30であった。
 
        アクリル酸エチル〔EA〕           97.9重量部
        フマル酸モノn-ブチル〔MBF〕         1.6 〃
        参考例1の化合物(a)             0.5 〃
 そのモル分率組成は、参考例4の式より求め、
化合物(a):0.20モル%、
EA+MBF  :99.80モル%
であった。
また、近似的な重量分率組成は、参考例4の式より求め、
化合物(a):0.5重量%、EA+MBF:99.5重量%であった。
 参考例6
 〔アクリルエラストマー共重合体Dの製造〕
 下記仕込み単量体混合物を用いた以外は、参考例4と同様に共重合反応を行い、アクリルゴムDを得た。得られたアクリルエラストマー共重合体Dのムーニー粘度PMLl+4(100℃)は、26であった。
 
        アクリル酸エチル〔EA〕           57.7重量部
        アクリル酸n-ブチル〔BA〕                 40.0  〃
        フマル酸モノn-ブチル〔MBF〕         1.6 〃
        参考例1の化合物(a)             0.7 〃
 そのモル分率組成は、参考例4の式より求め、
化合物(a):0.31モル%、
EA+BA+MBF:99.69モル%
であった。
また、近似的な重量分率組成は下式より求め、
化合物(a):0.7重量%、EA+BA+MBF:99.3重量%であった。
化合物(a)(重量%)=(化合物(a)(モル%)×239.34×100)
          /〔化合物(a)(モル%)×239.34+(EA+BA+MBF(モル%))
          ×110.6)〕
EA+BA+MBF(重量%)=100-化合物(a)(重量%)
 参考比較例2
 下記仕込み単量体混合物を用いた以外は、参考例4と同様に共重合反応を行い、アクリルゴムEを得た。得られたアクリルエラストマー共重合体Eのムーニー粘度PMLl+4(100℃)は、26であった。
      仕込み単量体混合物
       アクリル酸エチル〔EA〕            58.4重量部
       アクリル酸n-ブチル〔BA〕                     40.0  〃
       フマル酸モノn-ブチル〔MBF〕          1.6 〃
 参考例7
 〔アクリルエラストマー共重合体Fの製造〕
 下記仕込み単量体混合物を用いた以外は、参考例4と同様に共重合反応を行い、アクリルゴムFを得た。得られたアクリルエラストマー共重合体Fのムーニー粘度PMLl+4(100℃)は、24であった。
 
        アクリル酸エチル〔EA〕           57.9重量部
        アクリル酸n-ブチル〔BA〕                 40.0  〃
        フマル酸モノn-ブチル〔MBF〕         1.6 〃
        参考例1の化合物(a)             0.5 〃
そのモル分率組成は、参考例4の式より求め
化合物(a):0.24モル%、
EA+BA+MBF:99.76モル%
であった。
また、近似的な重量分率組成は、参考例6の式より求め
化合物(a):0.5重量%、EA+BA+MBF:99.5重量%であった。
 実施例1
   アクリルエラストマー共重合体A             100重量部
   SRFカーボンブラック(東海カーボン製品シーストGS)     60 〃
   ステアリン酸(ミヨシ油脂製品TST)             1 〃
   ポリオキシエチレンステアリルエーテルリン酸      0.5 〃
     (東邦化学工業製品フォスファノールRL-210)
   架橋促進剤(Safic-Alcan社製品Vulcofac ACT55)       1 〃
   ヘキサメチレンジアミンカーバメート
     (ユニマテック製品ケミノックスAC6F)        0.6 〃
   CD-SO2-PIV                       1 〃
 
以上の各成分の内、アクリルエラストマー共重合体A、SRFカーボンブラック、ステアリン酸およびポリオキシエチレンステアリルエーテルリン酸をバンバリーミキサで混和した。得られた混和物と残りの各成分とをオープンロールを用いて混和し、架橋性アクリルゴム組成物を得た。
 これを、100トンプレス成形機により180℃で8分間の一次架橋を行い、さらに175℃で4時間のオーブン架橋を行い、厚さ約2mmのシート状架橋物および直径約29mm、高さ約12.5mmの円柱状架橋物を得た。
 アクリルゴム組成物の架橋特性およびその架橋物の物性を、次のようにして測定した。
  ムーニースコーチ試験:ISO 289-1に対応するJIS K6300-1準拠(125℃)
       東洋精機製作所製ムーニービスコメーターAM-3を用い、最小
       ムーニー粘度(ML min)とスコーチ時間(t5)の値を測定
  架橋試験:ISO 6502に対応するJIS K6300-2準拠(180℃、12分間)
       東洋精機製作所製ロータレス・レオメータRLR-3使を用い、
       ML、MH、tc (10)およびtc(90)の値を測定
        ML:最小トルク
        MH:最大トルク
       tc(10):架橋トルクがML+(MH-ML)×0.1に達するまでに要する
           時間
       tc(90):架橋トルクがML+(MH-ML)×0.9に達するまでに要する
           時間
  常態物性:ISO 37に対応するJIS K6251、ISO 37に対応するJIS K6253
       に準拠し、ポストキュアシートについて測定
  空気加熱老化試験:ISO 188に対応するJIS K6257に準拠し、ポストキュ
           アシートについて測定
           (190℃:100時間、200時間、300時間、400時間、
           500時間、600時間)
  オイル浸漬試験:ISO 1817に対応するJIS K6258に準拠し、150℃、168時
          間のオイル(IRM903オイル)浸漬後、オイル浸漬前の常
          態物性からの各変化率および体積膨潤率を求めた
  空気加熱老化試験-オイル浸漬-空気加熱老化 複合試験:
          ISO 188に対応するJIS K6257に準拠して175℃、150時
          間の空気加熱老化試験を行い、ISO 1817に対応するJIS
          K6258に準拠して、150℃、168時間のオイル(IRM903オ
          イル)浸漬試験を行い、さらにISO 188に対応するJIS 
          K6257に準拠して190℃、300時間の空気加熱老化試験を
          行った後、常態物性からの各変化率を求めた
  圧縮永久歪試験:ISO 815-1に対応するJIS K6262準拠
          (175℃:70時間、500時間)
 比較例1
 実施例1において、CD-SO2-PIVが用いられなかった。
 比較例2
 実施例1において、アクリルエラストマー共重合体Aの代わりに、アクリルエラストマー共重合体Bが用いられた。
 比較例3
 比較例2において、CD-SO2-PIVの代わりに、4,4′-ビス(α,α-ジメチルベンジル)ジフェニルアミン(大内新興化学工業製品ノクラックCD)が1重量部用いられた。
 実施例2
 実施例1において、架橋性アクリルゴム組成物として次の各成分が用いられた。
 
   アクリルエラストマー共重合体C             100重量部
   SRFカーボンブラック(シーストGS)             70 〃
   ステアリン酸(TST)                    1 〃
   ポリオキシエチレンステアリルエーテルリン酸      0.5 〃
     (フォスファノールRL-210)
   架橋促進剤(Vulcofac ACT55)               1 〃
   2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン  1.2  〃
     (東京化成工業製品)
   CD-SO2                         1 〃
 比較例4
 実施例2において、CD-SO2が用いられなかった。
 比較例5
 実施例2において、アクリルエラストマー共重合体Cの代わりに、アクリルエラストマー共重合体Bが用いられた。
 比較例6
 比較例5において、CD-SO2の代わりに、4,4′-ビス(α,α-ジメチルベンジル)ジフェニルアミン(ノクラックCD)が1重量部用いられた。
 実施例3
 実施例1において、架橋性アクリルゴム組成物として次の各成分が用いられた。
 
   アクリルエラストマー共重合体D             100重量部
   SRFカーボンブラック(シーストGS)             70 〃
   ステアリン酸(TST)                    1 〃
   ポリオキシエチレンステアリルエーテルリン酸      0.5 〃
     (フォスファノールRL-210)
   ステアリルアミン(ファーミン80S)             1  〃
   架橋促進剤(Vulcofac ACT55)               1 〃
   ヘキサメチレンジアミンカーバメート(ケミノックスAC6F) 0.6 〃
   CD-SO2                         1 〃
 比較例7
 実施例3において、CD-SO2が用いられなかった。
 比較例8
 実施例3において、アクリルエラストマー共重合体Dの代わりに、アクリルエラストマー共重合体Eが用いられた。
 比較例9
 比較例8において、CD-SO2の代わりに、4,4′-ビス(α,α-ジメチルベンジル)ジフェニルアミン(ノクラックCD)が1重量部用いられた。
 実施例4
 実施例1において、架橋性アクリルゴム組成物として次の各成分が用いられ、さらにアクリルゴム組成物の架橋物について、トルエン浸漬-空気加熱老化 複合試験が行われた。
 
   アクリルエラストマー共重合体F             100重量部
   SRFカーボンブラック(シーストGS)             70 〃
   ステアリン酸(TST)                    1 〃
   ポリオキシエチレンステアリルエーテルリン酸      0.5 〃
     (フォスファノールRL-210)
   架橋促進剤(Vulcofac ACT55)               1 〃
   2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン  1.2  〃
     (東京化成工業製品)
   CD-SO2                          1 〃
 
  トルエン浸漬-空気加熱老化 複合試験:
      ISO 1817に対応するJIS K6258に準拠して、室温で168時間のト
      ルエン浸漬試験を行った後、風乾により試験片よりトルエンを
      除去し、さらにISO 188に対応するJIS K6257に準拠して、190℃
      、300時間の空気加熱老化試験を行った。
 比較例10
 実施例4において、CD-SO2が用いられなかった。
 比較例11
 実施例4において、アクリルエラストマー共重合体Fの代わりに、アクリルエラストマー共重合体Eが用いられた。
 比較例12
 比較例11において、CD-SO2の代わりに、4,4′-ビス(α,α-ジメチルベンジル)ジフェニルアミン(ノクラックCD)が1重量部用いられた。
 以上の実施例1~4および比較例1~12で得られた結果は、次の表1~4および図1~15に示される。
                  表1
                   実施例       比較例        
       測定結果          1   1   2   3  
ムーニースコーチ試験(125℃)
 ML min           (pts)     65     65     61     64
 t5             (分)    1.6    1.5    2.8    2.4
架橋試験(180℃)
 tc(10)           (分)   0.53   0.52   0.50   0.50
 tc(90)            (分)   5.34   5.43   4.76   4.87
 ML            (N・m)   0.23   0.24   0.21   0.23
 MH            (N・m)   0.94   0.96   0.94   0.97
 
常態物性(ポストキュア)
 硬度          (Duro A)    65     65     62     63
 100%モジュラス      (MPa)   4.9    5.2    4.3    4.4
 破断時強度         (MPa)  17.0   17.1   16.1   15.8
 破断時伸び         (%)   260    260    240    260
熱老化試験(190℃、100時間)
 硬度変化         (Duro A)   +12     +9     +4     +0
 100%モジュラス変化率     (%)     +65    +62    -19    -36
 破断時強度変化率        (%)     -12     -8    -27    -35
 破断時伸び変化率        (%)   -33    -30    +25    +28
熱老化試験(190℃、200時間)
 硬度変化          (Duro A)   +11    +10     +5     +0
 100%モジュラス変化率       (%)     +51    +37    -37    -52
 破断時強度変化率          (%)    -21    -23    -43    -60
 破断時伸び変化率       (%)   -28    -29    +46    +31
熱老化試験(190℃、300時間)
 硬度変化        (Duro A)   +13    +13     +6     +3
 100%モジュラス変化率      (%)   +29    +17    -51    -48
 破断時強度変化率        (%)    -34    -41    -60    -70
 破断時伸び変化率       (%)   -25    -29    +52    +33
 熱老化試験(190℃、400時間)
 硬度変化        (Duro A)   +15    +16     +9    +15
 100%モジュラス変化率      (%)   +16     +8    -51    -25
 破断時強度変化率         (%)    -45    -59    -70    -69
 破断時伸び変化率        (%)   -23    -42    +56    -11 
熱老化試験(190℃、500時間)
 硬度変化        (Duro A)   +18    +24     +9    +23
 100%モジュラス変化率      (%)   +12    +31    -56    +14
 破断時強度変化率         (%)    -53    -58    -76    -65
 破断時伸び変化率        (%)   -29    -61    +64    -51
熱老化試験(190℃、600時間)
 硬度変化        (Duro A)   +19    +23    +17    +22
 100%モジュラス変化率      (%)    +4           -47      
 破断時強度変化率         (%)    -60    -54    -80    -61
 破断時伸び変化率        (%)   -34    -72    +35    -77
オイル浸漬試験(150℃、168時間)
 硬度変化         (Duro A)     -6     -6     -6     -7
 100%モジュラス変化率     (%)     -2     -6     -5     +5
 破断時強度変化率       (%)      -9    -10    -11     -6
 破断時伸び変化率       (%)     -3     -4     +1     -6
 体積膨潤率          (%)     +11    +11    +11    +10
空気加熱老化-オイル浸漬-空気加熱老化 複合試験
 硬度変化         (Duro A)    +17    +17    +12    +19
 100%モジュラス変化率     (%)    +24    +15    -40     +9
 破断時強度変化率       (%)     -51    -51    -65    -68
 破断時伸び変化率       (%)    -37    -39    +27    -60
圧縮永久歪試験
 175℃、70時間              (%)      17     16     14     15
 175℃、500時間              (%)      34     34   27     27
 
                  表2
                   実施例       比較例        
       測定結果          2   4   5   6  
ムーニースコーチ試験(125℃)
 ML min           (pts)     62     62     63     63
 t5             (分)    6.4    5.7    6.3    5.0
架橋試験(180℃)
 tc(10)           (分)   1.08   1.03   1.25   1.16
 tc(90)            (分)   8.21   8.11   8.26   8.13
 ML            (N・m)   0.27   0.28   0.26   0.27
 MH            (N・m)   0.82   0.90   0.88   0.93
 
常態物性(ポストキュア)
 硬度          (Duro A)    69     70     66     66
 100%モジュラス      (MPa)   6.0    6.3    6.7    5.2
 破断時強度         (MPa)  16.8   17.4   16.8   16.2
 破断時伸び         (%)   220    230    220    230
熱老化試験(190℃、100時間)
 硬度変化         (Duro A)   +12    +11    +10     +5
 100%モジュラス変化率     (%)     +15    +22    -33    -25
 破断時強度変化率        (%)     -16    -11    -29    -28
 破断時伸び変化率        (%)   -10    -14    +27    +20
熱老化試験(190℃、200時間)
 硬度変化          (Duro A)   +12    +13     +9     +9
 100%モジュラス変化率       (%)     +10     +0    -42    -42
 破断時強度変化率          (%)    -26    -29    -40    -56
 破断時伸び変化率       (%)   -13    -12    +27    +28
熱老化試験(190℃、300時間)
 硬度変化        (Duro A)   +12    +14    +10    +13
 100%モジュラス変化率      (%)   -10    -25    -55    -40
 破断時強度変化率        (%)    -43    -59    -58    -69
 破断時伸び変化率       (%)    -8    -10    +40    +11
熱老化試験(190℃、400時間)
 硬度変化        (Duro A)   +13    +17    +13    +20
 100%モジュラス変化率      (%)   -25    -14    -58    -12
 破断時強度変化率         (%)    -56    -63    -69    -67
 破断時伸び変化率        (%)    +2    -35    +50    -32
熱老化試験(190℃、500時間)
 硬度変化        (Duro A)   +16    +20    +13    +24
 100%モジュラス変化率      (%)   -23           -57
 破断時強度変化率         (%)    -63    -60    -75    -60
 破断時伸び変化率        (%)    -9    -69    +32    -69
熱老化試験(190℃、600時間)
 硬度変化        (Duro A)   +17    +22    +17    +27
 100%モジュラス変化率      (%)   -25           -52
 破断時強度変化率         (%)    -69    -47    -77    -43
 破断時伸び変化率        (%)   -16    -81    +14    -85
オイル浸漬試験(150℃、168時間)
 硬度変化         (Duro A)     -3     -5     -3     -4
 100%モジュラス変化率     (%)     -5     -8    -15    +12
 破断時強度変化率       (%)      -7     -5     -7     -1
 破断時伸び変化率       (%)     +4     +7     +7     -3
 体積膨潤率           (%)    +11    +12    +11    +11
圧縮永久歪試験
 175℃、70時間              (%)      24     24     22     22
 175℃、500時間              (%)      39     38     34     33
 
                  表3
                   実施例       比較例        
       測定結果          3   7   8   9  
ムーニースコーチ試験(125℃)
 ML min           (pts)     46     48     47     47
 t5             (分)    4.9    4.0    4.2    3.6
架橋試験(180℃)
 tc(10)           (分)   0.55   0.51   0.55   0.52
 tc(90)            (分)   6.54   6.27   6.53   6.35
 ML            (N・m)   0.231  0.22   0.21   0.21
 MH            (N・m)   0.80   0.84   0.83   0.84
 
常態物性(ポストキュア)
 硬度          (Duro A)    66     65     63     62
 100%モジュラス      (MPa)   4.9    5.1    4.9    4.9
 破断時強度         (MPa)  13.4   14.5   12.3   12.7
 破断時伸び         (%)   230    240    200    220
熱老化試験(190℃、100時間) 
 硬度変化         (Duro A)    +8    +12     +7     +6
 100%モジュラス変化率     (%)     +38    +29    -20    -24
 破断時強度変化率        (%)     -13    -13    -16    -17
 破断時伸び変化率        (%)   -29    -28    +16    +14
熱老化試験(190℃、200時間) 
 硬度変化          (Duro A)    +9    +12     +5     +5
 100%モジュラス変化率       (%)     +56    +57    -27    -29
 破断時強度変化率          (%)    -10    -14    -24    -28
 破断時伸び変化率       (%)   -29    -35     +9     +6
熱老化試験(190℃、300時間)
 硬度変化        (Duro A)   +10    +14     +7     +9
 100%モジュラス変化率      (%)   +33    +39    -37    -22
 破断時強度変化率        (%)    -23    -30    -37    -40
 破断時伸び変化率       (%)   -28    -37    +11    -14
熱老化試験(190℃、400時間) 
 硬度変化        (Duro A)   +12    +16    +10    +16
 100%モジュラス変化率      (%)   +19    +35    -39    +18
 破断時強度変化率         (%)    -34    -39    -46    -39
 破断時伸び変化率        (%)   -27    -42    +25    -36
熱老化試験(190℃、500時間)
 硬度変化        (Duro A)   +11    +17     +9    +18
 100%モジュラス変化率      (%)   +17    +53    -35    +67
 破断時強度変化率         (%)    -40    -43    -51    -35
 破断時伸び変化率        (%)   -31    -54     +3    -54
熱老化試験(190℃、600時間)
 硬度変化        (Duro A)   +13    +19    +12    +23
 100%モジュラス変化率      (%)    +6           -33 
 破断時強度変化率         (%)    -50    -46    -55    -43
 破断時伸び変化率        (%)   -36    -67     -5    -73
オイル浸漬試験(150℃、168時間)
 硬度変化         (Duro A)   -18    -16    -15    -15
 100%モジュラス変化率     (%)   -20    -21    -18    -14
 破断時強度変化率       (%)   -22    -22    -19    -17
 破断時伸び変化率       (%)    -14    -13     -5    -14
 体積膨潤率           (%)     +28    +28    +28    +27
圧縮永久歪試験
 175℃、70時間              (%)    23     22     21     21
 175℃、500時間              (%)    40     40     37     34
 
                表4
                   実施例       比較例        
       測定結果          4   10   11   12 
ムーニースコーチ試験(125℃)
 ML min           (pts)     47     48     50     50
 t5             (分)    7.1    7.2    7.7    8.0
架橋試験(180℃)
 tc(10)           (分)   0.94   0.84   1.15   1.16
 tc(90)            (分)   8.13   8.04   8.34   8.25
 ML            (N・m)   0.21   0.21   0.20   0.19
 MH            (N・m)   0.70   0.74   0.69   0.68
 
常態物性(ポストキュア)
 硬度          (Duro A)    66     65     66     65
 100%モジュラス      (MPa)   5.0    5.7    5.8    5.4
 破断時強度         (MPa)  13.7   14.6   13.0   13.4
 破断時伸び         (%)   200    220    190    210
熱老化試験(190℃、100時間)               
 硬度変化         (Duro A)    +7    +11     +4     +6
 100%モジュラス変化率     (%)     +26    +18    -31    -33
 破断時強度変化率        (%)     -15     -6    -22    -25
 破断時伸び変化率        (%)   -15    -14    +17    +20
熱老化試験(190℃、200時間)               
 硬度変化          (Duro A)    +8    +12     -2     +8
 100%モジュラス変化率       (%)     +16    +12    -38    -26
 破断時強度変化率          (%)    -25    -25    -32    -42
 破断時伸び変化率       (%)   -11    -25    +18     -1
熱老化試験(190℃、300時間)               
 硬度変化        (Duro A)   +10    +16    +10    +17 
 100%モジュラス変化率      (%)    -4    +23    -41    +28
 破断時強度変化率        (%)    -39    -42    -45    -40
 破断時伸び変化率       (%)    -9    -40    +15    -41
熱老化試験(190℃、400時間)               
 硬度変化        (Duro A)   +15    +19    +13    +22
 100%モジュラス変化率      (%)    -8           -36       
 破断時強度変化率         (%)    -47    -44    -53    -35
 破断時伸び変化率        (%)   -15    -60     +2    -68
熱老化試験(190℃、500時間)
 硬度変化        (Duro A)   +18    +23    +16    +27
 100%モジュラス変化率      (%)    +2           -24       
 破断時強度変化率         (%)    -50    -35    -56    -26
 破断時伸び変化率        (%)   -24    -74    -19    -80
熱老化試験(190℃、600時間)
 硬度変化        (Duro A)   +19    +26    +17    +29
 100%モジュラス変化率      (%)    +4           -14
 破断時強度変化率         (%)    -55    -30    -57     -8
 破断時伸び変化率        (%)   -33    -80    -34    -86
トルエン浸漬(室温、168時間)-空気加熱老化(190℃、300時間) 複合試験
 硬度変化         (Duro A)    +12    +14    +12    +24
 100%モジュラス変化率     (%)    +18    +32     -2       
 破断時強度変化率       (%)     -35    -40    -33    -37
 破断時伸び変化率       (%)    -16    -47    -13    -29
圧縮永久歪試験
 175℃、70時間              (%)      26     25     25     26
 175℃、500時間              (%)      41     41     40     39
 
 実施例1および比較例1~3については、オイル浸漬試験による架橋物からの老化防止剤の抽出度合を示すΔΔEbを下記式より算出したところ、実施例1は-12、比較例1は-10、比較例2は-25、比較例3は-95であった。
 
 ΔΔEb=ΔEb(空気加熱老化試験-オイル浸漬試験-空気加熱老化 複合試験
     の破断時伸び変化率)-ΔEb(190℃、300時間空気加熱老化試験の
     破断時伸び変化率)
 
 また、実施例4および比較例10~12については、トルエン浸漬試験による架橋物からの老化防止剤の抽出度合を示すΔΔEbを下記式より算出したところ、実施例4は-7、比較例10は-7、比較例11は-28、比較例12は-38であった。
 
 ΔΔEb=ΔEb(トルエン浸漬試験-空気加熱老化複合試験の破断時伸び変化
     率)-ΔEb(190℃、300時間空気加熱老化試験の破断時伸び変化率)
 
 以上の結果から、次のことがいえる。
 (1) 空気加熱老化試験において、比較例2、3と比較して、実施例1の破断時強度の低下が抑制されていることがわかる。これは、主にアクリルエラストマーに化学的に結合した老化防止成分の架橋作用に起因するものと考えられる。同様の傾向は、比較例5、6と実施例2、比較例8、9と実施例3、比較例11、12と実施例4でも示されている。
 (2) 実施例1~3では(試験初期に破断時伸びが若干の低下後)、ほぼ一定の値で推移し長期間ゴム弾性が保持されるのに対して、比較例1、4、7では、試験中期から破断時伸びが低下し、ゴム弾性が失われるのがわかる。一方、比較例2、3、5、6、8、9、11、12では、試験初期から軟化劣化による顕著な破断時伸びの増大および破断時強度の顕著な低下が認められることから、架橋物の機械的な強度の低下が示唆される。
 (3) オイル浸漬試験-空気加熱老化複合試験において、比較例3の破断時伸びが、実施例1および比較例1のそれと比較して、顕著な低下をみせるのは、オイル浸漬試験により架橋物から老化防止剤が抽出されたことに起因するものと推測される。比較例2では、逆に破断時伸びの増大が認められる。これは、フェノチアジン系老化防止剤がオイルにより抽出されにくく、ゴム内に残存しているためと考えられる。このことは、オイル浸漬試験による架橋物からの老化防止剤の抽出度合を示すΔΔEbの数値の絶対値が小さいことにも示されている。一方、実施例1および比較例1では、老化防止成分がアクリルエラストマー共重合体に化学的に結合しているためオイルによる抽出を免れ、結果的に破断時伸びの低下が抑制されると推測される。
 (4) トルエン浸漬試験による架橋物からの老化防止剤の抽出度合を示すΔΔEbの数値の絶対値が大きいほど老化防止剤が多く抽出され、架橋物中の残存率が低いと考えられる。したがって、これらの結果は、共重合性老化剤(a)に起因する老化防止成分がトルエンによる抽出を受けにくく、その多くが架橋物中に残存していることを示唆している(実施例4、比較例10)。また、実施例4と比較例12を比較すると、明らかに実施例4の破断時伸びの低下が小さいのは、共重合性老化剤(a)とフェノチアジン系老化防止剤CD-SO2を併用した効果によるものであるといえる。
 (5) 実施例1および比較例1の破断時強度の低下が比較例2および3より小さいのは、主にアクリルエラストマー共重合体に化学的に結合した老化防止成分の架橋作用に起因するものと考えられる。比較例2では、軟化劣化による破断時強度の低下が顕著である。これは、フェノチアジン系老化防止剤配合ゴム特有の現象である。
 (6) 本発明の組成物を架橋して得られるゴム部材は、過酷な熱酸化劣化条件またはオイル等液体媒質による過酷な抽出・化学劣化条件において、その機械的強度およびゴム弾性を長期間にわたり保持することが可能となる。

Claims (6)

  1.  (A) 一般式〔I〕
    Figure JPOXMLDOC01-appb-I000001
    (ここで、R1は炭素数1~20の一価の脂肪族炭化水素基であり、R2は水素原子またはメチル基であり、Aは直接結合、酸素原子または硫黄原子である)で表される共重合性老化防止剤、アルキル(メタ)アクリレート単量体および/またはアルコキシアルキル(メタ)アクリレート単量体およびα,β-不飽和カルボン酸単量体から構成されるアクリルエラストマー共重合体、
    (B) 一般式〔II〕で表されるフェノチアジン系老化防止剤
    Figure JPOXMLDOC01-appb-I000002
    〔ここで、R3は水素原子、炭素数1~20の一価の脂肪族炭化水素基、炭素数7~20のアラルキル基または下記一般式〔III〕
    Figure JPOXMLDOC01-appb-I000003
    (ここで、R5は炭素数1~20の一価の脂肪族炭化水素基である)
    で表されるアシル基であり、R4は炭素数7~20のアラルキル基である〕、
    (C) 多価アミン架橋剤
    および
    (D) 架橋促進剤
    を含有してなる架橋性アクリルゴム組成物。
  2.  一般式〔I〕で表される共重合性老化防止剤において、Aが硫黄原子である請求項1記載の架橋性アクリルゴム組成物。
  3.  (A)成分が、一般式〔I〕で表される共重合性老化防止剤、アルキルアクリレート単量体およびα,β-不飽和カルボン酸単量体から構成されるアクリルエラストマー共重合体である請求項1記載の架橋性アクリルゴム組成物。
  4.  アルキルアクリレート単量体として、エチルアクリレートおよび/またはn-ブチルアクリレートが用いられる請求項3記載の架橋性アクリルゴム組成物。
  5.  (C)成分多価アミン架橋剤が、ヘキサメチレンジアミンカーバメート、4,4′-ジアミノジフェニルエーテルまたは2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパンである請求項1記載の架橋性アクリルゴム組成物。
  6.  (D)成分架橋促進剤が、1,8-ジアザビシクロ〔5.4.0〕-7-ウンデセンまたはその有機酸塩である請求項1記載の架橋性アクリルゴム組成物。
PCT/JP2023/009304 2022-05-19 2023-03-10 架橋性アクリルゴム組成物 WO2023223643A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022082131 2022-05-19
JP2022-082131 2022-05-19

Publications (1)

Publication Number Publication Date
WO2023223643A1 true WO2023223643A1 (ja) 2023-11-23

Family

ID=88835266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009304 WO2023223643A1 (ja) 2022-05-19 2023-03-10 架橋性アクリルゴム組成物

Country Status (1)

Country Link
WO (1) WO2023223643A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032390A (ja) * 2009-08-03 2011-02-17 Seiko Kagaku Kk 耐熱性アクリルゴム組成物
JP2015137323A (ja) * 2014-01-23 2015-07-30 日本ゼオン株式会社 アクリルゴム組成物およびゴム架橋物
JP2020111552A (ja) * 2019-01-16 2020-07-27 ユニマテック株式会社 フェノチアジン誘導体およびそれを含有するカルボキシル基含有アクリルゴム組成物
JP2020111705A (ja) * 2019-01-16 2020-07-27 ユニマテック株式会社 フェノチアジン誘導体を含有するカルボキシル基含有アクリルゴム組成物
JP2020111551A (ja) * 2019-01-16 2020-07-27 ユニマテック株式会社 フェノチアジン誘導体およびそれを含有するカルボキシル基含有アクリルゴム組成物
CN113444207A (zh) * 2021-06-22 2021-09-28 南京邮电大学 一种本征可拉伸发光弹性体及其制备方法与应用
JP2022185177A (ja) * 2021-06-02 2022-12-14 ユニマテック株式会社 フェノチアジン誘導体化合物およびその製造法
WO2023021832A1 (ja) * 2021-08-18 2023-02-23 ユニマテック株式会社 架橋性アクリルゴム組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032390A (ja) * 2009-08-03 2011-02-17 Seiko Kagaku Kk 耐熱性アクリルゴム組成物
JP2015137323A (ja) * 2014-01-23 2015-07-30 日本ゼオン株式会社 アクリルゴム組成物およびゴム架橋物
JP2020111552A (ja) * 2019-01-16 2020-07-27 ユニマテック株式会社 フェノチアジン誘導体およびそれを含有するカルボキシル基含有アクリルゴム組成物
JP2020111705A (ja) * 2019-01-16 2020-07-27 ユニマテック株式会社 フェノチアジン誘導体を含有するカルボキシル基含有アクリルゴム組成物
JP2020111551A (ja) * 2019-01-16 2020-07-27 ユニマテック株式会社 フェノチアジン誘導体およびそれを含有するカルボキシル基含有アクリルゴム組成物
JP2022185177A (ja) * 2021-06-02 2022-12-14 ユニマテック株式会社 フェノチアジン誘導体化合物およびその製造法
CN113444207A (zh) * 2021-06-22 2021-09-28 南京邮电大学 一种本征可拉伸发光弹性体及其制备方法与应用
WO2023021832A1 (ja) * 2021-08-18 2023-02-23 ユニマテック株式会社 架橋性アクリルゴム組成物

Similar Documents

Publication Publication Date Title
JP7161942B2 (ja) フェノチアジン誘導体を含有するカルボキシル基含有アクリルゴム組成物
JP7165062B2 (ja) フェノチアジン誘導体およびそれを含有するカルボキシル基含有アクリルゴム組成物
JP5505353B2 (ja) アクリルゴム組成物およびゴム架橋物
JP7036107B2 (ja) ジアリールアミン系化合物、老化防止剤、およびポリマー組成物
JP7253119B2 (ja) アクリルエラストマー共重合体およびその架橋性組成物
JP5541196B2 (ja) アクリルゴム組成物およびゴム架橋物
JPWO2018110701A1 (ja) カルボキシル基含有アクリルゴム組成物およびそれを用いたゴム積層体
JP5716597B2 (ja) アクリルゴム組成物およびゴム架橋物
WO2023021832A1 (ja) 架橋性アクリルゴム組成物
JP2020111551A (ja) フェノチアジン誘導体およびそれを含有するカルボキシル基含有アクリルゴム組成物
JP2022185177A (ja) フェノチアジン誘導体化合物およびその製造法
JP6020254B2 (ja) アクリルゴム組成物の製造方法
JP2015137322A (ja) 架橋性アクリルゴム組成物およびゴム架橋物
WO2023223643A1 (ja) 架橋性アクリルゴム組成物
CN114080401A (zh) 丙烯酸橡胶、丙烯酸橡胶组合物以及橡胶交联物
JP2023128629A (ja) 架橋性アクリルゴム組成物
US20240360260A1 (en) Crosslinkable acrylic rubber composition
JP7387014B2 (ja) フェノチアジン誘導体およびアクリルゴム組成物
JP7478032B2 (ja) ジフェニルアミン誘導体化合物およびその製造法
JP2022090304A (ja) フェノチアジン誘導体化合物およびその製造法
WO2023100982A1 (ja) アクリルエラストマー共重合体
JP7505492B2 (ja) アクリルゴム組成物およびゴム架橋物
JP2022168824A (ja) アクリルゴム混合物および架橋性アクリルゴム組成物
JP2018095780A (ja) カルボキシル基含有アクリルゴム組成物
CN118339208A (zh) 丙烯酸类弹性体共聚物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807259

Country of ref document: EP

Kind code of ref document: A1