WO2023223375A1 - 半導体積層構造およびその作製方法、ならびに半導体装置の製造方法 - Google Patents

半導体積層構造およびその作製方法、ならびに半導体装置の製造方法 Download PDF

Info

Publication number
WO2023223375A1
WO2023223375A1 PCT/JP2022/020336 JP2022020336W WO2023223375A1 WO 2023223375 A1 WO2023223375 A1 WO 2023223375A1 JP 2022020336 W JP2022020336 W JP 2022020336W WO 2023223375 A1 WO2023223375 A1 WO 2023223375A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
nitride semiconductor
forming
bonding
Prior art date
Application number
PCT/JP2022/020336
Other languages
English (en)
French (fr)
Inventor
佑樹 吉屋
拓也 星
弘樹 杉山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/020336 priority Critical patent/WO2023223375A1/ja
Publication of WO2023223375A1 publication Critical patent/WO2023223375A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Definitions

  • the present invention relates to a semiconductor stacked structure made of a nitride semiconductor, a method for manufacturing the same, and a method for manufacturing a semiconductor device.
  • Heterojunction field effect transistors (HFETs) and high electron mobility transistors (HEMTs) are turned on and off by changing the carrier density in the channel layer using the electric field generated by the gate voltage.
  • This is a transistor that performs When using GaN, when AlGaN/GaN is stacked, electrons gather at the interface to compensate for the difference in polarization between AlGaN and GaN, forming a two-dimensional electron gas (2DEG). is often used.
  • a gate electrode is formed on an AlGaN layer of several nanometers to several tens of nanometers, and the 2DEG concentration at the AlGaN/GaN interface is controlled.
  • a GaN layer with a main surface of N polarity (group V polarity) is a crystal layer that is the inversion of a GaN layer with a main surface of Ga polarity, and has the following three advantages when making a HEMT. .
  • the AlGaN layer which requires a high Al composition and a thickness of about 20 nm to supply carriers and has high resistance, is under the GaN channel layer and is not disposed between the electrode and the channel. Therefore, contact resistance can be reduced.
  • the thickness of the GaN layer on the surface does not significantly affect the carrier density, so it can be made thinner to suppress short channel effects.
  • the AlGaN layer directly under the channel serves as a back barrier and can suppress short channel effects.
  • Non-patent Document 1 Due to these advantages, further improvement of the high frequency characteristics of the HEMT can be expected by manufacturing a HEMT using an N-polar GaN layer (Non-patent Document 1).
  • HEMT high frequency characteristics of HEMT can be expected to be improved by using a nitride semiconductor layer whose main surface is N-polar (N-polar nitride semiconductor layer).
  • the layer presents challenges in crystal growth.
  • Non-patent Document 2 N-polar nitride semiconductor layers have problems such as lower surface flatness and higher dislocation density than Ga-polar nitride semiconductor layers.
  • the above problems have been solved to some extent by growing crystals on a substrate with a large off-angle, and transistors have been manufactured.
  • the sheet resistance differs depending on the relationship between the direction of the off-angle and the direction of the current flowing through the channel (Non-Patent Document 3), which imposes restrictions on device fabrication.
  • Non-patent Document 4 a Ga-polar group III nitride semiconductor that forms the device structure is grown, so the crystal-specific qualities such as dislocation density and sheet resistance anisotropy are equivalent to existing Ga-polar transistors. We can expect that.
  • a HEMT using a high-quality N-polar nitride semiconductor on a substrate on which it is difficult to grow an N-polar nitride semiconductor.
  • Non-Patent Document 4 a Si substrate and a group III nitride semiconductor epitaxial wafer are bonded using hydrogen silsesquioxane (HSQ).
  • HSQ hydrogen silsesquioxane
  • GaN regrowth is an important step for reducing the contact resistance of a HEMT using an N-polar GaN layer, and high temperatures are required to make the regrown GaN crystal of high quality.
  • the selective thermal decomposition method is a method of etching GaN with a high selectivity, and is a necessary step for etching a thin film with good controllability.
  • the first possibility is to perform direct bonding.
  • a second method is to use an adhesive layer that can withstand higher temperatures.
  • the fact that the nitride semiconductor layer in contact with the Si substrate contains Ga poses a problem at high temperatures. Ga and Si react at high temperatures, and GaN is etched by melt-back etching. This may cause the nitride semiconductor layer containing Ga to peel off from the Si substrate. Furthermore, if a device made of a nitride semiconductor layer containing Ga is close to the substrate, the layer in which the device is formed may be etched, significantly deteriorating the device characteristics.
  • AlN As an adhesive layer that can withstand higher temperatures. It is difficult to grow AlN epitaxially on a Si (100) substrate, and if AlN is grown epitaxially on GaN, it can only grow to a few nm from the viewpoint of critical film thickness. Therefore, the AlN used as the adhesive layer is formed by, for example, a sputtering method. However, an AlN film formed by sputtering has more defects than epitaxially grown AlN, and atoms can easily diffuse through the defects, so it is not effective in suppressing reactions caused by diffusion of Ga and Si. not enough.
  • the conventional technology has the problem that a device with good characteristics using a nitride semiconductor containing Ga cannot be formed on a layer of Si whose main surface has a plane orientation of (100).
  • the present invention has been made to solve the above-mentioned problems, and uses a nitride semiconductor containing Ga on a layer of Si whose main surface has a plane orientation of (100).
  • the purpose is to enable the formation of good devices.
  • the semiconductor stacked structure according to the present invention is composed of a substrate whose main surface is composed of a (100) plane of Si, an oxide layer formed on the main surface of the substrate made of an oxide that does not contain Si, and AlN. and a nitride semiconductor layer made of a nitride semiconductor containing Ga and formed on the adhesive layer.
  • a method for manufacturing a conductive layered structure according to the present invention includes a substrate whose main surface is composed of a (100) plane of Si and an oxide layer composed of an oxide that does not contain Si, and a substrate whose main surface is composed of a (100) plane of Si.
  • a bonding step of bonding an adhesive layer forming step of forming an adhesive layer made of AlN on the side of the substrate to be bonded to another substrate before the bonding step, and after the bonding step , and a removing step of removing the other substrate from the nitride semiconductor layer.
  • a method for manufacturing a semiconductor device includes a substrate whose main surface is composed of a (100) plane of Si and an oxide layer composed of an oxide containing no Si is formed on the main surface, and a substrate containing Ga. Another substrate on which a nitride semiconductor layer is formed by crystal growth of a nitride semiconductor in the +c-axis direction, with the surface on which the nitride semiconductor layer of the other substrate is formed is on the oxide layer formation surface side of the substrate, A bonding step of bonding, before the bonding step, an adhesive layer forming step of forming an adhesive layer made of AlN on the side of the substrate to be bonded to another substrate, and after the bonding step, a removal step of removing another substrate from the nitride semiconductor layer; a first element forming step of forming a recess on the surface of the nitride semiconductor layer after the removal step; and a step of selectively reproducing n-type GaN in the recess.
  • the method includes a second
  • a method for manufacturing a semiconductor device includes growing a substrate whose main surface is composed of a (100) plane of Si and an oxide layer formed on the main surface, and a nitride semiconductor containing Ga in the +c-axis direction.
  • a bonding step in which the other substrate on which the nitride semiconductor layer is formed is bonded to the other substrate with the nitride semiconductor layer forming surface of the other substrate facing the oxide layer forming surface of the substrate;
  • a semiconductor is crystal-grown in the +c-axis direction to form an element formation layer, and a nitride semiconductor containing Al and having a higher thermal decomposition temperature than GaN is crystal-grown in the +c-axis direction on the element formation layer to form an etching stop layer.
  • a buffer layer is formed by crystal-growing a nitride semiconductor containing Ga on the etching stop layer, and a nitride semiconductor layer including an element forming layer, an etching stop layer, and a buffer layer is formed.
  • a removal process for removing other substrates from the nitride semiconductor layer, and after the removal process, a buffer is applied to the etching stop layer by heating in a hydrogen atmosphere containing ammonia. and a second element forming step of selectively thermally decomposing the layer to remove the buffer layer and expose the etch stop layer.
  • a substrate whose main surface is composed of a (100) plane of Si and a nitride semiconductor layer formed by crystal-growing a nitride semiconductor containing Ga in the +c-axis direction are formed. Since the substrate is bonded to another substrate through an oxide layer made of an oxide and an adhesive layer made of AlN, a nitride layer containing Ga is placed on a Si layer whose main surface has a plane orientation of (100). Devices with good characteristics can be formed using physical semiconductors.
  • FIG. 1A is a cross-sectional view showing the state of the semiconductor stacked structure in an intermediate step for explaining the method for manufacturing the semiconductor stacked structure according to Embodiment 1 of the present invention.
  • FIG. 1B is a cross-sectional view showing the state of the semiconductor stacked structure in an intermediate step for explaining the method for manufacturing the semiconductor stacked structure according to Embodiment 1 of the present invention.
  • FIG. 1C is a cross-sectional view showing the state of the semiconductor stacked structure in an intermediate step for explaining the method for manufacturing the semiconductor stacked structure according to Embodiment 1 of the present invention.
  • FIG. 1D is a cross-sectional view showing the state of the semiconductor stacked structure in an intermediate step for explaining the method for manufacturing the semiconductor stacked structure according to Embodiment 1 of the present invention.
  • FIG. 1E is a cross-sectional view showing the state of the semiconductor stacked structure in an intermediate step for explaining the method for manufacturing the semiconductor stacked structure according to Embodiment 1 of the present invention.
  • FIG. 1F is a cross-sectional view showing the state of the semiconductor stacked structure in an intermediate step for explaining the method for manufacturing the semiconductor stacked structure according to the first embodiment of the present invention.
  • FIG. 2A is a cross-sectional view showing a state of a semiconductor device in an intermediate process for explaining a method for manufacturing a semiconductor device according to Embodiment 2 of the present invention.
  • FIG. 2B is a cross-sectional view showing a state of a semiconductor device in an intermediate process for explaining the method for manufacturing a semiconductor device according to Embodiment 2 of the present invention.
  • FIG. 1E is a cross-sectional view showing the state of the semiconductor stacked structure in an intermediate step for explaining the method for manufacturing the semiconductor stacked structure according to Embodiment 1 of the present invention.
  • FIG. 1F is a
  • FIG. 2C is a cross-sectional view showing a state of a semiconductor device in an intermediate process for explaining the method for manufacturing a semiconductor device according to Embodiment 2 of the present invention.
  • FIG. 3A is a cross-sectional view showing a state of a semiconductor device in an intermediate process for explaining a method for manufacturing a semiconductor device according to Embodiment 3 of the present invention.
  • FIG. 3B is a cross-sectional view showing the state of a semiconductor device in an intermediate process for explaining the method for manufacturing a semiconductor device according to Embodiment 3 of the present invention.
  • FIG. 3C is a cross-sectional view showing a state of a semiconductor device in an intermediate process for explaining a method for manufacturing a semiconductor device according to Embodiment 3 of the present invention.
  • FIG. 3D is a cross-sectional view showing a state of a semiconductor device in an intermediate process for explaining a method for manufacturing a semiconductor device according to Embodiment 3 of the present invention.
  • Embodiment 1 First, a method for manufacturing a semiconductor stacked structure according to Embodiment 1 of the present invention will be described with reference to FIGS. 1A to 1F.
  • a substrate 101 whose main surface is composed of the (100) plane of Si is prepared.
  • the substrate 101 can be, for example, an SOI (Silicon on Insulator) substrate including a surface silicon layer whose main surface has a (100) plane orientation. Further, the substrate 101 can be made of bulk single crystal Si.
  • an oxide layer 102 made of an oxide containing no Si is formed on the substrate 101.
  • an adhesive layer 103 made of AlN is formed on the oxide layer 102 (adhesive layer forming step).
  • the oxide layer 102 can be formed, for example, by depositing an oxide such as Al 2 O 3 or HfO 2 using a well-known deposition technique such as ALD (atomic layer deposition). SiO 2 is undesirable because it contains Si.
  • the adhesive layer 103 can be formed, for example, by a well-known deposition technique such as sputtering. Further, the adhesive layer 103 can be formed by a CVD (Chemical Vapor Deposition) method using ECR (Electron Cyclotron Resonance) plasma.
  • CVD Chemical Vapor Deposition
  • ECR Electro Cyclotron Resonance
  • the oxide layer 102 and the adhesive layer 103 are layers for preventing melt-back etching caused by Si and Ga in a high-temperature environment of 1000° C. or higher, and the thicker they are, the more they prevent Ga and Si from diffusing and reacting. The effect will be higher.
  • the oxide layer 102 and the adhesive layer 103 be made as thin as possible to achieve a certain effect.
  • the thickness of the oxide layer 102 be within the range of, for example, several nanometers to several tens of nanometers. Further, it is assumed that the surface of the adhesive layer 103 is ground by CMP (chemical mechanical polishing) in order to ensure the necessary surface flatness in the bonding process. Although the layer thickness removed by CMP depends on the surface flatness before CMP, it can be several tens of nanometers or more. For this reason, it is desirable that the thickness of the adhesive layer 103 be within the range of, for example, several tens of nanometers to several hundred nanometers.
  • CMP chemical mechanical polishing
  • a nitride semiconductor layer 105 is formed on the other substrate 104 by crystal-growing a nitride semiconductor containing Ga in the +c-axis direction.
  • the main surface of the formed nitride semiconductor layer 105 becomes the +c plane and has Ga polarity (group III polarity).
  • the other substrate 104 may be any substrate on which a Ga-containing nitride semiconductor such as GaN or AlGaN can be grown; for example, it may be a Si substrate, a sapphire substrate, a SiC substrate, or a GaN substrate.
  • a Si substrate or a sapphire substrate is better.
  • the other substrate 104 is a sapphire substrate.
  • the nitride semiconductor layer 105 can be formed by epitaxially growing a desired nitride semiconductor using, for example, metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE).
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • the nitride semiconductor layer 105 can have a stacked structure in which a plurality of nitride semiconductor layers are stacked.
  • each layer can be a layer for configuring a transistor such as a HEMT, for example.
  • the outermost surface of the stacked structure can be, for example, a layer made of GaN.
  • the outermost layer is made of different materials, taking into account that chemical-mechanical polishing (CMP) is performed to ensure surface flatness for bonding, which will be described later, and that damage may occur near the bonding interface due to pressure during bonding. It is desirable to determine the thickness.
  • CMP chemical-mechanical polishing
  • the other substrate 104 on which the nitride semiconductor layer 105 is formed is attached to the substrate 101 with the surface of the other substrate 104 on which the nitride semiconductor layer 105 is formed facing the substrate 101 side.
  • Combine (bonding process) This bonding is performed by bonding the surfaces to be bonded together using a known direct bonding technique. Direct bonding requires high flatness such that the surface roughness Ra of each bonding surface is 1 nm or less.
  • the outermost surface of the nitride semiconductor layer 105 immediately after formation may have an Ra of up to several nm and may not have sufficient flatness for direct bonding. In this case, it is important to planarize the outermost surface of the nitride semiconductor layer 105 by CMP. In this way, by bonding using the direct bonding technique, there is no need to use an adhesive made of an organic material, and the resistance to high temperature treatment is improved. It is also expected to improve the heat dissipation of the device.
  • the nitride semiconductor layer 105 is formed, and the surface of the nitride semiconductor layer 105 is exposed.
  • the other substrate 104 is a sapphire substrate
  • the above-mentioned removal can be performed by a laser lift-off method.
  • the above-mentioned removal can be performed by back grinding or dry etching.
  • the main surface of the nitride semiconductor layer 105 at this stage is the surface facing the other substrate 104, and becomes the -c plane, and has N polarity (group V polarity). Furthermore, when viewed from the substrate 101, the nitride semiconductor layer 105 is the same as one whose crystals are grown in the ⁇ c-axis direction.
  • an AlN layer is formed on the nitride semiconductor layer 105.
  • an adhesive layer (another adhesive layer) 103a made of an AlN layer is formed.
  • An oxide layer made of an oxide not containing Si can also be provided between the adhesive layer 103a and the nitride semiconductor layer 105.
  • the adhesive layer 103a on the other substrate 104 is bonded to the adhesive layer 103 on the substrate 101 shown in FIG. 1B, thereby bonding the substrate 101 and the other substrate 104 together.
  • the other substrate 104 can also be removed.
  • a layer of a nitride semiconductor containing Ga is formed on the adhesive layer 103, and then , it is also possible to perform bonding with another substrate 104 as described above. If the oxide layer 102 and the adhesive layer 103 are formed, the Si layer and the nitride semiconductor layer containing Ga will not come into contact with each other, and meltback etching will not occur.
  • the semiconductor stacked structure fabricated by the method for fabricating a semiconductor stacked structure described above includes a substrate 101 whose main surface is made of a (100) plane of Si, and an oxide layer made of an oxide and formed on the substrate 101. 102, an adhesive layer 103 made of AlN and formed on the oxide layer 102, and a nitride semiconductor layer 105 made of a nitride semiconductor containing Ga and formed on the adhesive layer 103. becomes. Further, the main surface of the nitride semiconductor layer 105 has N polarity. Further, the nitride semiconductor layer 105 is bonded to the adhesive layer 103.
  • the semiconductor stacked structure obtained by the method for manufacturing a semiconductor stacked structure described above can be used as a template substrate used for manufacturing a semiconductor device using a nitride semiconductor.
  • the nitride semiconductor layer 105 near the other substrate 104 is generally composed of a buffer layer including a nucleation layer in the initial stage of crystal (epitaxial) growth, and the crystal quality is high. is low.
  • the buffer layer is generally made of GaN. For this reason, it is desirable that the device layer included in the nitride semiconductor layer 105 for forming the device structure be grown with a sufficiently thick buffer layer inserted therein.
  • the buffer layer described above also has the effect of preventing the device layer from being removed together with the substrate. If a buffer layer is inserted, the desired layer will not be exposed simply by removing the other substrate 104. Therefore, it is necessary to remove a portion serving as a buffer layer using a removal technique such as CMP or dry etching to expose a desired layer (device layer) to the surface. When the device layer is thin, etching with a high selectivity is required, and it is preferable to form an etch stop layer in advance together with the device layer. Further, the buffer layer made of GaN can be removed by a well-known selective pyrolysis method.
  • the template with the semiconductor stacked structure described above can be used for manufacturing an N-polar nitride semiconductor device on a Si substrate. Further, a template with a semiconductor stacked structure can be used as a wafer for integrating a Si device and an N-polar nitride semiconductor device on the same substrate. For example, when fabricating an N-polar GaN device integrated with a CMOS circuit using the above-mentioned template, first remove by etching the N-polar GaN layer (nitride semiconductor layer) in the region where the Si device will be built. By doing so, Si is exposed on the surface. Si devices can then be fabricated in the exposed areas. The nitride semiconductor layer can be removed by general dry etching.
  • a nitride semiconductor layer whose main surface has N polarity can also be removed by wet etching using KOH or the like, unlike a case where the main surface has group III polarity.
  • the CMOS process on the exposed Si substrate can be performed using known semiconductor device manufacturing techniques.
  • FIGS. 1A to 1F and FIGS. 2A to 2C a method for manufacturing a semiconductor device according to a second embodiment of the present invention will be described with reference to FIGS. 1A to 1F and FIGS. 2A to 2C.
  • the nitride semiconductor layer 105 is formed on the substrate 101 via the oxide layer 102 and the adhesive layer 103, and the surface of the nitride semiconductor layer 105 is exposed. state.
  • a recess 106 is formed on the surface of the nitride semiconductor layer 105 (first element formation step).
  • two recesses 106 are formed.
  • the recesses 106 can be formed by removing the nitride semiconductor layer 105 from the surface side to a predetermined depth by a known etching technique (for example, dry etching) using a mask pattern formed by a known lithography technique.
  • n-type GaN doped with n-type impurities at a high concentration is selectively regrown in the recess 106 to form an n + -GaN layer 107 (second element formation step). process).
  • an n + -GaN layer 107 is formed in each of the two recesses 106.
  • an electrode 108 that is ohmically connected to the n + -GaN layer 107 is formed (third element forming step).
  • electrodes 108 are formed on each of the two n + -GaN layers 107.
  • one of the two electrodes 108 formed can be, for example, a source electrode and the other can be a drain electrode.
  • a field effect transistor can be obtained by subsequently forming a gate electrode that forms a Schottky junction on the surface of the nitride semiconductor layer 105 between the two electrodes 108.
  • a device layer in which a GaN layer serving as a channel layer and an AlGaN layer serving as a barrier layer for generating 2DEG are grown in this order, It is formed in the nitride semiconductor layer 105 in advance. Further, as described above, after growing the buffer layer, the GaN layer and the AlGaN layer are grown. The nitride semiconductor layer 105 formed in this way is formed on the substrate 101 after the removal of the other substrate 104, and when viewed from the substrate 101 side, a GaN layer that will become a channel layer is placed on an AlGaN layer that will become a barrier layer. is formed. Further, regarding the direction of the crystal axis of each layer, the direction in which each layer is formed when viewed from the substrate 101 side is the -c axis direction.
  • 2DEG generated in the barrier layer It can be a field effect transistor having a channel.
  • nitride semiconductors have polarization in the c-axis direction, so by forming the above-mentioned heterojunction between the AlGaN layer and the GaN layer, 10 13 cm -3 spontaneously increases due to the polarization effect. It becomes possible to form a 2DEG with a similar high density.
  • the formation of the n + -GaN layer 107 is a general technique for lowering the contact resistance of the electrode 108, but regrowth is performed at a high temperature of 1000° C. or higher, which is the general growth temperature of GaN. Therefore, if the above-described bonding is performed using an adhesive or the like that does not have high heat resistance, it cannot be applied.
  • the oxide layer 102 and the adhesive layer 103 have a heat resistance exceeding 1000°C, which is higher than that of GaN. No problems such as deterioration of 103 or peeling at this portion occur. Furthermore, since the Si of the substrate 101 and the Ga contained in the nitride semiconductor layer 105 do not come into direct contact with each other, a reaction progresses at the bonding interface due to melt-back etching, and peeling does not occur.
  • FIGS. 1A to 1F and FIGS. 3A to 3D a method for manufacturing a semiconductor device according to Embodiment 3 of the present invention will be described with reference to FIGS. 1A to 1F and FIGS. 3A to 3D.
  • a substrate 101 is prepared, and then , as explained using FIG. 1B, a layer composed of an oxide such as Al 2 O 3 or HfO An oxide layer 102 and an adhesive layer 103 made of AlN are formed.
  • a buffer layer 151 is formed on the other substrate 104 by crystal-growing a nitride semiconductor containing Ga in the +c-axis direction.
  • Buffer layer 151 can be made of, for example, GaN.
  • a nitride semiconductor containing Al and having a higher thermal decomposition temperature than GaN is crystal-grown in the +c-axis direction to form an etching stop layer 152.
  • Etch stop layer 152 may be comprised of AlGaN.
  • the element forming layer 153 can have a stacked structure of, for example, a GaN layer serving as a channel layer, an AlGaN layer serving as a barrier layer, and a GaN layer serving as a protective layer.
  • a GaN layer serving as a channel layer, an AlGaN layer serving as a barrier layer, and a GaN layer serving as a protective layer are stacked in this order to form the element forming layer 153.
  • a GaN layer serving as a protective layer is disposed on the top layer of the element forming layer 153.
  • the element formation layer 153 is a layer in which the basic structure of a device (semiconductor device) such as a transistor is formed.
  • the nitride semiconductor layer 105a including the buffer layer 151, the etching stop layer 152, and the element formation layer 153 is formed (first element formation step).
  • the formation of the nitride semiconductor layer 105a is performed before the bonding process and before the adhesive layer forming process.
  • the substrate 101 and the other substrate 104 on which the nitride semiconductor layer 105a is formed are placed in such a state that the surface on which the nitride semiconductor layer 105a of the other substrate 104 is formed is on the substrate 101 side.
  • bonding (bonding process).
  • the bonding is similar to the bonding described using FIG. 1D.
  • the uppermost layer of the element formation layer 153 is a GaN layer that will become a protective layer
  • the pressure applied during the bonding described above will cause the uppermost layer to become a GaN layer that will become a channel layer, etc., a barrier layer, etc. AlGaN layers etc. can be protected.
  • the other substrate 104 is removed from the nitride semiconductor layer 105a to expose the buffer layer 151 as shown in FIG.
  • a nitride semiconductor layer 105a is formed therebetween, and the surface of the nitride semiconductor layer 105a (buffer layer 151) is exposed.
  • Removal of the other substrate 104 is similar to the explanation using FIG. 1E.
  • the main surface of the nitride semiconductor layer 105a (buffer layer 151) at this stage is the surface facing the other substrate 104, and becomes the ⁇ c plane, which has N polarity (group V polarity).
  • the nitride semiconductor layer 105a (element formation layer 153, etching stop layer 152, buffer layer 151) is the same as one whose crystals are grown in the -c axis direction.
  • the buffer layer 151 is removed by selectively thermally decomposing the buffer layer 151 with respect to the etching stop layer 152 by heating in a hydrogen atmosphere containing ammonia, and as shown in FIG. 3D, the buffer layer 151 is removed.
  • second element forming step Since AlGaN has a higher thermal decomposition temperature than GaN, etching can be performed by selectively thermally decomposing GaN using the selective thermal decomposition method described above.
  • the selectivity ratio of the selective pyrolysis method is as high as about 10 3 depending on the conditions, and is effective when exposing a thin layer to the surface by etching.
  • the total thickness of the element forming layer 153 may be approximately several tens of nanometers, including the AlGaN layer serving as a barrier layer and the GaN layer serving as a channel layer.
  • the buffer layer 151 disposed on the side of the other substrate 104 during growth has a thickness of several hundred nm to several ⁇ m in order to sufficiently reduce the dislocation density generated due to the lattice matching difference between the buffer layer 151 and the other substrate 104. It can be thick. Therefore, it is important to have a high etching selectivity between the etching stop layer 152 and the buffer layer 151.
  • the etching rate of the buffer layer 151 By performing selective thermal decomposition in a hydrogen atmosphere containing ammonia, it is possible to selectively control the etching rate of the buffer layer 151. If ammonia is not used, the etching rate (etching speed) is too fast, and even if the etching stop layer 152 made of AlGaN is used, it will be difficult to stop etching in this layer. By controlling the etching rate using ammonia, it becomes possible to easily control etching to stop the etching at the etching stop layer 152.
  • the processing temperature is as high as about 1000°C, but the oxide layer 102 made of oxides such as Al 2 O 3 and HfO 2 and the adhesive made of AlN Since the layer 103 is formed, the substrate 101 and the nitride semiconductor layer 105a (element forming layer 153) do not come into contact with each other, and melt back etching due to the reaction between Ga and Si is prevented, and the bonding interface becomes rough. Prevents peeling. Further, since the oxide and AlN have a higher thermal decomposition temperature than GaN, the adhesive layer 103 and the oxidized layer 102 are hardly decomposed even under conditions that thermally decompose GaN.
  • the main surface of the etching stop layer 152 which was the surface facing the other substrate 104 side, becomes the -c plane and becomes N polarity (V group polarity). Furthermore, when viewed from the substrate 101, the element formation layer 153 and the etching stop layer 152 are the same as those grown in crystals in the -c axis direction. Further, in the element formation layer 153, when viewed from the substrate 101, for example, a GaN layer serving as a protective layer, an AlGaN layer serving as a barrier layer, etc., and a GaN layer serving as a channel layer etc. are stacked in this order, The upper surface of each layer viewed from the substrate 101 has N polarity.
  • the etching stop layer 152 on the element formation layer 153 can be used as a gate insulating layer, and a gate electrode can be formed thereon. Further, after removing the etching stop layer 152, a gate electrode that is connected to the Schottky connection can be formed on the uppermost channel layer of the element formation layer 153. Further, a source electrode and a drain electrode that are ohmically connected to a channel made of two-dimensional electron gas formed near the hetero interface between the channel layer and the barrier layer of the element forming layer 153 can be formed with the gate electrode in between.
  • a nitride semiconductor layer is formed by forming a substrate whose main surface is composed of a (100) plane of Si and a nitride semiconductor layer including Ga-containing nitride semiconductor crystal grown in the +c-axis direction. Since the other substrates are bonded together through an oxide layer made of an oxide and an adhesive layer made of AlN, a layer containing Ga is placed on a layer of Si whose main surface has a plane orientation of (100). It becomes possible to form devices with good characteristics using nitride semiconductors.
  • the present invention firstly, direct contact between GaN and Si can be prevented. If the wafer is placed in a high-temperature environment with GaN and Si in direct contact, GaN and Si will be etched by melt-back etching, resulting in the GaN epitaxial film peeling off from the Si substrate, or etching progressing to the vicinity of the GaN device layer, resulting in device damage. Problems may arise such as deterioration of characteristics or failure of device operation.
  • the oxide layer made of an oxide and the adhesive layer made of AlN can suppress the above-mentioned problems.
  • the oxide layer and AlN each have the following roles.
  • the adhesive layer made of AlN suppresses diffusion and reaction of Ga and Si in GaN, and can be used as a sacrificial layer in CMP for surface flattening before direct bonding.
  • the adhesive layer made of AlN can be easily formed into a layer having a thickness exceeding 100 nm by using a sputtering method. During CMP, a layer of about several tens of nanometers to about 100 nanometers is ground, so it is important to be able to easily form an adhesive layer with a thickness exceeding this.
  • the adhesive layer formed by sputtering has a higher defect density than an epitaxially grown AlN layer, and Ga and Si are likely to diffuse through the defects.
  • an oxide layer is introduced. The oxide layer can be formed into a film with lower defect density by CVD or ALD, and atoms are less likely to diffuse. Therefore, even a thin oxide layer can have the effect of preventing diffusion of Ga and Si.
  • the present invention restrictions on device processes due to bonding and deterioration of device characteristics can be reduced.
  • an adhesive layer In order to avoid direct contact between GaN and Si, it is possible to insert an adhesive layer.
  • Organic materials are generally used for adhesive layers for wafer bonding, but these materials cannot withstand high-temperature processes, which limits device processes and device characteristics after substrate transfer.
  • the adhesive layer made of AlN and the oxide layer made of oxide have high heat resistance and enable wafer bonding without imposing the above-mentioned limitations on substrate-transferred N-polar GaN devices.
  • CMOS circuit realized on a Si (100) substrate with an N-polar nitride semiconductor device.
  • Epitaxial growth of nitride semiconductors on Si(100) substrates presents many challenges, and it is difficult to integrate nitride semiconductor devices on Si(100) substrates.
  • the present invention as described above, it is possible to realize a GaN device and a CMOS circuit with high device characteristics on the same chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

基板(101)の上に、Siを含まない酸化物から構成された酸化層(102)を形成する。引き続いて、酸化層(102)の上に、AlNから構成された接着層(103)を形成する(接着層形成工程)。他基板(104)の上に、Gaを含む窒化物半導体を+c軸方向に結晶成長することで、窒化物半導体層(105)を形成する。窒化物半導体層(105)が形成された他基板(104)を、他基板(104)の窒化物半導体層(105)の形成面が基板(101)の側となる状態で、基板(101)に貼り合わせる(貼り合わせ工程)。

Description

半導体積層構造およびその作製方法、ならびに半導体装置の製造方法
 本発明は、窒化物半導体からなる半導体積層構造およびその作製方法、ならびに半導体装置の製造方法に関する。
 ヘテロ接合電界効果トランジスタ(heterojunction field effect transistor:HFET)や、高電子移動度トランジスタ(high electron mobility transistor:HEMT)は、ゲート電圧により生じる電界によってチャネル層のキャリア密度を変化させることで、ON/OFFを行うトランジスタである。GaNを用いる場合には、AlGaN/GaNを積層するとAlGaNとGaNの分極の大きさの差を補償するようにして界面に電子が集まって形成される二次元電子ガス(2 dimensional electron gas:2DEG)を用いることが多い。一般的なGa極性(III族極性)のGaNによるHEMTでは、数nm~数十nm程度のAlGaN層の上にゲート電極を形成し、AlGaN/GaN界面の2DEG濃度を制御することになる。
 GaNを用いたHEMTでは、2DEGの高移動度を活かした高周波デバイス応用が進められている。ここで、Ga極性のHEMTでは、デバイス表面にバンドギャップの大きいAlGaNが配置される構成となる。このため、この種のトランジスタには、第1に、コンタクト抵抗が高い、第2に、キャリア密度維持のためにAlGaN層を薄くできず、短チャネル効果につながるといった課題がある。
 これらの課題が、GaNなどの窒化物半導体を用いたHEMTの高周波特性向上の妨げとなっている。上述した課題の解決を目的とし、第1にコンタクト抵抗低減のために、オーミック電極直下の領域の再成長を行う、第2に短チャネル効果の抑制のために、Al組成を高めてAlGaN層を薄くするなどの技術が検討されている。しかしながら、オーミックコンタクト抵抗を低減するには制限がある。
 主表面がN極性(V族極性)とされたGaN層は、主表面がGa極性とされたGaN層を反転させた結晶の層であり、HEMTを作る際には以下の3つの利点を有する。
 第1に、キャリアを供給するために高いAl組成と20nm程度の厚さとを必要とし、高抵抗であるAlGaN層が、GaNチャネル層の下にあり、電極とチャネルの間に配置されない。このため、コンタクト抵抗を低くできる。
 第2に、表面のGaN層の厚さは、キャリア密度に大きく影響しないため、薄くして短チャネル効果を抑制できる。
 第3に、チャネル直下のAlGaN層がバックバリアとなり、短チャネル効果を抑制できる。
 これらの利点からN極性のGaN層を用いてHEMTを作製することで、HEMTのさらなる高周波特性の向上が期待できる(非特許文献1)。
 上述したように、主表面をN極性とした窒化物半導体層(N極性の窒化物半導体層)を用いることでHEMTの高周波特性の向上が期待できることが分かっているが、N極性の窒化物半導体層は結晶成長において課題がある。
 N極性の窒化物半導体層は、Ga極性の窒化物半導体層に比べて表面の平坦性が低く、転位密度が高いなどの課題があることが知られている(非特許文献2)。大きなオフ角のついた基板上に結晶成長することで上記課題をある程度解決し、トランジスタを作製した例もある。しかしながらこの場合、オフ角の方向とチャネルを流れる電流の方向の関係によってシート抵抗が異なることが分かっており(非特許文献3)、デバイス作製に制限を課すものとなっている。
 こうしたN極性の窒化物半導体における結晶成長の課題を回避するために、Ga極性で成長した窒化物半導体を反転させて別の基板に貼り合わせ、N極性面を露出させてデバイスを作製する技術が検討されている(非特許文献4)。この技術においては、Ga極性でデバイス構造となるIII族窒化物半導体を成長しているため、転位密度やシート抵抗の異方性などの結晶固有の品質は、既存のGa極性トランジスタと同等であることが期待できる。
 さらに、基板転写を用いることで、N極性の窒化物半導体の成長が難しい基板上に、高品質なN極性の窒化物半導体によるHEMTを作製することが可能になる。例えば、CMOS作製に利用されている、主表面の面方位を(100)としたSi基板の上にGaNを結晶成長することは難しいが、上述した基板転写の技術を用いることで、N極性のGaN層を、Si基板の上に形成することが可能である。これによって、高周波特性に優れるHEMTとCMOSとを、同一基板の上に集積することができる。
M. H. Wong et al., "INVITED REVIEW N-polar GaN epitaxy and high electron mobility transistors", Semiconductor Science and Technology, vol. 28, 074009, 2013. M. Sumiya et al., "Growth mode and surface morphology of a GaN film deposited along the N-face polar direction on c-plane sapphire substrate", American Institute of Physics, vol. 88, no. 2, pp. 1158-1165, 2000. S. Keller et al., "Influence of the substrate misorientation on the properties of N-polar InGaN/GaN and AlGaN/GaN heterostructures", Journal of Applied Physics, vol. 104, no. 9, 093510, 2008. J. W. Chung et al., "N-Face GaN/AlGaN HEMTs Fabricated Through Layer Transfer Technology", IEEE Electron Device Letters, vol. 30, no. 2, pp. 113-116, 2009.
 上述したように、基板転写の技術を用いることで、Si基板の上へのN極性窒化物層の形成を可能とし、大口径Si基板が利用されているCMOSプロセスラインでのデバイス作製や、同一基板上へのCMOS回路との集積などを実現可能としている。
 例えば、非特許文献4において、Si基板とIII族窒化物半導体エピウェハとが、水素シルセスキオキサン(HSQ)によって接合されている。しかしながら、HSQは、900℃程度までの耐熱性しか持たないため、オーミック電極のアニール(850℃程度)には耐えられても、1000℃を超える工程を接合した後に行うことができない。1000℃を超える温度での工程として、例えばGaNの再成長や選択熱分解法によるエッチングが考えられる。GaNの再成長は、N極性のGaN層を用いたHEMTのコンタクト抵抗を低減するために重要な工程であり、高い温度が再成長するGaN結晶を高品質なものとするために必要である。また、選択熱分解法は、GaNを高い選択比でエッチングする方法であり、薄膜を制御性よくエッチングするために必要な工程である。
 高温工程の実施を可能とするためには、第1に、直接接合を行うことが考えられる。また、高温工程の実施を可能とするためには、第2に、より高い温度に耐えうる接着層を用いる方法が考えられる。
 直接接合を用いる場合、Si基板と接している窒化物半導体層にGaが含まれていることが、高温時に問題となる。GaとSiとは高温下で反応し、GaNがメルトバックエッチングによってエッチングされる。これによって、Si基板からGaが含まれている窒化物半導体層が剥離する可能性がある。また、Gaが含まれている窒化物半導体層から構成されるデバイスが基板に近い場合には、デバイスが形成されている層がエッチングされ、デバイス特性を大きく劣化させることが考えられる。
 一方、より高い温度に耐えうる接着層として、AlNを用いることが考えられる。AlNはSi(100)基板の上にエピタキシャルに成長させることが難しく、またGaN上にエピタキシャルに成長させると臨界膜厚の観点から数nmしか成長できない。このため、接着層として用いるAlNは、例えばスパッタ法によって成膜することとなる。しかし、スパッタ法で成膜したAlN膜は、エピタキシャル成長したAlNに比べて欠陥が多く、欠陥を介した原子の拡散が容易であることから、GaやSiが拡散して起こる反応を抑制する効果は十分でない。
 以上のように、従来技術では、主表面の面方位を(100)としたSiの層の上に、Gaを含む窒化物半導体を用いた特性のよいデバイスが形成できないという問題があった。
 本発明は、以上のような問題点を解消するためになされたものであり、主表面の面方位を(100)としたSiの層の上に、Gaを含む窒化物半導体を用いた特性のよいデバイスが形成できるようにすることを目的とする。
 本発明に係る半導体積層構造は、主表面がSiの(100)面から構成された基板と、Siを含まない酸化物から構成されて基板の主表面に形成された酸化層と、AlNから構成されて酸化層の上に形成された接着層と、Gaを含む窒化物半導体から構成されて接着層の上に形成された窒化物半導体層とを備える。
 本発明に係る導体積層構造の作製方法は、主表面がSiの(100)面から構成されて主表面に、Siを含まない酸化物から構成された酸化層が形成された基板と、Gaを含む窒化物半導体を+c軸方向に結晶成長することで窒化物半導体層が形成された他基板とを、他基板の窒化物半導体層の形成面が基板の酸化層形成面の側となる状態で、貼り合わせる貼り合わせ工程と、貼り合わせ工程の前に、基板の他基板と貼り合わされる側の面に、AlNから構成された接着層を形成する接着層形成工程と、貼り合わせ工程の後で、窒化物半導体層より他基板を除去する除去工程とを備える。
 本発明に係る半導体装置の製造方法は、主表面がSiの(100)面から構成されて主表面に、Siを含まない酸化物から構成された酸化層が形成された基板と、Gaを含む窒化物半導体を+c軸方向に結晶成長することで窒化物半導体層が形成された他基板とを、他基板の窒化物半導体層の形成面が基板の酸化層形成面の側となる状態で、貼り合わせる貼り合わせ工程と、貼り合わせ工程の前に、基板の他基板と貼り合わされる側の面に、AlNから構成された接着層を形成する接着層形成工程と、貼り合わせ工程の後で、窒化物半導体層より他基板を除去する除去工程と、除去工程の後で、窒化物半導体層の表面に凹部を形成する第1素子形成工程と、凹部に、n型のGaNを選択的に再成長してn-GaN層を形成する第2素子形成工程と、n-GaN層にオーミック接続する電極を形成する第3素子形成工程とを備える。
 本発明に係る半導体装置の製造方法は、主表面がSiの(100)面から構成されて主表面に酸化層が形成された基板と、Gaを含む窒化物半導体を+c軸方向に結晶成長することで窒化物半導体層が形成された他基板とを、他基板の窒化物半導体層の形成面が基板の酸化層形成面の側となる状態で、貼り合わせる貼り合わせ工程と、貼り合わせ工程の前に、基板の他基板と貼り合わされる側の面に、AlNから構成された接着層を形成する接着層形成工程と、貼り合わせ工程の前に、他基板の上に、Gaを含む窒化物半導体を+c軸方向に結晶成長して素子形成層を形成し、素子形成層の上に、Alを含みGaNより熱分解温度が高い窒化物半導体を+c軸方向に結晶成長してエッチング停止層を形成した後で、エッチング停止層の上に、Gaを含む窒化物半導体を結晶成長してバッファ層を形成し、素子形成層、エッチング停止層、およびバッファ層を含む窒化物半導体層を形成する第1素子形成工程と、貼り合わせ工程の後で、窒化物半導体層より他基板を除去する除去工程と、除去工程の後で、アンモニアを含む水素雰囲気中の加熱により、エッチング停止層に対してバッファ層を選択的に熱分解することでバッファ層を除去し、エッチング停止層を露出させる第2素子形成工程とを備える。
 以上説明したように、本発明によれば、主表面がSiの(100)面から構成された基板と、Gaを含む窒化物半導体を+c軸方向に結晶成長した窒化物半導体層が形成された他基板とを、酸化物から構成された酸化層およびAlNから構成された接着層を介して貼り合わせるので、主表面の面方位を(100)としたSiの層の上に、Gaを含む窒化物半導体を用いた特性のよいデバイスが形成できる。
図1Aは、本発明の実施の形態1に係る半導体積層構造の作製方法を説明するための途中工程の半導体積層構造の状態を示す断面図である。 図1Bは、本発明の実施の形態1に係る半導体積層構造の作製方法を説明するための途中工程の半導体積層構造の状態を示す断面図である。 図1Cは、本発明の実施の形態1に係る半導体積層構造の作製方法を説明するための途中工程の半導体積層構造の状態を示す断面図である。 図1Dは、本発明の実施の形態1に係る半導体積層構造の作製方法を説明するための途中工程の半導体積層構造の状態を示す断面図である。 図1Eは、本発明の実施の形態1に係る半導体積層構造の作製方法を説明するための途中工程の半導体積層構造の状態を示す断面図である。 図1Fは、本発明の実施の形態1に係る半導体積層構造の作製方法を説明するための途中工程の半導体積層構造の状態を示す断面図である。 図2Aは、本発明の実施の形態2に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図2Bは、本発明の実施の形態2に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図2Cは、本発明の実施の形態2に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図3Aは、本発明の実施の形態3に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図3Bは、本発明の実施の形態3に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図3Cは、本発明の実施の形態3に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。 図3Dは、本発明の実施の形態3に係る半導体装置の製造方法を説明するための途中工程の半導体装置の状態を示す断面図である。
 以下、本発明の実施の形態に係る半導体積層構造の作製方法について説明する。
[実施の形態1]
 はじめに、本発明の実施の形態1に係る半導体積層構造の作製方法について図1A~図1Fを参照して説明する。
 まず、図1Aに示すように、主表面がSiの(100)面から構成された基板101を用意する。基板101は、例えば、主表面の面方位が(100)面とされた表面シリコン層を備えるSOI(Silicon on Insulator)基板とすることができる。また、基板101は、バルクの単結晶Siから構成することができる。
 次に、図1Bに示すように、基板101の上に、Siを含まない酸化物から構成された酸化層102を形成する。引き続いて、酸化層102の上に、AlNから構成された接着層103を形成する(接着層形成工程)。酸化層102は、例えば、よく知られたALD(Atomic layer deposition)法などの堆積技術により、Al23やHfO2などの酸化物を堆積することで形成することができる。SiO2はSiを含むことから望ましくない。
 接着層103は、例えば、よく知られたスパッタ法などの堆積技術により形成することができる。また、接着層103は、ECR(Electron Cycrotron Resonance)プラズマを用いたCVD(Chemical Vapor Deposition)法により形成することができる。
 酸化層102および接着層103は、1000℃以上の高温環境におけるSiとGaとによるメルトバックエッチングを防止するための層であり、厚ければ厚いほどGaとSiが拡散して反応することを防ぐ効果が高くなる。
 一方で、これらの層を厚くすることは、高コスト化や基板101の上に形成されるデバイスと、後述する窒化物半導体層の上に形成されるデバイスとの段差を増大させ、デバイス構成を制限することに繋がる。このため、酸化層102および接着層103は、一定の効果が望める範囲で薄くすることが望ましい。
 以上のことから、まず、酸化層102の層厚は、例えば、数nmから数十nmの範囲内とすることが望ましい。また、接着層103は、貼り合わせ工程において必要な表面平坦性を確保するために、CMP(chemical mechanical polishing)によって表面を研削することが想定される。CMPにより削られる層厚は、CMP前の表面平坦性に依存するものの、数十nm以上となりうる。このため、接着層103の層厚は、例えば、数十nmから数百nmの範囲内とすることが望ましい。
 次に、図1Cに示すように、他基板104の上に、Gaを含む窒化物半導体を+c軸方向に結晶成長することで、窒化物半導体層105を形成する。この段階で、形成した窒化物半導体層105の主表面は、+c面となり、Ga極性(III族極性)となる。他基板104は、GaNやAlGaNなどのGaを含む窒化物半導体が結晶成長できる基板であれば良く、例えば、Si基板、サファイア基板、SiC基板、GaN基板のいずれかとすることができる。後述する、窒化物半導体層105から他基板104を除去する際の容易性を考慮すると、Si基板、サファイア基板がより良い。ここでは、例えば、他基板104をサファイア基板とする。
 また、窒化物半導体層105は、例えば、有機金属化学気相成長法(MOCVD)や分子線エピタキシー法(MBE)などにより、目的とする窒化物半導体をエピタキシャル成長することで形成することができる。窒化物半導体層105は、複数の窒化物半導体の層を積層した積層構造とすることができる。積層構造とする場合、各層は、例えば、HEMTなどのトランジスタを構成するための層とすることができる。積層構造の最表面は、例えば、GaNから構成される層とすることができる。最表面の層は、後述する貼り合わせのための表面平坦性を確保する化学機械研磨(CMP)を行うこと、および貼り合わせにおける加圧よって接合界面近傍にダメージが生じることを考慮し、材料や厚さを決定することが望ましい。
 次に、図1Dに示すように、窒化物半導体層105が形成された他基板104を、他基板104の窒化物半導体層105の形成面が基板101の側となる状態で、基板101に貼り合わせる(貼り合わせ工程)。この貼り合わせは、各々の貼り合わせる面を、公知の直接接合の技術により接合することで実施する。直接接合は、各々の接合面の表面粗さRaが、1nm以下となっている高い平坦性が求められる。
 前述した、形成直後の窒化物半導体層105の最表面は、Raが~数nmと直接接合を実施するには平坦性が不十分な場合がある。この場合には、窒化物半導体層105の最表面を、CMPによって平坦化しておくことが重要となる。このように、直接接合技術により貼り合わせることで、有機材料で構成される接着剤(接着材)を用いることがなく、高温処理への耐性が向上する。また、デバイスの放熱性向上が期待できる。
 上述した貼り合わせ工程の後で、窒化物半導体層105より他基板104を除去することで(除去工程)、図1Eに示すように、基板101の上に、酸化層102および接着層103を介して窒化物半導体層105が形成され、窒化物半導体層105の表面が露出した状態とする。例えば、他基板104が、サファイア基板の場合、レーザーリフトオフ法により、上述した除去が実施できる。また、例えば、他基板104が、Si基板の場合、バックグラインド法やドライエッチングによって上述した除去が実施できる。この段階における窒化物半導体層105の主表面は、他基板104の側を向いていた面であり、-c面となり、N極性(V族極性)となる。また、基板101から見て、窒化物半導体層105は、-c軸方向に結晶成長したものと同じになる。
 なお、図1Cを用いて説明したように、他基板104の上に窒化物半導体層105を形成した後、まず、図1Fに示すように、窒化物半導体層105の上に、AlN層を形成することで、AlN層から構成された接着層(他接着層)103aを形成する。接着層103aと窒化物半導体層105との間に、Siを含まない酸化物から構成された酸化層を備えることもできる。次いで、図1Bに示す基板101の上の接着層103に、他基板104の上の接着層103aを接合することで、基板101と他基板104とを貼り合わせ、この後、窒化物半導体層105より他基板104を除去することもできる。
 また、図1Bを用いて説明したように、基板101の上に酸化層102および接着層103を形成した後、接着層103の上に、Gaを含む窒化物半導体の層を形成し、この後、上述した他基板104との貼り合わせを実施することもできる。酸化層102および接着層103が形成されていれば、Siの層とGaを含む窒化物半導体の層とが接することがなく、メルトバックエッチングが起きることがない。
 上述した半導体積層構造の作製方法により作製される半導体積層構造は、主表面がSiの(100)面から構成された基板101と、酸化物から構成されて基板101の上に形成された酸化層102と、AlNから構成されて酸化層102の上に形成された接着層103と、Gaを含む窒化物半導体から構成されて接着層103の上に形成された窒化物半導体層105とを備えるものとなる。また、窒化物半導体層105は、主表面をN極性とされたものとなる。また、窒化物半導体層105は、接着層103に貼り合わされているものとなる。
 上述した半導体積層構造の作製方法により得られる半導体積層構造は、窒化物半導体による半導体装置の製造に用いるテンプレート基板とすることができる。他基板104を除去した状態でもテンプレート基板として利用できるが、一般に、他基板104近傍の窒化物半導体層105は、結晶(エピタキシャル)成長初期の核形成層などを含むバッファ層で構成され、結晶品質が低い。なお、バッファ層は、一般に、GaNから構成する。このため、デバイス構造を形成するための窒化物半導体層105に構成するデバイス層は、十分な厚さのバッファ層を挿入して成長することが望ましい。
 さらに、他基板104の剥離方法によって、窒化物半導体層105の他基板104の近傍の層は、他基板104の除去とともに除去されることが多い。このため、上述したバッファ層は、デバイス層が基板とともに除去されることを防ぐ効果も有する。バッファ層を挿入した場合には、他基板104を除去しただけでは所望の層が、露出していないことになる。このため、CMPやドライエッチングなどの除去技術により、バッファ層としている部分を除去し、所望の層(デバイス層)を表面に露出させる工程が必要となる。デバイス層が薄い場合には、選択比の高いエッチングが求められ、デバイス層とともに、エッチストップ層を事前に形成しておくとよい。また、GaNから構成したバッファ層は、よく知られた選択熱分解法により除去することができる。
 上述した半導体積層構造によるテンプレートは、Si基板上のN極性窒化物半導体デバイスの作製に利用できる。また、半導体積層構造によるテンプレートは、SiデバイスとN極性窒化物半導体デバイスとを、同一基板上に集積して一体化するためのウェハとして利用できる。例えば、上述したテンプレートを用いて、CMOS回路と一体化したN極性GaNデバイスを作製する場合には、まず、Siデバイスを造り込む領域のN極性のGaN層(窒化物半導体層)をエッチングによって除去することで、Siを表面に露出させる。次いで、露出させた領域にSiデバイスを作りこむことが可能である。窒化物半導体層は、一般的なドライエッチングによって除去することができる。また、主表面がN極性とされている窒化物半導体層は、主表面がIII族極性の場合とは異なり、KOHなどによるウェットエッチングによっても除去することも可能である。露出したSi基板上のCMOSプロセスは、公知の半導体装置の製造技術を用いることで実施できる。
[実施の形態2]
 次に、本発明の実施の形態2に係る半導体装置の製造方法について、図1A~図1F、図2A~図2Cを参照して説明する。まず、図1A~図1Fを用いて説明したように、基板101の上に、酸化層102および接着層103を介して窒化物半導体層105が形成され、窒化物半導体層105の表面が露出した状態とする。
 次に(除去工程の後で)、図2Aに示すように、窒化物半導体層105の表面に凹部106を形成する(第1素子形成工程)。ここでは、2つの凹部106を形成する。例えば、公知のリソグラフィー技術により形成したマスクパターンを用い、公知のエッチング技術(例えばドライエッチング)により窒化物半導体層105を表面側から所定の深さまで除去することで、凹部106が形成できる。
 次に、図2Bに示すように、凹部106に、高濃度にn型不純物が導入されたn型のGaNを選択的に再成長してn+-GaN層107を形成する(第2素子形成工程)。ここでは、2つの凹部106の各々に、n+-GaN層107を形成する。
 次に、図2Cに示すように、n+-GaN層107にオーミック接続する電極108を形成する(第3素子形成工程)。ここでは、2つのn+-GaN層107の各々の上に、電極108を形成する。例えば、形成された2つの電極108の一方は、例えば、ソース電極とし、他方はドレイン電極とすることができる。
 例えば、この後、2つの電極108の間の窒化物半導体層105の表面に、ショットキー接合するゲート電極を形成することなどにより、電界効果トランジスタとすることができる。
 例えば、図1Cを用いて説明した窒化物半導体層105の形成において、チャネル層となるGaN層、2DEGを生成するバリア層になるAlGaN層をこの順番に成長したデバイス層(素子形成層)を、窒化物半導体層105に形成しておく。また、前述したように、バッファ層を成長した後に、GaN層、AlGaN層を成長する。このように形成した窒化物半導体層105は、他基板104を除去した後の基板101の上において、基板101の側から見て、バリア層となるAlGaN層の上に、チャネル層となるGaN層が形成された状態となる。また、各層の結晶軸の方向は、基板101の側から見て各層が形成されている方向が、-c軸方向となる。
 このように構成した窒化物半導体層105に、上述したように2つの電極108を形成し、2つの電極108の間にゲート電極(不図示)を形成することで、バリア層に生成される2DEGをチャネルとする電界効果トランジスタとすることができる。よく知られているように、窒化物半導体はc軸方向に分極を有するため、上述したAlGaN層とGaN層とのヘテロ接合を形成することによって、分極の効果によって自発的に1013cm-3程度の高密度の2DEGが形成可能となる。
 ところで、n+-GaN層107の形成は、電極108のコンタクト抵抗を下げる一般的な技術であるが、再成長が一般的なGaNの成長温度である1000℃以上の高温下で実施される。このため、前述した貼り合わせが、高い熱耐性のない接着剤などを用いて実施されている場合、適用することができない。これに対し、酸化層102および接着層103は、熱耐性が1000℃を超え、GaNより高い熱耐性を有することから、GaNの再成長時に高温下に曝されても、酸化層102および接着層103が劣化し、またこの部分に剥離が発生するなどの問題が生じない。また、基板101のSiと、窒化物半導体層105に含まれるGaが直接接触しないため、メルトバックエッチングにより接合界面で反応が進み、剥離などが生じることもない。
[実施の形態3]
 次に、本発明の実施の形態3に係る半導体装置の製造方法について、図1A~図1F、図3A~図3Dを参照して説明する。まず、図1Aを用いて説明したように、基板101を用意し、次に、図1Bを用いて説明したように、基板101の上に、Al23やHfO2などの酸化物から構成された酸化層102およびAlNから構成された接着層103を形成する。
 次に、図3Aに示すように、他基板104の上に、Gaを含む窒化物半導体を+c軸方向に結晶成長してバッファ層151を形成する。バッファ層151は、例えば、GaNから構成することができる。引き続き、バッファ層151の上に、Alを含みGaNより熱分解温度が高い窒化物半導体を+c軸方向に結晶成長してエッチング停止層152を形成する。エッチング停止層152は、AlGaNから構成することができる。
 引き続き、エッチング停止層152の上に、Gaを含む窒化物半導体を+c軸方向に結晶成長して素子形成層153を形成する。素子形成層153は、例えば、チャネル層などとなるGaN層と、バリア層などとなるAlGaN層と、保護層となるGaN層との積層構造とすることができる。この段階では、他基板104から見て、チャネル層となるGaN層、バリア層となるAlGaN層、保護層となるGaN層がこれらの順に積層して素子形成層153となる。素子形成層153の最上層は、保護層となるGaN層が配置される。素子形成層153は、トランジスタなどのデバイス(半導体装置)の基本的な構造が形成される層である。
 これらのことにより、バッファ層151、エッチング停止層152、および素子形成層153を含む窒化物半導体層105aを形成する(第1素子形成工程)。窒化物半導体層105aの形成は、貼り合わせ工程の前の、接着層形成工程の前に実施することになる。
 次に、図3Bに示すように、基板101と、窒化物半導体層105aが形成された他基板104とを、他基板104の窒化物半導体層105aの形成面が基板101の側となる状態で、貼り合わせる(貼り合わせ工程)。貼り合わせは、図1Dを用いて説明した貼り合わせと同様である。前述したように、素子形成層153の最上層が、保護層となるGaN層となっていれば、上述した貼り合わせにおいて加わる圧力などから、チャネル層などとなるGaN層や、バリア層などとなるAlGaN層などが保護できる。
 次に、窒化物半導体層105aより他基板104を除去し、図3Cに示すように、バッファ層151が露出した状態とする除去工程により、基板101の上に、酸化層102および接着層103を介して窒化物半導体層105aが形成され、窒化物半導体層105a(バッファ層151)の表面が露出した状態とする。他基板104の除去は、図1Eを用いた説明と同様である。この段階における窒化物半導体層105a(バッファ層151)の主表面は、他基板104の側を向いていた面であり、-c面となり、N極性(V族極性)となる。また、基板101から見て、窒化物半導体層105a(素子形成層153、エッチング停止層152、バッファ層151)は、-c軸方向に結晶成長したものと同じになる。
 次に、アンモニアを含む水素雰囲気中の加熱により、エッチング停止層152に対してバッファ層151を選択的に熱分解することでバッファ層151を除去し、図3Dに示すように、エッチング停止層152を露出させる(第2素子形成工程)。AlGaNはGaNに比べて、熱分解温度が高いため、上述した選択熱分解法によりGaNを選択的に熱分解させることでエッチングを行うことができる。選択熱分解法の選択比は、条件によっては103程度と高く、薄い層をエッチングによって表面に露出させる際に有効である。
 素子形成層153は、バリア層などとなるAlGaN層やチャネル層などとなるGaN層を含めて、総厚が数10nm程度とすることがある。これに対し、成長時に他基板104の側に配置されるバッファ層151は、他基板104との間の格子整合差により発生する転位密度を十分に低減させるために、数百nmから数μmといった厚さになりうる。このため、エッチング停止層152とバッファ層151との間には、エッチングにおける高選択比が重要である。
 また、アンモニアを含む水素雰囲気中で選択熱分解法を実施することで、選択的なバッファ層151のエッチングレートの制御が可能である。アンモニアを用いない場合、エッチングレート(エッチング速度)が速すぎ、AlGaNから構成するエッチング停止層152を用いても、この層におけるエッチングの停止が難しくなる。アンモニアを用いてエッチングレートを制御することで、エッチング停止層152でエッチングを停止するエッチングの制御が容易に実施できるようになる。
 また、上述した選択熱分解法によるエッチング処理では、処理温度が1000℃程度と高温となるが、Al23やHfO2などの酸化物から構成された酸化層102およびAlNから構成された接着層103が形成されているので、基板101と窒化物半導体層105a(素子形成層153)とが接触せず、GaとSiとの反応によるメルトバックエッチングが防止され、接合界面が荒れ、さらには剥離することが防げる。また、酸化物およびAlNはGaNよりも熱分解温度が高いので、GaNを熱分解させる条件下でも接着層103および酸化層102が分解されることはほとんどない。
 以上のようにバッファ層151を除去することで、エッチング停止層152の主表面は、他基板104の側を向いていた面であり、-c面となり、N極性(V族極性)となる。また、基板101から見て、素子形成層153およびエッチング停止層152は、-c軸方向に結晶成長したものと同じになる。また、素子形成層153においては、基板101から見て、例えば、保護層となるGaN層、バリア層などとなるAlGaN層、チャネル層などとなるGaN層が、これらの順に積層された構造となり、各層は、基板101から見て上側の面が、N極性とされたものとなる。
 この後(第2素子形成工程の後)、素子形成層153に電極(不図示)などを形成することで、トランジスタなどの半導体装置とすることができる(第3素子形成工程)。例えば、素子形成層153の上のエッチング停止層152をゲート絶縁層として利用し、この上にゲート電極を形成することができる。また、エッチング停止層152を除去した後、素子形成層153の最上層のチャネル層に、ショットキー接続するゲート電極を形成することができる。また、素子形成層153のチャネル層とバリア層とのヘテロ界面近傍に形成される二次元電子ガスからなるチャネルにオーミック接続するソース電極およびドレイン電極を、ゲート電極を挟んで形成することができる。
 以上に説明したように、本発明によれば、主表面がSiの(100)面から構成された基板と、Gaを含む窒化物半導体を+c軸方向に結晶成長した窒化物半導体層が形成された他基板とを、酸化物から構成された酸化層およびAlNから構成された接着層を介して貼り合わせるので、主表面の面方位を(100)としたSiの層の上に、Gaを含む窒化物半導体を用いた特性のよいデバイスが形成できるようになる。
 本発明によれば、一つ目は、GaNとSiとが直接接触することが防げる。GaNとSiが直接接触した状態でウェハを高温環境におくと、GaNおよびSiがメルトバックエッチングによってエッチングされるため、GaNエピ膜がSi基板から剥離する、あるいはGaNデバイス層近傍までエッチングが進みデバイス特性が劣化したり、デバイス動作しなくなったりするといった問題が生じうる。
 酸化物から構成される酸化層とAlNから構成される接着層は、上述した問題を抑制することができる。この構成において、酸化層およびAlNは、それぞれ以下の役割を有する。AlNからなる接着層はGaN中のGaおよびSiが拡散して反応することを抑制するとともに、直接接合前の表面平坦化のためのCMPにおいて犠牲層とすることができる。AlNからなる接着層は、スパッタ法を用いることで、厚さ100nmを超える層を容易に形成可能である。CMPの際には、数十nmから100nm程度の層が研削されるため、これを超える厚さの接着層を容易に形成できることが重要となる。
 接着層のみでも目的の効果が得られるが、スパッタ法で成膜した接着層はエピタキシャルに成長したAlN層と比べて欠陥密度が高く、欠陥を介したGaやSiの拡散が起こりやすい。これを防ぐには拡散が生じてもGaとSiが反応しない程度にまで接着層を厚く形成することが必要となる。これを防ぎ、接合界面に挿入する接着層を薄くおさえつつ高い効果を得るために酸化層を導入する。酸化層はCVD法やALD法によってより欠陥密度の低い膜を得ることができ、原子の拡散が起こりにくい。このため、薄い酸化層でもGaとSiの拡散を防ぐ効果を得ることができる。
 また、本発明によれば、接合によるデバイス工程の制限、デバイス特性の劣化が低減できる。GaNとSiとの直接接触を避けたるためには、接着層を挿入することが考え得る。ウェハ接合の接着層には、一般に有機材料などが用いられるが、これらの材料は高温プロセスに耐えられず、基板転写後のデバイスプロセス、デバイス特性を制限することになる。AlNからなる接着層や酸化物からなる酸化層は、高い耐熱性を有し、上記のような制限を基板転写N極性GaNデバイスに加えずに、ウェハの接合を可能にする。
 さらに、本発明によれば、Si(100)基板上に実現されるCMOS回路とN極性窒化物半導体デバイスと集積することが容易になる。Si(100)基板上に窒化物半導体をエピタキシャル成長することは課題が多く、窒化物半導体デバイスをSi(100)基板上に集積することは困難である。本発明によれば、上述したように、高いデバイス特性を有するGaNデバイスとCMOS回路とを同一チップ上に実現することが可能である。
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
 101…基板、102…酸化層、103…接着層、103a…接着層(他接着層)、104…他基板、105…窒化物半導体層、105a…窒化物半導体層、106…凹部、107…n+-GaN層、108…電極、151…バッファ層、152…エッチング停止層、153…素子形成層。

Claims (9)

  1.  主表面がSiの(100)面から構成されて主表面に、Siを含まない酸化物から構成された酸化層が形成された基板と、Gaを含む窒化物半導体を+c軸方向に結晶成長することで窒化物半導体層が形成された他基板とを、前記他基板の窒化物半導体層の形成面が前記基板の酸化層形成面の側となる状態で、貼り合わせる貼り合わせ工程と、
     前記貼り合わせ工程の前に、前記基板の前記他基板と貼り合わされる側の面に、AlNから構成された接着層を形成する接着層形成工程と、
     前記貼り合わせ工程の後で、前記窒化物半導体層より前記他基板を除去する除去工程と
     を備える半導体積層構造の作製方法。
  2.  請求項1記載の半導体積層構造の作製方法において、
     前記接着層形成工程は、前記貼り合わせ工程の前に、前記窒化物半導体層の前記基板と貼り合わされる側の面に、AlN層から構成された他接着層を形成する工程をさらに備えることを特徴とする半導体積層構造の作製方法。
  3.  主表面がSiの(100)面から構成されて主表面に、Siを含まない酸化物から構成された酸化層が形成された基板と、Gaを含む窒化物半導体を+c軸方向に結晶成長することで窒化物半導体層が形成された他基板とを、前記他基板の窒化物半導体層の形成面が前記基板の酸化層形成面の側となる状態で、貼り合わせる貼り合わせ工程と、
     前記貼り合わせ工程の前に、前記基板の前記他基板と貼り合わされる側の面に、AlNから構成された接着層を形成する接着層形成工程と、
     前記貼り合わせ工程の後で、前記窒化物半導体層より前記他基板を除去する除去工程と、
     前記除去工程の後で、前記窒化物半導体層の表面に凹部を形成する第1素子形成工程と、
     前記凹部に、n型のGaNを選択的に再成長してn-GaN層を形成する第2素子形成工程と、
     前記n-GaN層にオーミック接続する電極を形成する第3素子形成工程と
     を備える半導体装置の製造方法。
  4.  主表面がSiの(100)面から構成されて主表面に酸化層が形成された基板と、Gaを含む窒化物半導体を+c軸方向に結晶成長することで窒化物半導体層が形成された他基板とを、前記他基板の窒化物半導体層の形成面が前記基板の酸化層形成面の側となる状態で、貼り合わせる貼り合わせ工程と、
     前記貼り合わせ工程の前に、前記基板の前記他基板と貼り合わされる側の面に、AlNから構成された接着層を形成する接着層形成工程と、
     前記貼り合わせ工程の前に、前記他基板の上に、Gaを含む窒化物半導体を+c軸方向に結晶成長してバッファ層を形成し、前記バッファ層の上に、Alを含みGaNより熱分解温度が高い窒化物半導体を+c軸方向に結晶成長してエッチング停止層を形成した後で、前記エッチング停止層の上に、Gaを含む窒化物半導体を+c軸方向に結晶成長して素子形成層を形成し、前記バッファ層、前記エッチング停止層、および前記素子形成層を含む前記窒化物半導体層を形成する第1素子形成工程と、
     前記貼り合わせ工程の後で、前記窒化物半導体層より前記他基板を除去する除去工程と、
     前記除去工程の後で、アンモニアを含む水素雰囲気中の加熱により、前記エッチング停止層に対して前記バッファ層を選択的に熱分解することで前記バッファ層を除去し、前記エッチング停止層を露出させる第2素子形成工程と
     を備える半導体装置の製造方法。
  5.  請求項4記載の半導体装置の製造方法において、
     前記第2素子形成工程の後で、前記素子形成層に電極を形成する第3素子形成工程を備えることを特徴とする半導体装置の製造方法。
  6.  請求項3~5のいずれか1項に記載の半導体装置の製造方法において、
     前記接着層形成工程は、前記貼り合わせ工程の前に、前記窒化物半導体層の前記基板と貼り合わされる側の面に、AlN層から構成された他接着層を形成する工程をさらに備えることを特徴とする半導体装置の作製方法。
  7.  主表面がSiの(100)面から構成された基板と、
     Siを含まない酸化物から構成されて前記基板の主表面に形成された酸化層と、
     AlNから構成されて前記酸化層の上に形成された接着層と、
     Gaを含む窒化物半導体から構成されて前記接着層の上に形成された窒化物半導体層と
     を備える半導体積層構造。
  8.  請求項7記載の半導体積層構造において、
     前記窒化物半導体層は、主表面をN極性とされている
     ことを特徴とする半導体積層構造。
  9.  請求項7または8記載の半導体積層構造において、
     前記窒化物半導体層は、前記接着層に貼り合わされていることを特徴とする半導体積層構造。
PCT/JP2022/020336 2022-05-16 2022-05-16 半導体積層構造およびその作製方法、ならびに半導体装置の製造方法 WO2023223375A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020336 WO2023223375A1 (ja) 2022-05-16 2022-05-16 半導体積層構造およびその作製方法、ならびに半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020336 WO2023223375A1 (ja) 2022-05-16 2022-05-16 半導体積層構造およびその作製方法、ならびに半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2023223375A1 true WO2023223375A1 (ja) 2023-11-23

Family

ID=88834773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020336 WO2023223375A1 (ja) 2022-05-16 2022-05-16 半導体積層構造およびその作製方法、ならびに半導体装置の製造方法

Country Status (1)

Country Link
WO (1) WO2023223375A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023314A (ja) * 2010-07-16 2012-02-02 Dowa Electronics Materials Co Ltd Iii族窒化物エピタキシャル基板
JP2012195579A (ja) * 2011-03-02 2012-10-11 Sumitomo Chemical Co Ltd 半導体基板、電界効果トランジスタ、半導体基板の製造方法および電界効果トランジスタの製造方法
JP2017085062A (ja) * 2015-10-30 2017-05-18 富士通株式会社 半導体装置、電源装置、増幅器及び半導体装置の製造方法
JP2017228578A (ja) * 2016-06-20 2017-12-28 株式会社アドバンテスト エピ基板
WO2022097193A1 (ja) * 2020-11-04 2022-05-12 日本電信電話株式会社 半導体積層構造およびその作製方法、ならびに半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023314A (ja) * 2010-07-16 2012-02-02 Dowa Electronics Materials Co Ltd Iii族窒化物エピタキシャル基板
JP2012195579A (ja) * 2011-03-02 2012-10-11 Sumitomo Chemical Co Ltd 半導体基板、電界効果トランジスタ、半導体基板の製造方法および電界効果トランジスタの製造方法
JP2017085062A (ja) * 2015-10-30 2017-05-18 富士通株式会社 半導体装置、電源装置、増幅器及び半導体装置の製造方法
JP2017228578A (ja) * 2016-06-20 2017-12-28 株式会社アドバンテスト エピ基板
WO2022097193A1 (ja) * 2020-11-04 2022-05-12 日本電信電話株式会社 半導体積層構造およびその作製方法、ならびに半導体装置の製造方法

Similar Documents

Publication Publication Date Title
JP4990496B2 (ja) 窒化物ベースのトランジスタ及びその製造方法
TWI464876B (zh) 用於以氮為主之電晶體的帽蓋層和或鈍化層,電晶體結構與其製造方法
JP5545713B2 (ja) 半導体基板、半導体基板の製造方法および電子デバイス
US20120305992A1 (en) Hybrid monolithic integration
WO2020149186A1 (ja) 電界効果トランジスタの作製方法
JPWO2005015642A1 (ja) 半導体装置及びその製造方法
JP4786730B2 (ja) 電界効果型トランジスタおよびその製造方法
JP2001230407A (ja) 半導体装置
JP2003059948A (ja) 半導体装置及びその製造方法
JP5454283B2 (ja) 窒化ガリウム系エピタキシャル成長基板及びその製造方法並びにこの基板を用いて製造される電界効果型トランジスタ
JP5520432B2 (ja) 半導体トランジスタの製造方法
JP4517077B2 (ja) 窒化物半導体材料を用いたヘテロ接合電界効果型トランジスタ
WO2019194042A1 (ja) トランジスタの製造方法
US11876129B2 (en) Semiconductor structure and manufacturing method for the semiconductor structure
US20210057560A1 (en) Semiconductor Structure and Manufacturing Method for the Semiconductor Structure
JP2012004486A (ja) 窒化物半導体装置及び窒化物半導体装置の製造方法
WO2022097193A1 (ja) 半導体積層構造およびその作製方法、ならびに半導体装置の製造方法
JP2019021873A (ja) 基板生産物の製造方法
WO2023223375A1 (ja) 半導体積層構造およびその作製方法、ならびに半導体装置の製造方法
JP2008227432A (ja) 窒化物化合物半導体素子およびその製造方法
CN113628962A (zh) Ⅲ族氮化物增强型hemt器件及其制造方法
US12020931B2 (en) Method for fabricating field-effect transistor
JP2008226907A (ja) 窒化物半導体積層構造およびその形成方法、ならびに窒化物半導体素子およびその製造方法
JP2003197645A (ja) ヘテロ接合電界効果トランジスタ及びその製造方法
WO2024095458A1 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942580

Country of ref document: EP

Kind code of ref document: A1