US20210057560A1 - Semiconductor Structure and Manufacturing Method for the Semiconductor Structure - Google Patents

Semiconductor Structure and Manufacturing Method for the Semiconductor Structure Download PDF

Info

Publication number
US20210057560A1
US20210057560A1 US17/086,709 US202017086709A US2021057560A1 US 20210057560 A1 US20210057560 A1 US 20210057560A1 US 202017086709 A US202017086709 A US 202017086709A US 2021057560 A1 US2021057560 A1 US 2021057560A1
Authority
US
United States
Prior art keywords
semiconductor layer
layer
gan
face
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/086,709
Inventor
Kai Cheng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enkris Semiconductor Inc
Original Assignee
Enkris Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enkris Semiconductor Inc filed Critical Enkris Semiconductor Inc
Assigned to ENKRIS SEMICONDUCTOR, INC. reassignment ENKRIS SEMICONDUCTOR, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHENG, KAI
Publication of US20210057560A1 publication Critical patent/US20210057560A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/157Doping structures, e.g. doping superlattices, nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • H01L21/30617Anisotropic liquid etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Definitions

  • the present application relates to the field of microelectronics technologies, in particular to a semiconductor structure and a manufacturing method for the semiconductor structure.
  • a High Electron Mobility Transistor is a heterostructure field effect transistor.
  • an AlGaN/GaN heterostructure due to a strong two-dimensional electron gas in AlGaN/GaN heterostructure, an AlGaN/GaN HEMTs is usually a depletion-mode device, which makes an enhancement-mode device difficult to achieve.
  • applications of depletion-mode devices have certain limitations.
  • enhancement-mode (normally-off) switching devices are required.
  • Enhancement-mode GaN switching devices are mainly used in high-frequency devices, power switching devices and digital circuits, etc., and research for it is of great significance.
  • Disposing a p-type semiconductor material in the gate region requires selective etching of p-type semiconductors in other regions other than the gate region, and precise process control of an etching thickness in an epitaxial direction is very difficult. It is very easy to overetch the p-type semiconductor and etch semiconductor materials below it, and the defects caused by the etching may cause serious current collapse effect, and affect the stability and reliability of the device.
  • the present application provides a semiconductor structure and a manufacturing method for the semiconductor structure, which solves problems of complicated manufacturing process and poor stability and reliability of existing semiconductor structures.
  • the present application provides a manufacturing method for a semiconductor structure, which includes following steps: preparing a channel layer, a barrier layer and a semiconductor layer sequentially superimposed on a substrate, wherein the semiconductor layer is made of a GaN-based material and an upper surface of the semiconductor layer is Ga-face; and preparing a p-type GaN-based semiconductor layer with N-face as an upper surface above the semiconductor layer.
  • the GaN-based material described in embodiments of the present application refers to a semiconductor material based on Ga element and N element, such as AlGaN, AlInGaN, GaN, etc.
  • the preparing a p-type GaN-based semiconductor layer with N-face as an upper surface above the semiconductor layer includes: preparing a p-type Ga-face GaN-based material above the semiconductor layer, and doping a polarity reversal element in the p-type Ga-face GaN-based material to reverse the p-type Ga-face GaN-based material to the p-type GaN-based semiconductor layer with N-face as an upper surface.
  • the polarity reversal element includes Mg.
  • the preparing a p-type GaN-based semiconductor layer with N-face as an upper surface above the semiconductor layer includes: preparing a p-type Ga-face GaN-based material above the semiconductor layer; and reversing the p-type Ga-face GaN-based material by a polarity reversal layer to the p-type GaN-based semiconductor layer with N-face as an upper surface.
  • the preparing a p-type GaN-based semiconductor layer with N-face as an upper surface above the semiconductor layer includes: bonding the p-type GaN-based semiconductor layer with N-face as an upper surface to the semiconductor layer directly.
  • the manufacturing method for a semiconductor structure further includes: etching the p-type GaN-based semiconductor layer selectively, and reserving only a portion of the p-type GaN-based semiconductor layer corresponding to a gate region.
  • the manufacturing method for a semiconductor structure further includes: preparing a gate electrode on the p-type GaN-based semiconductor layer, preparing a source electrode in a source region of the barrier layer, and preparing a drain electrode in a drain region of the barrier layer.
  • the manufacturing method for a semiconductor structure further includes: forming a nucleation layer and a buffer layer on the substrate sequentially before forming the channel layer.
  • the manufacturing method for a semiconductor structure before the preparing a p-type GaN-based semiconductor layer with an N-face as an upper surface above the semiconductor layer, the manufacturing method for a semiconductor structure further includes: preparing a groove in a gate region of the semiconductor layer, wherein the groove penetrates the semiconductor layer and stops on the barrier layer or partially penetrates the barrier layer and stops in the barrier layer.
  • the present application provides a semiconductor structure, which includes: a substrate; a channel layer, a barrier layer and a semiconductor layer sequentially superimposed on the substrate, wherein the barrier layer is made of a GaN-based material and an upper surface of the barrier layer is Ga-face; and a p-type semiconductor layer formed in a gate region of the barrier layer.
  • the p-type semiconductor layer is made of a GaN-based material, and an upper surface of the p-type semiconductor layer is N-face.
  • the semiconductor structure further includes: a gate electrode disposed on the p-type GaN-based semiconductor layer; a source electrode disposed in a source region of the barrier layer; and a drain electrode disposed in a drain region of the barrier layer.
  • the semiconductor structure further includes: a nucleation layer between the channel layer and the substrate; and a buffer layer between the nucleation layer and the channel layer.
  • the p-type GaN-based semiconductor layer includes a multilayer structure or a superlattice structure comprising one or more materials of p-type AlGaN, p-type GaN, and p-type InGaN.
  • the semiconductor structure further includes a groove disposed in the gate region of the semiconductor layer, wherein the groove penetrates the semiconductor layer and stops on the barrier layer or partially penetrates the barrier layer and stops in the barrier layer.
  • a p-type GaN-based semiconductor layer with N-face as an upper surface is formed in a gate region to achieve a purpose of pinching off an n-type conductive layer under a gate, thereby realizing the semiconductor structure. More importantly, because an N-face GaN-based material has a characteristic of easy corrosion, an etching process is easy to control, a process difficulty of selective etching of the p-type semiconductor material in the gate region is reduced, and the stability and the reliability of a device are improved simultaneously.
  • a high quality schottky gate may be achieved by using different metals and adjusting a work function.
  • FIGS. 1 a , 2 , 3 a , 3 b , 4 a , 4 b , 4 c , 5 a , 5 b , 6 a , 6 b , 7 a , 7 b , 8 a , 8 b , 9 a , 9 b , and 10 are decomposition schematic diagrams illustrating a semiconductor structure in preparation processes respectively according to an embodiment of the present application.
  • FIG. 1 b is a schematic diagram of an atomic structure of Ga-face GaN
  • FIG. 1 c is a schematic diagram of an atomic structure of N-face GaN.
  • a manufacturing method for a semiconductor structure according to an embodiment of the present application includes following steps.
  • Step 601 as shown in FIG. 1 a , preparing a channel layer 23 , a barrier layer 24 and a semiconductor layer 3 sequentially superimposed on a substrate 1 .
  • the semiconductor layer 3 is made of a GaN-based material and an upper surface (a surface away from the substrate) of the semiconductor layer 3 is Ga-face.
  • the GaN-based material described in the embodiments of the present application refers to a semiconductor material based on Ga element and N element, such as AlGaN, AlInGaN, GaN, etc.
  • FIG. 1 b is a schematic diagram of an atomic structure of Ga-face GaN
  • FIG. 1 c is a schematic diagram of an atomic structure of N-face GaN.
  • Ga-face GaN taking a Ga—N bond parallel to a C axis as a reference, Ga atoms in each Ga-N bond are closer to the substrate 1 , which is Ga-face GaN.
  • N-face GaN is obtained by reversing the Ga-face GaN in FIG. 1 b .
  • a side far from the substrate shown in FIG. 1 b is defined as Ga-face
  • the side far from the substrate shown in FIG. 1 c is defined as N-face
  • the Ga-face corresponds to the N-face. Since Ga-face GaN and N-face GaN have different atomic arrangements on a side of themselves away from the substrate, their characteristics are also different.
  • the barrier layer 24 and the channel layer 23 may also be GaN-based materials, and further, the barrier layer 24 and the channel layer 23 may also be Ga-face GaN materials.
  • the substrate 1 may be selected from semiconductor materials, ceramic materials, or polymer materials.
  • the substrate 1 is preferably selected from sapphire, diamond, silicon carbide, silicon, lithium niobate, Silicon on Insulator (SOI), gallium nitride, or aluminum nitride.
  • the channel layer 23 and the barrier layer 24 may be made of semiconductor materials that can form a two-dimensional electron gas. Taking a GaN-based material as an example, the channel layer 23 may be made of GaN, the barrier layer 24 may be made of AlGaN, and the channel layer 23 and the barrier layer 24 form a heterostructure to form a two-dimensional electron gas.
  • a nucleation layer 21 and a buffer layer 22 may also be sequentially grown on the substrate 1 .
  • the nucleation layer 21 may reduce dislocation density and defect density, and improve crystal quality.
  • the nucleation layer 21 may be made of one or more of AN, AlGaN and GaN.
  • the buffer layer 22 may buffer a stress in an epitaxial structure above the substrate and prevent the epitaxial structure from cracking.
  • the buffer layer 22 may be made of one or more of GaN, AlGaN, and AlInGaN.
  • the semiconductor layer 3 may protect an underlying semiconductor structure, so that it is not necessary to strictly control an etching depth during a subsequent selective etching of a p-type N-face GaN-based material layer 5 . It does not matter even if an epitaxial layer above part of the barrier layer 24 is etched away.
  • the semiconductor layer 3 may be produced by in-situ growth, or by Atomic Layer Deposition (ALD), or Chemical Vapor Deposition (CVD), or Molecular Beam Epitaxy (MBE), or Plasma Enhanced Chemical Vapor Deposition (PECVD), or Low Pressure Chemical Vapor Deposition (LPCVD), or Metal-Organic Chemical Vapor Deposition (MOCVD), or a combination thereof. It should be understood that the method for forming the semiconductor layer 3 described here is only an example, and in the present application, the semiconductor layer 3 above the barrier layer 24 may be formed by any method known to those skilled in the art.
  • Step 602 as shown in FIG. 3 a , preparing a p-type GaN-based semiconductor layer 5 above the semiconductor layer 3 , an upper surface of the p-type GaN-based semiconductor layer 5 being N-face.
  • preparing the p-type GaN-based semiconductor layer 5 with N-face as an upper surface above the semiconductor layer 3 may be implemented by various methods.
  • a p-type Ga-face GaN-based material may be epitaxially grown first, and a polarity reversal element can be added at the same time as the epitaxial growth.
  • the polarity reversal element may be, for example, Mg, etc., so that the Ga-face GaN-based material may become the N-face GaN-based material.
  • the semiconductor layer 3 and the p-type GaN-based semiconductor layer 5 are prepared, they may be epitaxially grown continuously.
  • the GaN-based material may be reversed from the Ga-face to the N-face by adding the polarity reversal element.
  • a process of changing the Ga-face to the N-face by adding a polarity reversal element may include a transition process, so a lower surface of the p-type GaN-based semiconductor layer 5 close to the semiconductor layer 3 may be the Ga-face.
  • a thickness of the Ga-face GaN contained in the p-type GaN-based semiconductor layer 5 does not exceed 120 nm, preferably it may be controlled below 40 nm, and even more preferably it may be less than 15 nm.
  • the p-type GaN-based semiconductor layer 5 with N-face as an upper surface is prepared on the semiconductor layer 3 , as shown in FIG. 3 b , and during the epitaxial growth process, a polarity reversal layer 31 is prepared on the semiconductor layer 3 to achieve polarity reversal, thereby achieving the preparation of the N-face p-type GaN-based semiconductor layer 5 .
  • the semiconductor layer 3 and the p-type GaN-based semiconductor layer 5 are prepared, they may be epitaxially grown continuously.
  • the polarity reversal layer 31 can be prepared, so that the GaN-based material may be reversed from the Ga-face to the N-face.
  • a lower surface of the p-type GaN-based semiconductor layer 5 close to the barrier layer may also be N-face.
  • the polarity reversal layer 31 may be Al 2 O 3 .
  • it may also prevent etching, and when the p-type GaN-based semiconductor layer 5 is etched, the etching may be stopped on the polarity reversal layer 31 .
  • the preparing p-type GaN-based semiconductor layer 5 with N-face as an upper surface above the semiconductor layer 3 may include bonding the p-type GaN-based semiconductor layer 5 with N-face on the semiconductor layer 3 directly.
  • the p-type GaN-based semiconductor layer 5 may be made of one or more of the following materials: p-type AlGaN, p-type GaN, and p-type InGaN.
  • p-type AlGaN p-type AlGaN
  • p-type GaN p-type GaN
  • InGaN p-type InGaN
  • Step 603 as shown in FIG. 4 a , etching the p-type GaN-based semiconductor layer 5 selectively, and reserving only a portion of the p-type GaN-based semiconductor layer corresponding to a gate region.
  • the gate region in the present application is a region used to prepare a gate. It should be understood by those skilled in the art that the gate region may be defined and determined according to a design and process of related devices.
  • the selective etching process for the p-type GaN-based semiconductor layer 5 may be a wet etching process, for example, a wet etching process adopting KOH.
  • N-face GaN-based materials are easy to be etched, while Ga-face GaN-based materials are not easy to be etched. Therefore, in a process of etching the N-face GaN-based material, the etching process may be easily controlled to avoid damage to the Ga-face GaN-based material under the N-face GaN-based material.
  • the etching process may be easily controlled to avoid damage to the semiconductor layer during the process of etching the p-type GaN-based semiconductor layer 5 .
  • the selective etching of the p-type GaN-based semiconductor layer 5 may be specifically shown in FIGS. 4 b -4 c .
  • a mask layer 41 is deposited on the p-type GaN-based semiconductor layer 5 .
  • the mask layer 41 may be a dielectric layer such as SiN, SiO 2 , or a metal such as Ti, Ni, etc.
  • selective etching is performed, and only the p-type GaN-based semiconductor layer 5 and the mask layer 41 in the gate region are retained.
  • the mask layer 41 may play a good role in protecting the p-type GaN-based semiconductor layer 5 during the etching process.
  • the etching may be wet etching, or a combination of wet etching and dry etching to avoid excessive lateral etching reactions in the gate region during wet etching.
  • Step 604 as shown in FIG. 5 a , preparing a gate electrode 51 , a source electrode 6 , and a drain electrode 7 .
  • the gate electrode 51 is prepared on the p-type semiconductor layer 5 , the source electrode 6 is prepared in a source region of the barrier layer 24 , and the drain electrode 7 is prepared in a drain region of the barrier layer 24 .
  • the source region and the drain region in the present application are similar to the gate region in the present application, that is, regions used to prepare a source electrode and a drain electrode. It should be understood by those skilled in the art that the regions may be defined and determined according to a design and process of related devices.
  • the source electrode 6 , the drain electrode 7 , and the electrode material 51 on the p-type GaN-based semiconductor layer 5 may be made of a metal material such as a nickel alloy, or may be made of a metal oxide or a semiconductor material.
  • the present application does not limit the specific preparation materials of the source electrode 6 , the drain electrode 7 , and the electrode material 51 on the p-type GaN-based semiconductor layer 5 .
  • a passivation layer 8 may be prepared on an exposed surface of the semiconductor layer 3 . Then as shown in FIG. 5 b , the electrode material 51 is prepared above the p-type GaN-based semiconductor material 5 .
  • the passivation layer 8 may be, for example, Al 2 O 3 , SiO 2 , SiN, etc.
  • a groove 4 may be provided in the gate region of the semiconductor layer 3 before preparing the p-type GaN-based semiconductor layer 5 .
  • the groove 4 completely penetrates the semiconductor layer 3 and stops on the barrier layer 24 .
  • the groove 4 may also extend to the barrier layer 24 and partially penetrate the barrier layer 24 .
  • the p-type GaN-based semiconductor layer 5 is selectively etched, and only the p-type GaN-based semiconductor layer 5 in the gate region is retained.
  • the gate electrode 51 , the source electrode 6 , and the drain electrode 7 are then prepared.
  • the barrier layer 24 may adopt a sandwich structure.
  • the barrier layer 24 includes a first outer interlayer 241 : AlGaN, an intermediate layer 242 : GaN, and a second outer interlayer 243 : AlGaN.
  • the groove 4 may penetrate the second outer interlayer 243 of the sandwich structure of the barrier layer 24 .
  • the intermediate layer 242 may function as a stop layer in the local etching process for forming the groove 4 to protect the first outer interlayer 241 on a surface of the channel layer 23 from damage by the local etching process.
  • the present application does not strictly limit a preparation depth of the groove 4 , as long as the p-type GaN-based semiconductor layer 5 inside the groove 4 may pinch off an n-type conductive layer under the gate to achieve a semiconductor structure.
  • an embodiment of the present application also provides a semiconductor structure.
  • the semiconductor structure includes: a substrate 1 ; a channel layer 23 , a barrier layer 24 , and a semiconductor layer 3 sequentially superimposed on the substrate 1 ; and a p-type GaN-based semiconductor layer 5 formed in a gate region on the semiconductor layer 3 .
  • the semiconductor layer 3 is made of a GaN-based material, and an upper surface of the semiconductor layer 3 is Ga-face.
  • the p-type GaN-based semiconductor layer 5 is made of a GaN-based material with N-face as an upper surface.
  • the substrate 1 may preferably be made of sapphire, diamond, silicon carbide, silicon, lithium niobate, Silicon on Insulator (SOI), gallium nitride or aluminum nitride.
  • the channel layer 23 and the barrier layer 24 may be made of semiconductor materials that may form a two-dimensional electron gas.
  • the channel layer 23 may be made of GaN
  • the barrier layer 24 may be made of AlGaN or GaN
  • the channel layer 23 and the barrier layer 24 form a heterostructure to form a two-dimensional electron gas.
  • the p-type GaN-based semiconductor layer 5 may be selected from, for example, one or a combination of the following materials: p-type AlGaN, p-type GaN, p-type InGaN, and p-type GaN/AlGaN.
  • the semiconductor structure may further include a nucleation layer 21 and a buffer layer 22 provided under the channel layer 23 .
  • a nucleation layer 21 prepared above the substrate 1 may be further included.
  • the nucleation layer 21 may be made of one or more of AN, AlGaN and GaN.
  • the GaN-based semiconductor structure may further include a buffer layer 22 prepared above the nucleation layer 21 .
  • the buffer layer 22 may be made of one or more of GaN, AlGaN, and AlInGaN.
  • the semiconductor structure further includes: a source electrode 6 disposed in a source region of the barrier layer 24 , a drain electrode 7 disposed in a drain region of the barrier layer 24 , and a gate electrode 51 disposed on the p-type GaN-based semiconductor layer.
  • the source electrode 6 , the drain electrode 7 , and the gate electrode 51 may be made of a conductive metal material such as a nickel alloy, or may be made of a metal oxide or a semiconductor material.
  • the present application does not limit the specific preparation materials of the source electrode 6 , the drain electrode 7 , and the electrode material 51 on the p-type GaN-based semiconductor layer 5 .
  • the semiconductor structure may further include a groove 4 disposed in the gate region of the semiconductor layer 3 .
  • the groove 4 may completely penetrate the semiconductor layer 3 and stop on the barrier layer 24 .
  • the groove 4 may also extend to the barrier layer 24 and partially penetrate the barrier layer 24 .
  • the semiconductor structure may not include the groove 4 , and the p-type GaN-based semiconductor layer 5 may be directly prepared in the gate region, considering that the purpose of pinching off an n-type conductive layer under the gate may be achieved as long as the p-type GaN-based semiconductor layer 5 is prepared in the gate region.
  • the groove 4 may partially penetrate the semiconductor layer 3 .
  • the barrier layer 24 may also adopt a sandwich structure.
  • the sandwich structure includes a first outer interlayer 241 prepared on a surface of the channel layer 23 , an intermediate layer 242 sandwiched between the first outer interlayer 241 and a second outer interlayer 243 , and the second outer interlayer 243 . It should be understood that the materials of the first outer interlayer 241 , the intermediate layer 242 , and the second outer interlayer 243 may be adjusted according to the material of the channel layer 23 .
  • the first outer interlayer 241 and the second outer interlayer 243 may be made of AlGaN, and the intermediate layer 242 may be made of GaN.
  • the present application does not specifically limit the materials of the first outer interlayer 241 , the intermediate layer 242 , and the second outer interlayer 243 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

Embodiments of the present application disclose a semiconductor structure and a manufacturing method for the semiconductor structure, which solve problems of complicated manufacturing process and poor stability and reliability of existing semiconductor structures. The semiconductor structure includes: a substrate; a channel layer, a barrier layer and a semiconductor layer sequentially superimposed on the substrate, wherein the semiconductor layer is made of a GaN-based material and an upper surface of the semiconductor layer is Ga-face; and a p-type GaN-based semiconductor layer, with N-face as an upper surface, formed in a gate region of the semiconductor layer.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of International Application No. PCT/CN2019/079740 filed on Mar. 26, 2019, which is incorporated herein in its entirety by reference.
  • TECHNICAL FIELD
  • The present application relates to the field of microelectronics technologies, in particular to a semiconductor structure and a manufacturing method for the semiconductor structure.
  • BACKGROUND
  • A High Electron Mobility Transistor (HEMT) is a heterostructure field effect transistor. Taking an AlGaN/GaN heterostructure as an example, due to a strong two-dimensional electron gas in AlGaN/GaN heterostructure, an AlGaN/GaN HEMTs is usually a depletion-mode device, which makes an enhancement-mode device difficult to achieve. In many respects, applications of depletion-mode devices have certain limitations. For example, in the application of power switching devices, enhancement-mode (normally-off) switching devices are required. Enhancement-mode GaN switching devices are mainly used in high-frequency devices, power switching devices and digital circuits, etc., and research for it is of great significance.
  • In order to realize an enhancement-mode GaN switching device, it is necessary to find a suitable method to reduce concentration of carriers in a channel under a gate when the gate voltage is zero, for example, a method of disposing a p-type semiconductor material in a gate region. However, the inventor found that this method has at least the following defects:
  • Disposing a p-type semiconductor material in the gate region requires selective etching of p-type semiconductors in other regions other than the gate region, and precise process control of an etching thickness in an epitaxial direction is very difficult. It is very easy to overetch the p-type semiconductor and etch semiconductor materials below it, and the defects caused by the etching may cause serious current collapse effect, and affect the stability and reliability of the device.
  • SUMMARY
  • In view of this, the present application provides a semiconductor structure and a manufacturing method for the semiconductor structure, which solves problems of complicated manufacturing process and poor stability and reliability of existing semiconductor structures.
  • The present application provides a manufacturing method for a semiconductor structure, which includes following steps: preparing a channel layer, a barrier layer and a semiconductor layer sequentially superimposed on a substrate, wherein the semiconductor layer is made of a GaN-based material and an upper surface of the semiconductor layer is Ga-face; and preparing a p-type GaN-based semiconductor layer with N-face as an upper surface above the semiconductor layer.
  • The GaN-based material described in embodiments of the present application refers to a semiconductor material based on Ga element and N element, such as AlGaN, AlInGaN, GaN, etc.
  • In an embodiment of the present application, the preparing a p-type GaN-based semiconductor layer with N-face as an upper surface above the semiconductor layer, includes: preparing a p-type Ga-face GaN-based material above the semiconductor layer, and doping a polarity reversal element in the p-type Ga-face GaN-based material to reverse the p-type Ga-face GaN-based material to the p-type GaN-based semiconductor layer with N-face as an upper surface.
  • In an embodiment of the present application, the polarity reversal element includes Mg.
  • In an embodiment of the present application, the preparing a p-type GaN-based semiconductor layer with N-face as an upper surface above the semiconductor layer, includes: preparing a p-type Ga-face GaN-based material above the semiconductor layer; and reversing the p-type Ga-face GaN-based material by a polarity reversal layer to the p-type GaN-based semiconductor layer with N-face as an upper surface.
  • In an embodiment of the present application, the preparing a p-type GaN-based semiconductor layer with N-face as an upper surface above the semiconductor layer, includes: bonding the p-type GaN-based semiconductor layer with N-face as an upper surface to the semiconductor layer directly.
  • In an embodiment of the present application, the manufacturing method for a semiconductor structure further includes: etching the p-type GaN-based semiconductor layer selectively, and reserving only a portion of the p-type GaN-based semiconductor layer corresponding to a gate region.
  • In an embodiment of the present application, the manufacturing method for a semiconductor structure further includes: preparing a gate electrode on the p-type GaN-based semiconductor layer, preparing a source electrode in a source region of the barrier layer, and preparing a drain electrode in a drain region of the barrier layer.
  • In an embodiment of the present application, the manufacturing method for a semiconductor structure further includes: forming a nucleation layer and a buffer layer on the substrate sequentially before forming the channel layer.
  • In an embodiment of the present application, before the preparing a p-type GaN-based semiconductor layer with an N-face as an upper surface above the semiconductor layer, the manufacturing method for a semiconductor structure further includes: preparing a groove in a gate region of the semiconductor layer, wherein the groove penetrates the semiconductor layer and stops on the barrier layer or partially penetrates the barrier layer and stops in the barrier layer.
  • The present application provides a semiconductor structure, which includes: a substrate; a channel layer, a barrier layer and a semiconductor layer sequentially superimposed on the substrate, wherein the barrier layer is made of a GaN-based material and an upper surface of the barrier layer is Ga-face; and a p-type semiconductor layer formed in a gate region of the barrier layer. The p-type semiconductor layer is made of a GaN-based material, and an upper surface of the p-type semiconductor layer is N-face.
  • In an embodiment of the present application, the semiconductor structure further includes: a gate electrode disposed on the p-type GaN-based semiconductor layer; a source electrode disposed in a source region of the barrier layer; and a drain electrode disposed in a drain region of the barrier layer.
  • In an embodiment of the present application, the semiconductor structure further includes: a nucleation layer between the channel layer and the substrate; and a buffer layer between the nucleation layer and the channel layer.
  • In an embodiment of the present application, the p-type GaN-based semiconductor layer includes a multilayer structure or a superlattice structure comprising one or more materials of p-type AlGaN, p-type GaN, and p-type InGaN.
  • In an embodiment of the present application, the semiconductor structure further includes a groove disposed in the gate region of the semiconductor layer, wherein the groove penetrates the semiconductor layer and stops on the barrier layer or partially penetrates the barrier layer and stops in the barrier layer.
  • According to a semiconductor structure and a manufacturing method for the semiconductor structure provided by the embodiments of the present application, a p-type GaN-based semiconductor layer with N-face as an upper surface is formed in a gate region to achieve a purpose of pinching off an n-type conductive layer under a gate, thereby realizing the semiconductor structure. More importantly, because an N-face GaN-based material has a characteristic of easy corrosion, an etching process is easy to control, a process difficulty of selective etching of the p-type semiconductor material in the gate region is reduced, and the stability and the reliability of a device are improved simultaneously. In the gate region, a high quality schottky gate may be achieved by using different metals and adjusting a work function. In addition, it is also possible to achieve Mg doping with high doping concentration on a surface of N-face p-type GaN of the gate, thereby achieving ohmic contact.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIGS. 1a , 2, 3 a, 3 b, 4 a, 4 b, 4 c, 5 a, 5 b, 6 a, 6 b, 7 a, 7 b, 8 a, 8 b, 9 a, 9 b, and 10 are decomposition schematic diagrams illustrating a semiconductor structure in preparation processes respectively according to an embodiment of the present application.
  • FIG. 1b is a schematic diagram of an atomic structure of Ga-face GaN, and FIG. 1c is a schematic diagram of an atomic structure of N-face GaN.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • The technical schemes of the present application will be described in detail below in combination with specific embodiments shown in the accompanying drawings. However, it cannot consider that these embodiments constitute a limitation to the scope of the present application. It should be noted that, and all these structural, method, or functional changes made by those of ordinary skill in the art according to these embodiments fall into the protection scope of the present application.
  • In addition, repeated reference numbers or labels may be used in different embodiments. These repetitions are only to briefly and clearly describe the present application, and do not represent any correlation between the different embodiments and/or structures discussed.
  • A manufacturing method for a semiconductor structure according to an embodiment of the present application includes following steps.
  • Step 601: as shown in FIG. 1a , preparing a channel layer 23, a barrier layer 24 and a semiconductor layer 3 sequentially superimposed on a substrate 1. The semiconductor layer 3 is made of a GaN-based material and an upper surface (a surface away from the substrate) of the semiconductor layer 3 is Ga-face.
  • The GaN-based material described in the embodiments of the present application refers to a semiconductor material based on Ga element and N element, such as AlGaN, AlInGaN, GaN, etc.
  • FIG. 1b is a schematic diagram of an atomic structure of Ga-face GaN, and FIG. 1c is a schematic diagram of an atomic structure of N-face GaN. Regarding Ga-face GaN, taking a Ga—N bond parallel to a C axis as a reference, Ga atoms in each Ga-N bond are closer to the substrate 1, which is Ga-face GaN. Conversely, taking a Ga—N bond parallel to a C axis as a reference, if N atoms in each Ga—N bond are closer to the substrate 1, it is N-face GaN. For a same GaN-based semiconductor layer, N-face GaN is obtained by reversing the Ga-face GaN in FIG. 1b . A side far from the substrate shown in FIG. 1b is defined as Ga-face, the side far from the substrate shown in FIG. 1c is defined as N-face, and the Ga-face corresponds to the N-face. Since Ga-face GaN and N-face GaN have different atomic arrangements on a side of themselves away from the substrate, their characteristics are also different.
  • In an embodiment of the present application, the barrier layer 24 and the channel layer 23 may also be GaN-based materials, and further, the barrier layer 24 and the channel layer 23 may also be Ga-face GaN materials.
  • The substrate 1 may be selected from semiconductor materials, ceramic materials, or polymer materials. For example, the substrate 1 is preferably selected from sapphire, diamond, silicon carbide, silicon, lithium niobate, Silicon on Insulator (SOI), gallium nitride, or aluminum nitride.
  • The channel layer 23 and the barrier layer 24 may be made of semiconductor materials that can form a two-dimensional electron gas. Taking a GaN-based material as an example, the channel layer 23 may be made of GaN, the barrier layer 24 may be made of AlGaN, and the channel layer 23 and the barrier layer 24 form a heterostructure to form a two-dimensional electron gas.
  • In an embodiment of the present application, as shown in FIG. 2, before the channel layer 23 is grown, a nucleation layer 21 and a buffer layer 22 may also be sequentially grown on the substrate 1. Taking a GaN-based semiconductor structure as an example, the nucleation layer 21 may reduce dislocation density and defect density, and improve crystal quality. The nucleation layer 21 may be made of one or more of AN, AlGaN and GaN. The buffer layer 22 may buffer a stress in an epitaxial structure above the substrate and prevent the epitaxial structure from cracking. The buffer layer 22 may be made of one or more of GaN, AlGaN, and AlInGaN.
  • The semiconductor layer 3 may protect an underlying semiconductor structure, so that it is not necessary to strictly control an etching depth during a subsequent selective etching of a p-type N-face GaN-based material layer 5. It does not matter even if an epitaxial layer above part of the barrier layer 24 is etched away. The semiconductor layer 3 may be produced by in-situ growth, or by Atomic Layer Deposition (ALD), or Chemical Vapor Deposition (CVD), or Molecular Beam Epitaxy (MBE), or Plasma Enhanced Chemical Vapor Deposition (PECVD), or Low Pressure Chemical Vapor Deposition (LPCVD), or Metal-Organic Chemical Vapor Deposition (MOCVD), or a combination thereof. It should be understood that the method for forming the semiconductor layer 3 described here is only an example, and in the present application, the semiconductor layer 3 above the barrier layer 24 may be formed by any method known to those skilled in the art.
  • Step 602: as shown in FIG. 3a , preparing a p-type GaN-based semiconductor layer 5 above the semiconductor layer 3, an upper surface of the p-type GaN-based semiconductor layer 5 being N-face. In the above step, preparing the p-type GaN-based semiconductor layer 5 with N-face as an upper surface above the semiconductor layer 3 may be implemented by various methods.
  • In an embodiment, during preparing the p-type GaN-based semiconductor layer 5 with N-face as an upper surface above the semiconductor layer 3, a p-type Ga-face GaN-based material may be epitaxially grown first, and a polarity reversal element can be added at the same time as the epitaxial growth. The polarity reversal element may be, for example, Mg, etc., so that the Ga-face GaN-based material may become the N-face GaN-based material. Furthermore, when the semiconductor layer 3 and the p-type GaN-based semiconductor layer 5 are prepared, they may be epitaxially grown continuously. After the Ga-face semiconductor layer 3 is prepared, the GaN-based material may be reversed from the Ga-face to the N-face by adding the polarity reversal element. In this embodiment, a process of changing the Ga-face to the N-face by adding a polarity reversal element may include a transition process, so a lower surface of the p-type GaN-based semiconductor layer 5 close to the semiconductor layer 3 may be the Ga-face. However, a thickness of the Ga-face GaN contained in the p-type GaN-based semiconductor layer 5 does not exceed 120 nm, preferably it may be controlled below 40 nm, and even more preferably it may be less than 15 nm.
  • In an embodiment, the p-type GaN-based semiconductor layer 5 with N-face as an upper surface is prepared on the semiconductor layer 3, as shown in FIG. 3b , and during the epitaxial growth process, a polarity reversal layer 31 is prepared on the semiconductor layer 3 to achieve polarity reversal, thereby achieving the preparation of the N-face p-type GaN-based semiconductor layer 5. Specifically, when the semiconductor layer 3 and the p-type GaN-based semiconductor layer 5 are prepared, they may be epitaxially grown continuously. After the semiconductor layer 3 is prepared, the polarity reversal layer 31 can be prepared, so that the GaN-based material may be reversed from the Ga-face to the N-face. In this embodiment, a lower surface of the p-type GaN-based semiconductor layer 5 close to the barrier layer may also be N-face. For example, the polarity reversal layer 31 may be Al2O3. In addition, when the polarity reversal layer 31 is Al2O3, it may also prevent etching, and when the p-type GaN-based semiconductor layer 5 is etched, the etching may be stopped on the polarity reversal layer 31.
  • In an embodiment, the preparing p-type GaN-based semiconductor layer 5 with N-face as an upper surface above the semiconductor layer 3, may include bonding the p-type GaN-based semiconductor layer 5 with N-face on the semiconductor layer 3 directly.
  • In an embodiment of the present application, for example, the p-type GaN-based semiconductor layer 5 may be made of one or more of the following materials: p-type AlGaN, p-type GaN, and p-type InGaN. When a lower surface of the p-type GaN-based semiconductor layer 5 close to the semiconductor layer 3 is Ga-face, a remaining Ga-face GaN that is not etched away may not have a significant impact on the overall performance of the device due to its thin thickness.
  • Step 603: as shown in FIG. 4a , etching the p-type GaN-based semiconductor layer 5 selectively, and reserving only a portion of the p-type GaN-based semiconductor layer corresponding to a gate region.
  • The gate region in the present application is a region used to prepare a gate. It should be understood by those skilled in the art that the gate region may be defined and determined according to a design and process of related devices.
  • In an embodiment of the present application, the selective etching process for the p-type GaN-based semiconductor layer 5 may be a wet etching process, for example, a wet etching process adopting KOH.
  • In wet etching, N-face GaN-based materials are easy to be etched, while Ga-face GaN-based materials are not easy to be etched. Therefore, in a process of etching the N-face GaN-based material, the etching process may be easily controlled to avoid damage to the Ga-face GaN-based material under the N-face GaN-based material.
  • Since the p-type GaN-based semiconductor layer 5 is a GaN-based material with N-face as an upper surface, and the semiconductor layer 3 is a GaN-based material with Ga-face as an upper surface, the etching process may be easily controlled to avoid damage to the semiconductor layer during the process of etching the p-type GaN-based semiconductor layer 5.
  • The selective etching of the p-type GaN-based semiconductor layer 5 may be specifically shown in FIGS. 4b-4c . First, a mask layer 41 is deposited on the p-type GaN-based semiconductor layer 5. The mask layer 41 may be a dielectric layer such as SiN, SiO2, or a metal such as Ti, Ni, etc. Then selective etching is performed, and only the p-type GaN-based semiconductor layer 5 and the mask layer 41 in the gate region are retained. The mask layer 41 may play a good role in protecting the p-type GaN-based semiconductor layer 5 during the etching process. In this embodiment, the etching may be wet etching, or a combination of wet etching and dry etching to avoid excessive lateral etching reactions in the gate region during wet etching.
  • Step 604: as shown in FIG. 5a , preparing a gate electrode 51, a source electrode 6, and a drain electrode 7.
  • The gate electrode 51 is prepared on the p-type semiconductor layer 5, the source electrode 6 is prepared in a source region of the barrier layer 24, and the drain electrode 7 is prepared in a drain region of the barrier layer 24.
  • The source region and the drain region in the present application are similar to the gate region in the present application, that is, regions used to prepare a source electrode and a drain electrode. It should be understood by those skilled in the art that the regions may be defined and determined according to a design and process of related devices.
  • It should also be understood that the source electrode 6, the drain electrode 7, and the electrode material 51 on the p-type GaN-based semiconductor layer 5 may be made of a metal material such as a nickel alloy, or may be made of a metal oxide or a semiconductor material. The present application does not limit the specific preparation materials of the source electrode 6, the drain electrode 7, and the electrode material 51 on the p-type GaN-based semiconductor layer 5.
  • In an embodiment of the present application, as shown in FIG. 5b , when the electrode material 51 is to be prepared on the p-type GaN-based semiconductor material 5 to be used as the gate electrode, firstly, a passivation layer 8 may be prepared on an exposed surface of the semiconductor layer 3. Then as shown in FIG. 5b , the electrode material 51 is prepared above the p-type GaN-based semiconductor material 5. The passivation layer 8 may be, for example, Al2O3, SiO2, SiN, etc.
  • In an embodiment of the present application, as shown in FIG. 6a , in order to further improve the performance of the semiconductor structure and further reduce the two-dimensional electron gas density in the channel layer 23 under the gate region, a groove 4 may be provided in the gate region of the semiconductor layer 3 before preparing the p-type GaN-based semiconductor layer 5. The groove 4 completely penetrates the semiconductor layer 3 and stops on the barrier layer 24. In another embodiment of the present application, as shown in FIG. 6b , the groove 4 may also extend to the barrier layer 24 and partially penetrate the barrier layer 24. After the groove 4 is formed, as shown in FIGS. 7a and 7b , the p-type GaN-based semiconductor layer 5 is prepared above the barrier layer 24. Then, as shown in FIGS. 8a and 8b , the p-type GaN-based semiconductor layer 5 is selectively etched, and only the p-type GaN-based semiconductor layer 5 in the gate region is retained. As shown in FIGS. 9a and 9b , the gate electrode 51, the source electrode 6, and the drain electrode 7 are then prepared.
  • In an embodiment of the present application, the barrier layer 24 may adopt a sandwich structure. For example, as shown in FIG. 10, the barrier layer 24 includes a first outer interlayer 241: AlGaN, an intermediate layer 242: GaN, and a second outer interlayer 243: AlGaN. The groove 4 may penetrate the second outer interlayer 243 of the sandwich structure of the barrier layer 24. At this time, the intermediate layer 242 may function as a stop layer in the local etching process for forming the groove 4 to protect the first outer interlayer 241 on a surface of the channel layer 23 from damage by the local etching process. However, the present application does not strictly limit a preparation depth of the groove 4, as long as the p-type GaN-based semiconductor layer 5 inside the groove 4 may pinch off an n-type conductive layer under the gate to achieve a semiconductor structure.
  • As shown in FIG. 5a , an embodiment of the present application also provides a semiconductor structure. The semiconductor structure includes: a substrate 1; a channel layer 23, a barrier layer 24, and a semiconductor layer 3 sequentially superimposed on the substrate 1; and a p-type GaN-based semiconductor layer 5 formed in a gate region on the semiconductor layer 3. The semiconductor layer 3 is made of a GaN-based material, and an upper surface of the semiconductor layer 3 is Ga-face. The p-type GaN-based semiconductor layer 5 is made of a GaN-based material with N-face as an upper surface.
  • The substrate 1 may preferably be made of sapphire, diamond, silicon carbide, silicon, lithium niobate, Silicon on Insulator (SOI), gallium nitride or aluminum nitride.
  • The channel layer 23 and the barrier layer 24 may be made of semiconductor materials that may form a two-dimensional electron gas. For example, taking a GaN-based material as an example, the channel layer 23 may be made of GaN, the barrier layer 24 may be made of AlGaN or GaN, and the channel layer 23 and the barrier layer 24 form a heterostructure to form a two-dimensional electron gas.
  • In an embodiment of the present application, the p-type GaN-based semiconductor layer 5 may be selected from, for example, one or a combination of the following materials: p-type AlGaN, p-type GaN, p-type InGaN, and p-type GaN/AlGaN.
  • In a further embodiment of the present application, as shown in FIG. 5a , in order to improve device performances and meet related technical requirements, the semiconductor structure may further include a nucleation layer 21 and a buffer layer 22 provided under the channel layer 23. Taking a GaN-based semiconductor structure as an example, in order to meet technical requirements such as reducing dislocation density and defect density, preventing melting back, and improving crystal quality, a nucleation layer 21 prepared above the substrate 1 may be further included. The nucleation layer 21 may be made of one or more of AN, AlGaN and GaN. In addition, in order to buffer a stress in an epitaxial structure above the substrate and prevent the epitaxial structure from cracking, the GaN-based semiconductor structure may further include a buffer layer 22 prepared above the nucleation layer 21. The buffer layer 22 may be made of one or more of GaN, AlGaN, and AlInGaN.
  • In an embodiment of the present application, as shown in FIG. 5a , the semiconductor structure further includes: a source electrode 6 disposed in a source region of the barrier layer 24, a drain electrode 7 disposed in a drain region of the barrier layer 24, and a gate electrode 51 disposed on the p-type GaN-based semiconductor layer. The source electrode 6, the drain electrode 7, and the gate electrode 51 may be made of a conductive metal material such as a nickel alloy, or may be made of a metal oxide or a semiconductor material. The present application does not limit the specific preparation materials of the source electrode 6, the drain electrode 7, and the electrode material 51 on the p-type GaN-based semiconductor layer 5.
  • In an embodiment of the present application, as shown in FIG. 9a , in order to further improve the performance of the semiconductor structure and further reduce the two-dimensional electron gas density in the channel layer 23 under the gate region, the semiconductor structure may further include a groove 4 disposed in the gate region of the semiconductor layer 3. The groove 4 may completely penetrate the semiconductor layer 3 and stop on the barrier layer 24. As shown in FIG. 9b , the groove 4 may also extend to the barrier layer 24 and partially penetrate the barrier layer 24. However, it should be understood that the semiconductor structure may not include the groove 4, and the p-type GaN-based semiconductor layer 5 may be directly prepared in the gate region, considering that the purpose of pinching off an n-type conductive layer under the gate may be achieved as long as the p-type GaN-based semiconductor layer 5 is prepared in the gate region. Alternatively, the groove 4 may partially penetrate the semiconductor layer 3.
  • In an embodiment of the present application, as shown in FIG. 10, when the semiconductor structure includes the groove 4, the barrier layer 24 may also adopt a sandwich structure. The sandwich structure includes a first outer interlayer 241 prepared on a surface of the channel layer 23, an intermediate layer 242 sandwiched between the first outer interlayer 241 and a second outer interlayer 243, and the second outer interlayer 243. It should be understood that the materials of the first outer interlayer 241, the intermediate layer 242, and the second outer interlayer 243 may be adjusted according to the material of the channel layer 23. For example, taking a GaN-based material as an example, when the channel layer 23 is made of GaN, the first outer interlayer 241 and the second outer interlayer 243 may be made of AlGaN, and the intermediate layer 242 may be made of GaN. However, the present application does not specifically limit the materials of the first outer interlayer 241, the intermediate layer 242, and the second outer interlayer 243.
  • It should be understood that although this specification is described according to embodiments, not each embodiment only includes one independent technical solution. The way of describing is only for clarity purpose, and those skilled in the art should deem the specification as a whole. The technical solutions in each embodiment may also be appropriately combined to form other embodiments that may be understood by those skilled in the art.
  • The series of detailed descriptions listed above are only specific descriptions of feasible embodiments of the present application. They are not intended to limit the protection scope of the present application. Any equivalent embodiments or modifications made within the technical spirit of the present application shall be included in the protection scope of the present application.

Claims (14)

What is claimed is:
1. A semiconductor structure, comprising:
a substrate;
a channel layer, a barrier layer and a semiconductor layer sequentially superimposed on the substrate, wherein the semiconductor layer is made of a GaN-based material and an upper surface of the semiconductor layer is Ga-face; and
a p-type GaN-based semiconductor layer, with N-face as an upper surface, formed in a gate region of the semiconductor layer.
2. The semiconductor structure according to claim 1, further comprising:
a gate electrode disposed on the p-type GaN-based semiconductor layer;
a source electrode disposed in a source region of the barrier layer; and
a drain electrode disposed in a drain region of the barrier layer.
3. The semiconductor structure according to claim 1, further comprising:
a nucleation layer between the channel layer and the substrate; and
a buffer layer between the nucleation layer and the channel layer.
4. The semiconductor structure according to claim 1, wherein the p-type GaN-based semiconductor layer comprises a multilayer structure or a superlattice structure comprising one or more materials of p-type AlGaN, p-type GaN, and p-type InGaN.
5. The semiconductor structure according to claim 1, further comprising a groove disposed in the gate region of the semiconductor layer, wherein the groove penetrates the semiconductor layer and stops on the barrier layer or partially penetrates the barrier layer and stops in the barrier layer.
6. A manufacturing method for a semiconductor structure, comprising:
preparing a channel layer, a barrier layer and a semiconductor layer sequentially superimposed on a substrate, wherein the semiconductor layer is made of a GaN-based material and an upper surface of the semiconductor layer is Ga-face; and
preparing a p-type GaN-based semiconductor layer with N-face as an upper surface above the semiconductor layer.
7. The manufacturing method for a semiconductor structure according to claim 6, wherein the preparing a p-type GaN-based semiconductor layer with N-face as an upper surface above the semiconductor layer, comprises:
preparing a p-type Ga-face GaN-based material above the semiconductor layer, and doping a polarity reversal element in the p-type Ga-face GaN-based material to reverse the p-type Ga-face GaN-based material to the p-type GaN-based semiconductor layer with N-face as an upper surface.
8. The manufacturing method for a semiconductor structure according to claim 7, wherein the polarity reversal element comprises Mg.
9. The manufacturing method for a semiconductor structure according to claim 6, wherein the preparing a p-type GaN-based semiconductor layer with N-face as an upper surface above the semiconductor layer, comprises:
preparing a p-type Ga-face GaN-based material above the semiconductor layer; and
reversing the p-type Ga-face GaN-based material by a polarity reversal layer to the p-type GaN-based semiconductor layer with N-face as an upper surface.
10. The manufacturing method for a semiconductor structure according to claim 6, wherein the preparing a p-type GaN-based semiconductor layer with N-face as an upper surface above the semiconductor layer, comprises:
bonding the p-type GaN-based semiconductor layer with N-face as an upper surface to the semiconductor layer directly.
11. The manufacturing method for a semiconductor structure according to claim 6, further comprising:
etching the p-type GaN-based semiconductor layer selectively, and reserving only a portion of the p-type GaN-based semiconductor layer corresponding to a gate region.
12. The manufacturing method for a semiconductor structure according to claim 6, further comprising:
preparing a gate electrode on the p-type GaN-based semiconductor layer, preparing a source electrode in a source region of the barrier layer, and preparing a drain electrode in a drain region of the barrier layer.
13. The manufacturing method for a semiconductor structure according to claim 6, further comprising:
forming a nucleation layer and a buffer layer on the substrate sequentially before forming the channel layer.
14. The manufacturing method for a semiconductor structure according to claim 6, before the preparing a p-type GaN-based semiconductor layer with an N-face as an upper surface above the semiconductor layer, further comprising:
preparing a groove in a gate region of the semiconductor layer, wherein the groove penetrates the semiconductor layer and stops on the barrier layer or partially penetrates the barrier layer and stops in the barrier layer.
US17/086,709 2019-03-26 2020-11-02 Semiconductor Structure and Manufacturing Method for the Semiconductor Structure Pending US20210057560A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/079740 WO2020191628A1 (en) 2019-03-26 2019-03-26 Semiconductor structure and manufacturing method therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079740 Continuation WO2020191628A1 (en) 2019-03-26 2019-03-26 Semiconductor structure and manufacturing method therefor

Publications (1)

Publication Number Publication Date
US20210057560A1 true US20210057560A1 (en) 2021-02-25

Family

ID=72608792

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/086,709 Pending US20210057560A1 (en) 2019-03-26 2020-11-02 Semiconductor Structure and Manufacturing Method for the Semiconductor Structure

Country Status (3)

Country Link
US (1) US20210057560A1 (en)
CN (1) CN113892186B (en)
WO (1) WO2020191628A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220262933A1 (en) * 2019-12-05 2022-08-18 Enkris Semiconductor, Inc. Semiconductor structures and manufacturing methods thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112687733B (en) * 2020-12-21 2022-09-16 广东省科学院半导体研究所 Enhanced power device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120068189A1 (en) * 2010-09-17 2012-03-22 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Method for Vertical and Lateral Control of III-N Polarity
US20130082360A1 (en) * 2011-09-29 2013-04-04 Fujitsu Limited Compound semiconductor device and method for fabricating the same
US20160218204A1 (en) * 2015-01-27 2016-07-28 Gpower Semiconductor, Inc. Enhancement Mode High Electron Mobility Transistor and Manufacturing Method Thereof
US20210050437A1 (en) * 2019-03-26 2021-02-18 Enkris Semiconductor, Inc. Semiconductor Structure and Manufacturing Method for the Semiconductor Structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120032258A (en) * 2010-09-28 2012-04-05 삼성엘이디 주식회사 Gallium nitride based semiconductor device and method of manufacturing the same
CN108807526B (en) * 2012-04-20 2021-12-21 苏州晶湛半导体有限公司 Enhanced switching device and method of making same
JP6017248B2 (en) * 2012-09-28 2016-10-26 トランスフォーム・ジャパン株式会社 Semiconductor device manufacturing method and semiconductor device
US9018056B2 (en) * 2013-03-15 2015-04-28 The United States Of America, As Represented By The Secretary Of The Navy Complementary field effect transistors using gallium polar and nitrogen polar III-nitride material
CN103337516B (en) * 2013-06-07 2016-08-17 苏州晶湛半导体有限公司 Enhancement mode switching device and manufacture method thereof
CN106847668A (en) * 2017-01-19 2017-06-13 北京科技大学 A kind of method of the alternate GaN structures of growth polarity in Ga polar GaN templates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120068189A1 (en) * 2010-09-17 2012-03-22 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Method for Vertical and Lateral Control of III-N Polarity
US20130082360A1 (en) * 2011-09-29 2013-04-04 Fujitsu Limited Compound semiconductor device and method for fabricating the same
US20160218204A1 (en) * 2015-01-27 2016-07-28 Gpower Semiconductor, Inc. Enhancement Mode High Electron Mobility Transistor and Manufacturing Method Thereof
US20210050437A1 (en) * 2019-03-26 2021-02-18 Enkris Semiconductor, Inc. Semiconductor Structure and Manufacturing Method for the Semiconductor Structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220262933A1 (en) * 2019-12-05 2022-08-18 Enkris Semiconductor, Inc. Semiconductor structures and manufacturing methods thereof

Also Published As

Publication number Publication date
CN113892186B (en) 2024-05-03
WO2020191628A1 (en) 2020-10-01
CN113892186A (en) 2022-01-04

Similar Documents

Publication Publication Date Title
US7709859B2 (en) Cap layers including aluminum nitride for nitride-based transistors
KR101124937B1 (en) Cap layers and/or passivation layers for nitride-based transistors, transistor structures and methods of fabricating same
TWI429076B (en) Binary group iii-nitride based high electron mobility transistors and methods of fabricating same
KR20070032701A (en) A method of manufacturing a nitride transistor having a regrown ohmic contact region and a nitride transistor having a regrown ohmic contact region
JPWO2005015642A1 (en) Semiconductor device and manufacturing method thereof
US9466481B2 (en) Electronic device and epitaxial multilayer wafer of group III nitride semiconductor having specified dislocation density, oxygen/electron concentration, and active layer thickness
US10998435B2 (en) Enhancement-mode device and method for manufacturing the same
US20070117355A1 (en) Semiconductor device and method for fabricating the same
US20220376074A1 (en) Nitride-based semiconductor device and method for manufacturing the same
US11876129B2 (en) Semiconductor structure and manufacturing method for the semiconductor structure
US20210057560A1 (en) Semiconductor Structure and Manufacturing Method for the Semiconductor Structure
JP5415668B2 (en) Semiconductor element
US11424353B2 (en) Semiconductor structure and method for manufacturing the same
US20230238446A1 (en) Semiconductor structure and manufacturing method thereof
CN111755330A (en) Semiconductor structure and manufacturing method thereof
CN113745333A (en) Normally-off gallium oxide based MIS-HEMT device containing delta doped barrier layer and preparation method thereof
KR101935928B1 (en) High Electron Mobility Transistor having Reduced Gate Leakage Current
US11424352B2 (en) Semiconductor structure and method for manufacturing the same
US20220102530A1 (en) Preparation method for semiconductor structure
JP2003197645A (en) Heterojunction field effect transistor and its manufacturing method
CN109671776A (en) Semiconductor devices and its manufacturing method
US20220005939A1 (en) Semiconductor device and fabrication method thereof
WO2024016216A1 (en) Nitride-based semiconductor device and method for manufacturing the same
US20240038884A1 (en) Nitride semiconductor device
WO2023245658A1 (en) Nitride-based semiconductor device and method for manufacturing thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENKRIS SEMICONDUCTOR, INC., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHENG, KAI;REEL/FRAME:054240/0725

Effective date: 20201028

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.