WO2023222132A1 - 用于切割液的过滤装置及其清洗方法、过滤循环系统 - Google Patents

用于切割液的过滤装置及其清洗方法、过滤循环系统 Download PDF

Info

Publication number
WO2023222132A1
WO2023222132A1 PCT/CN2023/095412 CN2023095412W WO2023222132A1 WO 2023222132 A1 WO2023222132 A1 WO 2023222132A1 CN 2023095412 W CN2023095412 W CN 2023095412W WO 2023222132 A1 WO2023222132 A1 WO 2023222132A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
cutting fluid
cutting
cleaning
ultrasonic
Prior art date
Application number
PCT/CN2023/095412
Other languages
English (en)
French (fr)
Inventor
尹燕刚
张璐
唐军科
张新恺
Original Assignee
青岛高测科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221215631.1U external-priority patent/CN217613294U/zh
Priority claimed from CN202210552551.3A external-priority patent/CN114797230A/zh
Priority claimed from CN202221217808.1U external-priority patent/CN217746029U/zh
Priority claimed from CN202310406925.5A external-priority patent/CN116637426A/zh
Priority claimed from CN202320861223.1U external-priority patent/CN220176213U/zh
Application filed by 青岛高测科技股份有限公司 filed Critical 青岛高测科技股份有限公司
Publication of WO2023222132A1 publication Critical patent/WO2023222132A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/70Regenerating the filter material in the filter by forces created by movement of the filter element
    • B01D29/72Regenerating the filter material in the filter by forces created by movement of the filter element involving vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/16Cleaning-out devices, e.g. for removing the cake from the filter casing or for evacuating the last remnants of liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D7/00Accessories specially adapted for use with machines or devices of the preceding groups
    • B28D7/02Accessories specially adapted for use with machines or devices of the preceding groups for removing or laying dust, e.g. by spraying liquids; for cooling work

Definitions

  • the present application relates to the technical field of wire cutting, specifically, to a filter device for cutting fluid, its cleaning method, and a filter circulation system.
  • a filter device for filtering the cutting fluid is provided in the cutting fluid circulation system, which can improve the cleanliness of the cutting fluid.
  • the filter screen of the filter device is prone to clogging, resulting in poor filtering effect and reduced cutting fluid flow rate.
  • Embodiments of the present application provide a filter device for cutting fluid, a cleaning method thereof, and a filter circulation system to solve the problems of low cleaning efficiency and low reliability caused by the need for manual cleaning or replacement of the filter screen of the cutting fluid filter device. Problems affecting the processing efficiency of wire cutting equipment.
  • the embodiment of the present application provides a filtering device for cutting fluid, including:
  • a filter cartridge and a filter screen The filter screen is arranged in the filter cartridge.
  • the filter screen has a cutting fluid inlet and a sewage outlet.
  • the cutting liquid inlet is used for the inflow of cutting fluid to be filtered.
  • the sewage outlet is used for To discharge cleaning liquid and dirt from inside the filter screen, the filter cartridge has a cutting fluid outlet, and the cutting fluid outlet is used to discharge the filtered cutting fluid;
  • An ultrasonic cleaning component is at least partially disposed in the filter screen, and is used for ultrasonic cleaning of the filter screen.
  • the embodiment of the present application provides a filtration circulation system for cutting fluid, including:
  • Spray device used to spray cutting fluid on the workpiece cutting area
  • a liquid supply device used to accommodate cutting fluid and provide power for the circulation of the cutting fluid
  • a collection device is provided on the liquid supply device, used to collect the cutting fluid after spraying the workpiece, and transport it to the liquid supply device;
  • a filtering device connected between the spray device and the liquid supply device, used to filter the cutting fluid, and the filtering device is the above-mentioned filtering device;
  • a heat exchange device the heat exchange device is connected between the filter device and the spray device, and is used to cool the cutting fluid.
  • Embodiments of the present application provide a cleaning method for a filter device for cutting fluid.
  • the filter device includes a filter cylinder, a filter screen, and an ultrasonic cleaning component.
  • the filter screen is disposed in the filter cylinder.
  • the ultrasonic cleaning component At least partially disposed in the filter screen, used for ultrasonic cleaning of the filter screen;
  • the methods include:
  • the ultrasonic cleaning component cleans the filter screen.
  • Figure 1 is a schematic structural diagram of a filtration circulation system for cutting fluid provided by some embodiments of the present application
  • Figure 2 is a schematic cross-sectional structural view of a filter device for cutting fluid provided by some embodiments of the present application
  • Figure 3 is an enlarged schematic diagram of a partial structure of a filter device for cutting fluid provided by some embodiments of the present application;
  • Figure 4 is a schematic cross-sectional structural view of a filter device for cutting fluid provided by other embodiments of the present application.
  • Figure 5 is a schematic cross-sectional structural view of a filter device for cutting fluid provided by other embodiments of the present application.
  • Figure 6 is a schematic cross-sectional structural view of a filter device for cutting fluid provided by other embodiments of the present application.
  • Figure 7 is a schematic cross-sectional structural view of a filter device for cutting fluid provided by other embodiments of the present application.
  • Figure 8 is a schematic cross-sectional structural view of a filter device for cutting fluid provided by other embodiments of the present application.
  • Figure 9 is a schematic structural diagram of a filtration circulation system for cutting fluid provided by other embodiments of the present application.
  • Figure 10 is a schematic structural diagram of a wire cutting machine provided by other embodiments of the present application.
  • Figure 11 is a schematic structural diagram of a filter device provided by other embodiments of the present application.
  • Figure 12 is a schematic cross-sectional structural diagram of a filter device provided by other embodiments of the present application.
  • Figure 13 is a partial structural schematic diagram of a filter device provided by other embodiments of the present application.
  • Figure 14 is a schematic structural diagram of a filter device provided by other embodiments of the present application.
  • Figure 15 is a partial structural schematic diagram of a filter device provided by other embodiments of the present application.
  • Figure 16 is a partial structural schematic diagram of a filter device provided by other embodiments of the present application.
  • Figure 17 is a partial structural schematic diagram of a filter device provided by other embodiments of the present application.
  • Figure 18 is a partial structural schematic diagram of a filter device provided by other embodiments of the present application.
  • Figure 19 is a schematic flow chart of a cleaning method for a filter device for cutting fluid provided by some embodiments of the present application.
  • Figure 20 is a schematic flowchart of a cleaning method for a filter device for cutting fluid provided by some embodiments of the present application.
  • Drainage pipeline 92 Drainage pipeline 92; ultrasonic transducer 121, ultrasonic horn 122, sealing pressure plate 123, ultrasonic vibrator 124, ultrasonic vibrator 125, cleaning fluid inlet pipeline 126; flange part 1241; cutting fluid outlet valve 300.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • the wire cutting machine has the advantages of wide application range for processing materials and shapes, high precision, no burrs in the finished product, hard-to-damage consumables and low cost. It is currently a widely used cutting equipment. With the development of wire cutting technology, the requirements for the processing quality and processing efficiency of wire cutting equipment are getting higher and higher.
  • a filtering device for filtering the cutting fluid When wire cutting equipment is used for processing, especially when cutting, squaring, and slicing hard and brittle materials, the cleanliness of the cutting fluid has a great impact on the quality of the finished workpiece. Therefore, in order to improve the cleanliness of the cutting fluid, a filtering device for filtering the cutting fluid will be provided in the cutting fluid circulation system.
  • the filter device can effectively filter lint, particles and other impurities in the cutting fluid.
  • a large amount of fine dust will be produced, causing the filter screen of the filter device to gradually become clogged during use, resulting in poor filtering effect, reduced cutting fluid flow, and causing wire jumps and disconnections during processing. problems, thereby affecting the quality and processing efficiency of the workpiece.
  • this application provides a filter device for cutting fluid, which can realize automatic cleaning of the filter screen in the filter device.
  • the cleaning effect is good and the reliability is high. There is no need to disassemble the filter screen during cleaning, and the cleaning efficiency is high. Higher, it is conducive to improving the processing efficiency of wire cutting equipment.
  • FIG. 1 is a schematic structural diagram of a filtration circulation system for cutting fluid provided by some embodiments of the present application.
  • the filtration circulation system includes a liquid supply device 10, a spray device 20, a collection device 80 and a filter device 50.
  • the spray device 20 is used to spray the cutting liquid to the workpiece cutting area (not shown in the figure), and the liquid supply device 10 is used to To accommodate the cutting fluid and provide power for the circulation of the cutting fluid, the collection device 80 is provided on the liquid supply device 10 for collecting the cutting fluid after spraying the workpiece (not shown in the figure) and transporting it to the liquid supply device 10 , the filtering device 50 is connected between the spray device 20 and the liquid supply device 10, and is used to filter the cutting fluid.
  • the workpiece cutting area is an area where the wire cutting equipment is used to carry the workpiece and cut the workpiece.
  • the workpiece cutting area can be disposed between the spray device 20 and the collection device 80 so that the spray device 20 sprays
  • the cutting fluid can fall into the cutting area of the workpiece, and a through hole can be provided in the cutting area of the workpiece, so that the cutting fluid sprayed through the workpiece can flow to the collection device 80 through the through hole.
  • the cutting fluid By arranging the liquid supply device 10 and the spray device 20 , the cutting fluid can be sprayed. By arranging the collection device 80 , the cutting fluid can be recycled and reused, which is beneficial to environmental protection. By arranging the filter device 50 , the used cutting fluid can be processed. Filtration can improve the cleanliness of the cutting fluid, thereby reducing the impact of impurities in the recovered cutting fluid on workpiece processing, and improving the quality of the finished workpiece.
  • the filter device 50 includes a filter cartridge, a filter screen 56 and an ultrasonic cleaning assembly 120.
  • the filter screen 56 is disposed in the filter cartridge.
  • the filter screen 56 has a cutting fluid inlet 57 and a sewage discharge port 52.
  • the cutting fluid inlet 57 is used for The cutting fluid to be filtered flows in.
  • the drain port 52 is used to discharge the cleaning liquid and dirt inside the filter 56.
  • the filter cartridge has a cutting fluid outlet 51.
  • the cutting fluid outlet 51 is used to discharge the filtered cutting fluid.
  • Ultrasonic cleaning components At least part of 120 is disposed in the filter screen 56 for ultrasonic cleaning of the filter screen 56 .
  • the cutting fluid inlet 57 is used to communicate with the outside, such as the liquid supply device 10 , through the cutting fluid input pipeline 90 , to allow the cutting fluid to flow into the filter 56 through the cutting fluid inlet 57 .
  • the filter cartridge is provided with an escape port (not marked in the figure) corresponding to the cutting fluid inlet 57 to facilitate communication between the pipeline and the cutting fluid inlet 57 .
  • the sewage outlet 52 is located at the bottom of the filter 56 and is used to communicate with the outside through the sewage pipeline 92, such as the liquid supply device 10, which is used to discharge impurities and cleaning liquid in the filter 56, so that after flushing The dirt will not remain in the filter 56, especially the larger particles, which can reduce the possibility of clogging of the filter 56, so that the flow rate of the cutting fluid is within the preset range, further improving the filtration effect inside the filter 56.
  • the sewage outlet 52 may be provided with a first sealing ring, which can increase the sealing performance of the sewage pipeline 92 and reduce the possibility of leakage of cleaning fluid.
  • the cutting fluid outlet 51 is located at the bottom of the barrel 55 and is used to communicate with the outside through the cutting fluid output pipeline 91 , such as the spray device 20 , to allow the filtered cutting fluid to flow out for reuse.
  • the cutting fluid outlet 51 may be provided with a second sealing ring, which can increase the sealing performance of the cutting fluid output pipeline 91 and reduce the possibility of cutting fluid leakage.
  • the filter cartridge may be provided with a seal, which can reduce the possibility of external impurities entering the filter cartridge and also reduce the possibility of cutting fluid leakage.
  • the filter cartridge can be made of stainless steel, which is not easy to rust or deform, and has a long service life.
  • the mesh number of the filter screen 56 may be 50-300 mesh, which can better filter impurities while allowing the cutting fluid to flow through the filter screen 56 quickly.
  • the filter screen 56 may be cylindrical, which can filter the cutting fluid more uniformly. In other embodiments, the filter 56 can also be in other shapes such as square.
  • the internal space of the filter cartridge can be divided into two spaces: the inside of the filter 56 and the outside of the filter 56.
  • the holes on the filter 56 allow the cutting fluid to flow from one space to the other, and the cutting fluid Impurities such as lint and particles in the filter are blocked by the filter screen 56 to filter the impurities.
  • the ultrasonic cleaning component 120 By arranging the ultrasonic cleaning component 120, automatic cleaning of the filter 56 can be achieved, with good cleaning effect and high reliability. There is no need to disassemble the filter 56 during cleaning, and the cleaning efficiency is high, which is beneficial to improving the processing efficiency of the wire cutting equipment. .
  • the filter cartridge may include a cartridge body 55 and a cartridge cover 54 .
  • the cartridge cover 54 is located on the top of the cartridge body 55 and is detachably connected to the cartridge body 55 , which can facilitate the disassembly and installation of the cartridge cover 54 . It is convenient to disassemble and install the filter 56.
  • the cylinder body 55 and the cylinder cover 54 can be fixed by threaded fasteners, or by buckles, interference connections, etc.
  • a pressing member (not shown in the figure) can be provided between the filter screen 56 and the cylinder cover 54.
  • the pressing member is made of elastically deformable material. After the cylinder cover 54 is installed on the cylinder body 55, the pressing member is pressed. The piece is pressed by the cylinder cover 54 to fix the filter screen 56 in the axial direction of the filter cylinder.
  • FIG. 3 is an enlarged schematic diagram of a partial structure of a filter device for cutting fluid provided by some embodiments of the present application.
  • a set of opposing bosses 515 is provided on the inner wall of the barrel 55 , and part of the filter screen 56 overlaps the bosses 515 to position the filter screen 56 .
  • a sealing gasket may be provided near the filter screen 56 and the barrel 55 , for example, a sealing gasket may be provided between the filter screen 56 and the boss 515 , which can improve the sealing effect and reduce the possibility of mixed flow of cutting fluid before and after filtration.
  • At least part of the radial dimension of the filter screen 56 may be slightly larger than the inner diameter of the barrel 55 , so that when the filter screen 56 is installed in the barrel 55 , it abuts against the inner wall of the barrel 55 so as to radially
  • the filter 56 is fixed to reduce the possibility of the filter 56 shaking in the cylinder 55 .
  • the filter screen 56 may include two parts that are threadedly connected to facilitate installation of the ultrasonic cleaning assembly 120 within the filter screen 56 .
  • a filter bag (not shown in the figure) can also be provided in the filter screen 56, so that the cutting fluid can be filtered through the two layers of the filter screen 56 and the filter bag, and the filtration effect is better.
  • the ultrasonic cleaning assembly 120 is used to connect an external cleaning unit (not shown in the figure).
  • the external cleaning unit can be a water source or other cleaning fluid power equipment.
  • the external cleaning unit provides pressure for the cleaning fluid to enter the filter. tube and disturb it by ultrasonic waves.
  • the ultrasonic cleaning assembly 120 may include an ultrasonic transducer 121 and an ultrasonic horn 122.
  • One end of the ultrasonic transducer 121 is detachably connected to the cylinder cover 54, and the other end is connected to the ultrasonic horn 122.
  • the rod 122 is connected, and the end of the ultrasonic horn 122 away from the ultrasonic transducer 121 penetrates the cylinder cover 54 and extends along the axial direction of the filter screen 56 to the inside of the filter screen 56 .
  • ultrasonic cleaning of the filter 56 can be achieved, with higher cleaning efficiency and better cleaning effect.
  • the ultrasonic cleaning assembly 120 can be disposed at the center of the filter 56, which can improve the flushing and disturbance effect and achieve a better cleaning effect.
  • a sealing gasket (not shown in the figure) can be provided between the ultrasonic transducer 121 and the cylinder cover 54.
  • a sealing groove is provided on the upper surface of the cylinder cover 54, and the sealing gasket is located in the sealing groove.
  • Part of the transducer 121 is located on the sealing gasket, so that when the ultrasonic transducer 121 is installed on the barrel cover 54, the sealing gasket can be clamped to achieve sealing.
  • the filter cartridge may also include a sealing pressure plate 123.
  • An escape hole is provided in the middle of the sealing pressure plate 123. Part of the ultrasonic transducer 121 penetrates the escape hole, and part of it abuts against the sealing pressure plate 123 to achieve sealing.
  • the sealing pressure plate 123 and the cylinder cover 54 can be fixedly connected through threaded fasteners (such as screws).
  • the ultrasonic cleaning assembly 120 includes an ultrasonic vibrator 124 and an ultrasonic vibrator 125.
  • One end of the ultrasonic vibrator 124 is detachably connected to the barrel cover 54, and the other end extends to the inside of the filter 56.
  • the ultrasonic vibrator 125 is disposed on the ultrasonic vibrator.
  • the inside of the vibrating rod 124 extends to the inside of the filter screen 56 .
  • the cleaning liquid in the filter 56 can be disturbed by ultrasonic vibration, thereby achieving ultrasonic cleaning of the filter 56, with higher cleaning efficiency and better cleaning effect.
  • the cylinder cover 54 is provided with a mounting hole (not shown in the figure).
  • the ultrasonic vibrator 124 penetrates the mounting hole of the cylinder cover 54 and extends to the inside of the filter 56 .
  • the ultrasonic vibrator 125 is located on the ultrasonic vibrator. 124, and also extends to the inside of the filter 56, can further enhance the disturbing effect of the cleaning liquid in the filter 56, thereby further improving the cleaning effect.
  • a sealing gasket (not shown in the figure) may be provided between the ultrasonic vibrating rod 124 and the cylinder cover 54.
  • a sealing groove is provided on the cylinder cover 54, the sealing gasket is located in the sealing groove, and part of the ultrasonic vibrating rod 124 is located in the sealing groove.
  • the ultrasonic vibrator 124 can clamp the sealing gasket when it is installed on the cylinder cover 54 to achieve sealing.
  • a flange portion 1241 is provided on the circumferential outer wall of the ultrasonic vibrator rod 124.
  • the lower surface of the flange portion 1241 is in contact with the upper surface of the barrel cover 54, and the flange portion 1241 is connected to the barrel through threaded fasteners.
  • Cover 54 is fixed.
  • the diameter of the flange portion 1241 is larger than the diameter of the mounting hole, so that the flange portion 1241 can overlap the upper surface of the barrel cover 54 .
  • the filter cartridge may also include a sealing pressure plate 123.
  • a sealing pressure plate 123 For the installation method of the sealing pressure plate 123, please refer to the sealing pressure plate 123 in the above embodiments, which will not be described again here.
  • the ultrasonic cleaning component 120 can also be disposed outside the filter screen 56 and can clean the filter screen 56 from the outside to the inside.
  • the number of ultrasonic cleaning components 120 may be one or more.
  • the filtering device 50 also includes a cleaning liquid inlet pipe 126.
  • One end of the cleaning liquid inlet pipe 126 is connected to the sewage outlet 52.
  • the sewage outlet 52 is reused as a cleaning liquid inlet pipe.
  • the liquid inlet of the pipeline 126 is used to allow the inflow of cleaning liquid, so that the cleaning liquid entering the filter cartridge through the cleaning liquid inlet pipeline 126 can flush the filter screen 56 from the outside to the inside, so that the flushed dirt can be collectively collected in the filter
  • the inside of the net 56 can be discharged through the sewage outlet 52 at the bottom of the filter 56 .
  • the cleaning process of the filter device 50 is as follows:
  • the cleaning fluid is supplied through the cleaning fluid inlet pipe 126 and the sewage outlet 52.
  • the dirt at the bottom of the filter 56 can be broken and stirred; after the fluid inlet is completed, ultrasonic cleaning is performed through the ultrasonic flushing component 120. After cleaning, the remaining dirt can be discharged through the drain outlet 52, and the filtered cutting fluid can flow in through the cutting fluid outlet 51 and enter the filtration circulation system.
  • Figure 5 is a schematic cross-sectional structural view of a filter device for cutting fluid provided by other embodiments of the present application.
  • Figure 6 is a schematic diagram of a filter device for cutting fluid provided by other embodiments of the present application. Schematic diagram of the cross-sectional structure.
  • the filtering device 50 also includes a cleaning liquid inlet pipeline 126. One end of the cleaning liquid inlet pipeline 126 is connected to the cutting fluid outlet 51. The cutting fluid outlet 51 is reused as the cleaning liquid inlet pipeline 126.
  • the liquid inlet is used to allow the inflow of cleaning liquid, so that the cleaning liquid entering the filter cartridge through the cleaning liquid inlet pipe 126 can flush the filter screen 56 from the outside to the inside, so that the flushed dirt is collectively collected on the filter screen 56
  • the inside can be discharged through the sewage outlet 52 at the bottom of the filter 56 .
  • Figure 7 is a schematic cross-sectional structural view of a filter device for cutting fluid provided by other embodiments of the present application.
  • Figure 8 is a schematic diagram of a filter device for cutting fluid provided by other embodiments of the present application. Schematic diagram of the cross-sectional structure.
  • the filter device 50 further includes a cleaning liquid inlet pipeline 126.
  • the cleaning liquid inlet pipeline 126 is connected to the circumferential side wall of the filter cartridge.
  • the liquid inlet of the cleaning liquid inlet pipeline 126 is located on the filter cartridge. The outside of the net 56.
  • the cleaning liquid inlet pipe 126 is provided in the middle and upper part of the cylinder 55 .
  • the cleaning liquid entering the cylinder 55 through the cleaning liquid inlet pipe 126 can clean the filter 56 from the outside to the inside, and clean the filter screen 56 .
  • the liquid can also further clean the filter screen 56 below under the action of gravity, so that the cleaning effect is better.
  • the filtering device 50 also includes a pressure detection component 70, which is detachably installed on the cylinder 55 and is used to detect the pressure of the cutting fluid in the filter cylinder, so that the filtering device 50 has sufficient The cutting fluid is transported to the spray device 20 by power.
  • a pressure detection component 70 which is detachably installed on the cylinder 55 and is used to detect the pressure of the cutting fluid in the filter cylinder, so that the filtering device 50 has sufficient The cutting fluid is transported to the spray device 20 by power.
  • Figure 9 is a schematic structural diagram of a filtration circulation system for cutting fluid provided by other embodiments of the present application.
  • the filtering device 50 may also include a cutting fluid outlet valve 300 , a drain valve 400 and a cleaning control valve 900 .
  • the cutting fluid outlet valve 300 is located at one end of the cutting fluid output pipeline 91 near the cutting fluid outlet 51 ;
  • the drain valve 400 Located in Pai above the sewage pipe 92 and below the cleaning liquid inlet pipe 126, so that when the sewage valve 400 closes the sewage pipe 92, it will not affect the opening and closing of the cleaning liquid inlet pipe 126.
  • the cleaning control valve 900 is located on the cleaning liquid inlet pipeline 126.
  • the cutting fluid outlet valve 300 may be a pinch valve
  • the drain valve 400 may be a pinch valve
  • the spray device 20 includes several spray pipes for spraying cutting fluid on the cutting area of the workpiece.
  • the collection device 80 can be a collection trough or a collection funnel, which is disposed below the cutting area of the workpiece.
  • the collection trough or collection funnel is provided with a collection channel connected with the liquid supply device 10 to realize the delivery of cutting fluid.
  • the liquid supply device 10 includes a liquid supply cylinder for holding cutting fluid.
  • the liquid supply cylinder has a cutting fluid return port.
  • the return port is connected to the collection device 80 to return the cutting fluid returned from the collection device 80 to the supply port.
  • a rubber strip seal is provided at the return port.
  • the collection device 80 can also be provided with a return liquid filter assembly, and a filter screen is provided inside to filter the returned cutting fluid.
  • the liquid supply device 10 provides power for the cutting fluid to realize circulation through the liquid supply device 10 , the filter device 50 , and the spray device 20 .
  • the liquid supply device 10 may be configured as a mortar pump.
  • the filtration circulation system may also include a heat exchange device 30.
  • the heat exchange device 30 is connected between the filtration device 50 and the spray device 20 for cooling the cutting fluid.
  • the filtration circulation system may also include a flow meter 40, the input end of the flow meter 40 is connected to the heat exchange device 30, and the output end is connected to the spray device 20 for monitoring the flow rate of the cutting fluid.
  • one end of the cutting fluid input pipeline 90 is connected to the liquid supply device 10 , and the other end is connected to the cutting fluid inlet 57 of the filtering device 50 ; one end of the cutting fluid output pipeline 91 is connected to the heat exchange device 30 , and the other end is connected to the heat exchange device 30 .
  • the cutting fluid outlet 51 of the filter device 50 is connected; the drain pipe 92 has one end connected to the drain outlet 52 of the filter device 50 and the other end connected to the liquid supply device 10 .
  • cycle steps of the filtration cycle system are as follows:
  • the cutting fluid is stored in the fluid supply device 10;
  • the cutting fluid enters the filter cartridge from the liquid supply device 10 through the cutting fluid inlet 57.
  • the state of the filter cartridge is that the backflush air pipeline is disconnected, the cutting fluid outlet 51 is opened, the sewage pipe 92 is disconnected, and the cleaning fluid
  • the liquid inlet pipeline 126 is disconnected; after being filtered by the filter 56, it flows out from the cutting fluid outlet 51 and enters the heat exchange device 30.
  • the heat exchange device 30 uses factory cooling water to cool the cutting fluid, and the cooled cutting fluid passes through the flow meter 40
  • the spray pipe of the spray device 20 is evenly sprayed in the cutting area of the workpiece, and flows back to the liquid supply device 10 through the bottom of the cutting chamber, forming a cutting fluid circulation during the processing;
  • the cutting fluid outlet 51 (cutting fluid outlet pinch valve 511) is closed, the sewage outlet 52 (the sewage outlet pinch valve 510 is closed) is opened, and the cutting fluid in the heat exchange device 30 returns to the filter cartridge. Together with the cutting fluid retained in the filter cartridge, it returns to the liquid supply cylinder from the drain port 52 or the cutting fluid outlet 51 of the filter cartridge through the return pipe. That is, both the drain pipe 92 and the cutting fluid output pipe 91 can be connected to the return pipe. , is discharged into the trench through the drain outlet of the liquid supply device 10 .
  • the cutting fluid output pipeline 91 is disconnected and the sewage discharge pipeline 92 is opened, and the cutting fluid retained in the filter cartridge flows back to the liquid supply device 10 and is discharged into the ditch through the drain port of the liquid supply cylinder.
  • the ultrasonic cleaning component 120 converts electrical energy into ultrasonic energy, and transmits it to scale, scale, etc. according to its own rules. Water and the inner wall of the pipe enable it to obtain a lot of energy.
  • the shock waves generated during the transmission of ultrasonic waves cause the scale, water, and filter 56 to resonate. Due to the different oscillation frequencies of the scale, water, and filter 56, the water molecules in the filter cartridge collide violently, generating a strong impact force and impacting the filter.
  • the scale layer on the filter screen 56 is made crispy, peeled off, fallen off, crushed, and discharged together with the sewage, thereby achieving thorough cleaning of the filter screen 56 by the ultrasonic cleaning component 120.
  • the sewage pipe 92 is opened. The sewage flows back into the liquid supply device 10 and is discharged through the ditch.
  • the wire cutting machine includes a cutting fluid circulation system, an electric control cabinet 1001, a fluid circuit system 1002, a winding chamber assembly 1003, a winding chamber guard assembly 1004, a cutting device and a cutting area assembly 1008.
  • the cutting area assembly 1008 includes a bed assembly 1006, a spindle assembly 1005, a four-column feed swing mechanism 1007, and a cutting area guard assembly 1009.
  • the electrical control cabinet 1001 is used to arrange the cabinet of the electrical assembly.
  • the liquid circuit system 1002 provides a cutting fluid supply component for cutting fluid to the cutting area assembly 1008, a cutting fluid heat exchange component for cooling the cutting fluid, and a cooling fluid heat exchange component for cooling the slicer equipment.
  • the winding chamber assembly 1003 is used for taking up, paying off, arranging and the tension control area of the steel wire.
  • the cutting device is used to cut the workpiece.
  • the cutting device can be configured as a loop wire cutting device or a multi-wire cutting device.
  • the specific structure of the cutting device can be set as needed, which is within the scope of protection of the present application.
  • the control device can be a PLC controller, a display screen and other control equipment.
  • the control device is preferably set on the wire cutting machine.
  • the control device is connected to the master control room of the operation.
  • the equipment is connected through wireless communication to realize real-time monitoring of each wire cutting machine and data uploading in the main operation control room.
  • the cutting area assembly 1008 is the area assembly for ingot cutting processing
  • the bed assembly 1006 is used as a load-bearing component for the cutting assembly and the winding chamber assembly 1003;
  • the spindle assembly 1005 has internal circulation liquid cooling
  • the functional high-speed rotating spindle assembly 1005 is arranged on the left and right, and diamond wire is wound around it to form a cutting area.
  • the rear ends of the spindles are connected to drive motors.
  • the four-column feed swing mechanism 1007 is a vertical feed mechanism with a swing function and uses four guide rails for guidance.
  • the cutting machine has a main frame, and one end of the main frame in the length direction is provided with a cutting area frame.
  • the main frame In the vertical direction, the main frame is provided with an electric control cabinet 1001, a winding room assembly 1003 and a winding machine in sequence from top to bottom. Chamber shield assembly 1004.
  • a partial hydraulic system 1002 is provided at an end of the main frame away from the bed assembly 1006 .
  • the cutting area frame In the vertical direction, the cutting area frame is provided with a cutting area guard assembly 1009, a cutting area assembly 1008, a four-column feed swing mechanism 1007, a spindle assembly 1005, a liquid supply assembly and a bed assembly 1006 from top to bottom.
  • the above arrangement optimizes the installation space of the wire cutting machine, making each structure compact and utilizing the space reasonably.
  • Figure 11 is a schematic structural diagram of a filter device provided by other embodiments of the present application
  • Figure 12 is a schematic cross-sectional structural diagram of a filter device provided by other embodiments of the present application.
  • the filter device includes a filter cartridge 1, a filter screen 2, an ultrasonic cleaning component 3 and a control component.
  • the filter screen 2 is located in the filter cartridge 1, and the ultrasonic cleaning component 3 extends to the inside of the filter screen 2 for filtering.
  • the mesh 2 is ultrasonic cleaned, and the control component is connected to the ultrasonic cleaning component 3, which is used to control the ultrasonic cleaning component 3 to clean the filter mesh 2 when the wire cutting machine is in the cutting operation state.
  • control component can be configured as a PLC controller, which controls the ultrasonic cleaning component 3 to operate by controlling the relay of the ultrasonic cleaning component 3 to close.
  • PLC controller controls the ultrasonic cleaning component 3 to operate by controlling the relay of the ultrasonic cleaning component 3 to close.
  • the pressure of the filter cartridge 1 will drop.
  • the PLC system controls the relay to disconnect and the vibrating rod stops working.
  • the filter cartridge 1 can be a sealed cavity, which can reduce the possibility of cutting fluid leakage.
  • Figure 13 is a partial structural schematic diagram of a filtering device provided by other embodiments of the present application
  • Figure 14 is a schematic structural diagram of a filtering device provided by other embodiments of the present application.
  • the filter cylinder 1 includes a filter cylinder body 11 and a cylinder cover 12.
  • the cylinder cover 12 is located on the top of the filter cylinder body 11, and the two are detachably fixedly connected, such as through threaded fasteners.
  • a sealing ring 13 is provided between the filter cylinder 11 and the cylinder cover 12 , and a fixing ring 14 is provided on the inner wall of the filter cylinder 11 along the circumferential direction.
  • the fixed ring 14 and the filter cylinder 11 are integrally arranged to facilitate production and processing.
  • FIG. 15 is a partial structural diagram of a filter device provided by other embodiments of the present application.
  • the outer wall of the filter screen 2 is provided with a flange 21 , and the filter screen 2 is overlapped with the fixing ring 14 through the flange 21 .
  • a pressure ring 9 is provided above the filter cylinder 11 to press the filter screen 2 from top to bottom on the fixing ring 14 to achieve fixation.
  • the axis of the filter cartridge 1 is provided with a preset inclination angle relative to the horizontal direction to facilitate drainage and cutting fluid output.
  • the filter cartridge 1 is connected to the wire cutting machine frame through a fixed installation plate 15.
  • the filter cartridge 1 is arranged at an angle and is connected to a cutting fluid drainage pipeline 6, a cleaning fluid inlet pipeline 7, a cutting fluid output pipeline 8 and a cutting fluid input. pipeline.
  • the cutting input pipeline is generally arranged above the filter cylinder 11, the cutting fluid drainage pipeline 6 is located on the bottom wall of the filter cylinder 11, and the cleaning liquid inlet pipeline 7 is preferably arranged at the front end of the cutting fluid drainage pipeline 6;
  • the liquid output pipeline 8 is located under the side wall of the filter cylinder 11 to fully filter the cutting fluid.
  • FIG. 16 is a partial structural diagram of a filter device provided by other embodiments of the present application.
  • the filter screen 2 can be a stainless steel filter screen, and the mesh number can be 100-600 mesh.
  • the entire bottom of the filter screen 2 has a conical structure, which facilitates the discharge of sewage in the internal space of the filter screen and avoids incomplete discharge of sewage.
  • the bottom of the filter screen 2 is provided with a tapered portion 22 so that impurities can be concentrated at the bottom of the filter screen 2 and impurities can be discharged from the filter screen 2 .
  • the top of the tapered portion 22 is provided with a mounting post 23, and the mounting post 23 has a through hole communicating with the inner cavity of the filter 2; the mounting post 23 is a cylindrical structure, and is preferably provided integrally with the tapered portion 22 to facilitate production and processing. .
  • the bottom wall of the filter cartridge 1 is provided with a sewage outlet 62.
  • the sewage outlet 62 is provided with an inwardly extending mounting ring wall 16 in the circumferential direction.
  • a sealing ring installation groove is provided on the outside of the mounting ring wall 16.
  • the sealing ring There are multiple mounting grooves along the axial direction of the mounting ring wall 16.
  • a sealing ring 17 is provided in the sealing ring mounting groove.
  • the mounting post 23 is inserted into the mounting ring wall 16, and the space between the mounting ring wall 16 and the mounting post 23 is sealed. Ring 17 is sealed and fixed.
  • the bottom sealing of the filter screen 2 and the filter cartridge 1 is achieved, and at the same time, the cutting fluid can only be discharged into the sewage pipeline through the outlet formed by the mounting column 23, further improving the sewage discharge effect of impurities.
  • the cutting fluid drainage pipeline 6 is connected with the drainage port 62 , and the cutting fluid drainage pipeline 6 has a cutting fluid drainage control valve 61 for controlling the opening and closing of the cutting fluid drainage pipeline 6 , and a cleaning fluid inlet pipe.
  • the cleaning fluid inlet of road 7 is connected to the filter cartridge 1 through the cutting fluid drainage pipeline 6; the cleaning fluid inlet pipeline 7 is located between the drainage port 62 and the cutting fluid drainage control valve 61, thus from below
  • the cleaning fluid is filled to the top to disturb the flow of impurities at the bottom of the filter 2, making it easier for the ultrasonic cleaning component 3 to clean, thereby improving the cleaning effect of the filter 2.
  • the filtering device also includes a cutting fluid output pipeline 8 and a flow detection component.
  • the cutting fluid output pipeline 8 is connected to the cutting fluid outlet.
  • the cutting fluid output pipeline 8 is used to discharge the filtered cutting fluid.
  • the flow detection component The component is arranged on the cutting fluid output pipeline and is used to detect the cutting fluid output flow value of the filter cartridge 1.
  • the cutting fluid output pipeline 8 has a cutting fluid outlet 82 and a cutting fluid output control valve 81 .
  • the cutting fluid outlet 82 is located under the side wall of the filter cartridge 1 .
  • the cutting fluid output control valve 81 is used to control the opening and closing of the pipeline.
  • Figure 17 is a partial structural schematic diagram of a filtering device provided by other embodiments of the present application.
  • Figure 18 is a partial structural schematic diagram of a filtering device provided by other embodiments of the present application.
  • the filtering device also includes a cutting fluid input pipeline (not shown in the figure) and a pressure detection component 4.
  • the cutting fluid input pipeline is connected to the cutting fluid inlet 18, and the cutting fluid input pipeline is used to connect through the filter screen. 2.
  • the pressure detection component 4 is provided on the cutting fluid input pipeline and is used to detect the internal pressure value of the filter cartridge.
  • the cutting fluid input pipeline includes a filter cartridge connector 5 , and the filter cartridge connector 5 is located above the side wall of the filter cartridge 1 .
  • the pressure detection component 4 is located on the filter cartridge joint 5.
  • the cutting fluid inlet 18 of the filter cartridge 1 is connected to the water outlet of the liquid supply cylinder, and the cutting fluid outlet 82 is connected to the inlet of the heat exchanger in the cutting fluid system.
  • the cutting fluid passes from the liquid supply cylinder through the liquid supply pump.
  • the cutting fluid inlet 18 enters the inner space of the filter.
  • the cutting fluid After being filtered by the stainless steel filter, the cutting fluid enters the outer space of the filter in the cylinder and flows into the heat exchanger through the cutting fluid outlet 82. Impurities such as lint and silicon slag in the cutting fluid It is intercepted by the filter in the inner space of the filter.
  • a cutting fluid output control valve 81 is provided on the cutting fluid output pipeline 8, which can control the on/off of this pipeline.
  • the sewage outlet 62 of the filter cartridge 1 is connected to the liquid supply cylinder or the ditch. After the cutting operation is completed, the impurities intercepted in the inner space of the filter screen can be discharged to the liquid supply cylinder or the ditch through the sewage outlet 62.
  • a sewage pipe is provided on the drain pipe.
  • the cutting fluid discharge control valve 61 can control the opening and closing of this path.
  • a cleaning fluid inlet pipeline 7 is connected through a tee between the cutting fluid sewage control valve 61 and the filter cartridge 1 on the sewage pipeline.
  • the cleaning fluid inlet pipeline 7 is connected to factory water and can be controlled by the cleaning fluid control valve. Pour ultrasonic cleaning water into filter cartridge 1.
  • the cutting fluid drain control valve 61 and cleaning fluid control valve are closed, and the cutting fluid output control valve 81 is opened, that is, the sewage drain pipeline and cleaning fluid inlet pipeline 7 are closed, and the cutting fluid output pipeline 8 is connected to ensure supply.
  • the fluid system realizes the cutting fluid circulation of "liquid supply cylinder-filter cartridge 1-heat exchanger-cutting area-liquid supply cylinder";
  • the cutting fluid drain control valve 61 is opened, the cleaning fluid control valve is closed, the cutting fluid output control valve 81 is closed, the drain pipeline is opened, the cutting fluid circulation and cleaning pipelines are closed, and the impurities and sewage in the inner space of the filter screen are passed through.
  • the sewage outlet 62 is discharged to the liquid supply cylinder or the ditch.
  • the water filling process of ultrasonic cleaning filter cartridge 1 the cutting fluid drain control valve 61 is closed, the cutting fluid output control valve 81 is closed, and the cleaning fluid control valve is opened, that is, the cleaning fluid inlet pipeline 7 is opened, and the cutting fluid circulation and sewage pipelines are closed to ensure During ultrasonic cleaning, the filter cartridge 1 is filled with water to ensure the cleaning effect.
  • the ultrasonic cleaning component 3 includes an ultrasonic vibrator and an ultrasonic vibrator.
  • the ultrasonic vibrator is located inside the ultrasonic vibrator and extends along the axial direction of the ultrasonic vibrator.
  • One end of the ultrasonic vibrator is fixedly connected to the cylinder cover 12, and the other end extends to Inside of filter 2.
  • one end of the ultrasonic vibrating rod is detachably and fixedly connected to the cylinder cover 12 , and a mounting hole is provided on the cylinder cover 12 .
  • the ultrasonic vibrating rod penetrates through the mounting hole of the cylinder cover 12 , and the other end extends to the inside of the filter screen 2 .
  • the ultrasonic vibrator is installed inside the ultrasonic vibrator rod and extends to the inside of the filter screen 2; it is thus arranged to optimize the flow disturbance effect on the cleaning liquid in the filter screen 2 and improve the cleaning effect.
  • a sealing gasket is also provided between the ultrasonic vibrating rod and the cylinder cover 12; a sealing groove is provided on the cylinder cover 12, and the sealing gasket is located in the sealing groove.
  • FIG. 19 is a schematic flowchart of a cleaning method for a filter device for cutting fluid provided by some embodiments of the present application.
  • the filter device includes a filter cartridge 1, a filter screen 2 and an ultrasonic cleaning component 3.
  • the filter screen 2 is arranged in the filter cartridge 1.
  • At least part of the ultrasonic cleaning component 3 is arranged in the filter screen 2 for ultrasonic cleaning of the filter screen 2;
  • Cleaning methods include:
  • the ultrasonic cleaning component 3 cleans the filter screen 2.
  • the cutting operation status can be judged by the start-up signal, or the motor rotation speed of the wire cutting machine or other signals.
  • the filter cartridge can be 1 Whether there is cutting fluid input is used as a signal to judge whether the wire cutting machine is in the cutting operation state, that is, when the cutting fluid input pipeline of filter cylinder 1 When it is detected that cutting fluid is passing through, it is considered that the wire cutting machine is currently in cutting operation status.
  • the filtration accuracy of the filter 2 during the cycle operation reduces the breakage rate.
  • the ultrasonic cleaning component 3 cleans the filter 2 in a manner that the ultrasonic cleaning component 3 cleans the filter 2 in a preset cleaning cycle.
  • the preset cleaning cycle includes a first operation duration and a first interval duration. , wherein the first job duration may be 5 seconds, and the first interval duration may be 10 seconds. During the complete operating cycle of the wire cutting machine, the cleaning operation is continued with the above-mentioned preset cleaning cycle.
  • the preset cleaning cycle can be achieved by setting different first operation durations and first interval durations, which can be set with reference to the above; in another embodiment, the preset cleaning cycle can be set according to different cutting operation durations. Changes with time. For example, if the cutting operation lasts for thirty minutes, within the first ten minutes, the first operation duration and the first interval duration can be set to 5 seconds respectively; within the second ten minutes, the first operation duration can be set to 5 seconds. Set to 8 seconds, the first interval duration can be set to 5 seconds; within the third ten minutes, the first operation duration can be set to 10 seconds, the first interval duration can be set to 3 seconds; the first operation can be performed as needed.
  • the settings of the duration and the first interval duration are within the protection scope of this application.
  • the way in which the ultrasonic cleaning component 3 cleans the filter screen 2 may be that the ultrasonic cleaning component continuously cleans the filter screen.
  • the ultrasonic cleaning component 3 is controlled to clean the filter 2 in a first preset manner to clean the silicon powder attached to the filter 2 and prevent the silicon powder from adhering. Blocking the mesh on the filter screen 2 will help the cutting fluid containing silicon powder to pass through the filter screen 2 smoothly.
  • the filter device using the above cleaning control method can be used for larger mesh sizes while meeting the demand for cutting fluid flow. Filter 2 is helpful to improve the accuracy of cutting impurities in the cutting fluid, reduce jump or disconnection problems during slicing, and improve cutting quality.
  • the ultrasonic cleaning component before the ultrasonic cleaning component cleans the filter, it also includes:
  • the ultrasonic cleaning component is executed to clean the filter screen.
  • the degree of clogging of the filter screen 2 is indirectly inferred.
  • the internal pressure value is greater than the first preset pressure value, it is considered that the mesh holes of the filter screen 2 need to be cleaned, where the first preset value
  • the pressure value can be set to 0.1 ⁇ 0.5Mpa, which can be set according to the working needs of the wire cutting machine; the internal pressure value can be detected by setting the pressure detection component 4 on the filter cartridge 1, and the pressure detection component 4 can be set as a pressure sensor.
  • the specific The installation method can refer to the existing technical settings.
  • the ultrasonic cleaning component before the ultrasonic cleaning component cleans the filter, it also includes:
  • the second preset pressure value can be set between 0.08 and 0.08.
  • 0.1Mpa such as 0.08Mpa or 0.1Mpa; thereby ensuring the filtration accuracy of the filter 2 while saving energy and controlling cutting costs.
  • the ultrasonic cleaning component before the ultrasonic cleaning component cleans the filter, it also includes:
  • the ultrasonic cleaning component is executed to clean the filter.
  • the output flow value of the cutting fluid of the filter cartridge 1 can be detected by arranging a flow detection component on the cutting fluid output pipeline 8 of the filter cartridge 1.
  • the flow detection component can be set as a flow meter; in the cutting fluid
  • the ultrasonic cleaning component 3 is controlled to clean the filter screen 2 .
  • the internal pressure value of the filter cartridge 1 and the cutting fluid output flow value of the filter cartridge 1 can be determined simultaneously, that is, when the wire cutting machine is in the cutting operation state, and the internal pressure value of the filter cartridge 1
  • the ultrasonic cleaning component 3 is controlled to clean the filter screen 2, thereby further clogging the filter screen 2 Accurately judge the situation to prevent false alarms, reduce energy consumption, and extend the service life of the ultrasonic cleaning component 3.
  • the method further includes:
  • the ultrasonic cleaning component is executed to filter the Net cleaning steps.
  • the ultrasonic cleaning assembly 3 cleans the filter screen 2, so that the filter screen 2 can be cleaned after the wire cutting machine is started and operates stably to prevent Excessive operating power when first powered on may cause system overload or other operating accidents; improve system safety.
  • the number of cutting times can also be determined after step S11 as a precondition for the ultrasonic cleaning component 3 to clean the filter screen 2 .
  • the ultrasonic cleaning component before the ultrasonic cleaning component cleans the filter, it also includes:
  • the ultrasonic cleaning component is executed to clean the filter.
  • the settings of the above methods are all to clean the filter 2 after the online cutting machine is in the cutting operation state and running stably. At the same time, it also avoids excessive cleaning of the filter 2 multiple times before cutting, and reduces the energy consumption of the system. , while extending the service life of the ultrasonic cleaning component 3.
  • the first preset method is to control the ultrasonic cleaning component 3 to continuously clean the filter 2, thereby further improving the filtration accuracy of the filter 2 for impurities during the entire operation process and improving the filtration efficiency. Effect; or, in another embodiment, the first preset method is to control the ultrasonic cleaning component 3 to clean the filter screen 2 in a preset cleaning cycle.
  • the preset cleaning cycle can be achieved by setting different first operation durations and first interval durations, which can be set with reference to the above; in another embodiment, the preset cleaning cycle can be set according to different cutting operation durations. Changes with time.
  • the first operation duration and the first interval duration can be set to 5 seconds respectively; within the second ten minutes, the first operation duration can be set to 5 seconds. Set to 8 seconds, the first interval duration can be set to 5 seconds; within the third ten minutes, the first operation duration can be set to 10 seconds, the first interval duration can be set to 3 seconds; the first operation can be performed as needed.
  • the settings of the duration and the first interval duration are within the protection scope of this application.
  • the cleaning method further includes:
  • the ultrasonic cleaning component stops cleaning.
  • the non-cutting operation state refers to other states of the wire cutting machine other than the cutting operation. They are all non-cutting operation states, such as the state after the wire cutting machine is turned on but no cutting operation is performed, and the cutting device of the wire cutting machine is in suspended operation. , the loading and unloading state of materials are included in the non-cutting operation state of this application.
  • the non-cutting operation state is a loading and unloading state.
  • the cutting device of the wire cutting machine is in a suspended operation, and the material feeding device performs loading and unloading operations. It is thus set that during the gap between two cutting operations, the filter screen 2 Carry out cleaning to ensure cutting efficiency and filter cleaning effect. At the same time, the entire process is made more compact.
  • the cutting fluid drain pipeline 6 and the cutting fluid output pipeline 8 are controlled to be disconnected, which means the drain valve and the cutting fluid outlet valve are controlled to be disconnected; so that the cleaning water will not flow into the cutting fluid.
  • the output pipeline 8 thereby reducing the possibility of mixing of cleaning water and spraying out from the spray device, ensuring the cleanliness of the cutting fluid; controlling the continuity of the cleaning fluid inlet pipeline 7 (the cleaning control valve is conducting) until The cleaning fluid fills the filter cylinder 1 of the cutting fluid circulation system, and then closes the cleaning fluid inlet pipe 7 to ensure that the filter cylinder 1 is filled with water during cleaning; control the ultrasonic operation, the working frequency range is 15KHz ⁇ f ⁇ 80KHz, and the preset Clean the filter 2 frequently.
  • the preset amount can be a preset volume, which can be set according to the volume of the filter cartridge 1, so that the ultrasonic cleaning component can achieve a better cleaning effect on the filter screen 2.
  • the cleaning fluid inlet pipeline 7 can be controlled to be conductive until the cleaning fluid fills the filter cartridge 1 of the cutting fluid circulation system.
  • the drain pipe 92 and the cutting fluid output pipe 91 are controlled to be disconnected, that is, the drain valve 400 and the cutting fluid outlet valve 300 are controlled to be disconnected; so that the cleaning water will not flow into the cutting fluid.
  • the ultrasonic vibrator is controlled by the ultrasonic power supply.
  • the ultrasonic operating frequency range is 15KHz ⁇ f ⁇ 80 KHz, and the working time is 10min ⁇ t ⁇ 50min;
  • the method also includes:
  • the cleaning liquid inlet pipeline 7 is controlled to be disconnected and the sewage discharge pipeline is connected, and the cleaning liquid after cleaning the filter 2 is transported to the liquid supply device of the wire cutting machine.
  • the preset duration can be set to 10min ⁇ t ⁇ 50min, and the preset duration is preferably 30 minutes.
  • the ultrasonic vibrator is controlled by the ultrasonic power supply.
  • the ultrasonic operating frequency range is 15KHz ⁇ f ⁇ 80 KHz, and the working time is 10min ⁇ t ⁇ 50min;
  • FIG. 20 is a schematic flow chart of a cleaning method for a filter device for cutting fluid provided by some embodiments of the present application. Cleaning methods include:
  • the non-cutting operation state refers to other states of the wire cutting machine other than the cutting operation. They are all non-cutting operation states, such as the state after the wire cutting machine is turned on but no cutting operation is performed, and the cutting device of the wire cutting machine is in suspended operation. , the loading and unloading state of materials are included in the non-cutting operation state of this application.
  • the non-cutting operation state is a loading and unloading state.
  • the cutting device of the wire cutting machine is in a suspended operation, and the material feeding device performs loading and unloading operations. It is thus set that during the gap between two cutting operations, the filter screen 56 for cleaning to ensure cutting efficiency and filter cleaning effect. At the same time, the entire process is made more compact.
  • S21 also includes: if the wire cutting machine is not in a non-cutting operation state, repeat the judgment of step one. That is, the cleaning operation is only performed when it is determined that the wire cutting machine is in a non-cutting operating state. Otherwise, the operating state of the wire cutting machine is judged again.
  • the cutting fluid circulation system also includes a sewage pipeline and a cutting fluid output pipeline; the sewage pipeline and the cutting fluid output pipeline are respectively connected to the filtering device;
  • step S21 Also included between step S21 and step S22:
  • S22 specifically includes: injecting flushing fluid into the filtering device and controlling the operation of the ultrasonic flushing component to clean the filtering device.
  • the drain pipe 92 and the cutting fluid output pipe 91 are controlled to be disconnected, that is, the drain valve 400 and the cutting fluid outlet valve 300 are controlled to be disconnected; so that the cleaning water will not flow into the cutting fluid.
  • the preset amount can be a preset volume, which can be set according to the volume of the filter cartridge, so that the ultrasonic flushing component can achieve a better flushing effect on the filter.
  • the cleaning fluid inlet pipeline 126 can be controlled to be open until the flushing fluid is filled with the cutting fluid circulation. Ring system filter cartridge.
  • Cleaning methods also include:
  • the preset time period may be set to 10min ⁇ t ⁇ 50min, such as 30min.
  • Cleaning methods also include:
  • the ultrasonic cleaning component stops cleaning, otherwise steps S21 to S24 are repeated.
  • the first preset number of times is 1 ⁇ N ⁇ 10, and preferably the first preset number of times is 5 times or 10 times.
  • the default number is 1-2 times.
  • the filter 56 is flushed after each time the cutting device of the wire cutting machine cuts the material. Since the cutting device currently stops cutting, the spray device 20 does not need to spray the cutting fluid, and there is no need to spray the cutting fluid. Filtering is carried out. In view of this, the filter screen 56 is flushed during this period to ensure the filtering effect of the filter screen 56 and at the same time make the operation process compact. In other embodiments, it can also be set to 2 times or other times, which are all within the protection scope of this application.
  • the ultrasonic vibrator is controlled by the ultrasonic power supply.
  • the ultrasonic operating frequency range is 15KHz ⁇ f ⁇ 80 KHz, and the working time is 10min ⁇ t ⁇ 50min;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

一种用于切割液的过滤装置(50)及其清洗方法、过滤循环系统,过滤装置(50)包括过滤筒、过滤网(56)以及超声波清洗组件(120),过滤网(56)设置于过滤筒内,过滤网(56)具有切割液入口(57)和排污口(52),切割液入口(57)用于待过滤的切割液的流入,排污口(52)用于过滤网(56)内部清洗液体和污物的排出,过滤筒具有切割液出口(51),切割液出口(51)用于过滤后的切割液的排出;超声波清洗组件(120)的至少部分设置于过滤网(56)内,用于对过滤网(56)进行超声波清洗。

Description

用于切割液的过滤装置及其清洗方法、过滤循环系统
相关申请的交叉引用
本申请要求享有于2022年05月20日提交的名称为“一种线切割机的切割液循环系统的自动清洗方法”中国专利申请CN202210552551.3、于2022年05月20日提交的名称为“一种切割液循环系统及一种线切割机”中国专利申请CN202221215631.1、于2022年05月20日提交的名称为“一种用于过滤线切割机切割液的过滤装置”中国专利申请CN202221217808.1、于2023年04月17日提交的名称为“一种用于线切割机切割液的过滤装置及其清洗控制方法”中国专利申请CN202310406925.5、于2023年04月17日提交的名称为“一种用于线切割机切割液的过滤装置”中国专利申请CN202320861223.1的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及线切割技术领域,具体而言,涉及一种用于切割液的过滤装置及其清洗方法、过滤循环系统。
背景技术
线切割设备加工时,切割液的清洁度会影响工件成品的质量。切割液的循环系统中设置用于过滤切割液的过滤装置,能够提高切割液的清洁度。但是过滤装置在使用一段时间后过滤装置的过滤网容易产生堵塞,导致过滤效果变差,切割液流量降低。
目前一般采用手动方式拆卸并清洗或更换过滤装置中的过滤网,清洗效率较低,影响线切割设备的加工效率,且人工清洗的效果不定,可靠性较低。
发明内容
本申请实施例提供了一种用于切割液的过滤装置及其清洗方法、过滤循环系统,以解决切割液的过滤装置需人工清洗或更换过滤网造成的清洗效率较低、可靠性较低、影响线切割设备的加工效率的问题。
本申请实施例提供了一种用于切割液的过滤装置,包括:
过滤筒和过滤网,所述过滤网设置于所述过滤筒内,所述过滤网具有切割液入口和排污口,所述切割液入口用于待过滤的切割液的流入,所述排污口用于所述过滤网内部清洗液体和污物的排出,所述过滤筒具有切割液出口,所述切割液出口用于过滤后的切割液的排出;
超声波清洗组件,至少部分设置于所述过滤网内,用于对所述过滤网进行超声波清洗。
本申请实施例提供了一种用于切割液的过滤循环系统,包括:
喷淋装置,用于对工件切割区喷淋切割液;
供液装置,用于容置切割液,并为所述切割液的循环提供动力;
收集装置,设置于所述供液装置上,用于收集喷淋所述工件后的所述切割液,并输送至所述供液装置;
过滤装置,连接于所述喷淋装置和所述供液装置之间,用于对所述切割液进行过滤,所述过滤装置为如上述的过滤装置;
换热装置,所述换热装置连接于所述过滤装置和所述喷淋装置之间,用于对所述切割液进行冷却。
本申请实施例提供了一种用于切割液的过滤装置的清洗方法,过滤装置包括过滤筒、过滤网以及超声波清洗组件,所述过滤网设置于所述过滤筒内,所述超声波清洗组件的至少部分设置于所述过滤网内,用于对所述过滤网进行超声波清洗;
所述方法包括:
判断线切割机是否处于切割作业状态;
若线切割机处于切割作业状态,则所述超声波清洗组件对所述过滤网进行清洗。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本申请一些实施例提供的用于切割液的过滤循环系统的结构示意图;
图2是本申请一些实施例提供的用于切割液的过滤装置的剖视结构示意图;
图3是本申请一些实施例提供的用于切割液的过滤装置的部分结构的放大示意图;
图4是本申请另一些实施例提供的用于切割液的过滤装置的剖视结构示意图;
图5是本申请另一些实施例提供的用于切割液的过滤装置的剖视结构示意图;
图6是本申请另一些实施例提供的用于切割液的过滤装置的剖视结构示意图;
图7是本申请另一些实施例提供的用于切割液的过滤装置的剖视结构示意图;
图8是本申请另一些实施例提供的用于切割液的过滤装置的剖视结构示意图;
图9是本申请另一些实施例提供的用于切割液的过滤循环系统的结构示意图;
图10是本申请另一些实施例提供的线切割机的结构示意图;
图11是本申请另一些实施例提供的过滤装置的结构示意图;
图12是本申请另一些实施例提供的过滤装置的剖视结构示意图;
图13是本申请另一些实施例提供的过滤装置的部分结构示意图;
图14是本申请另一些实施例提供的过滤装置的结构示意图;
图15是本申请另一些实施例提供的过滤装置的部分结构示意图;
图16是本申请另一些实施例提供的过滤装置的部分结构示意图;
图17是本申请另一些实施例提供的过滤装置的部分结构示意图;
图18是本申请另一些实施例提供的过滤装置的部分结构示意图;
图19是本申请一些实施例提供的用于切割液的过滤装置的清洗方法的流程示意图;
图20是本申请一些实施例提供的用于切割液的过滤装置的清洗方法的流程示意图。
过滤筒1、过滤网2、超声波清洗组件3、压力检测组件4、过滤筒接头5、过滤筒体11、筒盖12、密封圈13、固定环14、固定安装板15、安装环壁16、密封圈17、切割液入口18、翻边21、锥形部22、安装柱23、切割液排污管路6、切割液排污控制阀61、排污口62、清洗液进液管路7、切割液输出管路8、切割液输出控制阀81、切割液出口82、压环9、供液装置10、喷淋装置20、换热装置30、流量计40、过滤装置50、压力检测组件70、收集装置80、超声波冲洗组件120;切割液出口51、排污口52、筒盖54、筒体55、过滤网56、切割液入口57、凸台515;切割液输入管路90、切割液输出管路91、排污管路92;超声波换能器121、超声变幅杆122、密封压盘123、超声振棒124、超声振子125、清洗液进液管路126;凸缘部1241;切割液出水阀300、排污阀400、清洗控制阀900;电控柜1001、液路系统1002、绕线室组件1003、绕线室护罩组件1004、主轴组件1005、床身组件1006、四柱进给摆动机构1007、切割区总成1008、切割区护罩组件1009。
具体实施例方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中出现的“多个”指的是两个以上(包括两个)。
线切割机具有加工材料和形状的适用范围广、精度高、加工成品无毛刺、耗材不易损坏且成本较低等优点,是目前应用较广的切割设备。随着线切割技术的发展,对线切割设备的加工质量和加工效率要求越来越高。
线切割设备进行加工时,特别是对硬脆材料进行截断、开方、切片等加工时,切割液的清洁度对工件成品的质量有很大影响。因此,为了提高切割液的清洁度,切割液的循环系统中会设置用于过滤切割液的过滤装置。过滤装置能够有效过滤切割液中的线头、颗粒等杂质。但是线切割加工中,尤其是切片时,会产生大量细微粉尘,造成过滤装置在使用中过滤网逐渐被堵塞,导致过滤效果变差,切割液流量降低,引起加工过程中跳线、断线等问题,进而影响工件的质量和加工效率。目前采用人工手动清洗或更换过滤网,在拆卸过滤网时过滤循环系统需暂停运行,导致切割液的供应暂停,影响线切割设备的加工效率。且人工清洗的效果不定,可靠性较低。
基于以上考虑,本申请提供了一种用于切割液的过滤装置,能够实现对过滤装置中过滤网的自动清洗,清洗效果较好,可靠性较高,且清洗时无需拆卸过滤网,清洗效率较高,有利于提高线切割设备的加工效率。
请参照图1,图1为本申请一些实施例提供的用于切割液的过滤循环系统的结构示意图。过滤循环系统包括供液装置10、喷淋装置20、收集装置80以及过滤装置50,喷淋装置20用于对工件切割区(图中未示出)喷淋切割液,供液装置10用于容置切割液,并为切割液的循环提供动力,收集装置80设置于供液装置10上,用于收集喷淋工件(图中未示出)后的切割液,并输送至供液装置10,过滤装置50连接于喷淋装置20和供液装置10之间,用于对切割液进行过滤。
在一些实施例中,工件切割区为线切割设备用于承载工件并对工件进行切割的区域,工件切割区可以设置在喷淋装置20和收集装置80之间,使得喷淋装置20喷淋的切割液能够落到工件切割区,工件切割区上可以设置有通孔,使得喷淋过工件的切割液能够经通孔流至收集装置80。
通过设置供液装置10和喷淋装置20能够实现切割液的喷淋,通过设置收集装置80能够实现切割液的回收再利用,有利于环保,通过设置过滤装置50能够对使用过的切割液进行过滤,以提高切割液的清洁度,进而减小回收的切割液内的杂质对工件加工的影响,能够提高工件成品的质量。
请参照图2,图2为本申请一些实施例提供的用于切割液的过滤装置的剖视结构示意图。在一些实施例中,过滤装置50包括过滤筒、过滤网56以及超声波清洗组件120,过滤网56设置于过滤筒内,过滤网56具有切割液入口57和排污口52,切割液入口57用于待过滤的切割液的流入,排污口52用于过滤网56内部清洗液体和污物的排出,过滤筒具有切割液出口51,切割液出口51用于过滤后的切割液的排出,超声波清洗组件120的至少部分设置于过滤网56内,用于对过滤网56进行超声波清洗。
在一些实施例中,切割液入口57用于经切割液输入管路90与外部连通,例如供液装置10,以允许切割液经切割液入口57流入过滤网56内。过滤筒对应切割液入口57设置有避让口(图中未标出),以便于管路与切割液入口57连通。
在一些实施例中,排污口52位于过滤网56的底部,用于经排污管路92与外部连通,例如供液装置10,用于排出过滤网56内的杂质和清洗液等,使得冲洗后的污物不会留存在过滤网56内,尤其是较大的颗粒物,能够减少过滤网56堵塞的可能,使得切割液的流量处于预设范围内,进一步提高过滤网56内部的过滤效果。排污口52处可以设有第一密封环,能够增加排污管路92的密封性,减少清洁液泄漏的可能。
在一些实施例中,切割液出口51位于筒体55的底部,用于经切割液输出管路91与外部连通,例如喷淋装置20,用于允许过滤后的切割液流出,以实现再次利用。切割液出口51出可以设有第二密封环,能够增加切割液输出管路91的密封性,减少切割液泄漏的可能。
在一些实施例中,过滤筒可以为密封设置,能够减少外界杂质进入过滤筒的可能,也能够减少切割液泄漏的可能。
在一些实施例中,过滤筒可以为不锈钢材料制成,不易生锈、不易产生形变,使用寿命较长。
在一些实施例中,过滤网56的目数可以为50-300目,能够在较好地过滤杂质同时,使得切割液快速流过过滤网56。
在一些实施例中,过滤网56可以为筒状,能够使得切割液过滤更加均匀。在其他实施例中,过滤网56也可以方形等其他形状。
通过设置过滤网56,能够将过滤筒的内部空间分为过滤网56内部和过滤网56外部两个空间,过滤网56上的孔洞允许切割液从其中一个空间流动至另一个空间,而切割液中的线头、颗粒等杂质被过滤网56阻挡,以对杂质进行过滤。通过设置超声波清洗组件120,能够实现对过滤网56的自动清洗,清洗效果较好,可靠性较高,且清洗时无需拆卸过滤网56,清洗效率较高,有利于提高线切割设备的加工效率。
在一些实施例中,过滤筒可以包括筒体55和筒盖54,筒盖54盖设于筒体55的顶部,且与筒体55可拆卸连接,能够便于筒盖54的拆卸和安装,进而便于过滤网56的拆卸和安装。
在一些实施例中,筒体55和筒盖54可以通过螺纹紧固件固定,也可以通过卡扣、过盈连接等方式固定。
在一些实施例中,过滤网56与筒盖54之间可以设置压紧件(图中未示出),压紧件为弹性形变材料制成,筒盖54安装于筒体55后,压紧件被筒盖54压紧,以在过滤筒的轴向上固定过滤网56。
请参照图3,图3为本申请一些实施例提供的用于切割液的过滤装置的部分结构的放大示意图。在一些实施例中,筒体55的内壁上设置一组相对的凸台515,过滤网56的部分搭接在凸台515上,以实现对过滤网56的定位。
在一些实施例中,过滤网56与筒体55相近处可以设置密封垫,例如在过滤网56和凸台515之间设置密封垫,能够提高密封效果,减少过滤前后的切割液混流的可能。
在一些实施例中,过滤网56至少部分沿径向上的尺寸可以略大于筒体55的内径,使得过滤网56安装于筒体55内时,与筒体55的内壁抵接,以在径向上固定过滤网56,减少过滤网56在筒体55内晃动的可能。
在一些实施例中,过滤网56可以包括两个部分,两个部分螺纹连接,便于将超声波清洗组件120安装于过滤网56内。
在一些实施例中,过滤网56内还可以设置过滤袋(图中未示出),使得切割液能够经过滤网56和过滤袋两层过滤,过滤效果更好。
在一些实施例中,超声波清洗组件120用于连接外部清洗单元(图中未示出),外部清洗单元可以为水源或其他清洗液动力设备,外部清洗单元为清洗液提供压力使其进入至过滤筒中,并通过超声波对其进行扰动。
请参照图2,在一些实施例中,超声波清洗组件120可以包括超声波换能器121和超声变幅杆122,超声波换能器121的一端与筒盖54可拆卸连接,另一端与超声变幅杆122连接,超声变幅杆122远离超声波换能器121的一端贯穿筒盖54、且沿过滤网56的轴向延伸至过滤网56的内部。
通过设置超声波换能器121和超声变幅杆122,能够实现对过滤网56的超声波清洗,清洗效率较高,清洗效果较好。
在一些实施例中,超声波清洗组件120可以设置在过滤网56的中心处,能够提高冲洗扰流效果,清洗效果更好。
在一些实施例中,超声波换能器121与筒盖54之间可以设置密封垫(图中未示出),例如在筒盖54的上表面设置密封槽,密封垫位于密封槽内,超声波换能器121的部分位于密封垫上,使得超声波换能器121安装于筒盖54时能够夹紧密封垫,以实现密封。
在一些实施例中,过滤筒还可以包括密封压盘123,密封压盘123的中间设有避让孔,超声波换能器121的部分贯穿避让孔,部分与密封压盘123抵接,以使得密封压盘123固定于筒盖54上时,能够将超声波换能器121压持于筒盖54上。密封压盘123与筒盖54之间可以通过螺纹紧固件(例如螺钉)固定连接。
请参照图4,图4为本申请另一些实施例提供的用于切割液的过滤装置的剖视结构示 意图。在一些实施例中,超声波清洗组件120包括超声振棒124和超声振子125,超声振棒124的一端与筒盖54可拆卸连接,另一端延伸至过滤网56的内部,超声振子125设置于超声振棒124的内部,且延伸至过滤网56的内部。
通过设置超声振棒124和超声振子125,能够对过滤网56内的清洗液进行超声振动扰流,从而实现对过滤网56的超声波清洗,清洗效率较高,清洗效果较好。
在一些实施例中,筒盖54上设置有安装孔(图中未示出),超声振棒124贯穿筒盖54的安装孔,且延伸至过滤网56的内部,超声振子125位于超声振棒124的内部,且也延伸至过滤网56的内部,能够进一步加强对过滤网56内清洗液的扰流效果,从而进一步提高清洗效果。
在一些实施例中,超声振棒124和筒盖54之间可以设置密封垫(图中未示出),筒盖54上设置密封槽,密封垫位于密封槽内,超声振棒124的部分位于密封垫上,使得超声振棒124安装于筒盖54时能够夹紧密封垫,以实现密封。
在一些实施例中,超声振棒124的周向外壁设置有凸缘部1241,凸缘部1241的下表面与筒盖54的上表面贴合,且凸缘部1241经螺纹紧固件与筒盖54固定。凸缘部1241的口径大于安装孔的孔径,使得凸缘部1241能够搭接在筒盖54的上表面。通过设置凸缘部1241能够实现超声振棒124与筒盖54的固定。
在另一些实施例中,过滤筒还可以包括密封压盘123,密封压盘123的安装方式参见上述实施例中的密封压盘123,在此不再赘述。
在另一些实施例中,超声波清洗组件120还可以设置在过滤网56的外侧,能够由外向内清洗过滤网56。
在一些实施例中,超声波清洗组件120的数量可以为一个或多个。
请参照图3,在一些实施例中,过滤装置50还包括清洗液进液管路126,清洗液进液管路126的一端与排污口52连通,排污口52复用为清洗液进液管路126的进液口,用于允许清洗液的流入,使得经清洗液进液管路126进入过滤筒的清洗液能够由外至内冲洗过滤网56,使得冲洗后的污物共同汇集在过滤网56的内部,能够随着过滤网56底部的排污口52排出。通过将排污口52复用为清洗液进液管路126的进液口,无需再在过滤网56上设置开口,使得过滤装置50的结构更加简单。
具体的,过滤装置50的清洗过程如下:
清洗液经清洗液进液管路126、排污口52进液,在进液过程中即可实现对位于过滤网56底部的污垢的破碎以及搅拌;进液完成后,通过超声波冲洗组件120进行超声清洗,清洗后留存的污物能够经排污口52排出,过滤后的切割液能够经切割液出口51流入并进入过滤循环系统。
请参照图5和图6,图5为本申请另一些实施例提供的用于切割液的过滤装置的剖视结构示意图,图6为本申请另一些实施例提供的用于切割液的过滤装置的剖视结构示意图。在一些实施例中,过滤装置50还包括清洗液进液管路126,清洗液进液管路126的一端与切割液出口51连通,切割液出口51复用为清洗液进液管路126的进液口,用于允许清洗液的流入,使得经清洗液进液管路126进入过滤筒的清洗液能够由外至内冲洗过滤网56,使得冲洗后的污物共同汇集在过滤网56的内部,能够随着过滤网56底部的排污口52排出。通过将切割液出口51复用为清洗液进液管路126的进液口,无需再在过滤网56上设置开口,使得过滤装置50的结构更加简单。
请参照图7和图8,图7为本申请另一些实施例提供的用于切割液的过滤装置的剖视结构示意图,图8为本申请另一些实施例提供的用于切割液的过滤装置的剖视结构示意图。在一些实施例中,过滤装置50还包括清洗液进液管路126,清洗液进液管路126连接于过滤筒的周向侧壁上,清洗液进液管路126的进液口位于过滤网56的外侧。
在一些实施例中,清洗液进液管路126设置在筒体55的中上部,通过清洗液进液管路126进入筒体55的清洗液能够由外向内对过滤网56进行清洗,并且清洗液还能够在重力作用下进一步对下方的过滤网56进行清洗,使得清洗效果更好。
在一些实施例中,过滤装置50还包括压力检测组件70,压力检测组件70可拆卸安装于筒体55上,用于对过滤筒内的切割液的压力进行检测,使得过滤装置50有足够的动力将切割液输送至喷淋装置20处。
请参照图1和图9,图9为本申请另一些实施例提供的用于切割液的过滤循环系统的结构示意图。在一些实施例中,过滤装置50还可以包括切割液出水阀300、排污阀400和清洗控制阀900,切割液出水阀300位于切割液输出管路91靠近切割液出口51的一端;排污阀400位于排 污管路92上、清洗液进液管路126的下方,以在排污阀400关闭排污管路92时,不会影响清洗液进液管路126的通断,同时,在排污阀400开启后,能够将前端管路中的污物完全排出;清洗控制阀900位于清洗液进液管路126上。
在一些实施例中,切割液出水阀300可以为夹管阀,排污阀400可以为夹管阀。
在一些实施例中,喷淋装置20包括若干个喷淋管,用于对工件切割区进行切割液喷淋。
在一些实施例中,收集装置80可以为收集槽或收集漏斗,设置在工件切割区下方,收集槽或收集漏斗设有与供液装置10连通的收集通道,实现切割液的输送。
在一些实施例中,供液装置10包括用于盛放切割液的供液缸,供液缸具有切割液回流口,回流口与收集装置80连接,将收集装置80回来的切割液回流至供液缸中,回流口处设有橡胶条密封,同时收集装置80还可以设有回液过滤组件,内部设有过滤网,对回流后的切割液进行过滤。供液装置10为切割液提供动力,实现经供液装置10、过滤装置50、喷淋装置20的流通。供液装置10可设置为砂浆泵。
在一些实施例中,过滤循环系统还可以包括换热装置30,换热装置30连接于过滤装置50和喷淋装置20之间,用于对切割液进行冷却。
在一些实施例中,过滤循环系统还可以包括流量计40,流量计40的输入端与换热装置30连接,输出端与喷淋装置20连接,用于对切割液的流量进行监测。
在一些实施例中,切割液输入管路90一端与供液装置10连通,另一端与过滤装置50的切割液入口57连通;切割液输出管路91一端与换热装置30连通,另一端与过滤装置50的切割液出口51连通;排污管路92一端与过滤装置50的排污口52连通,另一端与供液装置10连通。
具体的,过滤循环系统循环步骤如下:
在切割作业,比如切片加工前,切割液存储于供液装置10中;
切片作业中,切割液经切割液入口57由供液装置10进入过滤筒内,此时过滤筒的状态为反冲气管路断开,切割液出口51打开,排污管路92断开,清洗液进液管路126断开;经过滤网56过滤后由切割液出口51流出,进入换热装置30,换热装置30采用工厂冷却水对切割液进行冷却,冷却后的切割液经过流量计40通过喷淋装置20的喷淋管均匀喷淋在工件切割区域,并经切割室底部回流至供液装置10中,形成加工过程中的切割液循环;
切割一刀后回流切割液时,切割液出口51(切割液出口夹管阀511)关闭,排污口52(排污口夹管阀510关闭)打开,换热装置30内的切割液回到过滤筒,再和过滤筒内留存的切割液一起,从过滤筒的排污口52或者切割液出口51通过回流管回到供液缸,即排污管路92和切割液输出管路91都可以和回流管连通,由供液装置10的排水口排放至地沟中。切片作业完成后,切割液输出管路91断开,排污管路92导通,将过滤筒中留存的切割液回流至供液装置10中,由供液缸的排水口排放至地沟中。
在切片完成后,打开清洗液进液管路126,保证清洗时过滤筒内充满清洗液,打开超声波清洗组件120,超声波清洗组件120将电能转换成超声能量,并按其自身规律传递给水垢、水、管道内壁,使之获取很大的能量。超声波在传递过程中产生的震荡波使水垢、水、过滤网56产生共振,由于水垢、水、过滤网56的震荡频率不同,过滤筒中的水分子发生激烈碰撞,生强大的冲击力,冲击过滤网56上的垢层,使之松脆、剥离、脱落、粉碎,并随排污一起排出,从而实现了超声波清洗组件120对过滤网56的彻底清洗,清洗完成后排污管路92打开,清洗后污水回流至供液装置10中经地沟排出。
请参照图10,图10为本申请另一些实施例提供的线切割机的结构示意图。在一些实施例中,线切割机包括切割液循环系统、电控柜1001、液路系统1002、绕线室组件1003、绕线室护罩组件1004、切割装置和切割区总成1008。其中,切割区总成1008包括床身组件1006、主轴组件1005、四柱进给摆动机构1007、切割区护罩组件1009。
电控柜1001用于布置电气总成的柜体。液路系统1002给切割区总成1008提供切割液的切割供液组件、用于给切割液降温的切割液换热组件以及用于给切片机设备降温的冷却液换热组件。绕线室组件1003用于收线、放线、排线以及钢线的张力控制区域。
其中,切割装置用于对工件进行切割,切割装置可设置为环线切割装置或多线切割装置,可根据需要设置切割装置的具体结构,均在本申请的保护范围内。控制装置可为PLC控制器、显示屏等控制设备,控制装置优选设置在线切割机上,优选地,控制装置与作业总控室的总控 设备无线通信连接,以在作业总控室实现对各线切割机的实时监控以及数据上传等作业。
以硅棒切片为例,切割区总成1008为晶棒切割加工的区域总成,床身组件1006用于作为切割组件和绕线室组件1003的承载部件;主轴组件1005带有内循环液体冷却功能的高速旋转主轴组件1005,左右各布置一套,在其上缠绕金刚线线形成切割区域,主轴后端均连接有驱动电机。四柱进给摆动机构1007带有摆动功能的垂直方向进给机构,采用四导轨导向。
一般的,切割机具有主机架,主机架的长度方向的一端设有切割区机架,在竖直方向上,主机架自上至下依次设置电控柜1001、绕线室组件1003和绕线室护罩组件1004。在主机架远离床身组件1006的一端设置部分液路系统1002。在竖直方向上,切割区机架自上至下依次分别设置切割区护罩组件1009、切割区总成1008、四柱进给摆动机构1007、主轴组件1005、供液组件和床身组件1006。上述排布方式优化线切割机安装空间,使各结构紧凑,空间利用合理。
请参照图11和图12,图11为本申请另一些实施例提供的过滤装置的结构示意图,图12为本申请另一些实施例提供的过滤装置的剖视结构示意图。在一些实施例中,过滤装置包括过滤筒1、过滤网2、超声波清洗组件3以及控制组件,过滤网2位于过滤筒1内,超声波清洗组件3延伸至过滤网2的内部,用于对过滤网2进行超声波清洗,控制组件与超声波清洗组件3连接,用于当线切割机处于切割作业状态时,控制超声波清洗组件3对过滤网2进行清洗。
通过设置超声波清洗组件3,能够实现对过滤网2的自动清洗,清洗效果较好,可靠性较高,且清洗时无需拆卸过滤网2,清洗效率较高,有利于提高线切割设备的加工效率。
在一些实施例中,控制组件可设置为PLC控制器,其通过控制超声波清洗组件3的继电器吸合,控制超声波清洗组件3进行作业。随着振棒清洗进行,过滤筒1的压力会下降,当降至一定压力值后,PLC系统控制继电器断开,振棒停止工作。
在一些实施例中,过滤筒1可以为密闭腔体,能够减少切割液泄漏的可能。
请参照图13和图14,图13为本申请另一些实施例提供的过滤装置的部分结构示意图,图14为本申请另一些实施例提供的过滤装置的结构示意图。在一些实施例中,过滤筒1包括过滤筒体11和筒盖12,筒盖12位于过滤筒体11的顶部,二者可拆卸的固定连接,如通过螺纹紧固件等实现固定。
在一些实施例中,过滤筒体11和筒盖12之间设有密封圈13,过滤筒体11内壁沿环向设有固定环14。固定环14和过滤筒体11一体式设置,以便于生产加工。
请参照图15,图15为本申请另一些实施例提供的过滤装置的部分结构示意图。在一些实施例中,过滤网2的外壁设有翻边21,过滤网2经翻边21与固定环14搭接。在过滤筒体11的上方设置有压环9,以将过滤网2自上至下压紧在固定环14上,实现固定。
在一些实施例中,过滤筒1的轴线与水平方向设有预设倾角,便于排污和切割液输出。过滤筒1经固定安装板15与线切割机架体连接,过滤筒1倾斜设置,其连接有切割液排污管路6、清洗液进液管路7、切割液输出管路8和切割液输入管路。切割输入管路一般设置在过滤筒体11的上方,切割液排污管路6位于过滤筒体11的底壁上,清洗液进液管路7优选设置在切割液排污管路6的前端;切割液输出管路8位于过滤筒体11的侧壁下方,以对切割液进行充分过滤。
请参照图16,图16为本申请另一些实施例提供的过滤装置的部分结构示意图。在一些实施例中,过滤网2可以为不锈钢滤网,目数可以为100-600目。
在一些实施例中,过滤网2的底部整体为锥状结构,便于滤网内部空间的污水排出,避免污水排不净的情况。在该实施例中,为了提高过滤效果,过滤网2的底部设有锥形部22,以便于杂质能够集中在过滤网2的底部,便于杂质等排出过滤网2。锥形部22的顶端设有安装柱23,安装柱23具有与过滤网2的内腔连通的通孔;安装柱23为圆柱形结构,其优选与锥形部22一体式设置,便于生产加工。
在一些实施例中,过滤筒1的底壁设有排污口62,排污口62的环向设有向内延伸的安装环壁16,安装环壁16的外侧设有密封圈安装槽,密封圈安装槽沿安装环壁16的轴向设置有多个,密封圈安装槽中设有密封圈17,安装柱23插装于安装环壁16内,且安装环壁16和安装柱23间经密封圈17密封固定。实现过滤网2和过滤筒1的底部密封,同时使切割液仅能够通过安装柱23所形成的出口排出至排污管路中,进一步提高杂质的排污效果。
在一些实施例中,切割液排污管路6与排污口62连通,切割液排污管路6具有用于控制切割液排污管路6的开闭的切割液排污控制阀61,清洗液进液管路7的清洗液入口经切割液排污管路6与过滤筒1连通;清洗液进液管路7位于排污口62和切割液排污控制阀61之间,由此从下 至上填充清洗液,将过滤网2底部的杂质进行扰流,便于超声波清洗组件3进行清洗,以提高过滤网2清洗效果。
在一些实施例中,过滤装置还包括切割液输出管路8和流量检测组件,切割液输出管路8与切割液出口连通,切割液输出管路8用于排出过滤后的切割液,流量检测组件设置于切割液输出管路上,用于检测过滤筒1的切割液输出流量值。
在一些实施例中,切割液输出管路8具有切割液出口82和切割液输出控制阀81,切割液出口82位于过滤筒1的侧壁下方。切割液输出控制阀81用于控制管路开闭。
请参照图17和图18,图17为本申请另一些实施例提供的过滤装置的部分结构示意图,图18为本申请另一些实施例提供的过滤装置的部分结构示意图。在一些实施例中,过滤装置还包括切割液输入管路(图中未示出)和压力检测组件4,切割液输入管路与切割液入口18连通,切割液输入管路用于连通过滤网2内部与外界,压力检测组件4设置于切割液输入管路上,用于检测过滤筒的内部压力值。
在一些实施例中,切割液输入管路包括过滤筒接头5,过滤筒接头5位于过滤筒1侧壁上方。压力检测组件4位于过滤筒接头5上。
过滤筒1的切割液入口18与供液缸出水口连接,切割液出口82与切割液系统中换热器的入口连接,在进行供液循环时,切割液由供液缸经过供液泵由切割液入口18进入滤网内部空间,切割液在经过不锈钢滤网过滤后,进入筒内滤网外部空间,并经过切割液出口82流入换热器,而切割液中的线头、硅渣等杂质被滤网拦截在滤网内部空间,同时,在切割液输出管路8上设置有切割液输出控制阀81,可以控制该路的通断。过滤筒1的排污口62与供液缸或者地沟连接,被拦截在滤网内部空间的杂质在切割作业完成后,可经排污口62排放至供液缸或者地沟中,在排污管路上设置有切割液排污控制阀61,可控制该路的通断。同时,在排污管路上切割液排污控制阀61与过滤筒1之间通过三通连接有清洗液进液管路7,该清洗液进液管路7连接工厂用水,可通过清洗液控制阀控制往过滤筒1中注入超声清洁用水。
各工况下阀的状态:
切割过程中:切割液排污控制阀61、清洗液控制阀关闭,切割液输出控制阀81打开,即排污管路及清洗液进液管路7关闭,切割液输出管路8接通,保证供液系统实现“供液缸-过滤筒1-换热器-切割区-供液缸”的切割液循环;
排污过程:切割液排污控制阀61打开、清洗液控制阀关闭、切割液输出控制阀81关闭,排污管路打开,切割液循环及清洗管路关闭,将滤网内部空间里的杂质及污水经排污口62排至供液缸或者地沟中。
超声清洗过滤筒1注水过程:切割液排污控制阀61关闭、切割液输出控制阀81关闭、清洗液控制阀打开,即清洗液进液管路7打开,切割液循环及排污管路关闭,保证超声清洗时,过滤筒1处于满水状态,保证清洗效果。
具体的,超声波清洗组件3包括超声振棒和超声振子,超声振子位于超声振棒的内部,且沿超声振棒的轴向延伸;超声振棒的一端与筒盖12固定连接,另一端延伸至过滤网2的内部。
具体的,超声振棒的一端可拆卸的固定连接于筒盖12上,筒盖12上设置安装孔,超声振棒贯穿筒盖12的安装孔,且另一端延伸至过滤网2的内部。超声振子套装于超声振棒的内部,且延伸至过滤网2的内部;由此设置,以优化对过滤网2内的清洗液的扰流效果,提高清洗效果。可以理解的是,超声振棒和筒盖12之间也设有密封垫;筒盖12上设置有密封槽,密封垫位于密封槽内,通过超声振棒与筒盖12之间的固定,将密封垫压紧在二者之间。
请参照图19,图19为本申请一些实施例提供的用于切割液的过滤装置的清洗方法的流程示意图。过滤装置包括过滤筒1、过滤网2以及超声波清洗组件3,过滤网2设置于过滤筒1内,超声波清洗组件3的至少部分设置于过滤网2内,用于对过滤网2进行超声波清洗;
清洗方法包括:
S11、判断线切割机是否处于切割作业状态。
S12、若线切割机处于切割作业状态,则超声波清洗组件3对过滤网2进行清洗。
在一些实施例中,切割作业状态的判断可通过开机信号、或者线切割机的电机转数或其他信号进行判断,同时,一般认为切割作业状态时,切割液已开始循环,即可以将过滤筒1是否有切割液输入作为判断线切割机是否处于切割作业状态的信号,即,当过滤筒1的切割液输入管路 检测到有切割液通过时,认为线切割机当前处于切割作业状态。在对过滤网2清洗后,还可以控制将清洗后的切割液排出过滤筒1,继续进行切割液系统循环,即实现在切割液循环过程中不停机对过滤网2进行清洗,提高整个切割液循环作业过程中过滤网2的过滤精度,降低断线率。
在一些实施例中,超声波清洗组件3对过滤网2进行清洗的方式可以为超声波清洗组件3以预设清洗周期对过滤网2进行清洗,预设清洗周期包括第一作业时长和第一间隔时长,其中,第一作业时长可以为5秒,第一间隔时长可以为10秒。在线切割机的完整作业周期中,持续以上述预设清洗周期进行清洗作业。
其中,预设清洗周期可通过设置不同的第一作业时长和第一间隔时长实现,具体可参照上文所述进行设置;在另一实施例中,根据切割作业时长的不同,预设清洗周期随时间改变,如切割作业时长为三十分钟,在第一个十分钟内,第一作业时长和第一间隔时长可分别设为5秒;在第二个十分钟内,第一作业时长可设置为8秒,第一间隔时长可设置为5秒;在第三个十分钟内,第一作业时长可设置为10秒,第一间隔时长可设置为3秒;可根据需要进行第一作业时长和第一间隔时长的设置,均在本申请的保护范围内。
在另一些实施例中,超声波清洗组件3对过滤网2进行清洗的方式可以为超声波清洗组件持续对所述过滤网进行清洗。
本申请中,当线切割机处于切割作业状态时,控制超声波清洗组件3以第一预设方式对过滤网2进行清洗,以将附着在过滤网2上的硅粉进行清扫,防止硅粉附着在过滤网2上堵塞网孔,有利于带有硅粉的切割液能够顺利通过过滤网2,采用上述清洗控制方法的过滤装置能够在满足切割液流量的使用需求前提下适用更大目数的过滤网2,有利于提高切割液过滤杂质的精度,减少切片过程中跳线或断线问题,并有利于提高切割质量。
在一些实施例中,超声波清洗组件对过滤网进行清洗之前还包括:
S13、判断过滤筒的内部压力值是否大于第一预设压力值;
若过滤筒的内部压力值大于第一预设压力值,则执行超声波清洗组件对过滤网进行清洗的步骤。
通过检测过滤筒1的内部压力值,间接推断过滤网2的网孔堵塞程度,当内部压力值大于第一预设压力值时,认为过滤网2的网孔需要清理,其中,第一预设压力值可设置为0.1~0.5Mpa,可根据线切割机工作需要进行设置;内部压力值可通过在过滤筒1上设置压力检测组件4进行检测,压力检测组件4可设置为压力传感器,其具体的安装方式可参考现有技术设置。
在一些实施例中,超声波清洗组件对过滤网进行清洗之前还包括:
S14、判断过滤筒的内部压力值是否小于第二预设压力值,第二预设压力值小于或等于第一预设压力值;
S15、若过滤筒的内部压力值小于第二预设压力值,则超声波清洗组件停止对过滤网进行清洗。
当过滤筒1的内部压力值小于第二预设压力值时,认为当前过滤网2的网孔堵塞情况良好,可暂时停止对过滤网2进行清洗;第二预设压力值可设置在0.08~0.1Mpa,如0.08Mpa或0.1Mpa;由此以在保证过滤网2的过滤精度的同时,节约能源,控制切割成本。
在一些实施例中,超声波清洗组件对过滤网进行清洗之前还包括:
S16、判断过滤筒的切割液输出流量值是否小于预设流量值;
若过滤筒的切割液输出流量值小于预设流量值,则执行超声波清洗组件对过滤网进行清洗的步骤。
在一些实施例中,可通过在过滤筒1的切割液输出管路8上设置流量检测组件,对过滤筒1的切割液输出流量值进行检测,流量检测组件可设置为流量计;在切割液输出流量值小于第一预设流量值时,控制超声波清洗组件3对过滤网2进行清洗。在一种实施例中,可同步进行过滤筒1的内部压力值和过滤筒1的切割液输出流量值的判断,即,当线切割机处于切割作业状态时,且过滤筒1的内部压力值大于第一预设压力值、以及过滤筒1的切割液输出流量值小于第一预设流量值时,控制超声波清洗组件3对过滤网2进行清洗,由此以更进一步对过滤网2的堵塞情况进行精准判断,防止发生误报,减少耗能,同时延长超声波清洗组件3的使用寿命。
在一些实施例中,判断为线切割机处于切割作业状态之后,还包括:
S17、判断线切割机的切割作业时长是否大于或等于第一预设时长;
若线切割机的切割作业时长大于或等于第一预设时长,则执行超声波清洗组件对过滤 网进行清洗的步骤。
即,当线切割机处于切割作业状态至少第一预设时长后,进行超声波清洗组件3对过滤网2的清洗,由此以能够在线切割机开机并稳定运行后进行过滤网2的清洗,防止刚开机时运行功率过大造成系统过载,或发生其他作业事故;提高系统安全性。
同时,在另一实施例中,也可以在步骤S11之后进行切割次数的判断,以作为超声波清洗组件3对过滤网2进行清洗的前置条件。
在一些实施例中,超声波清洗组件对过滤网进行清洗之前还包括:
S18、判断线切割机的切割次数是否大于或等于预设切割次数;
若线切割机的切割次数大于或等于预设切割次数,则执行超声波清洗组件对过滤网进行清洗的步骤。
上述方法的设置,均是为了在线切割机处于切割作业状态并稳定运行后,进行过滤网2的清洗,同时也避免在未切割时就多次对过滤网2进行过多清洗,降低系统耗能,同时延长超声波清洗组件3的使用寿命。
在上述各实施例的基础上,第一预设方式为控制超声波清洗组件3持续对过滤网2进行清洗,由此以能够进一步提高过滤网2在整个作业过程中对杂质的过滤精度,提高过滤效果;或者,在另一实施例中,第一预设方式具体为控制超声波清洗组件3以预设清洗周期对过滤网2进行清洗。其中,预设清洗周期可通过设置不同的第一作业时长和第一间隔时长实现,具体可参照上文所述进行设置;在另一实施例中,根据切割作业时长的不同,预设清洗周期随时间改变,如切割作业时长为三十分钟,在第一个十分钟内,第一作业时长和第一间隔时长可分别设为5秒;在第二个十分钟内,第一作业时长可设置为8秒,第一间隔时长可设置为5秒;在第三个十分钟内,第一作业时长可设置为10秒,第一间隔时长可设置为3秒;可根据需要进行第一作业时长和第一间隔时长的设置,均在本申请的保护范围内。
在一些实施例中,清洗方法还包括:
S110、判断线切割机是否处于非切割作业状态;
S120、若线切割机处于非切割作业状态,则向过滤筒注入清洗液,超声波清洗组件对过滤网进行清洗;
S130、判断所述超声波清洗组件的作业时长是否大于或等于第二预设时长;
S140、若超声波清洗组件的作业时长大于或等于第二预设时长,则超声波清洗组件停止清洗。
其中,非切割作业状态为线切割机在切割作业外的其他状态,均为非切割作业状态,如包括在线切割机开机后但未进行切割作业的状态,以及线切割机的切割装置处于暂停作业、物料进行上下料的上下料状态,均包括在本申请非切割作业状态中。优选地,非切割作业状态为上下料状态,此时线切割机的切割装置处于暂停作业、而物料进给装置进行上下料作业,由此设置,在两次切割作业间隙过程中,对过滤网2进行清洗,保证切割作业效率和滤网清洗效果。同时,使得整个工序更为紧凑。
当线切割机处于非切割作业状态时,控制切割液排污管路6和切割液输出管路8断开,即为控制排污阀和切割液出水阀断开;使得清洗水不会流入至切割液输出管路8中,进而减少清洗水的混入以及从喷淋装置喷淋出去的可能性,保证切割液的洁净度;控制清洗液进液管路7导通(清洗控制阀导通),直至清洗液充满切割液循环系统的过滤筒1,再将清洗液进液管路7关闭,保证清洗时过滤筒1内充满水;控制超声波作业,工作频率范围为15KHz≤f≤80KHz,以预设频率对对过滤网2进行清洗。
预设量可以为预设体积,可根据过滤筒1的体积进行设置,以使超声波清洗组件对过滤网2达到较好的清洗效果为优。优选地,可控制清洗液进液管路7导通,直至清洗液充满切割液循环系统的过滤筒1。
当线切割机处于非切割作业状态时,控制排污管路92和切割液输出管路91断开,即为控制排污阀400和切割液出水阀300断开;使得清洗水不会流入至切割液输出管路91中,进而减少清洗水的混入以及从喷淋装置20喷淋出去的可能性,保证切割液的洁净度;控制清洗液进液管路126导通(清洗控制阀900导通),直至冲洗液充满切割液循环系统的过滤筒,再将清洗液进液管路126关闭,保证冲洗时过滤筒内充满水;控制超声波作业,工作频率范围为15KHz≤f≤80KHz,以预设频率对对过滤网56进行冲洗。
具体清洗步骤为:
①:切割液出水阀300关闭,排污阀400关闭;
②:液路电磁阀打开,让水充满过滤筒;
③:液路电磁阀关闭;
④:通过超声波电源控制超声振动棒工作,超声波工作频率范围为15KHz≤f≤80KHz,工作时长10min≤t≤50min;
⑤:排污阀400打开,将过滤筒清洗后的水排放到供液缸中;
⑥:排污阀400关闭,清洗完成。
具体的,该方法还包括:
判断超声波清洗组件的作业时长是否大于或等于第二预设时长,若是,则执行下一步骤;
控制清洗液进液管路7断开、排污管路导通,将清洗完过滤网2的清洗液输送至线切割机的供液装置中。
预设时长可设置为10min≤t≤50min,预设时长优选为30分钟。
具体清洗步骤为:
①:切割液出水阀关闭,排污阀关闭;
②:液路电磁阀打开,让水充满过滤筒1;
③:液路电磁阀关闭;
④:通过超声波电源控制超声振动棒工作,超声波工作频率范围为15KHz≤f≤80KHz,工作时长10min≤t≤50min;
⑤:排污阀打开,将过滤筒1清洗后的水排放到供液缸中;
⑥:排污阀关闭,清洗完成。
请参照图20,图20为本申请一些实施例提供的用于切割液的过滤装置的清洗方法的流程示意图。清洗方法包括:
S21、判断线切割机是否处于非切割作业状态;
S22、若线切割机处于非切割作业状态,则控制超声波冲洗组件启动且对过滤装置进行清洗。
其中,非切割作业状态为线切割机在切割作业外的其他状态,均为非切割作业状态,如包括在线切割机开机后但未进行切割作业的状态,以及线切割机的切割装置处于暂停作业、物料进行上下料的上下料状态,均包括在本申请非切割作业状态中。优选地,非切割作业状态为上下料状态,此时线切割机的切割装置处于暂停作业、而物料进给装置进行上下料作业,由此设置,在两次切割作业间隙过程中,对过滤网56进行清洗,保证切割作业效率和滤网清洗效果。同时,使得整个工序更为紧凑。
S21还包括:若线切割机未处于非切割作业状态,则重复进行步骤一的判断。即只有判断线切割机处于非切割作业状态时,才进行清洗操作,否则,对线切割机的作业状态进行再一次的判断。
在该实施例中,切割液循环系统还包括排污管路和切割液输出管路;排污管路和切割液输出管路分别与过滤装置连通;
步骤S21和步骤S22之间还包括:
控制排污管路和切割液输出管路91断开。
S22具体包括:向过滤装置注入冲洗液,控制超声波冲洗组件作业,以对过滤装置进行清洗。
当线切割机处于非切割作业状态时,控制排污管路92和切割液输出管路91断开,即为控制排污阀400和切割液出水阀300断开;使得清洗水不会流入至切割液输出管路91中,进而减少清洗水的混入以及从喷淋装置20喷淋出去的可能性,保证切割液的洁净度;控制清洗液进液管路126导通(清洗控制阀900导通),直至冲洗液充满切割液循环系统的过滤筒,再将清洗液进液管路126关闭,保证冲洗时过滤筒内充满水;控制超声波作业,工作频率范围为15KHz≤f≤80KHz,以预设频率对对过滤网56进行冲洗。
预设量可以为预设体积,可根据过滤筒的体积进行设置,以使超声波冲洗组件对过滤网达到较好的冲洗效果为优。优选地,可控制清洗液进液管路126导通,直至冲洗液充满切割液循 环系统的过滤筒。
清洗方法还包括:
S23、判断超声波清洗组件的作业时长是否大于或等于第二预设时长;
S24、若超声波清洗组件的作业时长大于或等于第二预设时长,则控制清洗液进液管路126断开、排污管路导通,将冲洗完过滤网56的清洗液输送至切割液循环系统的供液装置10中。
在一些实施例中,预设时长可设置为10min≤t≤50min,例如30min。
清洗方法还包括:
S25、判断超声波清洗组件的清洗次数是否大于或等于第一预设次数;
若超声波清洗组件的清洗次数大于或等于第一预设次数,则超声波清洗组件停止清洗,否则重复步骤S21至S24。
第一预设次数为1≤N≤10,优选第一预设次数为5次或10次。
更进一步地,在S21和S22之间还包括:
判断线切割机的切割装置是否已经连续切割预设次数;
若是,则控制线切割机由切割作业状态转换为非切割作业状态,并执行步骤二。预设次数为1-2次。具体的,优选为1次,在线切割机的切割装置每次切割物料后,对过滤网56进行冲洗,由于切割装置当前停止切割,喷淋装置20无需进行切割液喷淋,进而无需对切割液进行过滤,鉴于此,在该期间进行过滤网56的冲洗工作,保证过滤网56的过滤效果,同时使得作业工序紧凑。在其他实施例中,也可以设置为2次或其他次数,均在本申请的保护范围内。
具体清洗步骤为:
①:切割液出水阀300关闭,排污阀400关闭;
②:液路电磁阀打开,让水充满过滤筒;
③:液路电磁阀关闭;
④:通过超声波电源控制超声振动棒工作,超声波工作频率范围为15KHz≤f≤80KHz,工作时长10min≤t≤50min;
⑤:排污阀400打开,将过滤筒清洗后的水排放到供液缸中;
⑥:排污阀400关闭,清洗完成。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种用于切割液的过滤装置,其特征在于,包括:
    过滤筒和过滤网,所述过滤网设置于所述过滤筒内,所述过滤网具有切割液入口和排污口,所述切割液入口用于待过滤的切割液的流入,所述排污口用于所述过滤网内部清洗液体和污物的排出,所述过滤筒具有切割液出口,所述切割液出口用于过滤后的切割液的排出;
    超声波清洗组件,至少部分设置于所述过滤网内,用于对所述过滤网进行超声波清洗。
  2. 根据权利要求1所述的过滤装置,其特征在于,所述过滤筒包括筒体和筒盖,所述筒盖盖设于所述筒体的顶部,且与所述筒体可拆卸连接;所述筒体和筒盖之间设有密封圈,所述筒体内壁沿环向设有固定环;所述过滤网的外壁设有翻边,所述过滤网经翻边与所述固定环搭接;所述过滤网的底部设有锥形部,所述锥形部的顶端设有安装柱,所述安装柱具有与所述过滤网的内腔连通的通孔。
  3. 根据权利要求1所述的过滤装置,其特征在于,所述排污口形成于所述过滤网的底部,所述排污口的环向设有向内延伸的安装环壁,所述安装环壁的外侧设有密封圈安装槽,所述密封圈安装槽中设有密封圈,所述安装柱插装于所述安装环壁内,且二者间设有密封圈。
  4. 根据权利要求2所述的过滤装置,其特征在于,所述超声波清洗组件包括超声波换能器和超声变幅杆,所述超声波换能器的一端与所述筒盖可拆卸连接,另一端与所述超声变幅杆连接,所述超声变幅杆远离所述超声波换能器的一端贯穿所述筒盖、且延伸至所述过滤网的内部;
    所述超声波换能器与所述筒盖间设有密封垫;所述过滤筒还包括密封压盘,所述密封压盘位于所述超声波换能器上,且经螺纹紧固件与所述筒盖固定,以将所述超声波换能器和所述筒盖压紧。
  5. 根据权利要求2所述的过滤装置,其特征在于,所述超声波清洗组件包括超声振棒和超声振子,所述超声振棒的一端与所述筒盖可拆卸连接,另一端延伸至所述过滤网的内部,所述超声振子设置于所述超声振棒的内部,且延伸至所述过滤网的内部;
    所述超声振棒与所述筒盖间设有密封垫;所述超声振棒的周向外壁设有凸缘部,所述凸缘部的下表面和所述筒盖的上表面贴合,且所述凸缘部经螺纹紧固件与所述筒盖固定;所述凸缘部和所述超声振棒一体式设置。
  6. 根据权利要求1所述的过滤装置,其特征在于,所述过滤装置还包括清洗液进液管路,所述清洗液进液管路的一端与所述排污口连通,所述排污口复用为所述清洗液进液管路的进液口;或
    所述过滤装置还包括清洗液进液管路,所述清洗液进液管路的一端与所述切割液出口连通,所述切割液出口复用为所述清洗液进液管路的进液口;或
    所述过滤装置还包括清洗液进液管路,所述清洗液进液管路连接于所述过滤筒的周向侧壁上,且所述清洗液进液管路的进液口位于所述过滤网的外侧。
  7. 根据权利要求1所述的过滤装置,其特征在于,所述过滤装置还包括切割液输入管路和压力检测组件,所述切割液输入管路与所述切割液入口连通,所述压力检测组件设置于所述切割液输入管路上,用于检测所述过滤筒的内部压力值。
  8. 根据权利要求1所述的过滤装置,其特征在于,所述过滤装置还包括:
    切割液输出管路和切割液出水阀,所述切割液输出管路与所述切割液出口连通,所述切割液出水阀位于所述切割液输出管路靠近所述切割液出口的一端;
    排污管路和排污阀,所述排污管路与所述排污口连通,所述排污阀位于所述排污管路上、所述清洗液进液管路的下方;
    清洗控制阀,位于所述清洗液进液管路上。
  9. 根据权利要求1所述的过滤装置,其特征在于,所述过滤装置还包括切割液输出管路和流量检测组件,所述切割液输出管路与所述切割液出口连通,所述流量检测组件设置于所述切割液输出管路上,用于检测所述过滤筒的切割液输出流量值。
  10. 一种用于切割液的过滤循环系统,其特征在于,包括:
    喷淋装置,用于对工件切割区喷淋切割液;
    供液装置,用于容置切割液,并为所述切割液的循环提供动力;
    收集装置,设置于所述供液装置上,用于收集喷淋所述工件后的所述切割液,并输送至所述供液装置;
    过滤装置,连接于所述喷淋装置和所述供液装置之间,用于对所述切割液进行过滤,所述过滤装置为如权利要求1至9任一项所述的过滤装置;
    换热装置,所述换热装置连接于所述过滤装置和所述喷淋装置之间,用于对所述切割液进行冷却。
  11. 根据权利要求10所述的过滤循环系统,其特征在于,所述供液装置具有供液泵和供液缸,所述供液泵的第一端与所述供液缸连通;所述过滤循环系统还包括切割液输入管路和排污管路,所述切割液输入管路的第一端与所述供液泵的第二端连通,所述切割液输入管路的第二端与所述过滤装置连通,所述排污管路的一端与所述过滤装置连通,另一端通过回流管路与所述供液装置连通。
  12. 一种用于切割液的过滤装置的清洗方法,其特征在于,过滤装置包括过滤筒、过滤网以及超声波清洗组件,所述过滤网设置于所述过滤筒内,所述超声波清洗组件的至少部分设置于所述过滤网内,用于对所述过滤网进行超声波清洗;
    所述方法包括:
    判断线切割机是否处于切割作业状态;
    若线切割机处于切割作业状态,则所述超声波清洗组件对所述过滤网进行清洗。
  13. 根据权利要求12所述的方法,其特征在于,
    所述超声波清洗组件对所述过滤网进行清洗之前还包括:
    判断所述过滤筒的内部压力值是否大于第一预设压力值;
    若所述过滤筒的内部压力值大于第一预设压力值,则执行所述超声波清洗组件对所述过滤网进行清洗的步骤;
    所述方法还包括:
    判断所述过滤筒的内部压力值是否小于第二预设压力值,所述第二预设压力值小于或等于所述第一预设压力值;
    若所述过滤筒的内部压力值小于第二预设压力值,则所述超声波清洗组件停止对所述过滤网进行清洗。
  14. 根据权利要求12所述的方法,其特征在于,所述超声波清洗组件对所述过滤网进行清洗之前还包括:
    判断所述过滤筒的切割液输出流量值是否小于预设流量值;
    若所述过滤筒的切割液输出流量值小于预设流量值,则执行所述超声波清洗组件对所述过滤网进行清洗的步骤。
  15. 根据权利要求12所述的方法,其特征在于,判断为线切割机处于切割作业状态之后,还包括:
    判断所述线切割机的切割作业时长是否大于或等于第一预设时长;
    若所述线切割机的切割作业时长大于或等于第一预设时长,则执行所述超声波清洗组件对所述过滤网进行清洗的步骤。
  16. 根据权利要求12所述的方法,其特征在于,所述超声波清洗组件对所述过滤网进行清洗之前还包括:
    判断所述线切割机的切割次数是否大于或等于预设切割次数;
    若所述线切割机的切割次数大于或等于预设切割次数,则执行所述超声波清洗组件对所述过滤网进行清洗的步骤。
  17. 根据权利要求12所述的方法,其特征在于,所述超声波清洗组件对所述过滤网进行清洗的方法包括:
    所述超声波清洗组件持续对所述过滤网进行清洗;或
    所述超声波清洗组件以预设清洗周期对所述过滤网进行清洗。
  18. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    判断所述线切割机是否处于非切割作业状态;
    若所述线切割机处于非切割作业状态,则向所述过滤筒注入清洗液,所述超声波清洗组件对所述过滤网进行清洗。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    判断所述超声波清洗组件的作业时长是否大于或等于第二预设时长;
    若所述超声波清洗组件的作业时长大于或等于第二预设时长,则所述超声波清洗组件停止清洗。
  20. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    判断所述超声波清洗组件的清洗次数是否大于或等于第一预设次数;
    若所述超声波清洗组件的清洗次数大于或等于第一预设次数,则所述超声波清洗组件停止清洗。
PCT/CN2023/095412 2022-05-20 2023-05-20 用于切割液的过滤装置及其清洗方法、过滤循环系统 WO2023222132A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202210552551.3 2022-05-20
CN202221217808.1 2022-05-20
CN202221215631.1U CN217613294U (zh) 2022-05-20 2022-05-20 一种切割液循环系统及一种线切割机
CN202210552551.3A CN114797230A (zh) 2022-05-20 2022-05-20 一种线切割机的切割液循环系统的自动清洗方法
CN202221215631.1 2022-05-20
CN202221217808.1U CN217746029U (zh) 2022-05-20 2022-05-20 一种用于过滤线切割机切割液的过滤装置
CN202310406925.5 2023-04-17
CN202320861223.1 2023-04-17
CN202310406925.5A CN116637426A (zh) 2023-04-17 2023-04-17 一种用于线切割机切割液的过滤装置及其清洗控制方法
CN202320861223.1U CN220176213U (zh) 2023-04-17 2023-04-17 一种用于线切割机切割液的过滤装置及线切割机

Publications (1)

Publication Number Publication Date
WO2023222132A1 true WO2023222132A1 (zh) 2023-11-23

Family

ID=88834710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095412 WO2023222132A1 (zh) 2022-05-20 2023-05-20 用于切割液的过滤装置及其清洗方法、过滤循环系统

Country Status (1)

Country Link
WO (1) WO2023222132A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190716A (ja) * 2001-12-26 2003-07-08 Kawasaki Heavy Ind Ltd 超音波洗浄装置を備えたこし器とその洗浄方法
KR101029275B1 (ko) * 2010-10-14 2011-04-18 엠씨테크주식회사 폴리실리콘 웨이퍼 절단공정의 절삭유 재생장치
CN202833439U (zh) * 2012-09-17 2013-03-27 三一重型装备有限公司 超声波清洗过滤器、液压系统及工程机械
CN203331251U (zh) * 2013-06-26 2013-12-11 浙江昱辉阳光能源有限公司 一种开方机切割液循环装置
CN105065159A (zh) * 2015-07-08 2015-11-18 国家海洋局第一海洋研究所 带有超声波清洗装置的船用柴油机燃油过滤器及过滤方法
CN208359137U (zh) * 2018-05-22 2019-01-11 唐山晶玉科技股份有限公司 一种多线切割机切割液温度自动控制系统
CN215969503U (zh) * 2021-08-12 2022-03-08 银川隆基光伏科技有限公司 一种过滤装置及切割液供应设备
CN114797230A (zh) * 2022-05-20 2022-07-29 青岛高测科技股份有限公司 一种线切割机的切割液循环系统的自动清洗方法
CN217613294U (zh) * 2022-05-20 2022-10-21 青岛高测科技股份有限公司 一种切割液循环系统及一种线切割机
CN217746029U (zh) * 2022-05-20 2022-11-08 青岛高测科技股份有限公司 一种用于过滤线切割机切割液的过滤装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190716A (ja) * 2001-12-26 2003-07-08 Kawasaki Heavy Ind Ltd 超音波洗浄装置を備えたこし器とその洗浄方法
KR101029275B1 (ko) * 2010-10-14 2011-04-18 엠씨테크주식회사 폴리실리콘 웨이퍼 절단공정의 절삭유 재생장치
CN202833439U (zh) * 2012-09-17 2013-03-27 三一重型装备有限公司 超声波清洗过滤器、液压系统及工程机械
CN203331251U (zh) * 2013-06-26 2013-12-11 浙江昱辉阳光能源有限公司 一种开方机切割液循环装置
CN105065159A (zh) * 2015-07-08 2015-11-18 国家海洋局第一海洋研究所 带有超声波清洗装置的船用柴油机燃油过滤器及过滤方法
CN208359137U (zh) * 2018-05-22 2019-01-11 唐山晶玉科技股份有限公司 一种多线切割机切割液温度自动控制系统
CN215969503U (zh) * 2021-08-12 2022-03-08 银川隆基光伏科技有限公司 一种过滤装置及切割液供应设备
CN114797230A (zh) * 2022-05-20 2022-07-29 青岛高测科技股份有限公司 一种线切割机的切割液循环系统的自动清洗方法
CN217613294U (zh) * 2022-05-20 2022-10-21 青岛高测科技股份有限公司 一种切割液循环系统及一种线切割机
CN217746029U (zh) * 2022-05-20 2022-11-08 青岛高测科技股份有限公司 一种用于过滤线切割机切割液的过滤装置

Similar Documents

Publication Publication Date Title
CN215318060U (zh) 一种具有自动分离冷却液功能的数控机床
WO2023222132A1 (zh) 用于切割液的过滤装置及其清洗方法、过滤循环系统
CN217613294U (zh) 一种切割液循环系统及一种线切割机
CN217746029U (zh) 一种用于过滤线切割机切割液的过滤装置
CN102729350B (zh) 用在切割晶片的开方机上的冷却系统
CN103230692B (zh) 浆水自动过滤装置及其过滤工艺
CN104857760A (zh) 一种全自动自清洗过滤器
CN114797230A (zh) 一种线切割机的切割液循环系统的自动清洗方法
CN217613320U (zh) 一种用于过滤线切割机切割液的过滤装置
CN215876396U (zh) 一种聚烯烃挤压造粒切粒水回用装置
CN220176213U (zh) 一种用于线切割机切割液的过滤装置及线切割机
CN214457568U (zh) 自识别调理污泥浓缩脱水一体机
CN211796039U (zh) 清洗机
CN116637426A (zh) 一种用于线切割机切割液的过滤装置及其清洗控制方法
CN210454765U (zh) 一种智能洗车机的节水装置
CN217746048U (zh) 一种用于过滤线切割机切割液的过滤装置
CN217476321U (zh) 一种线切割机及其切割液循环系统
CN221015165U (zh) 一种用于清理锅炉烟尘气体初滤水箱
CN215352456U (zh) 一种高效反冲纤维转盘过滤器
JPS6391110A (ja) 急速ろ過装置
CN220426134U (zh) 一种便于拆卸清洁的超声波清洗槽
CN217744123U (zh) 一种排液彻底的食品加工机
CN219333448U (zh) 一种切割液过滤设备
CN213913978U (zh) 一种耐火材料生产用废料回收装置
JP2000334600A (ja) スクリュープレス式脱水機のスクリーン自動洗浄方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807081

Country of ref document: EP

Kind code of ref document: A1