WO2023221731A1 - 一种双组份硅片清洗剂及清洗方法 - Google Patents

一种双组份硅片清洗剂及清洗方法 Download PDF

Info

Publication number
WO2023221731A1
WO2023221731A1 PCT/CN2023/089653 CN2023089653W WO2023221731A1 WO 2023221731 A1 WO2023221731 A1 WO 2023221731A1 CN 2023089653 W CN2023089653 W CN 2023089653W WO 2023221731 A1 WO2023221731 A1 WO 2023221731A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
silicon wafer
cleaning
cleaning agent
sodium
Prior art date
Application number
PCT/CN2023/089653
Other languages
English (en)
French (fr)
Inventor
孙彬
徐志群
付明全
高大
毕喜行
马伟萍
Original Assignee
高景太阳能股份有限公司
广东金湾高景太阳能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高景太阳能股份有限公司, 广东金湾高景太阳能科技有限公司 filed Critical 高景太阳能股份有限公司
Publication of WO2023221731A1 publication Critical patent/WO2023221731A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • C11D7/3218Alkanolamines or alkanolimines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/06Hydroxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/263Ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/265Carboxylic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/34Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5004Organic solvents
    • C11D7/5022Organic solvents containing oxygen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/22Electronic devices, e.g. PCBs or semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of solar cell production, and in particular to a two-component silicon wafer cleaning agent and a cleaning method.
  • silicon wafer cleaning agents on the market and in patents are mainly alkaline formulas, with single-component and two-component formulas, but in terms of use, the same cleaning agent is added in a certain proportion in the cleaning tank, and now Some formula products have white spots on the silicon wafers during the texturing process of the cell production process due to unclean cleaning of the silicon wafer surface and cleaning agent residue on the silicon wafer surface. This has become a problem that has been plaguing everyone. The thinning of silicon wafers will definitely become a problem.
  • G10 and G12 thin silicon wafers (wafer thicknesses of 140 ⁇ m, 130 ⁇ m, 120 ⁇ m, 110 ⁇ m, and 100 ⁇ m) will gradually become mainstream silicon wafers in the future. Therefore, the cleaning problem of large-size thin silicon wafers will definitely become a constraint.
  • the key technologies that are bottlenecks in industry development need to be solved urgently.
  • the object of the present invention is to overcome the above-mentioned shortcomings of the prior art and provide a two-component silicon wafer cleaning agent and a cleaning method.
  • the cleaning agent has good cleaning effect, the cleaning method is simple, and there is no residue on the surface of the silicon wafer after cleaning.
  • a two-component silicon wafer cleaning agent including component A and component B.
  • the component A includes the following components in terms of weight percentage: inorganic Alkali 5-10%, organic base 0.5-1.5%, dispersant 4-8% and oxidation inhibitor 3-5%, the balance is water;
  • Component B includes the following ingredients in terms of weight percentage: 12 to 15% alcohol ether solvent, and the balance is water.
  • the main function of component A is to remove contaminants on the surface of the silicon wafer.
  • the main function of component B is to remove organic matter on the surface of the silicon wafer such as the dispersant in component A.
  • Cleaning agent B can be removed by rinsing. Choose group A.
  • Cleaning silicon wafers separately with component B can improve the cleaning yield of silicon wafers.
  • the present invention uses a combination of organic alkali and inorganic alkali to maintain high alkalinity, which is beneficial to providing a stable silicon powder alkali etching reaction rate. Using a small amount of oxidation inhibitor can effectively avoid the problem of oxidation of silicon wafers during the cleaning process without affecting the cleaning efficiency. Alcohol ether solvent helps desorption of silicon powder particles and can remove organic matter on the surface of silicon wafers.
  • the inorganic base is at least one of sodium hydroxide and potassium hydroxide; the organic base is at least one of monoethanolamine, diethanolamine, triethanolamine, diglycolamine, and tetrabutylammonium hydroxide.
  • the organic base is a compound of diglycolamine and triethanolamine; the weight ratio of diglycolamine to triethanolamine is (1-3):1.
  • Diethylene glycolamine has good base reserve capacity and pH stability, and triethanolamine has good decontamination ability. The two can work synergistically to greatly improve the silicon wafer yield.
  • the dispersant is at least one of sodium dimer acid sulfonate and potassium dimer acid sulfonate.
  • the structural formula of the sodium dimer acid sulfonate is as shown in formula (I).
  • the dimer acid sodium The structural formula of potassium sulfonate is shown in formula (II):
  • the dimer acid sulfonate of the present invention has multiple adsorption and dispersion sites, and has a spatial structure of branched long carbon chains, and its dispersion activity is much stronger than that of currently used linear sulfonates or carboxylates.
  • the oxidation inhibitor is at least one of sodium glycolate, sodium lactate, and sodium oxalate.
  • the oxidation inhibitor is a compound of sodium lactate and sodium oxalate, and the weight ratio of the sodium lactate and sodium oxalate is (3-5):1.
  • Sodium lactate is an antioxidant synergist and pH adjuster; sodium oxalate has It has good reducing properties and can be used as a remover for stains and ink stains. The combination of the two can not only inhibit the oxidation of the silicon wafer, but also prevent excessive corrosion of the silicon wafer by alkali and reduce the whitening rate of texturing.
  • the alcohol ether solvent is ethylene glycol isopropyl ether, ethylene glycol butyl ether, ethylene glycol pentyl ether, ethylene glycol hexyl ether, ethylene glycol-2-ethylhexyl ether and propylene glycol methyl ether. At least one.
  • the above-mentioned alcohol ether solvent has high surface tension and surface activity, and can be adsorbed on the surface of the silicon wafer through displacement to remove component A.
  • the alcohol ether solvent can also be removed after rinsing.
  • the alcohol ether solvent is a compound of ethylene glycol isopropyl ether and propylene glycol methyl ether, and the weight ratio of the ethylene glycol isopropyl ether and propylene glycol methyl ether is 1: (2-5).
  • the surface tension of ethylene glycol isopropyl ether is 39.8 dyn/cm, which is a good desorption agent and can improve the desorption efficiency of silicon powder on the surface of silicon wafers; propylene glycol methyl ether can significantly reduce the surface tension of the cleaning agent system and improve The cleaning agent wets the silicon wafer, thereby improving the dirt removal rate.
  • the present invention greatly improves the cleaning effect of the cleaning agent, can increase the cleaning yield and reduce the whitening rate of texturing.
  • the invention also discloses a two-component silicon wafer cleaning method, which includes the following steps:
  • step (1) After step (1) is completed, transfer it to the No. 2 tank (chemical tank) of the cleaning machine. There is an aqueous solution containing 2.5 to 6 wt.% of component A in the tank. The temperature is 50 to 65°C and the soaking time is 60 ⁇ 120 seconds;
  • step (2) After step (2) is completed, transfer it to the No. 3 tank (chemical tank) of the cleaning machine. There is an aqueous solution containing 7 to 10 wt.% of component A in the tank. The temperature is 50 to 65°C and the soaking time is 60 ⁇ 120 seconds;
  • step (3) transfer it to the No. 4 tank (chemical tank) of the cleaning machine.
  • aqueous solution containing 4 to 6 wt.% of B component in the tank.
  • the temperature is 50 to 65°C and the soaking time is 60 ⁇ 120 seconds;
  • step (4) the silicon wafers are transferred to slots 5 to 9 in sequence, and the temperatures are 50 ⁇ 54°C, 54 ⁇ 58°C, 58 ⁇ 62°C, 62 ⁇ 66°C, 66 ⁇ 70°C, soak for 60 ⁇ 120 seconds respectively.
  • the purpose of controlling the temperature is to improve the impurity removal rate. As the temperature increases, the activity of the cleaning agent gradually increases. However, if the temperature is too high, the reaction process will be difficult to control, which will reduce the production yield. In step (5), the temperature increases in a gradient, and the removal rate of pollutants is higher.
  • step (3) the cleaning time of step (2) is extended, and the stain rate will be higher. If step (2) is omitted, the cleaning time of step (2) is extended. (3) If the cleaning time is too long, the silicon wafer will be easily corroded excessively and the color of the silicon wafer will be uneven. By controlling the concentration of the cleaning agent and cleaning in steps, a higher cleaning yield can be ensured.
  • step (5) the silicon wafer is moved into a slow pulling tank, pure water is added, the temperature is 80-90°C, the time is 60-120 seconds, and the silicon wafer is separated.
  • the beneficial effects of the present invention are: the present invention provides a two-component cleaning agent, which effectively solves the current problem of low cleaning yield of large-size thin silicon wafers by selecting the components of the cleaning agent. .
  • the present invention provides a cleaning method, which can significantly improve the cleaning efficiency and reduce the white spot rate of texturing by selecting cleaning conditions.
  • the present invention does not use hydrogen peroxide for cleaning, which improves the safety of the cleaning process.
  • Silicon wafer 218mm*210mm*110 ⁇ m.
  • Comparative Examples 1 to 3 are cleaning agents, and their formulas are shown in Table 1.
  • An embodiment of the cleaning agent of the present invention The only difference between the components of the cleaning agent in this embodiment and Example 1 is that sodium dodecylbenzene sulfonate is used instead of sodium dimer sulfonate.
  • An embodiment of the cleaning agent of the present invention The only difference between the components of the cleaning agent in this embodiment and Example 1 is that the organic base only contains diglycolamine, and its weight percentage is 1%.
  • An embodiment of the cleaning agent of the present invention The only difference between the components of the cleaning agent in this embodiment and Example 1 is that the organic base only contains triethanolamine, and its weight percentage is 1%.
  • An embodiment of the cleaning agent of the present invention The only difference between the components of the cleaning agent in this embodiment and Example 1 is that the oxidation inhibitor only contains sodium lactate, and its weight percentage is 4%.
  • An embodiment of the cleaning agent of the present invention The only difference between the components of the cleaning agent in this embodiment and Example 1 is that the oxidation inhibitor only contains sodium oxalate, and its weight percentage is 4%.
  • component B only contains ethylene glycol isopropyl ether and water, wherein ethylene glycol The weight percentage of isopropyl ether is 12%.
  • component B only contains propylene glycol methyl ether and water, wherein the weight of propylene glycol methyl ether is 100%. The content is 12%.
  • step (1) After step (1) is completed, transfer it to the No. 2 tank (agent tank) of the cleaning machine. There is an aqueous solution containing 4wt.% of component A in the tank. The temperature is 60°C and the soaking time is 100 seconds;
  • step (2) transfer it to the No. 3 tank (chemical tank) of the cleaning machine.
  • aqueous solution containing 8wt.% of component A in the tank.
  • the temperature is 60°C and the soaking time is 100 seconds;
  • step (3) transfer it to the No. 4 tank (chemical tank) of the cleaning machine.
  • aqueous solution containing 5wt.% B component in the tank.
  • the temperature is 60°C and the soaking time is 100 seconds;
  • step (4) the silicon wafers are transferred to tank No. 5 to tank No. 9 in sequence, and the temperatures are 50°C, 55°C, 60°C, 65°C, and 70°C, respectively, and soaked for 100 seconds;
  • the cleaning agent used in this embodiment is Example 2.
  • the difference between the cleaning method of this embodiment and Example 1 lies in the concentration of component A in step (2).
  • the concentration of component A in step (3) is 10 wt.% and soaked for 80 seconds; the concentration of component B in step (4) is 6 wt.%.
  • the cleaning agent used in this embodiment is Example 3.
  • the difference between the cleaning method of this embodiment and Example 1 lies in the concentration of component A in step (2). 2.5wt.%, soak for 120 seconds, the concentration of component A in step (3) is 7wt.%, soak for 120 seconds, and the concentration of component B in step (4) is 4wt.%.
  • Example 17-26 The only difference between Examples 17-26 and Example 14 of the cleaning methods of the present invention is that different cleaning agents are used.
  • the cleaning agents used in Examples 17-26 are Examples 4-13 respectively.
  • step (2) is omitted and the cleaning time of step (3) is extended to 180 seconds.
  • step (3) is omitted, Extend the cleaning time in step (2) to 240 seconds.
  • Comparative Examples 4 to 6 are cleaning methods. The only difference between Comparative Examples 4 to 6 and Example 14 is that different cleaning agents are used. The cleaning agents used in Comparative Examples 4 to 6 are Comparative Examples 1 to 3 respectively.
  • 1,000 silicon wafers of the same type were cleaned using the methods described in Examples 14 to 28 and Comparative Examples 4 to 6 respectively. After every 200 wafers were cleaned, the liquid in the cleaning tank was replaced, and the cleaning yield was recorded. The criteria for judging the cleaning yield are: uniform surface color, no spots, and no contaminants. Table 2 shows the test results.
  • Example 14 Comparing the test results of Example 14 and Comparative Example 4, it can be found that if no organic alkali is added to maintain the alkalinity of the inorganic alkali, the alkali etching reaction rate will be very fast at the beginning and will slow down later, resulting in unsatisfactory cleaning effect.
  • Example 14 Comparing the test results of Example 14 and Comparative Example 5, it can be found that if no oxidation inhibitor is added, the silicon wafer is easily oxidized during the cleaning process and is easily over-etched by alkali in the cleaning agent.
  • Example 14 Comparing the test results of Example 14 and Comparative Example 6, it can be found that adding too much oxidation inhibitor will also have certain adverse effects.
  • the metal ions of the oxidation inhibitor will adhere to the surface of the silicon wafer, reducing the cleaning yield of the silicon wafer. Only when the dosage of each component meets the range described in the present invention can a higher cleaning yield be ensured.
  • Example 14 Comparing the test results of Example 14 and Examples 27-28, it can be found that if a low concentration of component A is used for cleaning only once, even if the cleaning time is increased, the cleaning effect cannot reach the level described in the example; in addition, if a high concentration of component A is used, Component cleaning leads to reduced cleaning yield.
  • Example 14 In addition, by comparing the test results of Example 14 and Example 17, it can be found that the ratio of diglycolamine and triethanolamine in the organic base will have a certain impact on the cleaning effect. When the weight ratio of diglycolamine and triethanolamine is not (1 ⁇ 3): When it is within the range of 1, the cleaning yield is relatively low. In addition, by comparing the test results of Example 14 and Examples 21-22, it can be found that if only diglycolamine or triethanolamine is used in the organic alkali, the cleaning quality of the silicon wafer will be significantly attenuated.
  • Example 14 Comparing the test results of Example 14 and Example 18, it can be found that when the ratio of sodium lactate to sodium oxalate exceeds (3-5):1, the cleaning effect will become worse. In addition, by comparing the test results of Example 14 and Examples 23-24, it can be found that sodium lactate and sodium oxalate can work synergistically to greatly improve the cleaning yield.
  • Example 14 Comparing the test results of Example 14 and Example 19, it can be found that the ratio of ethylene glycol isopropyl ether and propylene glycol methyl ether will have a certain impact on the cleaning yield. In addition, by comparing the test results of Example 14 and Examples 25-26, it can be found that the combination of ethylene glycol isopropyl ether and propylene glycol methyl ether helps to improve the cleaning quality of silicon wafers.
  • Example 14 Comparing the test results of Example 14 and Example 20, it can be found that the present invention adopts The chemically structured sodium dimer sulfonate increases the uniformity of the cleaning agent system and can effectively improve the cleaning yield of silicon wafers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Detergent Compositions (AREA)

Abstract

本发明公开了一种双组份硅片清洗剂及清洗方法,用于制作硅太阳能电池,属于太阳能电池生产技术领域。本发明所述清洗剂包含A组分和B组分,所述A组分按重量百分含量计,包含如下成分:无机碱5~10%、有机碱0.5~1.5%、分散剂4~8%和氧化抑制剂3~5%,余量为水;所述B组分按重量百分含量计,包含如下成分:醇醚溶剂12~15%,余量为水。本发明通过对清洗剂的成分进行选择,大幅提升了清洗良率。并且本发明不使用清洗工序常使用的双氧水槽,提高了清洗过程的安全性。

Description

一种双组份硅片清洗剂及清洗方法 技术领域
本发明涉及太阳能电池生产技术领域,尤其涉及一种双组份硅片清洗剂及清洗方法。
背景技术
近年来,光伏太阳能行业为了降低制成损耗和制成成本,对硅片有了大而薄的要求,然而大尺寸和薄片化的硅片增加了硅片多线切割过程中的技术难度,切割循环缸体内硅粉的含量大幅增加,参与切割和清洗的硅片面积也在倍增,清洗工序作为硅片生产的终端环节工序,严重影响下游电池片的生产良率,所以清洗工序至关重要,清洗剂作为清洗工序的重要化学品材料,其性能和品质严重影响该工序的正常运行及硅片的良品率。目前,市面上及专利中的硅片清洗剂均以碱性配方为主,有单组分和双组分配方,但使用方面都是相同的清洗剂在清洗槽内按一定比例添加,并且现有的配方产品存在出现因硅片表面清洗不干净和硅片表面有清洗剂残留造成的电池片生产环节的制绒工序白斑硅片,成为一直困扰大家的问题,硅片的薄片化必将成为行业的趋势,未来G10型和G12型薄硅片(硅片厚度140μm、130μm、120μm、110μm、100μm)也必将陆续成为主流硅片,因此,大尺寸薄硅片的清洗问题必将成为制约行业发展瓶颈的关键技术,亟待解决。
发明内容
本发明的目的在于克服上述现有技术的不足之处而提供一种双组份硅片清洗剂及清洗方法。所述清洗剂具有良好的清洁效果,所述清洗方法简单,并且清洗后硅片表面无残留物。
为实现上述目的,本发明所采取的技术方案为:一种双组份硅片清洗剂,包含A组分和B组分,所述A组分按重量百分含量计,包含如下成分:无机碱5~10%、有机碱0.5~1.5%、分散剂4~8%和氧化抑制剂3~5%,余量为水;所述 B组分按重量百分含量计,包含如下成分:醇醚溶剂12~15%,余量为水。
A组分的主要作用是去除硅片表面的污染物,B组分的主要作用是将硅片表面的有机物如A组分中的分散剂等去除,清洗剂B通过漂洗可去除,选用A组分和B组分分别对硅片进行清洗可以提升硅片的清洗良率。本发明选用有机碱与无机碱复配可以保持高碱度,有利于提供稳定的硅粉碱蚀反应速率。选用少量氧化抑制剂可以有效避免硅片在清洗过程中出现氧化片的问题,同时不会对清洗效率产生影响。醇醚溶剂有助于硅粉颗粒的脱吸附,并且可以去除硅片表面的有机物。
优选地,所述无机碱为氢氧化钠、氢氧化钾中的至少一种;所述有机碱为单乙醇胺、二乙醇胺、三乙醇胺、二甘醇胺、四丁基氢氧化铵中的至少一种。
进一步优选地,所述有机碱为二甘醇胺和三乙醇胺的复配物;所述二甘醇胺与三乙醇胺的重量比为(1~3):1。二甘醇胺具有良好的碱值储备能力和pH稳定性,三乙醇胺具有良好的去污能力,二者可协同作用,大幅提升硅片良率。
优选地,所述分散剂为二聚酸磺酸钠、二聚酸磺酸钾中的至少一种,所述二聚酸磺酸钠的结构式如式(I)所示,所述二聚酸磺酸钾的结构式如式(II)所示:
本发明所述二聚酸磺酸盐具有多吸附分散位点,并且具有枝化长碳链的空间结构,分散活性远远强于目前用的直链磺酸盐或羧酸盐。
优选地,所述氧化抑制剂为乙醇酸钠、乳酸钠、草酸钠中的至少一种。进一步优选地,所述氧化抑制剂为乳酸钠和草酸钠的复配物,所述乳酸钠和草酸钠的重量比为(3~5):1。乳酸钠是一种抗氧化增效剂和pH调节剂;草酸钠具 有良好的还原性,可作为斑污墨迹的去除剂,选用两者复配不仅可以抑制硅片的氧化,还能防止碱对硅片的过度腐蚀,降低制绒发白率。
优选地,所述醇醚溶剂为乙二醇异丙醚、乙二醇丁醚、乙二醇戊醚、乙二醇己醚、乙二醇-2-乙基己基醚和丙二醇甲醚中的至少一种。上述醇醚溶剂具有较高的表面张力和表面活性,可以通过置换吸附在硅片表面,去除A组分,经过漂洗后所述醇醚溶剂也可以被清除干净。
进一步优选地,所述醇醚溶剂为乙二醇异丙醚和丙二醇甲醚的复配物,所述乙二醇异丙醚和丙二醇甲醚的重量比为1:(2~5)。
乙二醇异丙醚的表面张力为39.8dyn/cm,是一种良好的脱吸附剂,可以提高硅片表面硅粉的脱吸附效率;丙二醇甲醚可以大幅降低清洗剂体系的表面张力,改善清洗剂对硅片的润湿性,从而提高污物去除率。本发明通过选用上述两种成分复配,极大地改善了清洗剂的清洗效果,可以提高清洗良率,降低制绒发白率。
同时,本发明还公开了一种双组份硅片的清洗方法,包括如下步骤:
(1)将硅片放入清洗机1号槽(鼓泡溢流预清洗槽)中,添加纯水,温度为50~65℃,浸泡时间为60~120秒;
(2)待步骤(1)结束后,转入清洗机2号槽(药剂槽)中,槽中有含2.5~6wt.%的A组分的水溶液,温度为50~65℃,浸泡时间为60~120秒;
(3)待步骤(2)结束后,转入清洗机3号槽(药剂槽)中,槽中有含7~10wt.%的A组分的水溶液,温度为50~65℃,浸泡时间为60~120秒;
(4)待步骤(3)结束后,转入清洗机4号槽(药剂槽)中,槽中有含4~6wt.%的B组分的水溶液,温度为50~65℃,浸泡时间为60~120秒;
(5)待步骤(4)结束后,硅片依次转入5号槽到9号槽中,温度依次为50~54℃、54~58℃、58~62℃、62~66℃、66~70℃,分别浸泡60~120秒。
对温度进行控制的目的是为了提高杂物去除率,随着温度的升高,清洗剂的活性逐步增加,但温度过高,反应过程难以控制,反而会降低生产良率。步骤(5)中,温度呈梯度增加,污染物的清除率更高。
使用A组分清洗两次后再以B组分清洗可以提高清洗质量,若省略步骤(3),延长步骤(2)的清洗时间,污片率较高,若省略步骤(2),延长步骤(3)的清洗时间,则硅片易被过度腐蚀,硅片的颜色不均匀。通过控制清洗剂的浓度,分步清洗,可以保证具有较高的清洗良率。
优选地,待步骤(5)结束后,硅片移入慢提拉槽中,添加纯水,温度为80~90℃,时间为60~120秒,分离硅片。
相比于现有技术,本发明的有益效果为:本发明提供了一种双组份清洗剂,通过对清洗剂的成分进行选择,有效解决了目前大尺寸薄硅片清洗良率低的问题。同时,本发明提供了一种清洗方法,对清洗条件进行选择,可以显著提升清洗效率,降低制绒白斑率。并且本发明未使用双氧水进行清洗,提高了清洗过程的安全性。
具体实施方式
为更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
如无特殊说明,实施例及对比例中使用的材料均通过商业途径获得,并且实施例和对比例中使用的均为同种材料。
二聚酸磺酸钠的结构式如下:
硅片:218mm*210mm*110μm。
实施例1~6
本发明所述清洗剂的实施例,实施例1~6所述清洗剂的成分如表1所示。
对比例1~3
对比例1~3为清洗剂,其配方如表1所示。
表1(重量百分含量)
实施例7
本发明所述清洗剂的一种实施例,本实施例所述清洗剂的成分与实施例1的区别仅在于,以十二烷基苯磺酸钠替代二聚酸磺酸钠。
实施例8
本发明所述清洗剂的一种实施例,本实施例所述清洗剂的成分与实施例1的区别仅在于,有机碱中只含有二甘醇胺,其重量百分含量为1%。
实施例9
本发明所述清洗剂的一种实施例,本实施例所述清洗剂的成分与实施例1的区别仅在于,有机碱中只含有三乙醇胺,其重量百分含量为1%。
实施例10
本发明所述清洗剂的一种实施例,本实施例所述清洗剂的成分与实施例1的区别仅在于,氧化抑制剂中只含有乳酸钠,其重量百分含量为4%。
实施例11
本发明所述清洗剂的一种实施例,本实施例所述清洗剂的成分与实施例1的区别仅在于,氧化抑制剂中只含有草酸钠,其重量百分含量为4%。
实施例12
本发明所述清洗剂的一种实施例,本实施例所述清洗剂的成分与实施例1的区别仅在于,B组分中只含有乙二醇异丙醚和水,其中,乙二醇异丙醚的重量百分含量为12%。
实施例13
本发明所述清洗剂的一种实施例,本实施例所述清洗剂的成分与实施例1的区别仅在于,B组分中只含有丙二醇甲醚和水,其中,丙二醇甲醚的重量百分含量为12%。
实施例14
本发明所述清洗方法的一种实施例,本实施例中使用的清洗剂为实施例1,具体清洗步骤如下:
(1)将硅片放入清洗机1号槽(鼓泡溢流预清洗槽)中,添加纯水,温度为60℃,浸泡时间为100秒;
(2)待步骤(1)结束后,转入清洗机2号槽(药剂槽)中,槽中有含4wt.%的A组分的水溶液,温度为60℃,浸泡时间为100秒;
(3)待步骤(2)结束后,转入清洗机3号槽(药剂槽)中,槽中有含8wt.%的A组分的水溶液,温度为60℃,浸泡时间为100秒;
(4)待步骤(3)结束后,转入清洗机4号槽(药剂槽)中,槽中有含5wt.%的B组分的水溶液,温度为60℃,浸泡时间为100秒;
(5)待步骤(4)结束后,硅片依次转入5号槽到9号槽中,温度依次为50℃、55℃、60℃、65℃、70℃,分别浸泡100秒;
(6)最后将硅片移入10号槽(慢提拉槽)中,添加纯水,在80℃下从提拉槽底部提升至最高点,提拉100秒,最后在90℃下烘3分钟,得到清洗干净的硅片。
实施例15
本发明所述清洗方法的一种实施例,本实施例中使用的清洗剂为实施例2,本实施例所述清洗方法与实施例1的区别在于,步骤(2)中A组分的浓度为6wt.%,浸泡80秒,步骤(3)中A组分的浓度为10wt.%,浸泡80秒;步骤(4)中B组分的浓度为6wt.%。
实施例16
本发明所述清洗方法的一种实施例,本实施例中使用的清洗剂为实施例3,本实施例所述清洗方法与实施例1的区别在于,步骤(2)中A组分的浓度为2.5wt.%,浸泡120秒,步骤(3)中A组分的浓度为7wt.%,浸泡120秒,步骤(4)中B组分的浓度为4wt.%。
实施例17~26
本发明所述清洗方法的实施例,实施例17~26与实施例14的区别仅在于,使用了不同的清洗剂,实施例17~26中使用的清洗剂分别为实施例4~13。
实施例27
一种清洗方法,所述清洗方法与实施例14的区别仅在于,省略了步骤(2),延长步骤(3)的清洗时间至180秒。
实施例28
一种清洗方法,所述清洗方法与实施例14的区别仅在于,省略了步骤(3), 延长步骤(2)的清洗时间至240秒。
对比例4~6
对比例4~6为清洗方法,对比例4~6与实施例14的区别仅在于,使用了不同的清洗剂,对比例4~6中使用的清洗剂分别为对比例1~3。
分别采用实施例14~28及对比例4~6所述方法清洗同种硅片1000片,每清洗200片后更换清洗槽中的液剂,记录清洗良率。清洗良率的判断标准为:表面颜色均匀,无花斑,无污染物。表2为测试结果。
表2
由表2可知,实施例14~28的清洗良率均高于对比例4~6,该结果表明,采用本发明所述方案可以有效提升硅片的清洗效果,降低生产升本。
对比实施例14与对比例4的测试结果可以发现,若不添加有机碱来保持无机碱的碱度,其碱蚀反应速率刚开始很快,后续会减慢,导致清洗效果不理想。
对比实施例14与对比例5的测试结果可以发现,若不添加氧化抑制剂,清洗过程中硅片容易被氧化,并且容易被清洗剂中的碱过刻蚀。
对比实施例14与对比例6的测试结果可以发现,氧化抑制剂的添加量过多也会产生一定的不利影响,氧化抑制剂金属离子会粘附到硅片表面,使硅片的清洗良率降低,只有当各成分的用量符合本发明所述范围时才能保证具有较高的清洗良率。
对比实施例14与实施例27~28的测试结果可以发现,若只使用低浓度A组分清洗一次,即使增加清洗时间也无法使清洗效果达到实施例所述水平;另外,若使用高浓度A组分清洗,导致清洗良率降低。
此外,对比实施例14和实施例17的测试结果可以发现,有机碱中二甘醇胺和三乙醇胺的配比会对清洗效果产生一定的影响,当二甘醇胺与三乙醇胺的重量比不在(1~3):1的范围内时,清洗良率相对较低。另外,对比实施例14与实施例21~22的测试结果可以发现,若有机碱中只使用二甘醇胺或只使用三乙醇胺,硅片的清洗质量会发生明显的衰减。
对比实施例14和实施例18的测试结果可以发现,当乳酸钠与草酸钠的配比超出(3~5):1时,清洗效果会变差。另外,对比实施例14与实施例23~24的测试结果可以发现,乳酸钠和草酸钠可协同作用,大幅提升清洗良率。
对比实施例14和实施例19的测试结果可以发现,乙二醇异丙醚和丙二醇甲醚的配比会对清洗良率产生一定的影响。另外,对比实施例14与实施例25~26的测试结果可以发现,乙二醇异丙醚和丙二醇甲醚复配有助于改善硅片的清洗质量。
对比实施例14与实施例20的测试结果可以发现,本发明通过选用具有枝 化结构的二聚酸磺酸钠,增加了清洗剂体系的均匀性,可以有效提升硅片的清洗良率。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,但并不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 一种双组份硅片清洗剂,其特征在于,包含A组分和B组分,所述A组分按重量百分含量计,包含如下成分:无机碱5~10%、有机碱0.5~1.5%、分散剂4~8%和氧化抑制剂3~5%,余量为水;所述B组分按重量百分含量计,包含如下成分:醇醚溶剂12~15%,余量为水。
  2. 如权利要求1所述的双组份硅片清洗剂,其特征在于,所述无机碱为氢氧化钠、氢氧化钾中的至少一种;所述有机碱为单乙醇胺、二乙醇胺、三乙醇胺、二甘醇胺、四丁基氢氧化铵中的至少一种。
  3. 如权利要求1所述的双组份硅片清洗剂,其特征在于,所述有机碱为二甘醇胺和三乙醇胺的复配物;所述二甘醇胺与三乙醇胺的重量比为(1~3):1。
  4. 如权利要求1所述的双组份硅片清洗剂,其特征在于,所述分散剂为二聚酸磺酸钠、二聚酸磺酸钾中的至少一种,所述二聚酸磺酸钠的结构式如式(I)所示,所述二聚酸磺酸钾的结构式如式(II)所示:
  5. 如权利要求1所述的双组份硅片清洗剂,其特征在于,所述氧化抑制剂为乙醇酸钠、乳酸钠、草酸钠中的至少一种。
  6. 如权利要求5所述的双组份硅片清洗剂,其特征在于,所述氧化抑制剂为乳酸钠和草酸钠的复配物,所述乳酸钠和草酸钠的重量比为(3~5):1。
  7. 如权利要求1所述的双组份硅片清洗剂,其特征在于,所述醇醚溶剂为乙二醇异丙醚、乙二醇丁醚、乙二醇戊醚、乙二醇己醚、乙二醇-2-乙基己基醚和丙二醇甲醚中的至少一种。
  8. 如权利要求7所述的双组份硅片清洗剂,其特征在于,所述醇醚溶剂为乙二醇异丙醚和丙二醇甲醚的复配物,所述乙二醇异丙醚和丙二醇甲醚的重量比为1:(2~5)。
  9. 一种硅片的清洗方法,其特征在于,包括如下步骤:
    (1)将硅片放入纯水中清洗,浸泡时间60~120秒;
    (2)待步骤(1)结束后,将硅片放入含2.5~6wt.%的A组分的水溶液中清洗,浸泡时间60~120秒;
    (3)待步骤(2)结束后,将硅片放入含7~10wt.%的A组分的水溶液中清洗,浸泡时间60~120秒;
    (4)待步骤(3)结束后,将硅片放入含4~6wt.%的B组分的水溶液中清洗,浸泡时间60~120秒;
    (5)待步骤(4)结束后,将硅片放入纯水中清洗,浸泡温度为50~70℃,浸泡时间300~600秒;所述A组分按重量百分含量计,包含如下成分:无机碱5~10%、有机碱0.5~1.5%、分散剂4~8%和氧化抑制剂3~5%,余量为水;所述B组分按重量百分含量计,包含如下成分:醇醚溶剂12~15%,余量为水。
  10. 如权利要求9所述的清洗方法,其特征在于,所述步骤(1)~(4)在50~65℃下进行清洗;所述步骤(5)依次在50~54℃、54~58℃、58~62℃、62~66℃、66~70℃下浸泡60~120秒。
PCT/CN2023/089653 2022-05-20 2023-04-21 一种双组份硅片清洗剂及清洗方法 WO2023221731A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210549421.4A CN114836274B (zh) 2022-05-20 2022-05-20 一种双组份硅片清洗剂及清洗方法
CN202210549421.4 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023221731A1 true WO2023221731A1 (zh) 2023-11-23

Family

ID=82569299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089653 WO2023221731A1 (zh) 2022-05-20 2023-04-21 一种双组份硅片清洗剂及清洗方法

Country Status (2)

Country Link
CN (1) CN114836274B (zh)
WO (1) WO2023221731A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836274B (zh) * 2022-05-20 2023-04-21 高景太阳能股份有限公司 一种双组份硅片清洗剂及清洗方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279590A (ja) * 1998-03-31 1999-10-12 Nippon Shokubai Co Ltd 電子部品用洗浄剤
JP2014172964A (ja) * 2013-03-07 2014-09-22 Dai Ichi Kogyo Seiyaku Co Ltd 洗浄剤組成物
CN107686776A (zh) * 2016-08-03 2018-02-13 天津鑫泰士特电子有限公司 太阳能级硅切片清洗剂及其制备方法
CN108330025A (zh) * 2018-05-23 2018-07-27 苏州浩顺光伏材料有限公司 一种太阳能硅片用高效清洗剂
CN111286415A (zh) * 2020-03-26 2020-06-16 常州高特新材料股份有限公司 一种双组份硅片清洗液
CN112745994A (zh) * 2019-10-30 2021-05-04 洛阳阿特斯光伏科技有限公司 一种双组份清洗剂及其制备方法和应用
CN112745990A (zh) * 2019-10-30 2021-05-04 洛阳阿特斯光伏科技有限公司 一种无磷双组份清洗剂及其制备方法和应用
CN114836274A (zh) * 2022-05-20 2022-08-02 广东高景太阳能科技有限公司 一种双组份硅片清洗剂及清洗方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892132B (zh) * 2010-07-23 2012-05-23 北京工业大学 一种太阳能硅片清洗剂及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279590A (ja) * 1998-03-31 1999-10-12 Nippon Shokubai Co Ltd 電子部品用洗浄剤
JP2014172964A (ja) * 2013-03-07 2014-09-22 Dai Ichi Kogyo Seiyaku Co Ltd 洗浄剤組成物
CN107686776A (zh) * 2016-08-03 2018-02-13 天津鑫泰士特电子有限公司 太阳能级硅切片清洗剂及其制备方法
CN108330025A (zh) * 2018-05-23 2018-07-27 苏州浩顺光伏材料有限公司 一种太阳能硅片用高效清洗剂
CN112745994A (zh) * 2019-10-30 2021-05-04 洛阳阿特斯光伏科技有限公司 一种双组份清洗剂及其制备方法和应用
CN112745990A (zh) * 2019-10-30 2021-05-04 洛阳阿特斯光伏科技有限公司 一种无磷双组份清洗剂及其制备方法和应用
CN111286415A (zh) * 2020-03-26 2020-06-16 常州高特新材料股份有限公司 一种双组份硅片清洗液
CN114836274A (zh) * 2022-05-20 2022-08-02 广东高景太阳能科技有限公司 一种双组份硅片清洗剂及清洗方法

Also Published As

Publication number Publication date
CN114836274A (zh) 2022-08-02
CN114836274B (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
EP1743014B1 (en) Fluorinated sulfonamide surfactants for aqueous cleaning solutions
TWI454574B (zh) 用於化學機械研磨後(post-CMP)清洗配方之新穎抗氧化劑
CN103589538B (zh) 一种太阳能硅片的清洗液及其使用方法
WO2023221731A1 (zh) 一种双组份硅片清洗剂及清洗方法
TWI399622B (zh) Release agent composition
CN110416364B (zh) 单晶perc背面碱刻蚀工艺
JP5479301B2 (ja) エッチング液およびシリコン基板の表面加工方法
CN1920671A (zh) 光致抗蚀剂残渣、聚合物残渣除去组合物和残渣除去方法
JP2012074678A (ja) 半導体デバイス用基板洗浄液及び洗浄方法
CN107805550A (zh) 一种可用于去毛刺的去胶剂、其制备方法和应用
EP3385363A1 (en) A post chemical-mechanical-polishing (post-cmp) cleaning composition comprising a specific sulfur-containing compound and a sugar alcohol or a polycarboxylic acid
US20060122083A1 (en) Remover composition
JP2023540279A (ja) 洗浄組成物及びその使用方法
CN112608799B (zh) 一种单晶硅片清洗剂及其应用
TW201326369A (zh) 結晶矽晶圓紋理蝕刻液組成物及紋理蝕刻方法
CN106833954A (zh) 单晶硅片制绒预清洗液的添加剂及其应用
JP2004359937A (ja) 半導体工程で使用される腐食防止剤を含む洗浄液
CN116144432A (zh) 太阳能电池硅片清洗剂及其应用
CN112143573B (zh) 硅片碱抛后清洗用添加剂及其应用
JP2012248738A (ja) シリコンウェハ用表面処理剤組成物
JP2012044118A (ja) 半導体デバイス用基板の洗浄液及び洗浄方法
KR102575323B1 (ko) 상온 탈지제 및 이를 포함하는 상온 탈지액
KR101892624B1 (ko) 결정성 실리콘 웨이퍼의 텍스쳐 에칭액 조성물 및 텍스쳐 에칭방법
KR20130025830A (ko) 포토레지스트용 스트리퍼 조성물
CN116286200A (zh) 一种半导体硅晶圆切割片清洗剂配方及其制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806684

Country of ref document: EP

Kind code of ref document: A1