WO2023221666A1 - 一种化合物及其在有机光电器件的应用 - Google Patents

一种化合物及其在有机光电器件的应用 Download PDF

Info

Publication number
WO2023221666A1
WO2023221666A1 PCT/CN2023/085522 CN2023085522W WO2023221666A1 WO 2023221666 A1 WO2023221666 A1 WO 2023221666A1 CN 2023085522 W CN2023085522 W CN 2023085522W WO 2023221666 A1 WO2023221666 A1 WO 2023221666A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
compound
group
same
Prior art date
Application number
PCT/CN2023/085522
Other languages
English (en)
French (fr)
Inventor
王鹏
王湘成
何睦
Original Assignee
上海钥熠电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海钥熠电子科技有限公司 filed Critical 上海钥熠电子科技有限公司
Publication of WO2023221666A1 publication Critical patent/WO2023221666A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C403/00Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
    • C07C403/06Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by singly-bound oxygen atoms
    • C07C403/12Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by singly-bound oxygen atoms by esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C409/00Peroxy compounds
    • C07C409/02Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides
    • C07C409/14Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides the carbon atom belonging to a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/625Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing at least one aromatic ring having 7 or more carbon atoms, e.g. azulene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/08One of the condensed rings being a six-membered aromatic ring the other ring being five-membered, e.g. indane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/10One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/12One of the condensed rings being a six-membered aromatic ring the other ring being at least seven-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • C07C2603/50Pyrenes; Hydrogenated pyrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/52Ortho- or ortho- and peri-condensed systems containing five condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/94Spiro compounds containing "free" spiro atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/104Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the field of organic electroluminescent materials, and in particular to a compound and its application in organic optoelectronic devices.
  • OLED Organic Light Emission Diodes
  • OLED Organic Light Emission Diodes
  • Common functional organic materials used in OLED devices include: hole injection materials, hole transport materials, hole blocking materials, electron injection materials, electron transport materials, electron blocking materials, luminescent host materials and luminescent guests (dyes), etc. .
  • N,N'-diphenyl-N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine has a moderate highest occupied orbital energy level and Due to its good hole mobility, it is widely used in organic electroluminescent devices with various colors of light.
  • the glass transition temperature of this molecule is low (98°C), and the device is prone to phase change under the action of accumulated Joule heat during long-term operation, which has a greater impact on the life of the device. Therefore, it is necessary to design hole transport materials with both high mobility and glass transition temperature.
  • green light devices there have always been some problems with the lifetime of hole transport materials, which restricts the use of devices. Therefore, it is of great significance to develop hole transport materials with high efficiency and long life.
  • Patent Document 1 and Patent Document 2 record that introducing some alkyl groups into the side chain far away from the nitrogen atom can improve the migration efficiency of the material.
  • Patent Document 3 records that the mobility of the material is improved by introducing a benzoalkyl group into the structure of a triarylamine based on spirolofluorenoxanthene, but the effect is not significant.
  • the HOMO the HOMO
  • Patent Document 4 By introducing a benzene ring adjacent to the nitrogen atom, the life of the material can be improved, but the mobility needs to be further improved.
  • Patent documents are:
  • Patent document 1 CN113773207A
  • Patent Document 2 KR1020220049676A
  • Patent document 3 CN114507222A
  • Patent Document 4 KR1020170092092
  • the purpose of the present invention is to provide a compound and its application in organic optoelectronic devices to solve the problems in the prior art.
  • one aspect of the present invention provides a compound, the chemical structure of which is shown in Formula (I):
  • the group A is selected from one or more of the following groups:
  • Z 1 -Z 75 , Z 76 -Z 121 are each independently selected from CR 3 R 4 , NR 5 , SiR 6 R 7 , BR 8 , O or S; *1, *2 are the connection sites of group A; * 1 or *2 can be connected to any position on group A;
  • X 1 and _ _ _ _ _ _ _ _ _ independently selected from hydrogen, deuterium, substituted or unsubstituted linear or branched C1-C30 alkyl; substituted or unsubstituted C1-C30 heteroalkyl, substituted or unsubstituted C3-C30 ring Alkyl, substituted or unsubstituted C3-C30 heterocycloalkyl, substituted or unsubstituted C6-C30 aryl, or substituted or unsubstituted C6-C30 heteroaryl;
  • L 1 to L 3 are the same or different, each independently selected from a single bond, a substituted or unsubstituted C6-C30 arylene group, a substituted or unsubstituted C3-C30 heteroarylene group;
  • Ar 1 and Ar 2 may be the same or different, and each is independently selected from a substituted or unsubstituted C6-C30 aryl group and a substituted or unsubstituted C6-C30 heteroaryl group.
  • Another aspect of the present invention provides an organic layer, including the compound according to the first aspect of the present invention.
  • the compound of the present invention can form an organic layer with other components and can be used in organic optoelectronic devices.
  • an organic optoelectronic device which includes a first electrode, a second electrode and an organic layer as described above in the present invention, wherein the organic layer is a hole injection layer, a hole transport layer, a light-emitting layer, At least one of the electron injection layer or the electron transport layer.
  • Another aspect of the present invention provides a display or lighting device, including the organic optoelectronic device as mentioned above in the present invention.
  • a benzalkyl group is introduced into the group adjacent to the nitrogen atom.
  • benzalkyl groups have better electron transport capabilities, so the overall compound has good hole transport properties.
  • the introduction of benzoalkyl groups adjacent to nitrogen atoms can increase the triplet energy level of the molecule, making the triplet state of the material stable, thereby increasing the lifespan.
  • there is a weak conjugation effect between the nitrogen atom and the benzalkyl group which improves the hole transport capability of the molecule.
  • the device when the compound of the present invention is applied to an organic device, the device can have a high hole mobility, and can effectively block electrons and excitons from entering the hole transport layer, thereby improving the efficiency of the device.
  • the molecules It has high stability and can further improve the luminous efficiency and service life of the device.
  • L 1 when L 1 is not a single bond, the HOMO and LUMO energy levels of the molecule are adjusted to better match the device because of the introduction of aromatic groups.
  • the introduction of aryl groups reduces the triplet energy level of the molecule and improves the thermal stability of the molecule. What is even more surprising is that compared with when L 1 is a single bond, when L 1 is not a single bond, the efficiency and lifespan of the material molecules are significantly improved, and the material is more suitable for use in blue devices.
  • the inventor of the present invention provides a compound based on the benzoalkyl series.
  • the inventor of the present invention discovered that by introducing benzoalkane derivatives into the triarylamine system, a series of airborne compounds with excellent performance were obtained. hole transport material.
  • the introduction of benzoalkane derivatives at positions adjacent to nitrogen atoms was originally just to use the electron-donating properties of the aliphatic ring to improve the mobility of the material.
  • the thermal stability and service life of the material are improved. will be reduced, but what is unexpected is that the life of the material is greatly improved.
  • [Substituted or unsubstituted] means substituted with one or more substituents selected from the following: deuterium, halogen group, nitrile group, nitro group, hydroxyl group, carbonyl group, ester group, imide group, amino group, phosphine oxide Group, alkoxy, aryloxy, alkylthio, arylthio, alkylsulfonyl, arylsulfonyl, silyl, boron, alkyl, cycloalkyl, alkenyl, aryl , aralkyl, arylalkenyl, alkylaryl, alkylamino, aralkylamine, heteroarylamino, arylamine, arylphosphine and heteroaryl, acenaphthyl, compound base group, or unsubstituted; or substituted by a substituent connecting two or more of the substituents exemplified above, or unsubstitute
  • alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited.
  • alkyl groups include But not limited to methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl Base-butyl, pentyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2- Pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl,
  • alkyl groups also applies to alkyl groups in aralkyl, aralkylamino, alkylaryl and alkylamino groups.
  • Heteroalkyl can be a linear or branched alkyl group containing heteroatoms, and the number of carbon atoms is not particularly limited.
  • heteroalkyl groups include, but are not limited to, alkoxy, alkylthio, alkylsulfonyl, and the like.
  • Alkoxy groups may include, for example, but are not limited to methoxy, ethoxy, n-propoxy, isopropoxy, i-propyloxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, isopentyloxy, n-hexyloxy, 3,3-dimethylbutoxy, 2-ethylbutoxy, n-octyloxy Oxygen, n-nonyloxy, n-decyloxy, benzyloxy, p-methylbenzyloxy, etc.
  • Alkylthio groups may include, for example, but are not limited to, methylthio, ethylthio, n-propylthio, isopropylthio, isopropylthio, n-butylthio, isobutylthio, tert-butylthio, sec-butylthio base, n-pentylthio group, neopentylthio group, isopentylthio group, n-hexylthio group, 3,3-dimethylbutylthio group, 2-ethylbutylthio group, n-octylthio group, n-nonylthio group, N-decylthio, benzylthio, etc.
  • Cycloalkyl may be cyclic, and the number of carbon atoms is not particularly limited.
  • cycloalkyl includes, but is not limited to, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methyl cyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3,4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, etc.
  • Heterocycloalkyl may be a cycloalkyl group containing heteroatoms, and the number of carbon atoms is not particularly limited. In some embodiments, heterocycloalkyl groups include, but are not limited to wait.
  • Aryl group is not particularly limited, and the aryl group may be a monocyclic aryl group or a polycyclic aryl group.
  • monocyclic aryl groups include, but are not limited to, phenyl, biphenyl, terphenyl, tetraphenyl, pentaphenyl, and the like.
  • Polycyclic aromatic groups include but are not limited to naphthyl, anthracenyl, phenanthrenyl, pyrenyl, perylene, fluorenyl, etc.
  • the fluorenyl group may be substituted, such as 9,9'-dimethylfluorenyl, 9,9'-dibenzofluorenyl, etc.
  • two of the substituents can be combined with each other to form a spiro ring structure, such as 9,9'-spirobifluorenyl and the like.
  • aryl groups can be applied to arylene groups, except that arylene groups are divalent.
  • aryl groups can be used for aryloxy, arylthio, arylsulfonyl, arylphosphine, aralkyl, aralkylamine, arylalkenyl, alkylaryl, arylamine and the aryl group in the arylheteroarylamine group.
  • Heteroaryl contains one or more of N, O, P, S, Si and Se as heteroatoms.
  • Heteroaryl groups include but do not Limited to pyridyl, pyrrolyl, pyrimidinyl, pyridazinyl, furyl, thienyl, imidazolyl, pyrazolyl, azolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, diazolyl, thiazolyl Diazolyl, dithiazolyl, tetrazolyl, pyranyl, thiopyranyl, pyrazinyl, oxazinyl, thiazinyl, dioxenyl, triazinyl, tetrazinyl, quinolinyl , isoquinolinyl, quinolinyl, quinazolinyl, quinoxalinyl, naphthyridinyl, acridiny
  • heteroaryl groups applies to heteroarylamino groups and heteroaryl groups in arylheteroarylamine groups.
  • heteroarylene applies to heteroarylene, except that the heteroarylene is divalent.
  • the present invention provides a compound, the chemical structure of which is shown in formula (I):
  • the group A is selected from one or more of the following groups:
  • Z 1 -Z 75 and Z 76 -Z 121 are each independently selected from CR 3 R 4 , NR 5 , SiR 6 R 7 , BR 8 , O or S; *1, *2 are the connection sites of group A; * 1 or *2 can be connected to any position on group A;
  • X 1 and X 2 are independently selected from single bonds, CR 9 R 10 , NR 11 , SiR 12 R 13 , O or S, or R 9 and R 10 bonds to form a ring.
  • a single key is a type of direct key.
  • X 1 is a single bond, which means that the carbons on the two benzene rings connected to X 1 are directly connected.
  • R 9 and R 10 are bonded to form a ring to form an aliphatic hydrocarbon ring, aromatic hydrocarbon ring, aliphatic heterocyclic ring, aromatic heterocyclic ring, or a condensed ring thereof.
  • R 9 and R 10 are bonded to form Combined into formula (I), it is
  • R 1 to R 13 are the same or different, each independently selected from hydrogen, deuterium, substituted or unsubstituted linear or branched C1-C30 alkyl; substituted or unsubstituted C1-C30 heteroalkyl, substituted Or unsubstituted C3-C30 cycloalkyl, substituted or unsubstituted C3-C30 heterocycloalkyl, substituted or unsubstituted C6-C30 aryl, or substituted or unsubstituted C6-C30 heteroaryl base;
  • R 1 and R 2 not only represent a single substituent group, but also represent multiple identical or different substituent groups.
  • R 1 and R 2 can be selected from the following structures:
  • L 1 to L 3 are the same or different, each independently selected from a single bond, a substituted or unsubstituted C6-C30 arylene group, a substituted or unsubstituted C3-C30 heteroarylene group;
  • Ar 1 and Ar 2 may be the same or different, and each is independently selected from a substituted or unsubstituted C6-C30 aryl group and a substituted or unsubstituted C6-C30 heteroaryl group.
  • Z (Z 1 -Z 75 , Z 76 -Z 121 ) is selected from CR 3 R 4 , or NR 5 or SiR 6 R 7 and X (X 1 , X 2 ) is selected from CR 9 R 10 , NR 11.
  • SiR 12 R 13 because the aliphatic alkyl group, nitrogen atom and silane group have electron donating effect, the A ring has an electron donating effect, which can fully stabilize the nitrogen atom of triarylamine, making it more stable, thereby increasing the life of the material. .
  • the number of carbon atoms of the aforementioned alkyl group can also be 1 to 10, 1 to 20, or 20 to 30, etc.
  • the number of carbon atoms of the aforementioned cycloalkyl group may also be 3 to 10, 3 to 20, or 3 to 30, etc.
  • the number of carbon atoms of the aforementioned heteroalkyl group may also be 3 to 10, 1 to 20, or 20 to 30, etc.
  • the number of carbon atoms of the aforementioned heterocycloalkyl group may also be 3 to 10, 3 to 20, or 20 to 30, etc.
  • the number of carbon atoms of the aryl group mentioned above can also be 6 to 10, 6 to 20, or 20 to 30, etc.
  • the number of carbon atoms of the aforementioned heteroaryl group can also be 6 to 10, 6 to 20, or 20 to 30, etc.
  • the group A is selected from any one of the following groups:
  • R 16 to R 23 are each independently selected from hydrogen, deuterium, substituted or unsubstituted C1-C60 alkyl, substituted or unsubstituted C1-C60 cycloalkyl, substituted or unsubstituted C1-C60 hetero One or more of an alkyl group, a substituted or unsubstituted C1-C60 heterocycloalkyl group, a substituted or unsubstituted C1-C60 aryl group, or a substituted or unsubstituted C1-C60 heteroaryl group;
  • connection point of the atom which is not limited to a single link, but can also represent multiple links; the link point is not only limited to the ring of the aforementioned group A, but also represents any position of the group shown; it can also represent and Adjacent atoms bond to form a ring.
  • the group A is selected from any one of the following groups:
  • group A is selected from one or more of the following groups:
  • X 1 and X 2 are the same or different, and are each independently selected from single bonds, O, S,
  • X 1 Represents the connection to the benzene ring, for example, Linked to adjacent benzene rings to form
  • X 2 Represents connection with benzene ring. Linked to adjacent benzene rings to form
  • the R 1 and R 2 are selected from hydrogen.
  • R 1 and R 2 are preferably selected from deuterium.
  • R 3 to R 13 are the same or different, and each is independently selected from hydrogen, deuterium, substituted or unsubstituted linear or branched C1-C30 alkyl group; substituted or unsubstituted C1 ⁇ C12 alkoxy group, substituted or unsubstituted C1 ⁇ C12 alkylthio group, substituted or unsubstituted C3 ⁇ C30 cycloalkyl group, substituted or unsubstituted C3 ⁇ C30 heterocycloalkyl group, substituted or unsubstituted C3 ⁇ C30 heterocycloalkyl group, A substituted C6-C30 aryl group or a substituted or unsubstituted C6-C30 heteroaryl group.
  • each of L 1 to L 3 is independently selected from a single bond, a substituted or unsubstituted phenylene group, a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted biphenylene, substituted or unsubstituted terphenylene, substituted or unsubstituted anthracene, substituted or unsubstituted phenylene, wait.
  • Ar 3 is selected from a C6-C20 aryl group or a C2-C15 heteroaryl group.
  • Ar 3 is preferably phenyl, naphthyl, etc.
  • L 1 to L 3 are each independently selected from phenylene, naphthylene, biphenylene,
  • L 2 Represents connection with Ar 1 or N.
  • L 3 Represents connection with Ar 2 or N.
  • Ar 1 and Ar 2 are each independently selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted terphenyl,
  • X 1 and X 2 are a single bond, and the other is CR 9 R 10 .
  • This can be deduced unquestionably from the compounds of formula (I). That is, X 1 is selected from a single bond, and X 2 is selected from CR 9 R 10 .
  • X 1 is selected from a single bond
  • X 2 is selected from CR 9 R 10 .
  • R 1 , R 2 , A, L 1 , L 2 , L 3 , Ar 1 and Ar 2 are as defined in the compound of formula (I).
  • R 9 and R 10 are independently selected from substituted or unsubstituted linear or branched C1-C30 alkyl groups; substituted or unsubstituted C1-C12 alkoxy groups, substituted or unsubstituted C1-C12 alkylthio groups group, a substituted or unsubstituted C3-C30 cycloalkyl group, a substituted or unsubstituted C3-C30 heterocycloalkyl group, a substituted or unsubstituted C6-C30 aryl group, or a substituted or unsubstituted C6-C30 A heteroaryl group; or bonded to an adjacent group to form a ring.
  • R 1 and R 2 are each independently selected from hydrogen and deuterium;
  • R 9 and R 10 are independently selected from substituted or unsubstituted linear or branched C1-C30 alkyl groups; substituted or unsubstituted C1-C12 alkoxy groups, substituted or unsubstituted C1-C12 alkylthio groups group, a substituted or unsubstituted C3-C30 cycloalkyl group, a substituted or unsubstituted C3-C30 heterocycloalkyl group, a substituted or unsubstituted C6-C30 aryl group, or a substituted or unsubstituted C6-C30 A heteroaryl group; or bonded to an adjacent group to form a ring.
  • A, L 2 , L 3 , Ar 1 and Ar 2 are as defined in the compound of formula (I).
  • X 1 and X 2 described in the description are each independently selected from single bonds, wait.
  • Chemical formula (II) can be represented by the following structural formula:
  • R 1 , R 2 , A, L 2 , L 3 , Ar 1 and Ar 2 are as defined in the compound of formula (II).
  • a ring is selected from the following structures:
  • R 1 , R 2 , R 9 , R 10 , A, L 2 , L 3 , Ar 1 and Ar 2 are as defined in the compound of formula (II).
  • R 1 , R 2 , A, L 2 , L 3 , Ar 1 and Ar 2 are as defined in the compound of formula (II).
  • R 1 and R 2 are each independently selected from hydrogen and deuterium;
  • R 9 and R 10 are independently selected from substituted or unsubstituted linear or branched C1-C30 alkyl groups; substituted or unsubstituted C1-C12 alkoxy groups, substituted or unsubstituted C1-C12 alkylthio groups group, a substituted or unsubstituted C3-C30 cycloalkyl group, a substituted or unsubstituted C3-C30 heterocycloalkyl group, a substituted or unsubstituted C6-C30 aryl group, or a substituted or unsubstituted C6-C30 A heteroaryl group; or bonded to an adjacent group to form a ring.
  • A, L 2 , L 3 , Ar 1 and Ar 2 are as defined in the compound of formula (I).
  • X 1 and X 2 described in the description are each independently selected from single bonds, wait.
  • Chemical formula (VII) can be represented by the following structural formula:
  • R 1 , R 2 , A, L 2 , L 3 , Ar 1 and Ar 2 are as defined in the compound of formula (VII).
  • the A ring is selected from the following structures:
  • R 1 , R 2 , R 9 , R 10 , A, L 2 , L 3 , Ar 1 and Ar 2 are as defined in the compound of formula (VII).
  • R 1 , R 2 , A, L 2 , L 3 , Ar 1 and Ar 2 are as defined in the compound of formula (VII).
  • the compound is selected from any one of the following chemical structures:
  • the above structure may be unsubstituted or substituted with one or more substituents selected from the following.
  • substituents selected from the following.
  • the lifespan of the material is also somewhat different depending on the structure of the molecule and the application scenarios.
  • group A and group B as long as one of group B is a non-carbon atom, it is a heterocyclic structure, the listed structures can be divided into the following categories:
  • group B when _ _ _ Power supply performance has limited impact on molecular properties ; when X 2 is arbitrarily selected from carbon atoms CR 9 ' R 10 ' , It does not have strong absorption or power supply properties and has limited impact on molecular properties. These two situations can be classified into the same category. where R 9' R 10' is defined the same as R 9 R 10 .
  • X 1 and X 2 in the B group are each independently selected from single bonds, CR 9 R 10 , NR 11 , SR 12 R 13 , or S. As long as one of group B is a heteroatom (either NR 11 , SiR 12 R 13 , O or S), it is classified as a ring structure.
  • the performance is greatly affected by heteroatoms and can be divided into one category.
  • X 1 is selected from any heteroatom NR 11 , SiR 12 R 13 , 0 or S
  • X 2 is a single bond
  • the properties of heteroatoms NR 11 , SiR 12 R 13 , 0 or S are affected by the heteroatom of X 1 ; similarly, when X 2 is selected from any heteroatom NR 11 , SiR 12 R 13 , O or S, regardless of Is it a single bond, CR 9 R 10 , or heteroatom NR 11 , SiR 12 R 13 , O or S, its performance is affected by the heteroatom of X 2 , both cases can be classified into one category.
  • the compound of the present invention can be combined with other compounds to form an organic layer, which can be mixed and used in various scenarios.
  • This organic layer can be used in organic optoelectronic devices.
  • the compound of the present invention has different triplet energy levels of molecules due to different compositions. According to different application scenarios, the appropriate energy level can be selected to be applied to red light devices or green light devices.
  • the compounds of the present invention have different molecular properties due to different group combinations, and can be used in green light buffer layers.
  • the so-called green light buffer layer refers to a functional layer that can adjust the migration rate and quantity of electrons and holes in the device.
  • the organic optoelectronic device provided by the present invention includes a first electrode, a second electrode, and one or more organic layers disposed between the first electrode and the second electrode. It is a bottom or top light-emitting device structure, and its organic layer It can be a single-layer structure, or it can be a multi-layered series structure in which two or more organic layers are laminated.
  • the organic layers include, for example, a hole injection layer, a hole transport layer, a light-emitting layer, an electron injection layer, or an electron injection layer. At least one of the transport layers. Common methods and materials for preparing organic optoelectronic devices can be used.
  • the organic photoelectric device of the present invention uses compounds as the organic layer of the organic photoelectric device.
  • the first electrode serves as the anode layer
  • the anode material can be, for example, a material with a large work function, so that holes can be injected smoothly into the organic layer.
  • Further examples may be metals, metal oxides, combinations of metals and oxides, conductive polymers, and the like.
  • the metal oxide may be, for example, indium tin oxide (ITO), zinc oxide, indium oxide, indium zinc oxide (IZO), etc.
  • the second electrode serves as the cathode layer
  • the cathode material can be, for example, a material with a small work function, so that electrons can be injected smoothly into the organic layer.
  • the cathode material may be, for example, a metal or a multi-layer structural material.
  • Metals may be, for example, magnesium, silver, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, tin and lead, or alloys thereof.
  • the cathode material is preferably selected from magnesium and silver.
  • the material of the hole injection layer is preferably a material whose highest occupied molecular orbital (HOMO) is between the work function of the anode material and the HOMO of the surrounding organic layer.
  • the anode is the material that receives holes.
  • the material of the hole transport layer is a material with high mobility for holes, which is suitable as a material that receives holes from the anode or hole injection layer and transports the holes to the light-emitting layer.
  • Materials of the hole transport layer include, but are not limited to, organic materials of arylamines, conductive polymers, block copolymers having both conjugated parts and non-conjugated parts, and the like.
  • the material of the light-emitting layer can usually be selected from materials with good quantum efficiency for fluorescence or phosphorescence as materials that can receive holes and electrons from the hole transport layer and the electron transport layer respectively and make them A material in which holes and electrons combine to emit light in the visible light range.
  • the material of the electron transport layer is a material with high mobility for electrons, which is suitable as a material that advantageously receives electrons from the cathode and transports the electrons to the light-emitting layer.
  • the material of the covering layer usually has a high refractive index, so it can help to improve the luminous efficiency of the organic light-emitting device, especially the external luminous efficiency.
  • the organic optoelectronic devices are organic photovoltaic devices, organic light-emitting devices, organic solar cells, electronic paper, organic photoreceptors, organic thin film transistors, etc.
  • Another aspect of the present invention provides a display or lighting device, including the organic optoelectronic device of the present invention.
  • the compound represented by the above formula (I) can be synthesized using known methods. For example, cross-coupling reactions using transition metals such as nickel and palladium. Other synthesis methods use CC, CN coupling reactions of transition metals such as magnesium or zinc. The above reaction is limited to mild reaction conditions and superior selectivity for various functional groups. Suzuki and Buchwald reactions are preferred.
  • the compounds of the present invention are illustrated by the following examples, but are not limited to the compounds and synthetic methods exemplified in these examples.
  • the initial raw materials and solvents of the present invention and some commonly used OLED intermediates and other products are purchased from domestic OLED intermediate manufacturers; various palladium catalysts, ligands, etc. are purchased from Sigma-Aldrich Company.
  • 1 H-NMR data were measured using a JEOL (400MHz) nuclear magnetic resonance instrument; HPLC data were measured using a Shimadzu LC-20AD high-performance liquid chromatograph.
  • the preparation process is as follows: forming a transparent anode ITO film layer (thickness 150 nm) on a glass substrate to obtain a first electrode as an anode. Subsequently, a mixed material of compound T-1 and compound T-2 was evaporated on the anode surface as a hole injection layer through vacuum evaporation method, with a mixing ratio of 3:97 (mass ratio) and a thickness of 10 nm. Then compound T-2 was evaporated to a thickness of 100 nm on the hole injection layer to obtain the first hole transport layer. Subsequently, compound 1 of the present invention was evaporated to a thickness of 10 nm on the first hole transport layer to obtain a second hole transport layer.
  • compound T-3 and compound T-4 were co-evaporated at a mass ratio of 95:5 to form an organic light-emitting layer with a thickness of 40 nm.
  • compound T-5 was sequentially evaporated to form a hole blocking layer (thickness 10 nm), and compound T-6 and LiQ were mixed in a ratio of 4:6 (mass ratio) to form an electron transport layer (thickness 30 nm).
  • magnesium (Mg) and silver (Ag) are mixed at an evaporation rate of 1:9 and vacuum evaporated on the electron injection layer to serve as the second electrode 109 to complete the manufacture of the organic light-emitting device.
  • An organic electroluminescent device was produced using the same method as Device Example 1, except that when forming the second hole transport layer, Compound HT-1 and Compound HT-2 were used instead of Compound 1 respectively.
  • the operating voltage and efficiency were calculated through a computer-controlled Keithley 2400 test system.
  • Use Polaronix (McScience Co.) equipped with power supply and photodiode as detection unit
  • the life measurement system obtains the device life under dark conditions.
  • Each set of red light device embodiments and red light device comparative example 1 are produced and tested in the same batch as the red light device comparative example 2.
  • the working voltage, efficiency and efficiency of the red light device comparative example 1 are compared.
  • the lifetimes are all recorded as 1, and the ratios of the corresponding indicators of Device Examples 1 to 65 and Red Light Device Comparative Example 2 to Device Comparative Example 1 are calculated, as shown in Table 1.
  • the compounds of the present invention are suitable for red light devices.
  • Green light device embodiment 1
  • the preparation process is as follows: forming a transparent ITO film layer (thickness 150 nm) on a glass substrate through a magnetron sputtering process, and obtaining a first electrode as an anode.
  • a mixed material of compound T-1 and compound T-2 was evaporated on the anode surface as hole injection T-2 (thickness 100 nm) and compound 1 of the present invention (thickness 40 nm) to obtain the first hole transport layer and the second hole transport layer respectively. hole transport layer.
  • the compound pGH, the compound nGH and the compound GD were co-evaporated at a mass ratio of 45:45:10 to form an organic light-emitting layer (thickness 40 nm).
  • compound T-5 was sequentially evaporated on the surface of the organic light-emitting layer to form a hole blocking layer (thickness 10 nm), and compound T-6 and LiQ were mixed in a ratio of 4:6 (mass ratio) to form an electron transport layer (thickness 30 nm).
  • magnesium (Mg) and silver (Ag) were mixed and deposited on the surface of the electron transport layer at a vapor deposition rate of 1:9 to form a second electrode with a thickness of 10 nm as the cathode to complete the manufacture of the organic light-emitting device.
  • Green light device embodiments 2 to 51 Green light device embodiments 2 to 51
  • the numbers are respectively 4, 20, 30, 38, 452, 456, 457, 458, 461, 462, 464, 465, 467, 43, 127, 2, 11, 6, 293, 153, 191, 248, 400, 204, 307, 163, 256, 145, 175, 58, 77, 57, 68, 115, 55, 220, 96, 229, 100, 93, 98, 343, 391, 403, 417, 428, Except that 419, 438, 439 and 440 were used instead of compound 1, the same method as in Example 1 of the green light device was used to prepare an organic electroluminescent device.
  • An organic electroluminescent device was produced using the same method as in Example 1 of the green light device, except that when forming the light-emitting layer, compounds HT-3, HT-4, HT-5 and HT-6 were used instead of compound 1.
  • Example 6 deuterium atoms were introduced into compound 452, and the device life was improved.
  • the A ring or B ring of the compound of the present invention contains heteroatoms or not, when it is applied to a red light device, the voltage reduction, efficiency and life of the device are greatly improved; and when the A ring or B ring contains heteroatoms, , is not suitable for use in green light devices; when the A ring or B ring does not contain heteroatoms, the voltage of the green light device is reduced, and the efficiency and lifespan are greatly improved. More suitable for the application of green light devices.
  • the preparation process is as follows:
  • compound F4-TCNQ was evaporated on the anode surface to form a hole injection layer with a thickness of 10nm, and compound NPB (thickness 100nm) was vacuum evaporated on the hole injection layer, and compound 1 (40nm) was formed respectively.
  • a hole transport layer and a second hole transport layer were formed respectively.
  • ETL electron injection layer
  • the compound of the present invention has great application value in organic optoelectronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及有机电致发光材料领域,特别是涉及一种化合物及其在有机光电器件的应用。所述化合物的化学结构如式(I):本发明的化合物应用到有机器件上,能使器件具备有较高的空穴迁移率,并且能够有效的阻挡电子、激子进入到空穴传输层中,从而提高器件的效率,同时分子具有高的稳定性,能进一步提升器件的发光效率和使用寿命。

Description

一种化合物及其在有机光电器件的应用 技术领域
本发明涉及有机电致发光材料领域,特别是涉及一种化合物及其在有机光电器件的应用。
背景技术
有机电致发光(OLED:Organic Light Emission Diodes)器件是一类具有类三明治结构的器件,包括正负电极膜层及夹在电极膜层之间的有机功能材料层。目前,该技术已被广泛应用于新型照明灯具、智能手机及平板电脑等产品的显示面板,进一步还将向电视等大尺寸显示产品应用领域扩展,是一种发展快、技术要求高的新型显示技术。常见的应用于OLED器件的功能化有机材料有:空穴注入材料、空穴传输材料、空穴阻挡材料、电子注入材料、电子传输材料、电子阻挡材料以及发光主体材料和发光客体(染料)等。基于此,OLED材料界一直致力于开发新的有机电致发光材料以实现器件低启动电压、高发光效率和更优的使用寿命。到目前为止,现有的OLED光电功能材料的发展还远远落后于面板制造企业对OLED材料的要求,因此开发性能更好的有机功能材料满足当前产业发展需求显得尤为紧迫。目前空穴传输材料主要采用具有良好的空穴传输特性的芳香胺化合物。N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺(NPB)由于具有适中的最高已占据轨道能级和良好的空穴迁移率,从而被广泛应用于多种色光的有机电致发光器件中。然而,该分子的玻璃化转化温度较低(98℃),器件在长时间工作时累积焦耳热的作用下容易发生相变,从而对器件的寿命造成较大的影响。因此,设计同时具有较高迁移率和玻璃化转变温度的空穴传输材料是十分有必要的。同时,在绿光器件中,空穴传输材料的寿命一直存在一些问题,制约了器件的使用,因此开发高效率及高寿命的空穴传输材料具有重要意义。
现有技术中,为了提升空穴传输材料的效率及寿命,采取增加供电子基团或增大分子的共轭程度。例如:专利文献1及专利文献2记载,在远离氮原子的侧链上引入一些烷基基团,能提升材料的迁移效率,但是随着烷基基团的引入,导致材料的热稳定性及电学稳定性降低,从而器件的寿命得不到保障。专利文献3记载,以螺芴氧杂蒽为母体的三芳胺结构上引入苯并烷基基团,材料的迁移率得到提升,但是效果不显著,根据分子的模拟计算结果显示,分子的HOMO、LUMO能级分布均没有氧杂蒽基团的贡献,导致分子的迁移率提升不够。
专利文献4:在邻近氮原子的位置引入苯环,材料的寿命得以提升,但是迁移率还要进一步提升。
专利文献:
专利文献1:CN113773207A
专利文献2:KR1020220049676A
专利文献3:CN114507222A
专利文献4:KR1020170092092
发明内容
如上所述,在现有技术中,在远离氮原子的侧链上引入烷基基团,能提升材料的迁移率,但是尚未兼顾解决材料的效率及寿命的问题。鉴于以上所述现有技术的缺点,本发明的目的在于提供一种化合物及其在有机光电器件的应用,用于解决现有技术中的问题。
为实现上述目的及其他相关目的,本发明一方面提供一种化合物,所述化合物的化学结构如式(Ⅰ)所示:
其中:
所述基团A选自如下所示基团中的一种或多种:
Z1-Z75、Z76-Z121各自独立选自CR3R4,NR5,SiR6R7,BR8、O或S;*1,*2为基团A的连接位点;*1或*2可与基团A上的任意位置连接;
X1,X2各自独立选自单键,CR9R10,NR11,SiR12R13,O或S;R1-R13相同或不同,各 自独立地选自氢、氘、取代或未取代的直链或支链的C1~C30的烷基;取代或未取代的C1~C30的杂烷基、取代或未取代的C3~C30的环烷基、取代或未取代的C3~C30的杂环烷基、取代或未取代的C6~C30的芳基、或取代或未取代的C6~C30的杂芳基;
L1-L3相同或不相同,各自独立选自单键,取代或未取代的C6~C30的亚芳基、取代或未取代的C3~C30的亚杂芳基;
Ar1和Ar2相同或不相同,各自独立选自取代或未取代的C6~C30的芳基、取代或未取代的C6~C30的杂芳基。
本发明另一方面提供一种有机层,包括如本发明第一方面所述的化合物。
本发明的化合物能与其他组分形成一种有机层,可以在有机光电器件中应用。
本发明另一方面提供一种有机光电器件,其包括第一电极、第二电极和如本发明前述的有机层,其中,所述有机层为空穴注入层、空穴传输层、发光层、电子注入层或电子传输层中至少一层。
本发明另一方面提供一种显示或照明装置,包括如本发明前述的有机光电器件。
与现有技术相比,本发明的有益效果为:
本发明提供的化合物,在邻近氮原子的基团上引入苯并烷基。苯并烷基相对于芳基,具有更好的电子传输能力,从而整体化合物具有良好的空穴传输性能。同时,因为在氮原子的邻近位置引入苯并烷基,能提升分子的三线态能级,使之材料的三线态稳定,从而寿命得以提升。另外,氮原子同苯并烷基之间有弱的共轭效应,从而提升了分子的空穴传输能力。因此,本发明的化合物应用到有机器件上,能使器件具备有较高的空穴迁移率,并且能够有效的阻挡电子、激子进入到空穴传输层中,从而提高器件的效率,同时分子具有高的稳定性,能进一步提升器件的发光效率和使用寿命。
此外,当L1不为单键时,因为引入了芳香基团,调节分子的HOMO、LUMO能级,使之更匹配器件。另外,芳基的引入,降低了分子的三线态能级,提升了分子的热稳定型。更令人意外的是,相较于L1为单键时,当L1不为单键时,材料分子的效率及寿命显著提升,材料更加适合应用于蓝色器件中。
具体实施方式
以下,详细说明具体公开的化合物及其在有机光电器件中的应用的实施方式。本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过 另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
在进一步描述本发明具体实施方式之前,应理解,本发明的保护范围不局限于下述特定的具体实施方案;还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围;在本发明说明书和权利要求书中,除非文中另外明确指出,单数形式“一个”、“一”和“这个”包括复数形式。
当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本发明中使用的所有技术和科学术语与本技术领域技术人员通常理解的意义相同。除实施例中使用的具体方法、设备、材料外,根据本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。
本发明发明人经过大量探索研究,提供一种基于苯并烷基系列的化合物,本发明的发明人发现,将苯并烷烃衍生物引入到三芳胺类体系中,获得了一系列性能优良的空穴传输材料。在邻近氮原子的位置将苯并烷烃衍生物引入,原本仅仅因为只是利用脂肪环的供电子特性来提高材料的迁移率,但是通常情况下,引入脂肪环后,材料的热稳定性和使用寿命会降低,然而令人意想不到的是材料的寿命得到大幅提升。其可能的原因又两点:1)苯并烷基的引入,导致分子集团间的空间位阻的增加,从而提升了分子的三线态能级,因而提升了分子的三线态稳定性,进一步提升材料的寿命。2)苯并烷基同氮原子之间有微弱的共轭,可以稳定分子,从而提升材料的寿命。因此,这类化合物在提升迁移率的同时,还能够为有机电致发光器件提供较长的使用寿命。在此基础上,完成了本发明。
本发明中的取代基的实例描述如下,但取代基并不限于此:
【取代或未取代】是指经选自以下的一个或更多个取代基取代:氘、卤素基团、腈基、硝基、羟基、羰基、酯基、酰亚胺基、氨基、氧化膦基团、烷氧基、芳氧基、烷基硫基、芳基硫基、烷基磺酰基、芳基磺酰基、甲硅烷基、硼基、烷基、环烷基、烯基、芳基、芳烷基、芳烯基、烷基芳基、烷基胺基、芳烷基胺基、杂芳基胺基、芳基胺基、芳基膦基和杂芳基,苊基,化合物基团,或未取代;或者经连接以上示例的取代基中的两个或更多个取代基的取代基取代,或未取代。例如,“连接两个或更多个取代基的取代基”可包括联苯基,即联苯基可为芳基,或者为连接两个苯基的取代基。
【烷基】可为直链或支链的,并且碳原子数没有特别限制。在一些实施例中,烷基包括 但不限于甲基、乙基、丙基、正丙基、异丙基、丁基、正丁基、异丁基、叔丁基、仲丁基、1-甲基-丁基、1-乙基-丁基、戊基、正戊基、异戊基、新戊基、叔戊基、己基、正己基、1-甲基戊基、2-甲基戊基、4-甲基-2-戊基、3,3-二甲基丁基、2-乙基丁基、庚基、正庚基、1-甲基己基、环戊基甲基、环己基甲基、辛基、正辛基、叔辛基、1-甲基庚基、2-乙基己基、2-丙基戊基、正壬基、2,2-二甲基庚基、1-乙基-丙基、1,1-二甲基-丙基、异己基、4-甲基己基、5-甲基己基。
以上对烷基的描述也可用于芳烷基、芳烷基胺基、烷基芳基和烷基胺基中的烷基。
【杂烷基】可为含杂原子的直链或支链的烷基,并且碳原子数没有特别限制。在一些实施例中,杂烷基包括但不限于可以烷氧基、烷硫基、烷基磺酰基等。烷氧基例如可以包括但不限于甲氧基、乙氧基、正丙氧基、异丙氧基(isopropoxy)、异丙氧基(i-propyloxy)、正丁氧基、异丁氧基、叔丁氧基、仲丁氧基、正戊氧基、新戊氧基、异戊氧基、正己氧基、3,3-二甲基丁氧基、2-乙基丁氧基、正辛氧基、正壬氧基、正癸氧基、苄氧基、对甲基苄氧基等。烷硫基例如可以包括但不限于甲硫基、乙硫基、正丙硫基、异丙硫基、异丙硫基、正丁硫基、异丁硫基、叔丁硫基、仲丁硫基、正戊硫基、新戊硫基、异戊硫基、正己硫基、3,3-二甲基丁硫基、2-乙基丁硫基、正辛硫基、正壬硫基、正癸硫基、苄硫基等。
【环烷基】可为环状的,并且碳原子数没有特别限制。在一些实施例中,环烷基包括但不限于环丙基、环丁基、环戊基、3-甲基环戊基、2,3-二甲基环戊基、环己基、3-甲基环己基、4-甲基环己基、2,3-二甲基环己基、3,4,5-三甲基环己基、4-叔丁基环己基、环庚基、环辛基等。
【杂环烷基】可为含杂原子的环烷基,并且碳原子数没有特别限制。在一些实施例中,杂环烷基包括但不限于等。
【芳基】没有特别限定,芳基可为单环芳基或多环芳基。在一些实施例中,单环芳基包括但不限于苯基、联苯基、三联苯基、四联苯基、五联苯基等。多环芳基包括但不限于萘基、蒽基、菲基、芘基、苝基、芴基等。芴基可为经取代的,例如9,9’-二甲基芴基、9,9’-二苯并芴基等。此外,取代基中的两个可彼此结合形成螺环结构,例如9,9’-螺二芴基等。
以上对芳基的描述可用于亚芳基,不同之处在于亚芳基为二价。
以上对芳基的描述可用于芳氧基、芳基硫基、芳基磺酰基、芳基膦基、芳烷基、芳烷基胺基、芳烯基、烷基芳基、芳基胺基和芳基杂芳基胺基中的芳基。
【杂芳基】包含N、O、P、S、Si和Se中的一个或多个作为杂原子。杂芳基包括但不 限于吡啶基、吡咯基、嘧啶基、哒嗪基、呋喃基、噻吩基、咪唑基、吡唑基、唑基、异唑基、噻唑基、异噻唑基、三唑基、二唑基、噻二唑基、二噻唑基、四唑基、吡喃基、噻喃基、吡嗪基、嗪基、噻嗪基、二氧杂环己烯基、三嗪基、四嗪基、喹啉基、异喹啉基、喹啉基、喹唑啉基、喹喔啉基、萘啶基、吖啶基、呫吨基、菲啶基、二氮杂萘基、三氮杂茚基、吲哚基、二氢吲哚基、中氮茚基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、苯并噻唑基、苯并噁唑基、苯并咪唑基、苯并噻吩基、苯并呋喃基、二苯并噻吩基、二苯并呋喃基、咔唑基、苯并咔唑基、二苯并咔唑基、吲哚并咔唑基、茚并咔唑基、吩嗪基、咪唑并吡啶基、吩嗪基、菲啶基、菲咯啉基、吩噻嗪基、咪唑并吡啶基、咪唑并菲啶基、苯并咪唑并喹唑啉基、苯并咪唑并菲啶基、螺[芴-9,9'-氧杂蒽]、苯联萘基、二萘并呋喃基、萘苯并呋喃基、二萘并噻吩基、萘苯并噻吩基、三苯基氧化膦、三苯基硼烷等。
以上对杂芳基的描述可用于杂芳基胺基和芳基杂芳基胺基中的杂芳基。
以上对杂芳基的描述可用于亚杂芳基,不同之处在于亚杂芳基为二价的。
本发明一方面提供一种化合物,所述化合物的化学结构如式(Ⅰ)所示:
其中:
所述基团A选自如下所示基团中的一种或多种:
Z1-Z75、Z76-Z121各自独立选自CR3R4,NR5,SiR6R7,BR8,O或S;*1,*2为基团A的连接位点;*1或*2可与基团A上的任意位置连接;
X1,X2各自独立选自单键,CR9R10,NR11,SiR12R13,O或S,或者R9、R10键合成环。单键是直接键的一种。例如,X1为单键,代表与X1连接的两个苯环上的碳直接连接。 R9、R10键合成环是指形成脂肪族烃环、芳香族烃环、脂肪族杂环、芳香族杂环、或其稠环。比如R9、R10键合形成结合到式(Ⅰ)中即为
R1-R13相同或不同,各自独立地选自氢、氘、取代或未取代的直链或支链的C1~C30的烷基;取代或未取代的C1~C30的杂烷基、取代或未取代的C3~C30的环烷基、取代或未取代的C3~C30的杂环烷基、取代或未取代的C6~C30的芳基、或取代或未取代的C6~C30的杂芳基;
其中R1和R2,不仅仅表示单个取代基团,也表示多个相同或不相同的取代基团。例如可以选自如下结构:
L1-L3相同或不相同,各自独立选自地单键,取代或未取代的C6~C30的亚芳基、取代或未取代的C3~C30的亚杂芳基;
Ar1和Ar2相同或不相同,各自独立地选自取代或未取代的C6~C30的芳基、取代或未取代的C6~C30的杂芳基。
上述中的Z(Z1-Z75、Z76-Z121)选自CR3R4、或NR5或SiR6R7时以及X(X1,X2)选自CR9R10、NR11、SiR12R13时,由于脂肪烷基、氮原子及硅烷基具有供电子效应,使A环具有供电子效应,能充分稳定三芳胺的氮原子,使之更稳定,从而提升材料的寿命。Z(Z1-Z75、Z76-Z121)选自BR8、O或S时、以及X(X1,X2)选自O、S时,由于BR8、O或S的吸电子特性,会导致电子向其偏移,从而影响材料的寿命。但令人意外的是,Z(Z1-Z75、Z76-Z121)选自BR8、O或S时,材料应用到红光器件中,寿命基本没有影响;然而这些材料应用到绿光器件中,其寿命比选自供电子效应的基团的寿命要低。可能的原因是,绿光器件中,激子的能量更高,对分子的稳定性要求更高,从而在红光器件中寿命无差别,而应用在绿光器件中,效率及寿命出现差异。
在一些实施例中,式(Ⅰ)中,前述提到的烷基的碳原子个数也可以为1~10、1~20、或20~30等。前述提到的环烷基的碳原子个数也可以为3~10、3~20、或3~30等。前述提到的杂烷基的碳原子个数也可以是3~10、1~20、或20~30等。前述提到的杂环烷基的碳原子个数也可以为3~10、3~20、或20~30等。前述提到的芳基的碳原子个数也可以为6~10、6~20、或20~30等。前述提到的杂芳基的碳原子个数也可以为6~10、6~20、或20~30等。
上述对于芳基和杂芳基的碳原子个数的描述适用于本发明中提到的亚芳基和亚杂芳基。
本发明所提供的化合物中,所述基团A选自如下所示基团中的任一种:
其中:
R16-R23各自独立选自选自氢、氘、取代或未取代的C1-C60的烷基、取代或未取代的C1-C60的环烷基、取代或未取代的C1-C60的杂烷基、取代或未取代的C1-C60的杂环烷基、取代或未取代的C1-C60的芳基或取代或未取代的C1-C60的杂芳基中的一种或多种;
其中为原子的连接位点,不局限于单个链接,也可以代表多个链接;链接点位不仅仅局限于前述基团A的环中,也代表在所示基团的任意位置;也可以代表和临近的原子键合成环。
本发明所提供的化合物中,在一些实施例中,所述基团A选自如下所示基团中的任一种:
优选为
进一步的,所述基团A选自如下所示基团中的一种或多种:

本发明所提供的化合物中,X1、X2相同或不同,各自独立选自单键、O、S、
上述表示连接键,与邻近基团连接。例如X1中,代表与苯环连接,例如,与邻近苯环连接形成再例如,X2中,代表与苯环连接。与邻近苯环连接形成
从合成的简单性及成本方面考虑,所述R1、R2选自氢。
一般的,将氢原子取代成氘原子,材料的寿命得以提升,因此R1、R2优选选自氘。
本发明所提供的化合物中,R3-R13相同或不同,各自独立地选自氢、氘、取代或未取代的直链或支链的C1~C30的烷基;取代或未取代的C1~C12的烷氧基、取代或未取代的C1~C12的烷硫基、取代或未取代的C3~C30的环烷基、取代或未取代的C3~C30的杂环烷基、取代或未取代的C6~C30的芳基、或取代或未取代的C6~C30的杂芳基。
本发明所提供的化合物中,所述L1~L3各自独立选自单键、取代或未取代的亚苯基、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚三联苯基、取代或未取代的亚蒽基、取代或未取代的亚菲基、 等。其中,Ar3选自C6~C20的芳基或C2~C15的杂芳基。Ar3优选为苯基、萘基等。
优选的,L1~L3各自独立选自亚苯基、亚萘基、亚联苯基、
上述表示连接键,与邻近基团连接。例如L2中,代表与Ar1或N连接。再例如,例如L3中,代表与Ar2或N连接。
本发明所提供的化合物中,所述Ar1、Ar2各自独立的选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的三联苯基、
从分子的合成简单性及成本考虑,X1和X2中有一个为单键,另一个为CR9R10。这个可以从式(Ⅰ)化合物毫无异议的得出。即X1选自单键,X2选自CR9R10,其他不变的情况下,获得如下通式化合物。
R1、R2、A、L1、L2、L3、Ar1、Ar2如式(Ⅰ)化合物中所定义。
R9和R10独立选自取代或未取代的直链或支链的C1~C30的烷基;取代或未取代的C1~C12的烷氧基、取代或未取代的C1~C12的烷硫基、取代或未取代的C3~C30的环烷基、取代或未取代的C3~C30的杂环烷基、取代或未取代的C6~C30的芳基、或取代或未取代的C6~C30的杂芳基;或与相邻的基团键合成环。从分子的合成简单性及成本角度,L1选自单键时,X1和X2中有一个为单键,另一个为CR9R10。这个可以从式(Ⅰ)化合物毫无异议的得出。即X1选自单键,X2选自CR9R10,其他不变的情况下,获得式(Ⅱ)所示的化合物。
其中,R1、R2各自独立选自氢、氘;
R9和R10独立选自取代或未取代的直链或支链的C1~C30的烷基;取代或未取代的C1~C12的烷氧基、取代或未取代的C1~C12的烷硫基、取代或未取代的C3~C30的环烷基、取代或未取代的C3~C30的杂环烷基、取代或未取代的C6~C30的芳基、或取代或未取代的C6~C30的杂芳基;或与相邻的基团键合成环。A、L2、L3、Ar1、Ar2如式(Ⅰ)化合物中所定义。
优选的,结合说明书中记载的X1、X2各自独立选自单键、 等。化学式(Ⅱ)可以由如下结构式表示:
R1、R2、A、L2、L3、Ar1、Ar2如式(Ⅱ)化合物中所定义。
优选的,A环选自如下结构:
优选的,所述化合物的结构式
R1、R2、R9、R10、A、L2、L3、Ar1、Ar2如式(Ⅱ)化合物中所定义。
进一步优选的,所述化合物的结构式为:
R1、R2、A、L2、L3、Ar1、Ar2如式(Ⅱ)化合物中所定义。
从分子的合成简单性及成本角度,L1选自苯基时,X1和X2中有一个为单键,另一个为CR9R10。这个可以从式(Ⅰ)化合物毫无异议的得出。即X1选自单键,X2选自CR9R10,L1选自苯基、其他不变的情况下,获得式(Ⅶ)所示的化合物。
其中,R1、R2各自独立选自氢、氘;
R9和R10独立选自取代或未取代的直链或支链的C1~C30的烷基;取代或未取代的C1~C12的烷氧基、取代或未取代的C1~C12的烷硫基、取代或未取代的C3~C30的环烷基、取代或未取代的C3~C30的杂环烷基、取代或未取代的C6~C30的芳基、或取代或未取代的C6~C30的杂芳基;或与相邻的基团键合成环。A、L2、L3、、Ar1、Ar2如式(Ⅰ)化合物中所定义。
优选的,结合说明书中记载的X1、X2各自独立选自单键、 等。化学式(Ⅶ)可以由如下结构式表示:
R1、R2、A、L2、L3、Ar1、Ar2如式(Ⅶ)化合物中所定义。
从合成的成本性,及原料的易得性,优选的,A环选自如下结构:
优选的,所述化合物的结构式
R1、R2、R9、R10、A、L2、L3、Ar1、Ar2如式(Ⅶ)化合物中所定义。
进一步优选的,所述化合物的结构式为:
R1、R2、A、L2、L3、Ar1、Ar2如式(Ⅶ)化合物中所定义。
本发明所提供的化合物中,所述化合物选自以下化学结构中的任一个:









具体的,上述结构可为未取代或者选自以下的一个或多个取代基取代。例如可以是氘、卤素基团、腈基、硝基、羟基、羰基、酯基、酰亚胺基、胺基、氧化膦基团、烷氧基、芳氧基、烷基硫基、芳基硫基、烷基磺酰基、芳基磺酰基、甲硅烷基、硼基、烷基、环烷基、烯基、芳基、芳烷基、芳烯基、烷基芳基、烷基胺基、芳烷基胺基、杂芳基胺基、芳基胺基、芳基杂芳基胺基、芳基膦基和杂芳基等。
本发明的化合物,根据分子中的结构不同,以及应用场景不同,材料的寿命情况也有些差异。按照基团A和基团B的具体情况(基团B中只要有一个为非碳原子,即为杂环结构),列举结构可以分为以下种类:
B基团中的当X1任意选自碳原子CR9R10,X2不含杂原子,即单键或者CR9R10,由于单键和CR9R10都不具有强的吸电或供电性能,对分子性能影响有限;当X2任意选自碳原子CR9’R10’,X1不含杂原子,即单键或者CR9R10,由于单键和CR9R10:都不具有强的吸申或供电性能,对分子性能影响有限,这两种情况可归为同一类。其中R9’R10’与R9R10定义相同。B基团中的X1,X2各自独立选自单键,CR9R10,NR11,SR12R13,或S。基团B中只要有一个为杂原子(NR11,SiR12R13,O或S中任意一种),则分类为环结构,性能受杂原子影响较大,可分为一类。举例,当X1选自任一杂原子NR11,SiR12R13,0或S,不管X2是单键、CR9R10.还是 杂原子NR11,SiR12R13,0或S,其性能受X1的杂原子影响;同样,当X2选自任一杂原子NR11,SiR12R13,O或S,不管X1是单键、CR9R10,还是杂原子NR11,SiR12R13,O或S,其性能受X2的杂原子影响,这两种情况都可归为一类。由于杂原子NR11,SiR12R13,O或S具有较大的电负性差异,这些电负性对分子的影响非Si申负性降低进行分类。详细分常大,所以在器件的表现影响会有所不同。按照O、N、类情况如下:
本发明的化合物可以同其它化合物组成一种有机层,混合应用于各种场景。这种有机层可以应用于有机光电器件中。
本发明的化合物,由于组成的不同,分子的三线态能级也不同,根据应用场景不同,可以选择合适的能级应用于红光器件或绿光器件。
本发明的化合物,由于基团组合的不同,分子的特性也不尽相同,可以用于绿光缓冲层。所谓绿光缓冲层,指的是能调节器件中的电子和空穴的迁移速率、数量等的功能层。
本发明所提供的有机光电器件中,包括第一电极、第二电极、以及设置在第一电极和第二电极之间的一个或多个有机层,为底部或顶部发光器件结构,其有机层可为单层结构,也可为层合有两个或多个有机层的多层串联结构,所述有机层如具有包括空穴注入层、空穴传输层、发光层、电子注入层或电子传输层中至少一层。可使用制备有机光电器件的常见方法和材料来制备。本发明的有机光电器件采用化合物作为有机光电器件的有机层。
本发明所提供的有机光电器件中,第一电极作为阳极层,阳极材料例如可以是具有大功函数的材料,使得空穴顺利地注入有机层。更例如可以是金属、金属氧化物、金属和氧化物的组合、导电聚合物等。金属氧化物例如可以是氧化铟锡(ITO)、氧化锌、氧化铟、和氧化铟锌(IZO)等。
本发明所提供的有机光电器件中,第二电极作为阴极层,阴极材料例如可以是具有小功函数的材料,使得电子顺利地注入有机层。阴极材料例如可以是金属或多层结构材料。金属例如可以是镁、银、钙、钠、钾、钛、铟、钇、锂、钆、铝、锡和铅、或其合金。阴极材料优选选自镁和银。
本发明所提供的有机光电器件中,空穴注入层的材料,优选最高占据分子轨道(HOMO)介于阳极材料的功函数与周围有机层的HOMO之间的材料作为在低电压下有利地从阳极接收空穴的材料。
本发明所提供的有机光电器件中,空穴传输层的材料是对空穴具有高迁移率的材料适合作为接收来自阳极或空穴注入层的空穴并将空穴传输至发光层的材料。空穴传输层的材料包括但不限于芳基胺的有机材料、导电聚合物、同时具有共轭部分和非共轭部分的嵌段共聚物等。
本发明所提供的有机光电器件中,发光层的材料通常可以选自对荧光或磷光具有良好量子效率的材料作为能够通过接收分别来自空穴传输层和来自电子传输层的空穴和电子并使空穴与电子结合而在可见光区域内发光的材料。
本发明所提供的有机光电器件中,电子传输层的材料是对电子具有高迁移率的材料适合作为有利地接收来自阴极的电子并将电子传输至发光层的材料。
本发明所提供的有机光电器件中,覆盖层的材料通常具有高折射率,因此可有助于有机发光器件的光效率提高,尤其是有助于外部发光效率提高。
本发明所提供的有机光电器件中,所述有机光电器件为有机光伏器件、有机发光器件、有机太阳电池、电子纸、有机感光体、有机薄膜晶体管等。
本发明另一方面提供一种显示或照明装置,包括本发明所述的有机光电器件。
以下通过特定的具体实例说明本发明的实施方式。
合成实施例:
上述式(Ⅰ)所示的化合物的合成可以使用已知的方法进行。例如,使用镍、钯等过渡金属的交叉偶合反应。其他合成方法是使用镁或锌等过渡金属的C-C,C-N偶联生成反应。上述反应,限于反应条件温和、各种官能团的选择性优越等特点,优选Suzuki,Buchwald反应。本发明的化合物用以下实施例举例说明,但并不限于这些实施例举例的化合物和合成方法。本发明的初始原料和溶剂和一些常用的OLED中间体类等产品购于国内的OLED中间体厂商;各种钯催化剂,配体等购于sigma-Aldrich公司。1H-NMR数据使用JEOL(400MHz)核磁共振仪来测定;HPLC数据使用岛津LC-20AD高效液相仪来测定。
实施例中使用物质为:


实施例1
化合物1的合成
1)中间体1-1的合成
在氩气氛围下,向反应容器中加入化合物1-A 24.4克(100mmol),化合物1-B 46.6克(200mmol),叔丁醇钠23.4克(240mmol),双二亚苄基丙酮钯575毫克(1mmol%),2-双环己基膦-2',4',6'-三异丙基联苯953毫克(2mmol%)和1000mL二甲苯(xylene),在140℃加热搅拌15小时。反应混合物冷却到室温,加入1000ml水,过滤,滤饼用大量水洗涤,真空干燥,粗品通过硅胶柱层析法精制(洗脱液:乙酸乙酯/己烷),得到46.6克化合物1-1,HPLC纯度99.5%,收率85%。LC MS:M/Z 547.21(M+)。
1H NMR(500MHz,DMSO-d6)δ7.68–7.62(m,4H),7.61–7.55(m,5H),7.52–7.41(m,6H), 7.41–7.31(m,4H),7.27–7.22(m,4H),7.04(s,1H),1.60(s,6H).
2)化合物1的合成
在氩气氛围下,向反应容器中加入化合物1-154.8克(101mmol),化合物1-C 16.2克(100mmol),XPhos Pd G3 787毫克(1mmol%),1.5M磷酸钾50ml(300mmol)和四氢呋喃1000ml(THF),回流加热搅拌一晚。冷却至室温,加入800ml水,大量固体析出,过滤,滤饼用水搅洗3次,真空干燥。粗品通过硅胶柱层析法精制(洗脱液:乙酸乙酯/己烷),得到54.2克化合物1,收率86%,HPLC纯度99.9%。LC-MS:M/Z629.31(M+)。
1H NMR(500MHz,DMSO-d6)δ7.81(s,1H),7.69–7.63(m,4H),7.60–7.52(m,5H),7.50–7.40(m,6H),7.40–7.30(m,4H),7.30–7.20(m,2H),7.18–7.12(m,4H),7.03(s,1H),2.88(m,2H),2.80(t,2H),2.20(m,2H),1.58(s,6H).
实施例2
化合物20的合成
1)中间体20-1的合成
在氩气氛围下,向反应容器中加入化合物20-A 30.8克(100mmol),化合物20-B 18.3克(100mmol),叔丁醇钠23.4克(240mmol),双二亚苄基丙酮钯575毫克(1mmol%),2-双环己基膦-2',4',6'-三异丙基联苯953毫克(2mmol%)和1000mL二甲苯(xylene),在140℃加热搅拌15小时。反应混合物冷却到室温,加入1000ml水,过滤,滤饼用大量水洗涤,真空干燥,粗品通过硅胶柱层析法精制(洗脱液:乙酸乙酯/己烷),得到32.7克化合物20-1,HPLC纯度99.5%,收率80%。LC MS:M/Z 409.12(M+)。
1H NMR(500MHz,DMSO-d6)δ9.55(s,1H),8.06–7.98(m,2H),7.67(s,1H),7.59(m,1H),7.54–7.44(m,4H),7.41–7.29(m,3H),6.90(s,1H),6.86(m,1H),1.58(s,6H).
2)中间体20-2的合成
在氩气氛围下,向反应容器中加入化合物20-140.9克(100mmol),化合物20-C 27.3克(100mmol),叔丁醇钠23.4克(240mmol),双二亚苄基丙酮钯575毫克(1mmol%),2-双环己基膦-2',4',6'-三异丙基联苯953毫克(2mmol%)和1000mL二甲苯(xylene),在140℃加 热搅拌15小时。反应混合物冷却到室温,加入1000ml水,过滤,滤饼用大量水洗涤,真空干燥,粗品通过硅胶柱层析法精制(洗脱液:乙酸乙酯/己烷),得到48.8克化合物20-2,HPLC纯度99.5%,收率86%。LC MS:M/Z 567.26(M+)。
1H NMR(500MHz,DMSO-d6)δ8.10(m,1H),7.95(d,1H),7.75–7.66(m,2H),7.59–7.52(m,3H),7.52–7.31(m,9H),7.28(m,1H),6.93(d,1H),6.88(m,1H),6.84(s,1H),1.58(s,12H).
3)化合物20的合成
在氩气氛围下,向反应容器中加入化合物20-256.7克(100mmol),化合物20-D 17.6克(100mmol),XPhos Pd G3 787毫克(1mmol%),1.5M磷酸钾50ml(300mmol)和四氢呋喃1000ml(THF),回流加热搅拌一晚。冷却至室温,加入800ml水,大量固体析出,过滤,滤饼用水搅洗3次,真空干燥。粗品通过硅胶柱层析法精制(洗脱液:乙酸乙酯/己烷),得到55.1克化合物20,收率79%,HPLC纯度99.9%。LC MS:M/Z697.33(M+)。
1H NMR(500MHz,DMSO-d6)δ8.06(m,1H),7.95(d,1H),7.83(s,1H),7.75–7.67(m,2H),7.58–7.51(m,2H),7.51–7.41(m,4H),7.41–7.30(m,5H),7.28(m,1H),7.26–7.17(m,2H),7.08(d,1H),7.04(s,1H),6.93(d,1H),6.88(m,1H),2.79–2.67(m,4H),1.82–1.68(m,4H),1.59(s,12H).
实施例3
化合物39的合成
除了起始原料更换为39-A、39-B、39-C和39-D以外,其他与实施例2相同。LC MS:M/Z 720.35(M+)。合成总收率:52%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.10(m,1H),8.04(d,1H),7.82(m,1H),7.78(m,1H),7.73(m,1H),7.64–7.59(m,1H),7.59–7.22(m,19H),7.17(m,1H),7.15–7.09(m,1H),6.86(d,1H),2.97–2.91(m,2H),2.74(m,2H),1.60(s,6H),1.66–1.52(m,6H).
实施例4
化合物58的合成
除了起始原料更换为58-A、58-B、1-B和58-D以外,其他与实施例2相同。LC MS:M/Z 721.30(M+)。合成总收率:49%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.11–8.05(m,1H),7.86(d,1H),7.69–7.63(m,2H),7.60–7.50(m,7H),7.50–7.29(m,13H),7.25–7.18(m,1H),7.18–7.11(m,3H),7.02(s,1H),4.53(t,2H),3.24(m,2H),1.59(s,6H).
实施例5
化合物77的合成
除了起始原料更换为77-B、1-B和77-D以外,其他与实施例2相同。LC MS:M/Z 639.22(M+)。合成总收率:53%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.71(m,1H),7.69–7.63(m,4H),7.58–7.51(m,3H),7.46–7.41(m,1H),7.44–7.30(m,8H),7.30(m,1H),7.20(t,1H),7.17–7.11(m,2H),7.09(d,1H),6.99(m,1H),6.83(d,1H),6.34(d,1H),6.09(s,2H),1.60(s,6H).
实施例6
化合物96的合成
除了起始原料更换为96-B、1-B和96-D以外,其他与实施例2相同。LC MS:M/Z 820.26(M+)。合成总收率:50%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.13(m,1H),7.81(d,1H),7.75–7.69(m,1H),7.71–7.64(m,3H),7.64–7.57(m,3H),7.57–7.21(m,19H),7.19(m,1H),7.06(d,1H),6.99(d,1H),6.79(d,1H),4.11(s,2H),1.60(s,6H).
实施例7
化合物115的合成
除了起始原料更换为115-B、1-B和115-D以外,其他与实施例2相同。LC MS:M/Z 792.24(M+)。合成总收率:48%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.30(m,1H),8.07(d,1H),8.04–7.97(m,1H),7.95(m,2H),7.81(m,1H),7.69–7.63(m,2H),7.62–7.32(m,17H),7.22–7.16(m,2H),7.13(t,1H),7.00(m,1H),6.94(d,1H),6.58(d,1H),5.88(d,1H),4.34–4.24(m,4H).
实施例8
化合物134的合成
除了起始原料更换为134-A、134-B、1-B和134-D以外,其他与实施例2相同。LC MS:M/Z 723.35(M+)。合成总收率:45%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.13(m,1H),8.01(s,1H),7.82(m,1H),7.69–7.63(m,2H),7.63–7.58(m,2H),7.58–7.51(m,5H),7.51–7.26(m,9H),7.18–7.08(m,4H),1.85–1.78(m,2H),1.78–1.71(m,2H),1.31(s,4H),0.94(s,12H).
实施例9
化合物153的合成
除了起始原料更换为58-A、153-B和153-D以外,其他与实施例2相同。LC MS:M/Z 730.33(M+)。合成总收率:50%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.06–8.01(m,1H),7.98(m,1H),7.92–7.84(m,3H),7.78(m,1H),7.69–7.63(m,2H),7.61(m,1H),7.58–7.49(m,4H),7.49–7.27(m,12H),7.15(m,4H),7.13–7.05(m,2H),7.01(s,1H),4.12(t,2H),3.17(m,1H),3.09(m,1H),1.59(s,6H).
实施例10
化合物172的合成
除了起始原料更换为172-B和172-D以外,其他与实施例2相同。LC MS:M/Z 831.36(M+)。合成总收率:47%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.32–8.25(m,1H),8.06(m,1H),8.06–7.99(m,2H),7.91(m,1H),7.76(m,1H),7.73–7.63(m,5H),7.57–7.52(m,2H),7.50(m,1H),7.46–7.33(m,10H),7.36–7.27(m,3H),7.27–7.07(m,9H),6.86(d,1H),4.69(s,2H),1.60(s,6H).
实施例11
化合物191的合成
除了起始原料更换为191-A和191-B以外,其他与实施例1相同。LC MS:M/Z 727.36(M+)。合成总收率:45%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.73(m,1H),7.71–7.63(m,3H),7.61(t,1H),7.57–7.52(m,2H),7.52–7.38(m,7H),7.41–7.31(m,2H),7.23(t,1H),7.20–7.13(m,5H),7.12–6.99(m,3H),6.85(d,1H),3.64(t,2H),2.99(s,3H),2.98(m,2H),1.61(d,12H).
实施例12
化合物210的合成
除了起始原料更换为39-B、210-B和210-D以外,其他与实施例2相同。LC MS:M/Z 763.39(M+)。合成总收率:45%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.12(m,2H),7.85–7.75(m,2H),7.71(m,1H),7.62(m,2H),7.60–7.54(m,1H),7.51–7.24(m,17H),7.21–7.12(m,4H),7.08(m,1H),6.88(d,1H),3.41(t,2H),2.79(m,2H),1.90(m,2H),1.60(s,6H),1.33(s,6H).
实施例13
化合物229的合成
除了起始原料更换为229-B、229-C和229-D以外,其他与实施例2相同。LC MS:M/Z 660.31(M+)。合成总收率:50%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.17–8.11(m,4H),7.72(m,1H),7.55–7.49(m,4H),7.52–7.24(m,12H),7.22(d,1H),7.18–7.12(m,2H),7.15–7.07(m,1H),6.89(m,1H),3.96(t,2H),2.99(t,1H),2.89(t,1H),1.78(m,2H),1.69(m,2H),1.59(s,6H).
实施例14
化合物248的合成
除了起始原料更换为58-A、248-B、248-C和248-D以外,其他与实施例2相同。LC MS:M/Z 722.33(M+)。合成总收率:48%;HPLC纯度:99.9%。
实施例15
化合物267的合成
除了起始原料更换为58-A、267-B、248-C和267-D以外,其他与实施例2相同。LC MS:M/Z 791.42(M+)。合成总收率:49%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.71(m,1H),7.60(m,1H),7.56–7.48(m,3H),7.46(t,1H),7.43–7.19(m,16H),7.19–7.11(m,2H),6.98(m,4H),6.91(m,2H),6.73(t,1H),6.55(m,1H),4.60–4.56(m,2H),4.50(s,2H),1.59(s,6H).
实施例16
化合物286的合成
除了起始原料更换为286-A、39-B、286-C和286-D以外,其他与实施例2相同。LC MS:M/Z 721.30(M+)。合成总收率:47%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.02(m,2H),7.90(m,2H),7.86–7.75(m,3H),7.72(d,1H),7.61–7.54(m,3H),7.54–7.41(m,4H),7.39–7.30(m,3H),7.33–7.25(m,2H),7.11–7.04(m,2H),6.96(d,1H),4.16–4.03(m,4H),2.87(m,4H),2.77(t,4H),2.19(m,4H).
实施例17
化合物305的合成
除了起始原料更换为58-A、305-B、1-B和305-D以外,其他与实施例2相同。LC MS:M/Z 795.39(M+)。合成总收率:54%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.33(m,1H),8.19(m,2H),7.80–7.63(m,7H),7.58–7.44(m,7H),7.44–7.28(m,5H),7.25(d,1H),7.21–7.15(m,2H),7.11(t,1H),7.07(s,1H),2.98–2.90(m,2H),2.83–2.73(m,4H),2.71(m,2H),1.82–1.68(m,8H),1.59(s,6H).
实施例18
化合物324的合成
除了起始原料更换为58-A、324-B、324-C和324-D以外,其他与实施例1相同。LC MS:M/Z 935.42(M+)。合成总收率:51%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.33(m,1H),8.21(m,1H),8.17(m,1H),7.75–7.66(m,8H),7.58–7.43(m,7H),7.40–7.22(m,11H),7.21–7.13(m,5H),7.09(m,3H),7.00(s,1H),6.96(d,1H),4.07(s,3H),4.07(d,1H),1.59(s,10H).
实施例19
化合物343的合成
除了起始原料更换为343-C以外,其他与实施例1相同。LC MS:M/Z 703.34(M+)。合成总收率:50%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.74–7.63(m,7H),7.58–7.49(m,6H),7.49–7.44(m,2H),7.44–7.28(m,11H),7.18(t,1H),7.14–7.08(m,4H),7.06(s,1H),2.81(m,1H),2.65(t,2H),1.94(t,1H),1.59(s,6H).
实施例20
化合物362的合成
除了起始原料更换为134-A、20-B、362D以外,其他与实施例13相同。LC MS:M/Z 729.27(M+)。合成总收率:49%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.09–8.04(m,1H),8.03(d,2H),7.91(d,1H),7.79(d,1H),7.76–7.66(m,7H),7.58–7.52(m,2H),7.51–7.41(m,6H),7.41–7.31(m,6H),7.34–7.29(m,3H),7.25(m,1H),7.08(d,1H),6.97(d,1H),6.88(m,1H),3.28(s,2H),1.59(s,6H).
实施例21
化合物381的合成
除了起始原料更换为39-C和381-D以外,其他与实施例2相同。LC MS:M/Z 768.77(M+)。合成总收率:50%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.10(m,1H),8.04(d,1H),7.85–7.80(m,1H),7.80–7.72(m,3H),7.69(m,1H),7.62(m,1H),7.59–7.45(m,5H),7.47–7.42(m,2H),7.45–7.33(m,5H),7.35 (d,3H),7.36–7.30(m,2H),7.33–7.25(m,4H),7.27–7.20(m,2H),7.18(m,1H),7.09(d,1H),3.44(d,2H),1.60(s,6H).
实施例22
化合物400的合成
除了起始原料更换为1-A、1-B、400-C和400-D以外,其他与实施例2相同。LC MS:M/Z 826.36(M+)。合成总收率:51%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.03(m,1H),7.84(d,1H),7.69–7.63(m,2H),7.60–7.50(m,7H),7.50–7.42(m,5H),7.44–7.39(m,2H),7.42–7.32(m,5H),7.35–7.28(m,1H),7.31–7.25(m,1H),7.28–7.21(m,2H),7.14(m,3H),7.02(s,1H),6.98–6.92(m,2H),6.91(m,1H),4.57(d,2H),4.18(t,2H),3.63(t,2H),1.59(s,6H).
实施例23
化合物419的合成
除了起始原料更换为419-B、1-B和419-D以外,其他与实施例2相同。LC MS:M/Z 685.22(M+)。合成总收率:53%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.04–7.96(m,2H),7.74–7.68(m,2H),7.66(m,4H),7.61–7.53(m,5H),7.48–7.27(m,12H),7.17–7.11(m,2H),6.98(d,1H),6.83(d,1H),6.34(d,1H),5.14(d,2H).
实施例24
化合物438的合成
除了起始原料更换为438-A、438-B、1-B和438-D以外,其他与实施例2相同。LC  MS:M/Z 642.23(M+)。合成总收率:47%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.13(m,1H),8.06(m,1H),7.91(d,1H),7.84(d,1H),7.71(d,1H),7.69–7.39(m,17H),7.39–7.32(m,1H),7.32–7.24(m,4H),7.19(m,1H),7.06(d,1H),6.73(d,1H)
实施例25
化合物449的合成
除了起始原料更换为58-A、305-B、1-B和449-D以外,其他与实施例2相同。LC MS:M/Z 892.40(M+)。合成总收率:49%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.33(m,1H),8.21(m,1H),8.17(m,1H),7.78(s,1H),7.75–7.63(m,8H),7.58–7.44(m,7H),7.44–7.25(m,13H),7.25–7.16(m,4H),7.15(m,1H),7.10(m,1H),7.03(s,1H),3.97(t,2H),2.66(t,2H),1.59(s,6H).
实施例26
化合物2的合成
除了起始原料更换为2-A、2-B、2-C和2-D以外,其他与实施例2相同。LC MS:M/Z 657.27(M+)。合成总收率:47%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.16(m,1H),8.06(m,1H),8.00(s,1H),7.92(d,1H),7.76–7.68(m,2H),7.55(m,2H),7.52–7.40(m,6H),7.40–7.27(m,5H),7.24(m,1H),7.10(d,1H),6.93(d,1H),6.88(m,1H),2.92–2.84(m,4H),2.14(m,2H),1.58(s,6H).
实施例27
化合物8的合成
除了起始原料更换为8-A、8-B、8-C和8-D以外,其他与实施例2相同。LC MS:M/Z 709.30(M+)。合成总收率:46%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.82(m,1H),7.74–7.68(m,2H),7.68–7.63(m,2H),7.63–7.58(m,2H),7.58–7.51(m,4H),7.45–7.35(m,7H),7.35(m,4H),7.35–7.24(m,2H),7.28–7.20(m,2H),7.19–7.12(m,3H),4.11(s,4H),2.92–2.85(m,2H),2.78(t,2H),2.18(m,2H).
实施例28
化合物11的合成
除了起始原料更换为11-A、11-B、11-C和11-D以外,其他与实施例2相同。LC MS:M/Z 698.29(M+)。合成总收率:46%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.75(m,1H),7.73–7.63(m,3H),7.62(t,1H),7.58–7.53(m,2H),7.53–7.24(m,15H),7.21–7.13(m,3H),6.87(d,1H),4.22–4.16(m,1H),4.16–4.09(m,1H),3.91(t,2H),2.95–2.80(m,2H),2.78–2.69(m,2H),2.72–2.55(m,2H),2.25–2.08(m,2H).
实施例29
化合物128的合成
除了起始原料更换为128-D以外,其他与实施例2相同。LC MS:M/Z 697.33(M+)。合成总收率:46%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.06(m,1H),7.95(d,1H),7.83(s,1H),7.75–7.67(m,2H), 7.58–7.51(m,2H),7.51–7.41(m,4H),7.41–7.30(m,5H),7.28(m,1H),7.26–7.17(m,2H),7.08(d,1H),7.04(s,1H),6.93(d,1H),6.88(m,1H),2.79–2.67(m,4H),1.82–1.68(m,4H),1.59(s,12H).
实施例30
化合物130的合成
除了起始原料更换为130-B、130-C和130-D以外,其他与实施例2相同。LC MS:M/Z 789.40(M+)。合成总收率:49%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.07–8.01(m,1H),7.84(d,1H),7.69–7.63(m,2H),7.60–7.29(m,15H),7.25(t,1H),7.18–7.09(m,4H),7.08(s,1H),1.85–1.78(m,2H),1.78–1.71(m,2H),1.59(s,6H),1.32(s,4H),1.29(s,12H).
实施例31
化合物137的合成
除了起始原料更换为137-B、137-C和137-D以外,其他与实施例2相同。LC MS:M/Z 740.38(M+)。合成总收率:48%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.76(m,1H),7.72–7.63(m,3H),7.61(t,1H),7.58–7.51(m,2H),7.54–7.27(m,10H),7.20–7.12(m,4H),6.91(d,1H),1.83–1.71(m,4H),1.60(s,6H),1.32(s,4H),1.29(s,12H).
实施例32
化合物139的合成
除了起始原料更换为139-A、139-B、139-C和139-D以外,其他与实施例2相同。LC MS:M/Z 700.38(M+)。合成总收率:47%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.17–8.10(m,4H),7.75(m,1H),7.56–7.48(m,4H),7.48–7.24(m,8H),7.17–7.04(m,5H),1.81–1.70(m,4H),1.59(s,6H),1.31(s,4H),1.28(s,12H).
实施例33
化合物451的合成
除了起始原料更换为451-A和451-C以外,其他与实施例1相同。LC MS:M/Z 719.44(M+)。合成总收率:59%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.87(s,1H),7.69–7.63(m,4H),7.57–7.50(m,6H),7.47(m,2H),7.44–7.32(m,6H),7.29(m,1H),7.20–7.12(m,6H),7.04(d,1H),1.31(s,12H),0.93(s,6H).
实施例34
化合物452的合成
除了起始原料更换为452-A、452-B、452-C和452-D以外,其他与实施例2相同。LC MS:M/Z 892.40(M+)。合成总收率:49%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.86(s,1H),7.72(m,1H),7.69–7.61(m,3H),7.58–7.50(m,3H),7.49–7.27(m,11H),7.25(m,1H),7.22–7.12(m,4H),6.99(d,1H),1.74(s,3H),1.74(d,J=1H),1.28(d,12H).
实施例35
化合物456的合成
除了起始原料更换为456-A和456-C以外,其他与实施例2相同。LC MS:M/Z 837.43(M+)。合成总收率:46%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.85(s,1H),7.69–7.63(m,4H),7.59(m,1H),7.57–7.51(m,4H),7.49–7.32(m,8H),7.32–7.19(m,7H),7.18–7.10(m,10H),7.05–7.00(m,2H),1.31(s,12H),0.93(s,6H).
实施例36
化合物457的合成
除了起始原料更换为456-A和457-C以外,其他与实施例2相同。LC MS:M/Z 823.42(M+)。合成总收率:49%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.85(s,1H),7.69–7.63(m,4H),7.59(m,1H),7.57–7.51(m,4H),7.46–7.37(m,6H),7.40–7.32(m,4H),7.32–7.09(m,13H),7.02(s,1H),1.74(s,3H),1.38(s,4H),0.98(s,12H).
实施例37
化合物458的合成
除了起始原料更换为458-A和456-C以外,其他与实施例2相同。LC MS:M/Z 892.40(M+)。合成总收率:49%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.84(m,2H),7.81(s,1H),7.69–7.63(m,4H),7.59(m,1H),7.57–7.51(m,4H),7.46(m,1H),7.44–7.25(m,12H),7.18–7.12(m,5H),7.06–7.01(m,2H),6.87(m,1H),6.83–6.78(m,2H),1.31(s,12H),0.93(s,6H).
实施例38
化合物461的合成
除了起始原料更换为461-B和456-C以外,其他与实施例2相同。LC MS:M/Z 753.43(M+)。合成总收率:48%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.87(s,1H),7.75–7.63(m,4H),7.57–7.50(m,3H),7.47(m,3H),7.44–7.39(m,1H),7.42–7.30(m,6H),7.23(m,1H),7.18–7.12(m,3H),7.09(s,1H),7.04(d,1H),6.97(d,1H),1.59(d,12H),1.31(s,12H),0.93(s,6H).
实施例39
化合物462的合成
除了起始原料更换为462-C和462-D以外,其他与实施例2相同。LC MS:M/Z 713.37(M+)。合成总收率:46%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.01(m,1H),7.94(d,1H),7.85(s,1H),7.69–7.63(m,2H),7.58–7.50(m,4H),7.52–7.29(m,10H),7.22–7.12(m,3H),7.11–7.05(m,2H),6.88(m,1H),1.74(s,4H),1.59(s,6H),1.28(d,12H).
实施例40
化合物464的合成
除了起始原料更换为464-B、464-C和464-D以外,其他与实施例2相同。LC MS:M/Z 915.48(M+)。合成总收率:46%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.89–7.82(m,4H),7.75–7.66(m,3H),7.53(m,1H),7.49–7.43(m,3H),7.40–7.20(m,12H),7.15(d,1H),7.09(s,1H),7.03(d,1H),6.95(d,1H),6.85(d, 1H),6.81(m,1H),6.75(m,2H),1.59(s,12H),1.31(s,12H),0.93(s,6H).
实施例41
化合物465的合成
除了起始原料更换为465-B、465-C和465-D以外,其他与实施例2相同。LC MS:M/Z 953.50(M+)。合成总收率:49%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.85(s,1H),7.81(d,1H),7.72(m,1H),7.69–7.63(m,2H),7.63–7.51(m,9H),7.46(m,1H),7.45–7.40(m,4H),7.43–7.35(m,6H),7.38–7.31(m,4H),7.33–7.25(m,5H),7.28–7.19(m,3H),7.21–7.13(m,5H),7.16–7.10(m,5H),7.05–7.00(m,2H),1.59(s,6H),1.31(s,12H),0.93(s,6H).
实施例42
化合物467的合成
除了起始原料更换为467-A、467-B、467-C和467-D以外,其他与实施例2相同。LC MS:M/Z 911.41(M+)。合成总收率:46%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.06–8.00(m,1H),7.89(d,1H),7.84(m,2H),7.81(s,1H),7.73(d,1H),7.69–7.63(m,2H),7.65–7.59(m,2H),7.63–7.44(m,6H),7.48–7.33(m,6H),7.36–7.25(m,6H),7.19(d,1H),7.17–7.12(m,4H),7.04(s,1H),6.87(m,1H),6.84–6.77(m,2H),1.74(s,4H),1.28(s,12H).
实施例43
化合物469的合成
除了起始原料更换为469-B、469-C和467-D以外,其他与实施例2相同。LC MS:M/Z 892.40(M+)。合成总收率:49%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.92(d,1H),7.89–7.82(m,2H),7.73(d,1H),7.69–7.57(m,5H),7.57–7.50(m,3H),7.50–7.28(m,11H),7.22–7.12(m,3H),7.16–7.07(m,2H),6.89(m,1H),1.74(s,3H),1.74(d,1H),1.59(s,6H),1.28(s,12H).
实施例44
化合物470的合成
除了起始原料更换为470-B、470-C和470-D以外,其他与实施例2相同。LC MS:M/Z 803.38(M+)。合成总收率:47%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.07–8.00(m,2H),7.92(d,1H),7.90–7.85(m,2H),7.67–7.59(m,3H),7.59–7.51(m,3H),7.54–7.47(m,1H),7.51–7.40(m,6H),7.40–7.33(m,2H),7.32(m,1H),7.22–7.13(m,3H),7.11–7.05(m,2H),6.88(m,1H),1.74(s,3H),1.74(d,1H),1.59(s,6H),1.28(s,12H)
实施例45
化合物471的合成
除了起始原料更换为470-B、471-C和471-D以外,其他与实施例2相同。LC MS:M/Z 803.38(M+)。合成总收率:47%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.03(m,1H),7.92(d,1H),7.87(s,1H),7.69–7.59(m,2H),7.63(s,4H),7.58–7.51(m,4H),7.51–7.28(m,10H),7.22–7.12(m,3H),7.11–7.05(m,2H),6.88(m,1H),1.74(s,3H),1.74(d,1H),1.59(s,6H),1.28(s,12H).
实施例46
化合物473的合成
除了起始原料更换为473-A、473-B、473-C和473-D以外,其他与实施例2相同。LC MS:M/Z 851.41(M+)。合成总收率:46%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.01(m,1H),7.92(d,1H),7.73(m,1H),7.69–7.63(m,2H),7.59–7.52(m,3H),7.51–7.32(m,8H),7.32–7.20(m,8H),7.20–7.13(m,4H),7.13–7.06(m,5H),7.03(d,1H),6.87(m,1H),1.31(s,12H),0.93(s,6H).
实施例47
化合物475的合成
除了起始原料更换为475-A、475-B、475-C和475-D以外,其他与实施例2相同。LC MS:M/Z 911.41(M+)。合成总收率:45%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.92(d,1H),7.84(m,3H),7.73(d,1H),7.71–7.59(m,5H),7.59–7.51(m,3H),7.49(m,1H),7.45–7.35(m,6H),7.39–7.30(m,4H),7.33–7.23(m,6H),7.21(d,1H),7.18–7.09(m,3H),6.89(m,1H),6.81(m,2H),1.74(s,3H),1.74(d,1H),1.28(d,12H).
实施例48
化合物477的合成
除了起始原料更换为477-A、477-B、477-C和477-D以外,其他与实施例2相同。LC MS:M/Z 809.45(M+)。合成总收率:48%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.93(d,1H),7.84(d,1H),7.77–7.71(m,2H),7.69–7.54(m, 8H),7.49–7.42(m,3H),7.45–7.39(m,1H),7.42–7.35(m,4H),7.38–7.30(m,1H),7.32–7.25(m,2H),7.17(m,2H),7.09(d,1H),7.04(d,1H),6.95(d,1H),6.88(m,1H),1.31(s,12H),0.93(s,6H).
实施例49
化合物3的合成
除了起始原料更换为3-A、3-B、3-C和3-D以外,其他与实施例2相同。LC MS:M/Z 741.31(M+)。合成总收率:47%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.10(m,1H),8.05(d,1H),7.98–7.90(m,1H),7.80(m,2H),7.65–7.40(m,16H),7.38–7.16(m,11H),7.11(d,1H),2.92–2.85(m,2H),2.72(t,2H),2.17(m,2H).
实施例50
化合物6的合成
除了起始原料更换为6-A、6-B、6-C和6-D以外,其他与实施例2相同。LC MS:M/Z 774.27(M+)。合成总收率:46%;HPLC纯度:99.9%。
实施例51
化合物28的合成
除了起始原料更换为28-A、28-B、28-C和28-D以外,其他与实施例2相同。LC MS:M/Z 809.45(M+)。合成总收率:48%;HPLC纯度:99.9%。
实施例52
化合物43的合成
除了起始原料更换为43-A、43-B、43-C和43-D以外,其他与实施例2相同。LC MS:M/Z 968.39(M+)。合成总收率:45%;HPLC纯度:99.9%。
实施例53
化合物44的合成
除了起始原料更换为44-A、44-B、44-C和44-D以外,其他与实施例2相同。LC MS:M/Z 729.25(M+)。合成总收率:46%;HPLC纯度:99.9%。
实施例54
化合物55的合成
除了起始原料更换为55-A、55-B、55-C和55-D以外,其他与实施例2相同。LC MS:M/Z 621.21(M+)。合成总收率:47%;HPLC纯度:99.9%。
实施例55
化合物57的合成
除了起始原料更换为57-A、57-B、57-C和57-D以外,其他与实施例2相同。LC MS:M/Z 743.29(M+)。合成总收率:46%;HPLC纯度:99.9%。
实施例56
化合物64的合成
除了起始原料更换为64-A、64-B、64-C和64-D以外,其他与实施例2相同。LC MS:M/Z 697.24(M+)。合成总收率:47%;HPLC纯度:99.9%。
实施例57
化合物68的合成
除了起始原料更换为68-A、68-B、68-C和68-D以外,其他与实施例2相同。LC MS:M/Z 663.26(M+)。合成总收率:47%;HPLC纯度:99.9%。
实施例58
化合物93的合成
除了起始原料更换为93-A、93-B、93-C和93-D以外,其他与实施例2相同。LC MS:M/Z 700.20(M+)。合成总收率:48%;HPLC纯度:99.9%。
实施例59
化合物98的合成
除了起始原料更换为98-A、98-B、98-C和98-D以外,其他与实施例2相同。LC MS:M/Z 671.23(M+)。合成总收率:46%;HPLC纯度:99.9%。
实施例60
化合物100的合成
除了起始原料更换为100-A、100-B、100-C和100-D以外,其他与实施例2相同。LC MS:M/Z 760.25(M+)。合成总收率:46%;HPLC纯度:99.9%。
实施例61
化合物127的合成
除了起始原料更换为127-A、127-B、127-C和127-D以外,其他与实施例2相同。LC MS:M/Z 748.38(M+)。合成总收率:46%;HPLC纯度:99.9%。
实施例62
化合物145的合成
除了起始原料更换为145-A、145-B、145-C和145-D以外,其他与实施例2相同。LC MS:M/Z 696.26(M+)。合成总收率:49%;HPLC纯度:99.9%。
实施例63
化合物160的合成
除了起始原料更换为160-A、160-B、160-C和160-D以外,其他与实施例2相同。LC MS:M/Z 702.27(M+)。合成总收率:47%;HPLC纯度:99.9%。
实施例64
化合物161的合成
除了起始原料更换为161-A、161-B、161-C和161-D以外,其他与实施例2相同。LC MS:M/Z 794.28(M+)。合成总收率:47%;HPLC纯度:99.9%。
实施例65
化合物170的合成
除了起始原料更换为170-A、170-B、170-C和170-D以外,其他与实施例2相同。LC MS:M/Z 807.32(M+)。合成总收率:47%;HPLC纯度:99.9%。
实施例66
化合物175的合成
除了起始原料更换为175-A、175-B、175-C和175-D以外,其他与实施例2相同。LC MS:M/Z 774.28(M+)。合成总收率:46%;HPLC纯度:99.9%。
实施例67
化合物183的合成
除了起始原料更换为183-A、183-B、183-C和183-D以外,其他与实施例2相同。LC MS:M/Z 756.33(M+)。合成总收率:47%;HPLC纯度:99.9%。
实施例68
化合物204的合成
除了起始原料更换为204-A、204-B、204-C和204-D以外,其他与实施例2相同。LC MS:M/Z 924.38(M+)。合成总收率:47%;HPLC纯度:99.9%。
实施例69
化合物220的合成
除了起始原料更换为220-A、220-B、220-C和220-D以外,其他与实施例2相同。LC MS:M/Z 739.25(M+)。合成总收率:47%;HPLC纯度:99.9%。
实施例70
化合物256的合成
除了起始原料更换为256-A、256-B、256-C和256-D以外,其他与实施例2相同。LC MS:M/Z 784.31(M+)。合成总收率:48%;HPLC纯度:99.9%。
实施例71
化合物293的合成
除了起始原料更换为293-A、293-B、293-C和293-D以外,其他与实施例2相同。LC MS:M/Z 809.45(M+)。合成总收率:48%;HPLC纯度:99.9%。
实施例72
化合物305的合成
除了起始原料更换为305-A、305-B、305-C和305-D以外,其他与实施例2相同。LC MS:M/Z 795.39(M+)。合成总收率:46%;HPLC纯度:99.9%。
实施例73
化合物307的合成
除了起始原料更换为307-A、307-B、307-C和307-D以外,其他与实施例2相同。LC MS:M/Z 846.37(M+)。合成总收率:46%;HPLC纯度:99.9%。
实施例74
化合物352的合成
除了起始原料更换为352-A、352-B、352-C和352-D以外,其他与实施例2相同。LC MS:M/Z 814.35(M+)。合成总收率:48%;HPLC纯度:99.9%。
实施例75
化合物355的合成
除了起始原料更换为355-A、355-B、355-C和355-D以外,其他与实施例2相同。LC MS:M/Z 722.29(M+)。合成总收率:49%;HPLC纯度:99.9%。
实施例76
化合物363的合成
除了起始原料更换为363-A、363-B、363-C和363-D以外,其他与实施例2相同。LC MS:M/Z 889.38(M+)。合成总收率:46%;HPLC纯度:99.9%。
实施例77
化合物391的合成
除了起始原料更换为391-A、391-B、391-C和391-D以外,其他与实施例2相同。LC MS:M/Z 706.32(M+)。合成总收率:49%;HPLC纯度:99.9%。
实施例78
化合物403的合成
除了起始原料更换为403-A、403-B、403-C和403-D以外,其他与实施例2相同。LC MS:M/Z 1118.44(M+)。合成总收率:48%;HPLC纯度:99.9%。
实施例79
化合物417的合成
除了起始原料更换为417-A、417-B、417-C和417-D以外,其他与实施例2相同。LC MS:M/Z 817.33(M+)。合成总收率:48%;HPLC纯度:99.9%。
实施例80
化合物428的合成
除了起始原料更换为428-A、428-B、428-C和428-D以外,其他与实施例2相同。LC MS:M/Z 737.29(M+)。合成总收率:48%;HPLC纯度:99.9%。
实施例81
化合物415的合成
除了起始原料更换为415-A、415-B、415-C和415-D以外,其他与实施例2相同。LC MS:M/Z 695.25(M+)。合成总收率:48%;HPLC纯度:99.9%。
实施例82
化合物231的合成
除了起始原料更换为231-A、231-B、231-C和231-D以外,其他与实施例2相同。LC MS:M/Z 766.34(M+)。合成总收率:47%;HPLC纯度:99.9%。
实施例83
化合物4的合成
除了起始原料更换为4-A、4-B、4-C和4-D以外,其他与实施例2相同。LC MS:M/Z  841.33(M+)。合成总收率:47%;HPLC纯度:99.9%。
实施例84
化合物30的合成
除了起始原料更换为30-A、30-B、30-C和30-D以外,其他与实施例2相同。LC MS:M/Z 706.33(M+)。合成总收率:46%;HPLC纯度:99.9%。
实施例85
化合物38的合成
除了起始原料更换为38-A、38-B、38-C和38-D以外,其他与实施例2相同。LC MS:M/Z 711.35(M+)。合成总收率:49%;HPLC纯度:99.9%。
实施例86
化合物43的合成
除了起始原料更换为43-A、43-B、43-C和43-D以外,其他与实施例2相同。LC MS:M/Z 968.39(M+)。合成总收率:47%;HPLC纯度:99.9%。
实施例87
化合物163的合成
除了起始原料更换为163-A、163-B、163-C和163-D以外,其他与实施例2相同。LC MS:M/Z 706.33(M+)。合成总收率:48%;HPLC纯度:99.9%。
实施例88
化合物478的合成
1)中间体478-1的合成
在氩气氛围下,向反应容器中加入化合物478-A 35.8克(100mmol),化合物478-B 18.3克(100mmol),叔丁醇钠23.4克(240mmol),双二亚苄基丙酮钯575毫克(1mmol%),2-双环己基膦-2',4',6'-三异丙基联苯953毫克(2mmol%)和1000mL二甲苯(xylene),在140℃加热搅拌15小时。反应混合物冷却到室温,加入1000ml水,过滤,滤饼用大量水洗涤,真空干燥,粗品通过硅胶柱层析法精制(洗脱液:乙酸乙酯/己烷),得到34.9克化合物478-1,HPLC纯度99.5%,收率82%。LC MS:M/Z 425.14(M+)。
1H NMR(400MHz,DMSO-d6)δ6.91(m,1H),7.02(s,1H),7.23(m,1H),7.31(m,2H),7.37–7.48(m,3H),7.48–7.57(m,2H),7.53–7.62(m,1H),7.65–7.72(m,2H),7.77(t,1H),7.95–8.01(m,2H),8.01–8.09(m,2H),8.12(m,1H)。
2)中间体478-2的合成
在氩气氛围下,向反应容器中加入化合物478-142.5克(100mmol),化合物478-C 27.3克(100mmol),叔丁醇钠23.4克(240mmol),双二亚苄基丙酮钯575毫克(1mmol%),2-双环己基膦-2',4',6'-三异丙基联苯953毫克(2mmol%)和1000mL二甲苯(xylene),在140℃加热搅拌15小时。反应混合物冷却到室温,加入1000ml水,过滤,滤饼用大量水洗涤,真空干燥,粗品通过硅胶柱层析法精制(洗脱液:乙酸乙酯/己烷),得到51.3克化合物478-2,HPLC纯度99.5%,收率83%。LC MS:M/Z 617.24(M+)。
1H NMR(400MHz,DMSO-d6)δ1.69(s,6H),6.91(m,1H),6.95–7.01(m,1H),7.18(m,1H),7.23(m,1H),7.26–7.62(m,12H),7.68(m,1H),7.77(t,1H),7.82–7.91(m,2H),7.95–8.01(m,2H),8.01–8.09(m,2H),8.09–8.15(m,1H)。
3)化合物478的合成
在氩气氛围下,向反应容器中加入化合物478-261.8克(100mmol),化合物478-D 16.2克(100mmol),XPhos Pd G3 787毫克(1mmol%),1.5M磷酸钾50ml(300mmol)和四氢呋喃1000ml(THF),回流加热搅拌一晚。冷却至室温,加入800ml水,大量固体析出,过滤,滤饼用水搅洗3次,真空干燥。粗品通过硅胶柱层析法精制(洗脱液:乙酸乙酯/己烷),得到52.8克化合物478,收率72%,HPLC纯度99.9%。LC MS:M/Z 733.30(M+)。
1H NMR(400MHz,DMSO-d6)δ1.69(s,6H),2.07(m,2H),2.77–2.99(m,4H),6.91(m,1H),6.95–7.01(m,1H),7.20(m,2H),7.26–7.63(m,14H),7.68(m,1H),7.77(t,1H),7.81–7.91(m,3H),7.93(d,1H),7.95–8.01(m,2H),8.03(m,1H)。
实施例89
化合物479的合成
除了起始原料更换为479-A、479-B、479-C和479-D以外,其他与实施例88相同。LC MS:M/Z 743.36(M+)。合成总收率:48%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.40–1.55(m,2H),1.69(s,6H),1.69–1.81(m,2H),2.37–2.45(m,2H),2.65–2.75(m,2H),6.67(m,1H),7.17–7.79(m,23H),7.80–7.94(m,3H),7.99–8.07(m,1H),8.27(d,1H),8.37(s,1H),8.73–8.81(m,1H)。
实施例90
化合物480的合成
除了起始原料更换为480-A、480-B、480-C和480-D以外,其他与实施例88相同。LC MS:M/Z 865.43(M+)。合成总收率:47%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.69(d,12H),1.70–1.85(m,5H),1.82–1.91(m,1H),2.78–2.88(m,4H),6.73(m,2H),6.91(m,1H),7.06(m,2H),7.20–7.27(m,1H),7.30–7.38(m,4H), 7.34–7.43(m,2H),7.43–7.53(m,4H),7.50–7.58(m,4H),7.65–7.79(m,8H),7.79–7.87(m,3H),7.91(m,1H),8.00–8.06(m,1H)。
实施例91
化合物481的合成
除了起始原料更换为481-A、481-B、481-B和481-D以外,其他与实施例88相同。LC MS:M/Z 687.22(M+)。合成总收率:48%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ3.23(m,2H),4.53–4.69(m,2H),6.00(d,1H),6.93(d,1H),7.20(m,2H),7.30–7.66(m,17H),7.69–7.80(m,3H),7.77–7.89(m,4H),7.98–8.06(m,1H)。
实施例92
化合物482的合成
除了起始原料更换为482-A、482-B、482-C和482-D以外,其他与实施例88相同。LC MS:M/Z 804.28(M+)。合成总收率:50%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.69(s,6H),5.75(d,1H),6.33(s,2H),6.54(d,1H),6.95–7.08(m,1H),7.04–7.13(m,4H),7.18(m,1H),7.20–7.29(m,3H),7.31–7.67(m,13H),7.77(t,1H),7.85–7.95(m,3H),8.06(d,1H),8.17–8.25(m,2H),8.45(m,1H)。
实施例93
化合物483的合成
除了起始原料更换为483-A、483-B、483-C和483-D以外,其他与实施例88相同。LC MS:M/Z 831.26(M+)。合成总收率:48%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.69(s,6H),4.29(s,2H),7.14–7.27(m,5H),7.27–7.58(m,18H),7.66–7.80(m,7H),7.84–7.94(m,2H),7.94–8.02(m,1H),8.37(s,1H)。
实施例94
化合物484的合成
除了起始原料更换为G119-A、G119-B、G119-C和G119-D以外,其他与实施例88相同。LC MS:M/Z 792.24(M+)。合成总收率:47%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.96–2.10(m,2H),2.78–2.88(m,2H),4.22–4.30(m,2H),7.18(m,1H),7.30–7.69(m,22H),7.69–7.80(m,3H),7.87–7.95(m,1H),8.01(d,1H),8.30(d,1H),8.45(m,1H)。
实施例95
化合物485的合成
除了起始原料更换为485-A、485-B、485-C和485-D以外,其他与实施例88相同。LC MS:M/Z 799.42(M+)。合成总收率:46%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.22(d,12H),1.48(s,4H),1.69(s,6H),6.67(m,1H),7.18(m,1H),7.19–7.27(m,2H),7.30–7.80(m,20H),7.80–7.94(m,3H),7.99–8.07(m,1H),8.27(d,1H),8.37(s,1H),8.73–8.81(m,1H)。
实施例96
化合物486的合成
除了起始原料更换为486-A、486-B、486-C和486-D以外,其他与实施例88相同。LC MS:M/Z 838.36(M+)。合成总收率:49%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.69(s,6H),3.18(m,1H),3.30(m,1H),4.14(t,2H),6.44(m,1H),6.70(m,1H),6.80(m,1H),6.87(t,1H),6.99–7.27(m,7H),7.27–7.38(m,4H),7.34–7.44(m,6H),7.39–7.53(m,7H),7.48–7.57(m,1H),7.70(dd,1H),7.74–7.95(m,6H)。
实施例97
化合物487的合成
除了起始原料更换为487-A、487-B、487-C和487-D以外,其他与实施例88相同。LC MS:M/Z 922.40(M+)。合成总收率:47%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.69(s,6H),4.83(s,2H),7.00–7.10(m,3H),7.08–7.14(m,1H),7.14(m,1H),7.14–7.27(m,3H),7.27–7.50(m,21H),7.50–7.58(m,2H),7.59–7.67(m,2H),7.67–7.78(m,3H),7.74–7.83(m,2H),7.85–7.91(m,1H),8.06(d,1H),8.16–8.24(m,2H)。
实施例98
化合物488的合成
除了起始原料更换为488-A、488-B、488-C和488-D以外,其他与实施例88相同。LC MS:M/Z 784.38(M+)。合成总收率:47%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.32(s,8H),1.69(s,6H),2.98(m,2H),3.61(t,2H),7.04(m,1H),7.11(t,1H),7.23–7.35(m,1H),7.31–7.39(m,4H),7.39–7.50(m,5H),7.50–7.59(m,5H), 7.67–7.82(m,8H),7.85–7.91(m,1H),8.00(m,1H),8.06(d,1H),8.22–8.31(m,2H)。
实施例99
化合物489的合成
除了起始原料更换为489-A、489-B、489-C和489-D以外,其他与实施例88相同。LC MS:M/Z 842.42(M+)。合成总收率:47%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.32(s,8H,),1.69(s,6H),1.96(m,2H),2.64–2.86(m,2H),3.37(m,2H),6.44(m,1H),6.73–6.84(m,2H),6.87(t,1H),6.99–7.06(m,2H),7.06–7.27(m,9H),7.30–7.59(m,14H),7.72–7.79(m,2H),7.82(d,1H),7.83–7.92(m,2H)。
实施例100
化合物490的合成
除了起始原料更换为490-A、490-B、490-C和490-D以外,其他与实施例88相同。LC MS:M/Z 736.35(M+)。合成总收率:49%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.69(s,6H),1.63–1.83(m,3H),2.78–2.88(m,2H),4.14–4.22(m,2H),6.68(s,2H),7.00(m,1H),7.04–7.12(m,3H),7.14–7.50(m,12H),7.50–7.59(m,5H),7.77(t,1H),7.82(d,1H),7.84–7.91(m,2H),8.24–8.32(m,4H)。
实施例101
化合物491的合成
除了起始原料更换为491-A、491-B、491-C和491-D以外,其他与实施例88相同。 LC MS:M/Z 632.32(M+)。合成总收率:49%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.69(s,6H),1.96(m,2H),2.55–2.81(m,2H),2.85(s,3H),3.37(m,2H),6.95–7.12(m,8H),7.19–7.31(m,5H),7.31–7.50(m,5H),7.50–7.57(m,1H),7.76(s,1H),7.84–7.92(m,1H),8.00(m,1H),8.16–8.26(m,1H),8.37(s,1H),8.90–9.00(m,1H)。
实施例102
化合物492的合成
除了起始原料更换为492-A、492-B、492-C和492-D以外,其他与实施例88相同。LC MS:M/Z 791.42(M+)。合成总收率:49%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.02(s,9H),1.69(s,6H),2.77–2.89(m,2H),3.26(m,1H),3.48(m,1H),4.34(m,1H),4.50(m,1H),6.95–7.04(m,3H),7.04–7.14(m,10H),7.14–7.29(m,8H),7.30–7.50(m,4H),7.50–7.57(m,1H),7.71–7.92(m,6H)。
实施例103
化合物493的合成
除了起始原料更换为493-A、493-B、493-C和493-D以外,其他与实施例88相同。LC MS:M/Z 797.33(M+)。合成总收率:48%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.93–2.08(m,4H),2.63–2.81(m,4H),2.84(m,4H),3.43–3.54(m,2H),3.54–3.65(m,2H),7.05–7.14(m,2H),7.30–7.39(m,4H),7.39–7.50(m,4H),7.50–7.60(m,5H),7.64–7.83(m,8H),7.88(m,1H),8.06(d,1H),8.26(m,2H)。
实施例104
化合物494的合成
除了起始原料更换为494-A、494-B、494-C和494-D以外,其他与实施例88相同。LC MS:M/Z 911.45(M+)。合成总收率:50%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.40–1.54(m,2H),1.66–1.93(m,19H),2.37–2.45(m,1H),2.62–2.75(m,6H),6.95–7.01(m,1H),7.13–7.22(m,3H),7.23(m,1H),7.30–7.57(m,12H),7.62–7.70(m,3H),7.77(m,2H),7.81–7.92(m,3H),8.16–8.24(m,3H),8.37(s,1H)。
实施例105
化合物495的合成
除了起始原料更换为495-A、495-B、495-C和495-D以外,其他与实施例88相同。LC MS:M/Z 895.39(M+)。合成总收率:49%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.69(s,6H),3.29(s,4H),7.02–7.11(m,3H),7.11(t,1H),7.14–7.27(m,3H),7.29–7.50(m,16H),7.50–7.59(m,3H),7.67–7.82(m,8H),7.85–7.93(m,2H),8.06(d,1H),8.22–8.31(m,2H)。
实施例106
化合物496的合成
除了起始原料更换为964-A、496-B、496-C和496-D以外,其他与实施例88相同。LC MS:M/Z 842.38(M+)。合成总收率:49%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.69(s,6H),1.70(m,2H),2.58–2.64(m,1H),7.11(t,1H),7.19(m,1H),7.23–7.30(m,2H),7.30–7.67(m,24H),7.67–7.74(m,1H),7.71–7.78(m,2H),7.74– 7.82(m,2H),7.82–7.91(m,2H),8.06(d,1H),8.17–8.27(m,2H)。
实施例107
化合物497的合成
除了起始原料更换为497-A、497-B、497-C和497-D以外,其他与实施例88相同。LC MS:M/Z 801.37(M+)。合成总收率:48%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.40(s,2H),1.69(s,6H),6.95–7.04(m,2H),7.04–7.12(m,4H),7.19–7.29(m,4H),7.35(m,3H),7.42–7.50(m,2H),7.50–7.62(m,8H),7.66(m,1H),7.70–7.79(m,6H),7.81–7.92(m,2H),8.07(m,1H),8.37(s,1H),8.84(d,1H),8.95(m,1H),9.07(d,1H)。
实施例108
化合物498的合成
除了起始原料更换为498-A、498-B、498-C和498-D以外,其他与实施例88相同。LC MS:M/Z 835.36(M+)。合成总收率:48%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.69(s,12H),6.91(m,1H),6.94–7.01(m,2H),7.26–7.41(m,9H),7.41–7.61(m,12H),7.68(m,1H),7.71–7.79(m,3H),7.82–7.92(m,3H),7.94–8.01(m,1H),8.03(m,1H),8.37(s,1H)。
实施例109
化合物499的合成
除了起始原料更换为499-A、499-B、499-C和499-D以外,其他与实施例88相同。LC MS:M/Z 866.39(M+)。合成总收率:50%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.69(s,12H),2.72(m,2H),3.70(t,2H),5.14(s,2H),6.91(m,1H),6.95–7.01(m,1H),7.06(m,1H),7.26–7.50(m,15H),7.50–7.58(m,5H),7.68(m,1H),7.71–7.78(m,2H),7.82–7.91(m,3H),7.95–8.01(m,1H),8.03(m,1H),8.37(s,1H)。
实施例110
化合物500的合成
除了起始原料更换为500-A、500-B、500-C和500-D以外,其他与实施例88相同。LC MS:M/Z 835.36(M+)。合成总收率:51%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.69(s,12H),5.12(d,2H),6.91(m,1H),6.95–7.01(m,1H),7.18(m,1H),7.23(m,1H),7.26–7.50(m,9H),7.50–7.60(m,5H),7.65–7.73(m,2H),7.71–7.80(m,4H),7.82–7.91(m,4H),7.94–8.01(m,2H),8.03(m,1H),8.37(s,1H)。
实施例111
化合物501的合成
除了起始原料更换为501-A、501-B、501-C和501-D以外,其他与实施例88相同。LC MS:M/Z 743.34(M+)。合成总收率:47%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.69(s,6H),1.80(m,2H),4.00(m,2H),7.00(m,1H),7.04–7.12(m,2H),7.14–7.29(m,5H),7.35(m,2H),7.37–7.50(m,2H),7.50–7.80(m,12H),7.81–7.94 (m,4H),8.00–8.06(m,1H),8.27(d,1H),8.37(s,1H),8.74–8.80(m,1H)。
实施例112
化合物502的合成
除了起始原料更换为502-A、502-B、502-C和502-D以外,其他与实施例88相同。LC MS:M/Z 1014.42(M+)。合成总收率:47%;HPLC纯度:99.9%。
1H NMR(400MHz,DMSO-d6)δ1.60(m,2H),1.69(s,12H),3.10(m,2H),6.00(d,1H),6.93(d,1H),6.96–7.01(m,1H),7.06(m,1H),7.14–7.23(m,2H),7.29–7.60(m,18H),7.63–7.70(m,3H),7.71–7.78(m,3H),7.81(m,1H),7.82–7.91(m,3H),8.17–8.24(m,3H),8.24(m,1H),8.37(s,1H)。
实施例113
化合物504的合成
除了起始原料更换为504-A、504-B、504-C和504-D以外,其他与实施例88相同。LC MS:M/Z 827.52(M+)。合成总收率:48%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.01(s,1H),7.72(m,1H),7.69–7.61(m,4H),7.61(m,1H),7.58–7.50(m,4H),7.49–7.27(m,11H),7.27–7.18(m,4H),7.21–7.14(m,2H),6.92(d,1H),1.74(s,4H),1.28(s,12H).
实施例114
化合物507的合成
除了起始原料更换为507-A、507-B、507-C和507-D以外,其他与实施例88相同。LC MS:M/Z 781.46(M+)。合成总收率:49%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.01(s,1H),7.69–7.63(m,5H),7.61(m,1H),7.58–7.51(m,6H),7.49–7.27(m,8H),7.24(d,1H),7.21–7.14(m,6H),1.74(s,3H),1.74(s,4H),1.28(s,12H).
实施例115
化合物509的合成
除了起始原料更换为509-A、509-B、509-C和509-D以外,其他与实施例88相同。LC MS:M/Z 914.21(M+)。合成总收率:46%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.04–7.98(m,2H),7.94(d,1H),7.66(m,3H),7.58–7.51(m,6H),7.51–7.32(m,10H),7.32–7.14(m,11H),7.14–7.07(m,5H),6.87(m,1H),1.74(s,4H),1.28(s,12H)
实施例116
化合物514的合成
除了起始原料更换为514-A、514-B、514-C和514-D以外,其他与实施例88相同。LC MS:M/Z 789.40(M+)。合成总收率:49%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.03(m,1H),7.98–7.91(m,2H),7.69–7.63(m,2H),7.63–7.57(m,2H),7.57–7.51(m,5H),7.51–7.38(m,6H),7.41–7.29(m,4H),7.24(d,1H),7.21–7.14(m,4H),7.11(d,1H),6.87(m,1H),1.74(s,4H),1.59(s,6H),1.28(d,12H).
实施例117
化合物519的合成
除了起始原料更换为519-A、519-B、519-C和519-D以外,其他与实施例88相同。LC MS:M/Z 987.44(M+)。合成总收率:47%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.06–8.00(m,2H),7.90(d,1H),7.84(m,2H),7.73(d,1H),7.69–7.63(m,3H),7.65–7.59(m,2H),7.59–7.21(m,21H),7.21–7.14(m,6H),6.91(m,1H),6.82(m,2H),1.74(s,4H),1.28(s,12H).
实施例118
化合物521的合成
除了起始原料更换为521-A、521-B、521-C和521-D以外,其他与实施例88相同。LC MS:M/Z 865.43(M+)。合成总收率:45%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.06–8.00(m,2H),7.90(d,1H),7.84(m,2H),7.73(d,1H),7.69–7.63(m,3H),7.65–7.59(m,2H),7.59–7.21(m,22H),7.21–7.14(m,6H),6.91(m,1H),6.82(m,2H),1.74(s,4H),1.28(d,12H).
实施例119
化合物524的合成
除了起始原料更换为524-A、524-B、524-C和524-D以外,其他与实施例88相同。LC MS:M/Z 927.44(M+)。合成总收率:44%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.01(m,1H),7.94(d,1H),7.81(d,1H),7.73(m,1H),7.69–7.63(m,2H),7.60–7.52(m,5H),7.51–7.32(m,8H),7.32–7.13(m,17H),7.10(m,2H),6.87(m,1H),1.31(s,12H),0.93(s,6H).
实施例120
化合物526的合成
除了起始原料更换为526-A、526-B、526-C和526-D以外,其他与实施例88相同。LC MS:M/Z 987.44(M+)。合成总收率:48%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.93(d,1H),7.84(m,3H),7.75–7.69(m,2H),7.69–7.51(m,10H),7.48–7.21(m,16H),7.20–7.14(m,4H),7.14–7.06(m,2H),6.88(m,1H),6.82(m,2H),1.74(s,4H),1.28(d,12H).
实施例121
化合物527的合成
除了起始原料更换为527-A、527-B、527-C和527-D以外,其他与实施例88相同。LC MS:M/Z 919.48(M+)。合成总收率:48%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ8.06–8.01(m,1H),7.89(d,1H),7.80(d,1H),7.75–7.66(m,4H),7.65–7.27(m,16H),7.25–7.14(m,6H),7.09(d,1H),6.96(d,1H),1.60(s,12H),1.31(s,12H),0.93(s,6H).
实施例122
化合物528的合成
除了起始原料更换为528-A、528-B、528-C和528-D以外,其他与实施例88相同。LC MS:M/Z 885.48(M+)。合成总收率:49%;HPLC纯度:99.9%。
1H NMR(500MHz,DMSO-d6)δ7.93(d,1H),7.84(d,1H),7.74(m,3H),7.69–7.59(m,4H),7.59 –7.52(m,5H),7.49(m,1H),7.47–7.38(m,3H),7.41–7.35(m,5H),7.37–7.32(m,1H),7.35–7.26(m,2H),7.17(m,6H),7.12(d,1H),7.08(d,1H),6.88(m,1H),1.31(s,12H),0.93(s,6H).
器件实施例1:红光发光器件的制备
制备工艺为:在玻璃材质的基底上,形成透明阳极ITO膜层(厚度150nm),得到第一电极作为阳极。随后通过真空蒸镀的方法,在阳极表面蒸镀化合物T-1与化合物T-2的混合材料作为空穴注入层,混合比例为3:97(质量比),厚度为10nm。随后在空穴注入层上蒸镀100nm厚度的化合物T-2,得到第一层空穴传输层。随后在第一空穴传输层上蒸镀10nm厚度的本发明化合物1,得到第二层空穴传输层。在第二空穴传输层上,将化合物T-3和化合物T-4以95:5的质量比进行共蒸镀,形成厚度为40nm的有机发光层。然后,在有机发光层上,依次蒸镀化合物T-5形成空穴阻挡层(厚度10nm),以及混合比例为4:6(质量比)的化合物T-6和LiQ形成电子传输层(厚度30nm)。最后将镁(Mg)和银(Ag)以1∶9的蒸镀速率混合,真空蒸镀在电子注入层层上,作为第二电极109,完成有机发光器件的制造。
红光器件实施例2-65
除了在形成第二空穴传输层时,分别以化合物20、39、305、452、457、462、467、3、28、43、127、2、11、28、134、286、6、44、293、153、172、191、210、248、267、324、400、183、204、307、160、163、170、256、145、161、175、58、77、229、57、68、115、55、64、220、96、231、100、93、98、343、381、391、449、352、363、403、417、428、419、438、355和415替代化合物1外,采用与器件实施例1相同的方法制作有机电致发光器件。
红光器件对比例1~2
除了在形成第二空穴传输层时,分别以化合物HT-1、化合物HT-2替代化合物1外,采用与器件实施例1相同的方法制作有机电致发光器件。
对以上制得的有机电致发光器件,通过计算机控制的Keithley 2400测试系统计算得到工作电压和效率。使用配备电源和光电二极管作为检测单元的Polaronix(McScience Co.)寿 命测量系统得到黑暗条件下的器件寿命。每一组红光器件实施例和红光器件对比例1均与红光器件对比例2的器件在同一批次中产出并测试,将红光器件对比例1的器件的工作电压、效率和寿命均分别记为1,并分别计算器件实施例1~65、红光器件对比例2的与器件对比例1相应指标的比值,如表1所示。
表1红光器件实施例1~65及器件对比例1~2的测试结果



根据表1的结果可知,作红色发光器件的第二空穴传输层时,红光器件实施例1~65所使用的化合物与红光器件对比例1~2中使用的化合物形成的器件相比,电压均有所降低,发光效率均有所提高(最高达到20%),寿命大幅提升。可能的原因是:同对比例中的化合物相比,在邻近氮原子的一侧引入基团,能增大化合物的三线态能级;另外引入的基团可能与氮原子形成微弱的共轭,从而材料更加稳定。再者,从前述的列举化合物的种类来看,以这些种类的材料制成的器件的效率和寿命均比参比化合物有大幅提升,并且这些种类的材料在红光器件中没有太大的区别。因此,本发明的化合物均适用于红光器件。
绿光器件实施例1:
制备工艺为:在玻璃材质的基底上,通过磁控溅射工艺形成透明的ITO膜层(厚度150nm),得到第一电极作为阳极。在阳极表面蒸镀化合物T-1与化合物T-2的混合材料作为空穴注T-2(厚度100nm)和本发明化合物1(厚度40nm),分别得到第一层空穴传输层和第二层空穴传输层。接下来,在第二空穴传输层的表面,将化合物pGH,化合物nGH和化合物GD以45:45:10的质量比进行共蒸镀,形成有机发光层(厚度40nm)。随后,在有机发光层表面依次蒸镀化合物T-5形成空穴阻挡层(厚度10nm),以及混合比例为4:6(质量比)的化合物T-6和LiQ形成电子传输层(厚度30nm)。最后,将镁(Mg)和银(Ag)以1∶9的蒸镀速率混合沉积在电子传输层的表面,形成厚度为10nm的第二电极作为阴极,完成有机发光器件的制造。
绿光器件实施例2~51
除了在形成发光时,分别以4、20、30、38、452、456、457、458、461、462、464、465、467、43、127、2、11、6、293、153、191、248、400、204、307、163、256、145、175、58、77、57、68、115、55、220、96、229、100、93、98、343、391、403、417、428、419、438、439和440替代化合物1外,采用与绿光器件实施例1相同的方法制作有机电致发光器件。
绿光器件对比例1-4
除了在形成发光层时,以化合物HT-3、HT-4、HT-5和HT-6替代化合物1外,采用与绿光器件实施例1相同的方法制作有机电致发光器件。
表2绿光器件实施例1~51及绿光器件对比例1~4的测试结果

根据表2的结果可知,作绿色发光器件的第二空穴传输层时,绿光器件实施例1~51所使用的化合物与绿光器件对比例1~4中使用的化合物形成的器件相比,电压均有所降低,发光效率均有所提高,并且寿命大幅提升。另外,绿光器件实施例15~51(A环或B 环中含杂原子)同1~14(A环或B环中不含杂原子)相比,效率和寿命均比后者低。然而这些实施例中15~51中的化合物在红光器件中使用时,同A环和B环中不含杂原子的化合物有同等的增益效果。究其原因,可能是绿光器件中,激子的能量更高,对材料的热稳定性及电学稳定性要求更高。这些化合物中存在一些不稳定的位点(例如一些杂原子),从而导致了器件的效率和寿命有所降低。另外,实施例6中,化合物452中引入了氘原子,器件寿命得以提升。
综上所述,本发明的化合物无论A环或B环是否含有杂原子,其应用到红光器件时,器件的电压降低、效率和寿命均大幅提升;而A环或B环含有杂原子时,不太适合应用于绿光器件;A环或B环不含杂原子时,绿光器件的电压降低,效率和寿命均大幅提升。更加适用于绿光器件的应用。
蓝光器件实施例1:有机电致发光器件的制备
制备过程如下:
1)在玻璃基板上形成透明阳极ITO膜层(厚度150nm),得到第一电极作为阳极。
2)通过真空蒸发,在阳极表面上蒸发化合物F4-TCNQ形成厚度为10nm的空穴注入层,并且在空穴注入层上真空蒸镀化合物NPB(厚度100nm),化合物1(40nm)分别形成第一空穴传输层和第二空穴传输层。
4)在第二空穴传输层的表面将化合物BH-1作为主体,按照膜厚比100:3同时掺杂BD-1,形成厚度为10nm的发光层(EML)。
5)在EML上将ET-01和LiQ以1:1的膜厚比进行蒸镀形成了厚度为30nm的电子传输层
(ETL),将Yb蒸镀在电子传输层上以形成厚度为15埃的电子注入层(EIL)。
6)将镁(Mg)和银(Ag)以1:9的膜厚比真空蒸镀在电子注入层上,形成厚度为11nm的阴极。
7)上述阴极上蒸镀厚度为65nm的CP-1作为有机覆盖层(CPL),完成有机发光器件的 制作。
蓝光器件实施例2-105
除了在形成发光层时,分别以化合物4、20、30、38、39、305、457、458、462、463、464、465、466、467、479、480、485、494、504、507、509、514、519、521、524、526、527、528、3、28、43、127、2、11、134、286、478、481、493、6、44、293、153、172、191、210、248、267、324、400、486、487、488、489、491、492、495、183、204、307、160、163、170、256、145、161、175、58、77、482、490、499、57、68、115、55、64、220、484、96、229、483、100、93、98、496、497、498、500、501、502、343、381、391、449、352、363、403、417、428、419、438、355和439替代化合物1外,采用与蓝光器件实施例1相同的方法制作有机电致发光器件。
蓝光器件对比例1~7
除了在形成发光层时,分别以化合物HT-1、HT-2、HT-3、HT-4、HT-5、HT-6、化合物HT-7替代化合物1外,采用与蓝光器件实施例1相同的方法制作有机电致发光器件。
以上每一组器件实施例和器件对比例均与器件对比例1的器件在同一批次中产出并测试,将器件对比例1的器件的工作电压、效率和寿命均分别记为1,并分别计算器件实施例1-、器件对比例的与器件对比例1相应指标的比值,如表3所示。
表3蓝光器件实施例1~105及器件对比例1~7的测试结果





根据表3的结果可知,作蓝色发光器件的第二空穴传输层时,蓝光器件实施例1~105所使用的化合物与蓝光器件对比例1~7中使用的化合物形成的器件相比,电压均有所降低,发光效率均有所提高,并且寿命大幅提升。并且,蓝光器件实施例16~29、实施例38~40、实施例52~58、实施例71~73、实施例80、实施例83、实施例87~92(N原子和芳香烷基取代基的母体之间引入苯环)同其它实施例相比,效率和寿命均大幅提升。可能的原因是,引入苯环后,分子的共轭增大,电子的离域程度增大,从而导致三线态能级下 降,进而在蓝光器件中,材料的效率和寿命均能大幅提升。
据此,本发明的化合物在有机光电器件中,有较大的应用价值。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (19)

  1. 一种化合物,所述化合物的化学结构如式(Ⅰ)所示:
    其中:
    所述基团A选自如下所示基团中的一种或多种:
    Z1-Z75、Z76-Z121各自独立选自CR3R4,NR5,SiR6R7,BR8,O或S;*1,*2为基团A的连接位点;*1或*2可与基团A上的任意位置连接;
    X1,X2各自独立选自单键,CR9R10,NR11,SiR12R13,O或S;或者R9、R10键合成环;
    R1-R13相同或不同,各自独立地选自氢、氘、取代或未取代的直链或支链的C1~C30的烷基;取代或未取代的C1~C30的杂烷基、取代或未取代的C3~C30的环烷基、取代或未取代的C3~C30的杂环烷基、取代或未取代的C6~C30的芳基、或取代或未取代的C6~C30的杂芳基;
    L1-L3相同或不相同,各自独立地选自单键,取代或未取代的C6~C30的亚芳基、取代或未取代的C3~C30的亚杂芳基;
    Ar1和Ar2相同或不相同,各自独立选自取代或未取代的C6~C30的芳基、取代或未取代的C6~C30的杂芳基。
  2. 如权利要求1所述的化合物,其特征在于,所述基团A选自如下所示基团中的任一种:

    其中:
    R16-R23各自独立选自选自氢、氘、取代或未取代的C1-C60的烷基、取代或未取代的C1-C60的环烷基、取代或未取代的C1-C60的杂烷基、取代或未取代的C1-C60的杂环烷基、取代或未取代的C1-C60的芳基或取代或未取代的C1-C60的杂芳基中的一种或多种;
    其中------*为原子的连接位点。
  3. 如权利要求1所述的化合物,其特征在于,所述基团A选自如下所示基团中的任一种:

  4. 如权利要求1所述的化合物,其特征在于,所述X1、X2各自独立选自单键、O、S、
  5. 如权利要求1所述的化合物,其特征在于,所述R1、R2各自独立的选自氢、氘;
    和/或,R3-R13相同或不同,各自独立地选自氢、氘、取代或未取代的直链或支链的C1~C30的烷基;取代或未取代的C1~C12的烷氧基、取代或未取代的C1~C12的烷硫基、取代或未取代的C3~C30的环烷基、取代或未取代的C3~C30的杂环烷基、取代或未取代的C6~C30的芳基、或取代或未取代的C6~C30的杂芳基。
  6. 如权利要求1所述的化合物,其特征在于,所述L1~L3各自独立选自单键、取代或未取代的亚苯基、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚三联苯基、取代或未取代的亚蒽基、取代或未取代的亚菲基、
    Ar3选自C6~C20的芳基或C2~C15的杂芳基。
  7. 如权利要求1所述的化合物,其特征在于,所述Ar1、Ar2各自独立的选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的三联苯基、
  8. 如权利要求1~7任一项所述的化合物,其特征在于,所述化合物的化学结构如式(Ⅱ)所示:
    其中,R1、R2各自独立选自氢、氘;
    R9和R10独立选自取代或未取代的直链或支链的C1~C30的烷基;取代或未取代的C1~C12的烷氧基、取代或未取代的C1~C12的烷硫基、取代或未取代的C3~C30的环烷基、取代或未取代的C3~C30的杂环烷基、取代或未取代的C6~C30的芳基、或取代或未取代的C6~C30的杂芳基;或与相邻的基团键合成环;
    A、L2、L3、Ar1、Ar2如权利要求1中所定义。
  9. 如权利要求8所述的化合物,其特征在于选自如下化学结构式:所述化合物的化学结构如式(Ⅲ)~(Ⅵ)所示:
    R1、R2、A、L2、L3、Ar1、Ar2如权利要求8中所定义。
  10. 如权利要求9所述的化合物,其特征在于,A环选自如下结构:
  11. 权利要求1~7任一项所述的化合物,其特征在于,所述化合物的化学结构如式(Ⅶ)所示:
    其中,R1、R2各自独立选自氢、氘;
    R9和R10独立选自取代或未取代的直链或支链的C1~C30的烷基;取代或未取代的C1~C12的烷氧基、取代或未取代的C1~C12的烷硫基、取代或未取代的C3~C30的环烷基、取代或未取代的C3~C30的杂环烷基、取代或未取代的C6~C30的芳基、或取代或未取代的C6~C30的杂芳基;或与相邻的基团键合成环;
    A、L2、L3、Ar1、Ar2如权利要求1中所定义。
  12. 如权利要求1所述的化合物,其特征在于,所述化合物的化学结构如式(Ⅷ)~(Ⅺ)所示:
    R1、R2、A、L2、L3、Ar1、Ar2如权利要求11中所定义。
  13. 如权利要求1~12任一项所述的化合物,其特征在于,所述化合物选自以下化学结构中的任一个:









  14. 一种有机层,包括如权利要求1~13任一项所述的化合物。
  15. 如权利要求1~13任一项所述化合物和/或如权利要求14所述的有机层在有机光电器件中的应用。
  16. 一种有机光电器件,其包括第一电极、第二电极和如权利要求14所述的有机层,其中,所述有机层为空穴注入层、空穴传输层、发光层、电子注入层或电子传输层中至少一层。
  17. 一种有机光电器件,其中绿光缓冲层含有权利要求1-13中的化合物中的一种或多种。
  18. 如权利要求16或17所述的有机光电器件,其特征在于,所述有机光电器件为有机光伏器件、有机发光器件、有机太阳电池、电子纸、有机感光体、有机薄膜晶体管。
  19. 一种显示或照明装置,其包括如权利要求17~18任一项所述的有机光电器件。
PCT/CN2023/085522 2022-05-19 2023-03-31 一种化合物及其在有机光电器件的应用 WO2023221666A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210557908.7A CN114890935A (zh) 2022-05-19 2022-05-19 一种化合物及其在有机光电器件的应用
CN202210557908.7 2022-05-19

Publications (1)

Publication Number Publication Date
WO2023221666A1 true WO2023221666A1 (zh) 2023-11-23

Family

ID=82723911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085522 WO2023221666A1 (zh) 2022-05-19 2023-03-31 一种化合物及其在有机光电器件的应用

Country Status (2)

Country Link
CN (3) CN114890935A (zh)
WO (1) WO2023221666A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890935A (zh) * 2022-05-19 2022-08-12 上海钥熠电子科技有限公司 一种化合物及其在有机光电器件的应用
WO2023239091A1 (ko) * 2022-06-07 2023-12-14 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
CN115403440A (zh) * 2022-09-29 2022-11-29 上海钥熠电子科技有限公司 化合物、有机光电器件及显示或照明装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113620818A (zh) * 2021-08-12 2021-11-09 长春海谱润斯科技股份有限公司 一种含稠环的三芳胺类化合物及其有机发光器件
CN113735808A (zh) * 2021-09-23 2021-12-03 长春海谱润斯科技股份有限公司 一种三芳胺化合物及其有机电致发光器件
CN114507222A (zh) * 2022-03-03 2022-05-17 上海钥熠电子科技有限公司 一种胺类化合物及其在有机电致发光器件中的应用
CN114835590A (zh) * 2022-05-19 2022-08-02 上海钥熠电子科技有限公司 一种有机化合物及其在有机光电器件的应用
CN114890935A (zh) * 2022-05-19 2022-08-12 上海钥熠电子科技有限公司 一种化合物及其在有机光电器件的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113620818A (zh) * 2021-08-12 2021-11-09 长春海谱润斯科技股份有限公司 一种含稠环的三芳胺类化合物及其有机发光器件
CN113735808A (zh) * 2021-09-23 2021-12-03 长春海谱润斯科技股份有限公司 一种三芳胺化合物及其有机电致发光器件
CN114507222A (zh) * 2022-03-03 2022-05-17 上海钥熠电子科技有限公司 一种胺类化合物及其在有机电致发光器件中的应用
CN114835590A (zh) * 2022-05-19 2022-08-02 上海钥熠电子科技有限公司 一种有机化合物及其在有机光电器件的应用
CN114890935A (zh) * 2022-05-19 2022-08-12 上海钥熠电子科技有限公司 一种化合物及其在有机光电器件的应用

Also Published As

Publication number Publication date
CN114890935A (zh) 2022-08-12
CN117623945A (zh) 2024-03-01
CN116332771A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
KR102210267B1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR101412246B1 (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2023221666A1 (zh) 一种化合物及其在有机光电器件的应用
KR102192691B1 (ko) 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR20120015883A (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
CN114805386B (zh) 有机化合物、主体材料和有机光电器件
CN114835590A (zh) 一种有机化合物及其在有机光电器件的应用
KR20210089294A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
CN114784212A (zh) 有机电致发光器件及包含其的电子装置
WO2019085687A1 (zh) 含有4,6-二苯砜二苯并呋喃的双极性材料的器件
WO2021135456A1 (zh) 有机化合物、电子元件和电子装置
WO2023216669A1 (zh) 有机化合物、有机电致发光器件和电子装置
KR20210048018A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
CN116063187A (zh) 一种化合物及其在有机光电器件中的应用
CN115448932A (zh) 一种化合物、有机光电器件及显示或照明装置
KR102356004B1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
CN115109065B (zh) 有机化合物、主体材料和有机电致发光器件
CN114907359B (zh) 一种有机化合物及其在有机电致发光器件中的应用
CN115141106B (zh) 化合物、有机材料和有机光电器件
CN116462592A (zh) 一种化合物及其在有机光电器件中的应用
KR102629146B1 (ko) 안트라센계 화합물, 및 이를 포함하는 유기 발광 소자
CN114426539B (zh) 有机化合物及包含其的有机电致发光器件和电子装置
KR102630972B1 (ko) 안트라센계 화합물, 및 이를 포함하는 유기 발광 소자
CN116813583A (zh) 化合物及其在有机光电器件的应用
CN116063191A (zh) 一种化合物及其在有机光电器件中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806624

Country of ref document: EP

Kind code of ref document: A1