WO2023218668A1 - 加振力最適化システム、加振力最適化方法、及び演算装置 - Google Patents

加振力最適化システム、加振力最適化方法、及び演算装置 Download PDF

Info

Publication number
WO2023218668A1
WO2023218668A1 PCT/JP2022/020284 JP2022020284W WO2023218668A1 WO 2023218668 A1 WO2023218668 A1 WO 2023218668A1 JP 2022020284 W JP2022020284 W JP 2022020284W WO 2023218668 A1 WO2023218668 A1 WO 2023218668A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency response
response function
excitation force
frequency
peak
Prior art date
Application number
PCT/JP2022/020284
Other languages
English (en)
French (fr)
Inventor
大樹 小林
利基 中西
洋介 櫻田
淳 荒武
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/020284 priority Critical patent/WO2023218668A1/ja
Publication of WO2023218668A1 publication Critical patent/WO2023218668A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table

Definitions

  • the present invention relates to an excitation force optimization system, an excitation force optimization method, and an arithmetic device.
  • a modal experiment is an experiment in which any part of a structure is vibrated and the responses are observed at multiple locations in order to learn the natural frequency characteristics of the structure.
  • the simplest and most common modal experiment is an experiment using an impulse hammer and an accelerometer.
  • an impulse hammer strikes a structure manually, if the structure is a large structure such as a civil engineering structure, the attenuation becomes large, making it extremely difficult to measure an accurate frequency response function.
  • Excitation force refers to the force that applies vibration to a structure.
  • Nonlinearity refers to the property that the relationship between output and input is not proportional.
  • Non-Patent Document 1 in a large structure, instead of one vibrator that applies a large excitation force to the structure, multiple vibrators that apply a small excitation force to the structure are used, Techniques have been described to more evenly distribute loads on structures.
  • the purpose of the present disclosure which was made in view of the above circumstances, is to provide an arithmetic device for deriving a frequency response function of a structure, an excitation force optimization system and an excitation force optimization system for optimizing excitation force in deriving the frequency response function of a structure.
  • An object of the present invention is to provide an excitation force optimization method.
  • an excitation force optimization system is an excitation force optimization system that optimizes excitation force when deriving a frequency response function of a structure.
  • a vibrator that excites the One or more accelerometers installed in the structure measure the vibration of the structure each time the structure is excited, and a frequency response function is derived based on the measured value of the vibration of the structure.
  • an arithmetic device that controls the excitation force of the vibrator based on the frequency response function.
  • the excitation force optimization method is an excitation force optimization method that optimizes the excitation force when deriving the frequency response function of a structure, and includes: a step of repeatedly exciting the structure by stepwise amplifying the excitation force using a vibrator; measuring vibrations of the structure excited by the vibration exciter using one or more accelerometers; using a calculation device to derive a frequency response function based on the measured value of vibration of the structure; After the calculation device derives a first frequency response function in which the frequency at which the peak of the frequency response function appears varies depending on the number of trials, the frequency at which the peak of the frequency response function that is equal to or higher than the first threshold value appears is determined by the number of trials.
  • the arithmetic device derives a third frequency response function in which a peak of the frequency response function that is not present in the second frequency response function and is greater than or equal to the second threshold is derived, the third frequency response function outputting a frequency response function obtained by averaging the one or more recorded second frequency response functions; including.
  • a computing device that derives a frequency response function of a structure, and includes a receiving unit that receives measured values of vibration of the structure from one or more accelerometers. a calculation unit that derives the frequency response function based on the measured value and controls the excitation force of the vibrator based on the frequency response function; and a display unit that displays and visualizes the frequency response function. and a recording unit that records the frequency response function. Equipped with
  • the excitation force optimization system since the optimal excitation force for a structure is automatically searched, an accurate frequency response function can be derived regardless of the skills and know-how of engineers. .
  • FIG. 1 is a block diagram illustrating a configuration example of an excitation force optimization system according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of an excitation force optimization system according to an embodiment of the present disclosure. It is a graph showing a frequency response function in which the excitation force is in an appropriate range. It is a graph showing a frequency response function in a range where the excitation force is excessive.
  • FIG. 1 is a block diagram illustrating a configuration example of an arithmetic device according to an embodiment of the present disclosure.
  • 1 is a flowchart illustrating an example of an excitation force optimization method executed by an excitation force optimization system according to an embodiment of the present disclosure.
  • 1 is a flowchart illustrating an example of an excitation force optimization method executed by an excitation force optimization system according to an embodiment of the present disclosure.
  • 1 is a block diagram showing a schematic configuration of a computer functioning as an arithmetic device.
  • an excitation force optimization system 1 which includes a calculation flow that amplifies the excitation force in stages (step amplification) and searches for an excitation force in which such a pseudo peak does not appear.
  • FIG. 1 is a block diagram showing a configuration example of an excitation force optimization system 1 according to an embodiment of the present disclosure.
  • the excitation force optimization system 1 includes a vibrator 10, one or more accelerometers 20, and an arithmetic device 30.
  • the excitation force optimization system 1 optimizes the excitation force when deriving a frequency response function of a structure.
  • FIG. 2 is a schematic diagram of an excitation force optimization system according to an embodiment of the present disclosure.
  • the structure (object to be monitored) 40 is a pipe (tubular structure), and is attached to supporting hardware 41 at both ends with U bolts 42.
  • the vibrator 10 applies an excitation force to the structure 40, the structure 40 vibrates.
  • One or more accelerometers 20 (20-1 to 20-n) are attached to the structure 40, and the one or more accelerometers 20 measure vibrations of the structure 40.
  • the measured value of the vibration of the structure 40 is transmitted to the arithmetic device 30 by wire or wirelessly, and the arithmetic device 30 derives a frequency response function of the structure 40 based on the measured value.
  • the vibrator 10 vibrates the structure 40.
  • the vibrator 10 first vibrates the structure 40 with an extremely small excitation force, and then amplifies the excitation force stepwise to repeatedly vibrate the structure 40.
  • the vibrator 10 is a modal vibrator.
  • the excitation force optimization system 1 When the excitation force optimization system 1 is activated, the vibrator 10 excites the structure 40 with an excessively small excitation force.
  • the vibrator 10 vibrates the structure 40 by amplifying the vibrating force in stages (step amplification) according to instructions from the arithmetic unit 30, as described later.
  • One or more accelerometers 20 are installed in the structure 40 and measure vibrations of the structure 40 every time the structure 40 is excited. As shown in FIG. 1, the one or more accelerometers 20 are comprised of n accelerometers 20-1 to 20-n.
  • the accelerometer 20-1 includes a measuring section 21-1 that measures the vibration of the structure 40, and a transmitting section 22-1 that transmits the measured value to the receiving section 31 of the arithmetic device 30.
  • the accelerometers 20-2 to 20-n also have similar configurations and functions.
  • the calculation device 30 derives a frequency response function based on the measured value of vibration of the structure 40.
  • FIG. 3 is a graph showing a frequency response function when the excitation force is within an appropriate range.
  • FIG. 4 is a graph showing a frequency response function when the excitation force is excessive. 3 and 4 show the imaginary part of the frequency response function.
  • the frequency response function has a small attenuation and a sharp peak b.
  • the frequency response function has a peak a1 (pseudo peak a1) in a frequency band that does not exist in the frequency response function of Fig. 3. In the frequency band in which peak b appears in FIG. 3, a peak a2 with a less sharp rise appears.
  • the frequency response functions shown in FIGS. 3 and 4 are superimposed frequency response functions derived from the measurement values of each of the n accelerometers.
  • the arithmetic device 30 controls the excitation force of the vibrator based on the frequency response function.
  • trial refers to amplifying the excitation force in stages to derive a frequency response function.
  • the arithmetic device 30 repeats the trial a plurality of times (N times) and compares the plurality of frequency response functions recorded in each trial. When it is determined that the frequency response function is a first frequency response function A in which the frequency at which the peak of the frequency response function appears varies depending on the number of trials (no reproducibility), the arithmetic unit 30 applies the excitation force to the first frequency response function A. Amplify.
  • the arithmetic device 30 uses a second frequency response function B in which the frequency response function has a constant (reproducible) frequency at which a peak of the frequency response function that is equal to or higher than the first threshold appears regardless of the number of trials. If it is determined that there is, the second frequency response function B is recorded and the excitation force is amplified. (iii) The arithmetic device 30 determines that the frequency response function is a third frequency response function C that does not exist in the second frequency response function and exhibits a peak of the frequency response function that is greater than or equal to the second threshold. If so, the most recent third frequency response function C is discarded, and the average value of one or more second frequency response functions B is output.
  • FIG. 5 is a block diagram illustrating a configuration example of an arithmetic device according to an embodiment of the present disclosure.
  • the computing device 30 includes a receiving section 31, a computing section 32, a display section 33, and a recording section 34. Arithmetic device 30 derives a frequency response function of the structure.
  • the calculation unit 32 constitutes a control calculation circuit (controller) 50.
  • the control calculation circuit 50 may be configured by dedicated hardware such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array), or may be configured by a processor, or may be configured by including both. may be done.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the receiving unit 31 receives the measured value of the vibration frequency of the structure 40 from the transmitting unit (22-1 to 22-n) of one or more accelerometers 20.
  • the calculation unit 32 derives a frequency response function based on the measured value of the vibration frequency of the structure 40, and controls the excitation force of the vibrator 10 based on the frequency response function. (i) The calculation unit 32 repeats the trial a plurality of times (N times), and compares the plurality of frequency response functions recorded in the recording unit 34 for each trial. When it is determined that the frequency response function is a first frequency response function A in which the frequency at which the peak of the frequency response function appears varies depending on the number of trials (without reproducibility), the calculation unit 32 applies the excitation force to the first frequency response function A. Amplify.
  • the calculation unit 32 uses a second frequency response function B in which the frequency at which the peak of the frequency response function that is equal to or higher than the first threshold value appears is constant (reproducible) regardless of the number of trials. If it is determined that there is, the second frequency response function B is recorded and the excitation force is amplified. (iii) The calculation unit 32 determines that the frequency response function is a third frequency response function C that does not exist in the second frequency response function and exhibits a peak of the frequency response function that is greater than or equal to the second threshold. If so, the most recent third frequency response function C is discarded, and the average value of one or more second frequency response functions B is output.
  • the display unit 33 displays and visualizes the frequency response function.
  • the display section 33 is a display.
  • the display unit 33 determines whether the derived frequency response function is the first frequency response function A, the second frequency response function B, or the third frequency response function C. Display and visualize all frequency response functions on the display.
  • the recording unit 34 records the frequency response function.
  • the recording unit 34 stores one or more second frequency response functions B in response to a request from the calculation unit 32 when the calculation unit 32 averages the recorded one or more second frequency response functions B. Output to 32.
  • FIGS. 6A and 6B are flowcharts illustrating an example of an excitation force optimization method executed by an excitation force optimization system according to an embodiment of the present disclosure.
  • step S101 the vibrator 10 vibrates the structure 40 with an excessively small excitation force.
  • step S102 the measurement units 21-1 to 21-n of one or more accelerometers 20 measure vibrations of the structure 40.
  • the transmitting units 22-1 to 22-n of one or more of the accelerometers 20 transmit measured values of vibration of the structure 40 to the receiving unit 31 of the arithmetic device 30.
  • step S103 the calculation unit 32 of the calculation device 30 derives a frequency response function based on the received measurement value, and causes the display unit 33 of the calculation device 30 to display the derived frequency response function.
  • step S104 the recording unit 34 of the arithmetic device 30 records the derived frequency response function.
  • step S105 the calculation unit 32 of the calculation device 30 determines whether the number of trials has reached N times. If the N times have not been reached, the process advances to step S106; if the N times have been reached, the process advances to step S107.
  • step S106 the vibration exciter 10 amplifies the excitation force and vibrates the structure 40 according to instructions from the calculation unit 32 of the calculation device 30. Thereafter, the process returns to step S102, and the measurement units 21-1 to 21-n of one or more accelerometers 20 measure vibrations of the structure 40.
  • step S107 the calculation unit 32 of the calculation device 30 compares the frequency response functions recorded in the recording unit 34, and determines whether the derived frequency response function is the first frequency response function A or the second frequency response function B. Determine which of the following. If it is the second frequency response function B, the process advances to step S108. If it is the first frequency response function A, the process advances to step S106.
  • step S108 the calculation unit 32 of the calculation device 30 causes the recording unit 14 to record the derived second frequency response function B, and displays it on the display unit 33.
  • step S109 the vibrator 10 amplifies the excitation force in stages to vibrate the structure 40 according to instructions from the arithmetic unit 32 of the arithmetic device 30.
  • step S110 the measurement units 21-1 to 21-n of one or more accelerometers 20 measure vibrations of the structure 40.
  • the transmitting units 22-1 to 22-n of one or more of the accelerometers 20 transmit measured values of vibration of the structure 40 to the receiving unit 31 of the arithmetic device 30.
  • step S111 the calculation unit 32 of the calculation device 30 derives a frequency response function based on the received measurement value, and causes the display unit 33 of the calculation device 30 to display the derived frequency response function.
  • step S112 the calculation unit 32 of the calculation device 30 determines whether the derived frequency response function is the second frequency response function B or the third frequency response function C. If it is the second frequency response function B, the process advances to step S108. If it is the third frequency response function C, the process advances to step S113.
  • step S113 the most recent third frequency response function C is discarded, and a frequency response function obtained by averaging one or more second frequency response functions B recorded in the recording unit 34 is output.
  • the excitation force optimization system 1 applies the excitation force to the vibrator 10 in stages based on information on a frequency response function derived from measured values of vibration of a large structure by one or more accelerometers 20.
  • the system has a system configuration that adjusts the excitation force by feeding back specific amplification instructions. According to the excitation force optimization system 1, since the system automatically searches for the optimal excitation force, an accurate frequency response function can be derived regardless of the skills and know-how of the engineer.
  • FIG. 7 is a block diagram showing a schematic configuration of a computer functioning as the arithmetic device 30.
  • the computer functioning as the arithmetic device 30 may be a general-purpose computer, a dedicated computer, a workstation, a PC (Personal Computer), an electronic notepad, or the like.
  • Program instructions may be program code, code segments, etc. to perform necessary tasks.
  • the computer 100 communicates with a processor 110, a ROM (Read Only Memory) 120, a RAM (Random Access Memory) 130, and a storage 140 as storage units, an input unit 150, an output unit 160, and An interface (I/F) 170 is provided.
  • a processor 110 a ROM (Read Only Memory) 120
  • a RAM Random Access Memory
  • storage 140 storage units
  • I/F An interface
  • the ROM 120 stores various programs and various data.
  • the RAM 130 temporarily stores programs or data as a work area.
  • the storage 140 is configured with an HDD (Hard Disk Drive) or an SSD (Solid State Drive), and stores various programs including an operating system and various data.
  • a program according to the present disclosure is stored in the ROM 120 or the storage 140.
  • the processor 110 is a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), DSP (Digital Signal Processor), SoC (System on a Chip), etc., and may be of the same or different type. It may be configured with a plurality of processors.
  • the processor 110 reads a program from the ROM 120 or the storage 140 and executes the program using the RAM 130 as a work area, thereby controlling each of the above components and performing various calculation processes. Note that at least a part of these processing contents may be realized by hardware.
  • the program may be recorded on a recording medium readable by the arithmetic device 30.
  • a recording medium By using such a recording medium, it is possible to install a program on the arithmetic device 30.
  • the recording medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, and may be, for example, a CD-ROM, a DVD-ROM, a USB (Universal Serial Bus) memory, or the like.
  • this program may be downloaded from an external device via a network.
  • An excitation force optimization system that optimizes excitation force in deriving a frequency response function of a structure, a vibrator that vibrates the structure; one or more accelerometers installed in the structure that measures vibrations of the structure each time the structure is vibrated;
  • An excitation force optimization system comprising: a calculation device that derives a frequency response function based on a measured value of vibration of the vibration exciter, and controls an excitation force of the vibrator based on the frequency response function.
  • the frequency response function is a first frequency response function in which the frequency at which the peak of the frequency response function appears varies depending on the number of trials, the arithmetic device amplifies the excitation force and adjusts the frequency response function.
  • the frequency response function is a second frequency response function in which the frequency at which the peak of the frequency response function that is equal to or higher than the first threshold appears is constant regardless of the number of trials, the second frequency response function is recorded, and
  • the frequency response function is a third frequency response function in which a peak of the frequency response function that is not present in the second frequency response function and is equal to or higher than a second threshold appears.
  • the excitation force optimization system according to supplementary note 1, wherein the third frequency response function is discarded and an average value of the second frequency response function is output.
  • a calculation device for deriving a frequency response function of a structure a receiver that receives measurements of vibrations of the structure from one or more accelerometers; a controller that derives the frequency response function based on the measured value and controls the excitation force of the exciter based on the frequency response function; a display that displays and visualizes the frequency response function; a memory for recording the frequency response function;
  • a calculation device comprising: (Additional note 4) The controller amplifies the excitation force when the frequency response function is a first frequency response function in which the frequency at which the peak of the frequency response function appears varies depending on the number of trials; , in the case of a second frequency response function in which the frequency at which the peak of the frequency response function that is equal to or higher than the first threshold appears is constant regardless of the number of trials, the second frequency response function is recorded, and the When the excitation force is amplified and the frequency response function is a third frequency response function in which a peak of the frequency response function that is not present in the second frequency response
  • An excitation force optimization method for optimizing excitation force when deriving a frequency response function of a structure, the excitation force being amplified in stages using a vibrator and repeatedly vibrating the structure.
  • one or more accelerometers measure the vibration of the structure excited by the vibrator
  • a calculation device derives a frequency response function based on the measured value of the vibration of the structure
  • the second frequency response function When a second frequency response function that is constant regardless of the frequency response function is derived, the second frequency response function is recorded, and the arithmetic unit calculates a value equal to or higher than a second threshold that does not exist in the second frequency response function.
  • the third frequency response function When a third frequency response function in which a peak of the frequency response function appears is derived, the third frequency response function is discarded, and the one or more recorded second frequency response functions are averaged.
  • An excitation force optimization method that outputs a frequency response function.
  • Excitation force optimization system 10
  • Vibrator 20 One or more accelerometers 20-1 to 20-n Accelerometers 21-1 to 21-n Measurement section 22-1 to 22-n transmitter 30
  • Arithmetic device 31
  • Receiving section (receiver) 32
  • Arithmetic unit 33
  • Display section (display) 34
  • Recording section (memory) 40
  • Structures (objects to be monitored) 41
  • Support hardware 42
  • Control calculation circuit (controller) 100
  • Computer 110 120
  • ROM 130 RAM 140 Storage 150
  • Input section 160
  • Output section 170 Communication interface (I/F) 180 bus

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

加振力最適化システム(1)は、構造物(40)の加振を行う加振器(10)と、構造物(40)が加振される度に、構造物(40)の振動を計測する、構造物(40)に設置された1以上の加速度計(20)と、構造物(40)の振動の計測値に基づいて周波数応答関数を導出するとともに、該周波数応答関数に基づいて加振器(10)の加振力を制御する演算装置(30)と、を備える。

Description

加振力最適化システム、加振力最適化方法、及び演算装置
 本発明は、加振力最適化システム、加振力最適化方法、及び演算装置に関する。
 従来、構造物の設計時にはモーダル実験により、構造物に共振が発生しないように、固有振動数を計測している。モーダル実験(モーダル解析)とは、構造物の固有振動数特性を知るため、構造物の任意の箇所を加振して、複数の箇所でその応答をみる実験をいう。モーダル実験の最も簡易的で一般的な方法は、インパルスハンマと加速度計とによる実験である。しかし、インパルスハンマは人力で構造物を打撃するため、構造物が土木構造物の様に大型構造物である場合には減衰が大きくなり、正確な周波数応答関数を測定することが極めて難しくなる。一般的には、モーダル加振器を使用して加振力を増幅すれば、正確な周波数応答関数の計測が可能となるが、土木構造物等の大型構造物では、モーダル加振器による強い加振力を加えると、周波数応答関数に非線形性が発現して正確なモーダル実験結果を得ることが難しくなる。加振力とは、構造物に振動を加える力をいう。非線形性とは、入力に対する出力の関係が比例ではなくなる性質をいう。
 このため、従来のモーダル実験では、周波数応答関数に非線形性が発現しないように、複数台の加振力の小さい加振器と、小さな加振力を計測できる精度の高い加速度計とを使用している。非特許文献1では、大型構造物において、構造物に大きい加振力を加える加振器1台に代えて、構造物に小さな加振力を加える複数台の加振器を使用することにより、構造物に加える荷重をより均等に分散させる技術が記載されている。
"Frequently Asked Questions Modal Shakers and Related Topics"、[online]、[2022年4月13日検索]、インターネット<URL: https://www.modalshop.com/filelibrary/Modal%20Shaker%20FAQ%20revA.pdf>
 しかし、精度の高い加速度計、及び複数台の加振器を使用すると、コストが高くなるという課題があった。
 かかる事情に鑑みてなされた本開示の目的は、構造物の周波数応答関数を導出する演算装置と、構造物の周波数応答関数の導出にあたり、加振力を最適化する加振力最適化システム及び加振力最適化方法と、を提供することにある。
 上記課題を解決するため、本実施形態に係る加振力最適化システムは、構造物の周波数応答関数の導出にあたり、加振力を最適化する加振力最適化システムであって、前記構造物の加振を行う加振器と、
前記構造物が加振される度に、前記構造物の振動を計測する、前記構造物に設置された1以上の加速度計と、前記構造物の振動の計測値に基づいて周波数応答関数を導出するとともに、該周波数応答関数に基づいて前記加振器の加振力を制御する演算装置と、を備える。
 上記課題を解決するため、本実施形態に係る加振力最適化方法は、構造物の周波数応答関数の導出にあたり、加振力を最適化する加振力最適化方法であって、
 加振器により、加振力を段階的に増幅させて繰り返し前記構造物を加振するステップと、
 1以上の加速度計により、前記加振器により加振された前記構造物の振動を計測するステップと、
 演算装置により、前記構造物の振動の計測値に基づいて、周波数応答関数を導出するステップと、
 前記演算装置により、前記周波数応答関数のピークが発現する周波数が試行回数によって異なる第1の周波数応答関数が導出された後に、第1の閾値以上の周波数応答関数のピークが発現する周波数が試行回数によらず一定である第2の周波数応答関数が導出されると、該第2の周波数応答関数を記録するステップと、
 前記演算装置により、前記第2の周波数応答関数には存在しない、第2の閾値以上の周波数応答関数のピークが発現する第3の周波数応答関数が導出されると、該第3の周波数応答関数を破棄して、記録された1以上の前記第2の周波数応答関数を平均化した周波数応答関数を出力するステップと、
を含む。
 上記課題を解決するため、本実施形態に係る演算装置は、構造物の周波数応答関数を導出する演算装置であって、1以上の加速度計から前記構造物の振動の計測値を受信する受信部と、前記計測値に基づいて前記周波数応答関数を導出するとともに、前記周波数応答関数に基づいて加振器の加振力を制御する演算部と、前記周波数応答関数を表示して可視化する表示部と、前記周波数応答関数を記録する記録部と、
を備える。
 本開示に係る加振力最適化システムによれば、構造物に最適な加振力を自動で探査するため、技術者のスキル・ノウハウに依らず、正確な周波数応答関数を導出することができる。
本開示の一実施形態に係る加振力最適化システムの構成例を示すブロック図である。 本開示の一実施形態に係る加振力最適化システムの概略図である。 加振力が適切な範囲にある周波数応答関数を示すグラフである。 加振力が過大な範囲にある周波数応答関数を示すグラフである。 本開示の一実施形態に係る演算装置の構成例を示すブロック図である。 本開示の一実施形態に係る加振力最適化システムが実行する加振力最適化方法の一例を示すフローチャートである。 本開示の一実施形態に係る加振力最適化システムが実行する加振力最適化方法の一例を示すフローチャートである。 演算装置として機能するコンピュータの概略構成を示すブロック図である。
 以下、本発明を実施するための形態が、図面を参照しながら詳細に説明される。本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 大型構造物にモーダル加振器により加振力を加える場合、加振力が適切でないと、周波数応答関数に非線形性が発現し易く、誤った周波数応答関数が計測され易くなる。発明者による実験の結果、加振力が適切な範囲にあると、周波数応答関数は、減衰が小さく立ち上がりの鋭いピークを有する一方、加振力が過大な範囲にあると、上記周波数応答関数が存在しない周波数帯に周波数応答関数のピーク(疑似ピーク)を発現することが判明した。そこで、加振力を段階的に増幅(ステップ増幅)させて、かかる疑似ピークが現れない加振力を探査する演算フローを備える加振力最適化システム1を以下に提案する。
<加振力最適化システム>
 図1は、本開示の一実施形態に係る加振力最適化システム1の構成例を示すブロック図である。図1に示すように、加振力最適化システム1は、加振器10と、1以上の加速度計20と、演算装置30と、を備える。加振力最適化システム1は、構造物の周波数応答関数の導出にあたり、加振力を最適化する。
 図2は、本開示の一実施形態に係る加振力最適化システムの概略図である。図2に示すように、構造物(監視対象物)40は、管(管状構造物)であり、両端の支持金物41にUボルト42で取り付けられている。加振器10が、構造物40に加振力を加えると、構造物40は振動する。構造物40には、1以上の加速度計20(20-1~20-n)が取り付けられており、1以上の加速度計20は、構造物40の振動を計測する。構造物40の振動の計測値は有線又は無線で演算装置30に送信され、演算装置30は計測値に基づいて構造物40の周波数応答関数を導出する。
 加振器10は、構造物40の加振を行う。加振器10は、最初に過小な加振力で構造物40を加振し、その後、加振力を段階的に増幅して構造物40の加振を繰り返し行う。加振器10は、モーダル加振器である。加振器10は、加振力最適化システム1が起動すると、過小な加振力で構造物40を加振する。加振器10は、後述するように、演算装置30からの指示により、加振力を段階的に増幅(ステップ増幅)して構造物40を加振する。
 1つ以上の加速度計20は、構造物40に設置されており、構造物40が加振される度に、構造物40の振動を計測する。図1に示すように、1つ以上の加速度計20は、n個の加速度計20-1~20-nから構成される。加速度計20-1は、構造物40の振動を計測する計測部21-1と、計測値を演算装置30の受信部31に送信する送信部22-1と、を備える。加速度計20-2~20-nも同様の構成・機能を有する。
 演算装置30は、構造物40の振動の計測値に基づいて周波数応答関数を導出する。図3は、加振力が適切な範囲にある周波数応答関数を示すグラフである。図4は、加振力が過大である周波数応答関数を示すグラフである。図3及び図4は、周波数応答関数の虚部を示す。図3に示すように、加振力が適切な範囲にあると、周波数応答関数は、減衰が小さく立ち上がりの鋭いピークbを有する。一方、図4に示すように、加振力が過大な範囲にあると、周波数応答関数は、図3の周波数応答関数には存在しない周波数帯に周波数応答関数のピークa1(疑似ピークa1)を発現し、図3においてピークbが発現した周波数帯に、立ち上がりの鋭さを欠くピークa2が発現する。図3及び図4に示す、周波数応答関数は、n個の各々の加速度計の計測値から導出された周波数応答関数を重ねて表示している。
 演算装置30は、該周波数応答関数に基づいて前記加振器の加振力を制御する。本開示において、試行とは、段階的に加振力を増幅して周波数応答関数を導出することをいう。(i)演算装置30は、試行を複数回(N回)繰り返し実施し、各試行の度に記録した複数の周波数応答関数を比較する。演算装置30は、周波数応答関数が周波数応答関数のピークが発現する周波数が試行回数によって異なる(再現性のない)第1の周波数応答関数Aであると判別される場合には、加振力を増幅する。(ii)演算装置30は、周波数応答関数が第1の閾値以上の周波数応答関数のピークが発現する周波数が試行回数によらず一定である(再現性のある)第2の周波数応答関数Bであると判別される場合には、該第2の周波数応答関数Bを記録するとともに、加振力を増幅する。(iii)演算装置30は、周波数応答関数が、第2の周波数応答関数には存在しない、第2の閾値以上の周波数応答関数のピークが発現する第3の周波数応答関数Cであると判別される場合には、直近の第3の周波数応答関数Cを破棄するとともに、1以上の第2の周波数応答関数Bの平均値を出力する。
<演算装置>
 図5は、本開示の一実施形態に係る演算装置の構成例を示すブロック図である。図5に示すように、演算装置30は、受信部31と、演算部32と、表示部33と、記録部34とを備える。演算装置30は、構造物の周波数応答関数を導出する。演算部32により制御演算回路(コントローラ)50が構成される。制御演算回路50は、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等の専用のハードウェアによって構成されてもよいし、プロセッサによって構成されてもよいし、双方を含んで構成されてもよい。
 受信部31は、1以上の加速度計20の送信部(22-1~22-n)から構造物40の振動数の計測値を受信する。
 演算部32は、構造物40の振動数の計測値に基づいて周波数応答関数を導出するとともに、該周波数応答関数に基づいて加振器10の加振力を制御する。(i)演算部32は、、試行を複数回(N回)繰り返し実施し、各試行の度に記録部34に記録させた複数の周波数応答関数を比較する。演算部32は、周波数応答関数が周波数応答関数のピークが発現する周波数が試行回数によって異なる(再現性のない)第1の周波数応答関数Aであると判別される場合には、加振力を増幅する。(ii)演算部32は、周波数応答関数が第1の閾値以上の周波数応答関数のピークが発現する周波数が試行回数によらず一定である(再現性のある)第2の周波数応答関数Bであると判別される場合には、該第2の周波数応答関数Bを記録するとともに、加振力を増幅する。(iii)演算部32は、周波数応答関数が、第2の周波数応答関数には存在しない、第2の閾値以上の周波数応答関数のピークが発現する第3の周波数応答関数Cであると判別される場合には、直近の第3の周波数応答関数Cを破棄するとともに、1以上の第2の周波数応答関数Bの平均値を出力する。
 表示部33は、周波数応答関数を表示して可視化する。表示部33は、ディスプレイである。表示部33は、導出された周波数応答関数が、第1の周波数応答関数Aなのか、第2の周波数応答関数Bなのか、あるいは第3の周波数応答関数Cなのか、を判断するために、すべての周波数応答関数をディスプレイに表示して可視化する。
 記録部34は、周波数応答関数を記録する。記録部34は、演算部32が記録された1以上の第2の周波数応答関数Bを平均化する際に、演算部32の要求に応じ、1以上の第2の周波数応答関数Bを演算部32に出力する。
 図6A及び図6Bは、本開示の一実施形態に係る加振力最適化システムが実行する加振力最適化方法の一例を示すフローチャートである。
 ステップS101では、加振器10が、加振力を過小にして構造物40を加振する。
 ステップS102では、1つ以上の加速度計20の計測部21-1~21-nが、構造物40の振動を計測する。1つ以上の加速度計20の送信部22-1~22-nは、構造物40の振動の計測値を演算装置30の受信部31に送信する。
 ステップS103では、演算装置30の演算部32が、受信した計測値に基づいて周波数応答関数を導出し、演算装置30の表示部33に導出された周波数応答関数を表示させる。
 ステップS104では、演算装置30の記録部34が、導出された周波数応答関数を記録する。
 ステップS105では、演算装置30の演算部32が、試行回数がN回に達したか否かを判定する。N回に達しない場合は、ステップS106へ進み、N回に達した場合は、ステップS107へ進む。
 ステップS106では、演算装置30の演算部32の指示により、加振器10が、加振力を増幅して構造物40を加振する。その後、ステップS102へ戻り、1つ以上の加速度計20の計測部21-1~21-nが、構造物40の振動を計測する。
 ステップS107では、演算装置30の演算部32が、記録部34に記録された周波数応答関数を比較して、導出された周波数応答関数が第1の周波数応答関数A又は第2の周波数応答関数Bのいずれであるかを判定する。第2の周波数応答関数Bであれば、ステップS108へ進む。第1の周波数応答関数Aであれば、ステップS106へ進む。
 ステップS108では、演算装置30の演算部32が、導出された第2の周波数応答関数Bを、記録部14に記録させるとともに、表示部33に表示させる。
 ステップS109では、演算装置30の演算部32の指示により、加振器10が、加振力を段階的に増幅して構造物40を加振する。
 ステップS110では、1つ以上の加速度計20の計測部21-1~21-nが、構造物40の振動を計測する。1つ以上の加速度計20の送信部22-1~22-nは、構造物40の振動の計測値を演算装置30の受信部31に送信する。
 ステップS111では、演算装置30の演算部32が、受信した計測値に基づいて周波数応答関数を導出し、演算装置30の表示部33に導出された周波数応答関数を表示させる。
 ステップS112では、演算装置30の演算部32が、導出された周波数応答関数が第2の周波数応答関数B又は第3の周波数応答関数Cのいずれであるかを判定する。第2の周波数応答関数Bであれば、ステップS108へ進む。第3の周波数応答関数Cであれば、ステップS113へ進む。
 ステップS113では、直近の第3の周波数応答関数Cを破棄し、記録部34に記録されている1以上の第2の周波数応答関数Bを平均化した周波数応答関数を出力する。
 大型構造物のモーダル実験では、加振力の影響で非線形性が発現しやすく、誤った周波数応答関数が計測されやすい。このため、正確な周波数応答関数を得るには、加振力を最適な大きさに制御して、大型構造物を加振をする必要がある。本開示に係る加振力最適化システム1は、1以上の加速度計20による大型構造物の振動の計測値から導出した周波数応答関数の情報を元に、加振器10に加振力の段階的な増幅指示をフィードバックすることにより、加振力を調整するシステム構成を有す。加振力最適化システム1によれば、システムが最適な加振力を自動で探査するため、技術者のスキル・ノウハウに依らず、正確な周波数応答関数を導出することができる。
 上記の演算装置30を機能させるために、プログラム命令を実行可能なコンピュータを用いることも可能である。図7は、演算装置30として機能するコンピュータの概略構成を示すブロック図である。ここで、演算装置30として機能するコンピュータは、汎用コンピュータ、専用コンピュータ、ワークステーション、PC(Personal Computer)、電子ノートパッド等であってもよい。プログラム命令は、必要なタスクを実行するためのプログラムコード、コードセグメント等であってもよい。
 図7に示すように、コンピュータ100は、プロセッサ110と、記憶部としてROM(Read Only Memory)120、RAM(Random Access Memory)130、及びストレージ140と、入力部150と、出力部160と、通信インターフェース(I/F)170と、を備える。各構成は、バス180を介して相互に通信可能に接続されている。
 ROM120は、各種プログラム及び各種データを保存する。RAM130は、作業領域として一時的にプログラム又はデータを記憶する。ストレージ140は、HDD(Hard Disk Drive)又はSSD(Solid State Drive)により構成され、オペレーティングシステムを含む各種プログラム及び各種データを保存する。本開示では、ROM120又はストレージ140に、本開示に係るプログラムが保存されている。
 プロセッサ110は、具体的にはCPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)、SoC(System on a Chip)等であり、同種又は異種の複数のプロセッサにより構成されてもよい。プロセッサ110は、ROM120又はストレージ140からプログラムを読み出し、RAM130を作業領域としてプログラムを実行することで、上記各構成の制御及び各種の演算処理を行う。なお、これらの処理内容の少なくとも一部をハードウェアで実現することとしてもよい。
 プログラムは、演算装置30が読み取り可能な記録媒体に記録されていてもよい。このような記録媒体を用いれば、演算装置30にプログラムをインストールすることが可能である。ここで、プログラムが記録された記録媒体は、非一過性(non-transitory)の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM、DVD-ROM、USB(Universal Serial Bus)メモリ等であってもよい。また、このプログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。
 以上の実施形態に関し、更に以下の付記を開示する。
 (付記項1)
 構造物の周波数応答関数の導出にあたり、加振力を最適化する加振力最適化システムであって、
 前記構造物の加振を行う加振器と、前記構造物が加振される度に、前記構造物の振動を計測する、前記構造物に設置された1以上の加速度計と、前記構造物の振動の計測値に基づいて周波数応答関数を導出するとともに、該周波数応答関数に基づいて前記加振器の加振力を制御する演算装置と、を備える加振力最適化システム。
 (付記項2)
 前記演算装置は、前記周波数応答関数が、前記周波数応答関数のピークが発現する周波数が試行回数によって異なる第1の周波数応答関数である場合には、前記加振力を増幅し、前記周波数応答関数が、第1の閾値以上の周波数応答関数のピークが発現する周波数が試行回数によらず一定である第2の周波数応答関数である場合には、該第2の周波数応答関数を記録するとともに、前記加振力を増幅し、前記周波数応答関数が、前記第2の周波数応答関数には存在しない、第2の閾値以上の周波数応答関数のピークが発現する第3の周波数応答関数である場合には、該第3の周波数応答関数を破棄しするとともに、前記第2の周波数応答関数の平均値を出力する、付記項1に記載の加振力最適化システム。
 (付記項3)
 構造物の周波数応答関数を導出する演算装置であって、
 1以上の加速度計から前記構造物の振動の計測値を受信するレシーバーと、
 前記計測値に基づいて前記周波数応答関数を導出するとともに、前記周波数応答関数に基づいて加振器の加振力を制御するコントローラと、
 前記周波数応答関数を表示して可視化するディスプレイと、
 前記周波数応答関数を記録するメモリーと、
を備える演算装置。
 (付記項4)
 前記コントローラは、前記周波数応答関数が、前記周波数応答関数のピークが発現する周波数が試行回数によって異なる第1の周波数応答関数である場合には、前記加振力を増幅し、前記周波数応答関数が、第1の閾値以上の周波数応答関数のピークが発現する周波数が試行回数によらず一定である第2の周波数応答関数である場合には、該第2の周波数応答関数を記録するとともに、前記加振力を増幅し、前記周波数応答関数が、前記第2の周波数応答関数には存在しない、第2の閾値以上の周波数応答関数のピークが発現する第3の周波数応答関数である場合には、該第3の周波数応答関数を破棄するとともに、前記第2の周波数応答関数の平均値を出力する、付記項3に記載の演算装置。
 (付記項5)
 構造物の周波数応答関数の導出にあたり、加振力を最適化する加振力最適化方法であって、加振器により、加振力を段階的に増幅させて繰り返し前記構造物を加振し、1以上の加速度計により、前記加振器により加振された前記構造物の振動を計測し、演算装置により、前記構造物の振動の計測値に基づいて、周波数応答関数を導出し、前記演算装置により、前記周波数応答関数のピークが発現する周波数が試行回数によって異なる第1の周波数応答関数が導出された後に、第1の閾値以上の周波数応答関数のピークが発現する周波数が試行回数によらず一定である第2の周波数応答関数が導出されると、該第2の周波数応答関数を記録し、前記演算装置により、前記第2の周波数応答関数には存在しない、第2の閾値以上の周波数応答関数のピークが発現する第3の周波数応答関数が導出されると、該第3の周波数応答関数を破棄して、記録された1以上の前記第2の周波数応答関数を平均化した周波数応答関数を出力する加振力最適化方法。
 上述の実施形態は代表的な例として説明したが、本開示の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形又は変更が可能である。たとえば、実施形態の構成図に記載の複数の構成ブロックを1つに組み合わせたり、あるいは1つの構成ブロックを分割したりすることが可能である。
1                          加振力最適化システム
10                        加振器
20                        1以上の加速度計
20-1~20-n          加速度計
21-1~21-n          計測部                             
22-1~22-n          送信部 
30                        演算装置 
31                        受信部(レシーバー)
32                        演算部                             
33                        表示部(ディスプレイ)
34                        記録部(メモリー)
40                        構造物(監視対象物)
41                        支持金物
42                        Uボルト
50                        制御演算回路(コントローラ)
100                      コンピュータ
110                      プロセッサ
120                      ROM
130                      RAM
140                      ストレージ
150                      入力部
160                      出力部
170                      通信インターフェース(I/F)
180                      バス          

Claims (5)

  1.  構造物の周波数応答関数の導出にあたり、加振力を最適化する加振力最適化システムであって、
     前記構造物の加振を行う加振器と、
     前記構造物が加振される度に、前記構造物の振動を計測する、前記構造物に設置された1以上の加速度計と、
     前記構造物の振動の計測値に基づいて周波数応答関数を導出するとともに、該周波数応答関数に基づいて前記加振器の加振力を制御する演算装置と、
    を備える加振力最適化システム。
  2.  前記演算装置は、
     前記周波数応答関数が、前記周波数応答関数のピークが発現する周波数が試行回数によって異なる第1の周波数応答関数である場合には、前記加振力を増幅し、
     前記周波数応答関数が、第1の閾値以上の周波数応答関数のピークが発現する周波数が試行回数によらず一定である第2の周波数応答関数である場合には、該第2の周波数応答関数を記録するとともに、前記加振力を増幅し、
     前記周波数応答関数が、前記第2の周波数応答関数には存在しない、第2の閾値以上の周波数応答関数のピークが発現する第3の周波数応答関数である場合には、該第3の周波数応答関数を破棄するとともに、前記第2の周波数応答関数の平均値を出力する、請求項1に記載の加振力最適化システム。
  3.  構造物の周波数応答関数を導出する演算装置であって、
     1以上の加速度計から前記構造物の振動の計測値を受信する受信部と、
     前記計測値に基づいて前記周波数応答関数を導出するとともに、前記周波数応答関数に基づいて加振器の加振力を制御する演算部と、
     前記周波数応答関数を表示して可視化する表示部と、
     前記周波数応答関数を記録する記録部と、
    を備える演算装置。
  4.  前記演算部は、
     前記周波数応答関数が、前記周波数応答関数のピークが発現する周波数が試行回数によって異なる第1の周波数応答関数である場合には、前記加振力を増幅し、
     前記周波数応答関数が、第1の閾値以上の周波数応答関数のピークが発現する周波数が試行回数によらず一定である第2の周波数応答関数である場合には、該第2の周波数応答関数を記録するとともに、前記加振力を増幅し、
     前記周波数応答関数が、前記第2の周波数応答関数には存在しない、第2の閾値以上の周波数応答関数のピークが発現する第3の周波数応答関数である場合には、該第3の周波数応答関数を破棄するとともに、前記第2の周波数応答関数の平均値を出力する、請求項3に記載の演算装置。
  5.  構造物の周波数応答関数の導出にあたり、加振力を最適化する加振力最適化方法であって、
     加振器により、加振力を段階的に増幅させて繰り返し前記構造物を加振するステップと、
     1以上の加速度計により、前記加振器により加振された前記構造物の振動を計測するステップと、
     演算装置により、前記構造物の振動の計測値に基づいて、周波数応答関数を導出するステップと、
     前記演算装置により、前記周波数応答関数のピークが発現する周波数が試行回数によって異なる第1の周波数応答関数が導出された後に、第1の閾値以上の周波数応答関数のピークが発現する周波数が試行回数によらず一定である第2の周波数応答関数が導出されると、該第2の周波数応答関数を記録するステップと、
     前記演算装置により、前記第2の周波数応答関数には存在しない、第2の閾値以上の周波数応答関数のピークが発現する第3の周波数応答関数が導出されると、該第3の周波数応答関数を破棄して、記録された1以上の前記第2の周波数応答関数を平均化した周波数応答関数を出力するステップと、
    を含む加振力最適化方法。
PCT/JP2022/020284 2022-05-13 2022-05-13 加振力最適化システム、加振力最適化方法、及び演算装置 WO2023218668A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020284 WO2023218668A1 (ja) 2022-05-13 2022-05-13 加振力最適化システム、加振力最適化方法、及び演算装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020284 WO2023218668A1 (ja) 2022-05-13 2022-05-13 加振力最適化システム、加振力最適化方法、及び演算装置

Publications (1)

Publication Number Publication Date
WO2023218668A1 true WO2023218668A1 (ja) 2023-11-16

Family

ID=88729894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020284 WO2023218668A1 (ja) 2022-05-13 2022-05-13 加振力最適化システム、加振力最適化方法、及び演算装置

Country Status (1)

Country Link
WO (1) WO2023218668A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167736A (ja) * 1993-12-15 1995-07-04 Hitachi Ltd モーダルダンピング評価装置
JP2006284340A (ja) * 2005-03-31 2006-10-19 Fuji Heavy Ind Ltd 剛性計測装置、及び、剛性計測方法
JP2018163042A (ja) * 2017-03-27 2018-10-18 Jfeスチール株式会社 自動車車体の動的剛性試験方法
CN113155385A (zh) * 2021-06-09 2021-07-23 南京航空航天大学 一种用于多振动台冲击加随机振动试验的系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167736A (ja) * 1993-12-15 1995-07-04 Hitachi Ltd モーダルダンピング評価装置
JP2006284340A (ja) * 2005-03-31 2006-10-19 Fuji Heavy Ind Ltd 剛性計測装置、及び、剛性計測方法
JP2018163042A (ja) * 2017-03-27 2018-10-18 Jfeスチール株式会社 自動車車体の動的剛性試験方法
CN113155385A (zh) * 2021-06-09 2021-07-23 南京航空航天大学 一种用于多振动台冲击加随机振动试验的系统及方法

Similar Documents

Publication Publication Date Title
JP2003194636A (ja) 杭の動的載荷装置、杭の動的載荷法および動的載荷試験法
KR101030325B1 (ko) 다이나믹 댐퍼용 고유진동수 측정장치
Huh et al. Damage detection in beams using vibratory power estimated from the measured accelerations
EP2913649A1 (en) Belt tension calculating program, belt natural frequency calculating program, and method and device for same
JP2009186481A (ja) 伝達経路毎の成分を算定するための方法
Mandal et al. Experimental study on loss factor for corrugated plates by bandwidth method
Gelman et al. Novel vibration structural health monitoring technology for deep foundation piles by non‐stationary higher order frequency response function
WO2023218668A1 (ja) 加振力最適化システム、加振力最適化方法、及び演算装置
JP5087425B2 (ja) 構造物の健全度診断方法
JP2009092398A (ja) 物体の振動減衰性能評価方法
JP6825714B2 (ja) 振動判定装置、振動判定方法及びプログラム
JP3145625B2 (ja) 配管系疲労評価装置
JP6852727B2 (ja) 検査装置、検査方法、及び、検査プログラム
JP7004005B2 (ja) 推定装置、推定方法及びコンピュータプログラム
JPWO2020162426A1 (ja) 解析装置、解析方法、およびプログラム、ならびに、センサの構造
Stojanovic et al. Experimental and numerical modal analysis of brake squeal noise
US9354137B2 (en) Systems and methods for determining oscillations of a tire
JP7124701B2 (ja) 判定装置、判定システム、判定方法及びプログラム
JP2004301792A (ja) 構造物の健全度診断システム
KR101931686B1 (ko) 배관의 감육상태 감시 시스템 및 그 방법
JP5378093B2 (ja) レール軸力測定装置、レール軸力測定方法
WO2023218570A1 (ja) 支援装置、支援方法およびプログラム
Montalvão et al. A generalised multiple-mass based method for the determination of the live mass of a force transducer
JP2017003276A (ja) 音響性能推定方法、音響性能推定装置及び音響性能推定プログラム
WO2023214454A1 (ja) 監視システム、監視方法、及び演算装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941744

Country of ref document: EP

Kind code of ref document: A1