WO2023217168A1 - 一种燃料电池用气体扩散层的制备方法 - Google Patents

一种燃料电池用气体扩散层的制备方法 Download PDF

Info

Publication number
WO2023217168A1
WO2023217168A1 PCT/CN2023/093177 CN2023093177W WO2023217168A1 WO 2023217168 A1 WO2023217168 A1 WO 2023217168A1 CN 2023093177 W CN2023093177 W CN 2023093177W WO 2023217168 A1 WO2023217168 A1 WO 2023217168A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
carbon
diffusion layer
gas diffusion
fuel cell
Prior art date
Application number
PCT/CN2023/093177
Other languages
English (en)
French (fr)
Inventor
姜永燚
Original Assignee
上海碳际实业集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海碳际实业集团有限公司 filed Critical 上海碳际实业集团有限公司
Publication of WO2023217168A1 publication Critical patent/WO2023217168A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of fuel cells, and specifically relates to a method for preparing a gas diffusion layer for a fuel cell.
  • the gas diffusion layer is a key material for preparing fuel cell membrane electrodes. Therefore, the uniformity and flatness of the gas diffusion layer directly affect the performance of the fuel cell.
  • the current gas diffusion layer material is limited by the uneven thickness and unevenness of the carbon fiber felt itself used in the production process, which causes the slurry to become more uneven after filling, making the pores and thickness distribution of the prepared gas diffusion layer uneven, and the contact The resistance is large, thus affecting the performance of the fuel cell.
  • the purpose of the present invention is to provide a method for preparing a gas diffusion layer for a fuel cell in view of the existing problems.
  • a method for preparing a gas diffusion layer for a fuel cell including the following steps:
  • the reinforced carbon fiber thin felt is subjected to multi-stage controllable thermal rolling to obtain calendered reinforced carbon fiber thin felt;
  • Calendered reinforced carbon fiber felt is carbonized in a high-temperature carbonization furnace to obtain calendered low-resistance carbon fiber paper;
  • the high carbon slurry C is coated on one side of the calendered hydrophobic carbon fiber paper and dried in multiple stages to obtain a gas diffusion layer.
  • the solid-to-liquid ratio in the high-carbon slurry A described in step (1) is 1/4 to 1/10
  • the surfactant accounts for 20% to 30% of the solid content
  • the stabilizer accounts for The solid content is 3% to 10%
  • the resin accounts for 20% to 50% of the solid content.
  • the solid-liquid ratio in slurry B described in step (2) is 1/10 to 1/99, and the hydrophobic agent accounts for 70% to 95% of the solid content.
  • the solid-to-liquid ratio in the high-carbon slurry C described in step (3) is 1/4 to 1/10
  • the surfactant accounts for 10% to 20% of the solid content
  • the stabilizer accounts for 10% to 20% of the solid content.
  • the solid content is 3% to 10%
  • the hydrophobic agent accounts for 20% to 50% of the solid content.
  • drying temperature in the dipping slurry A described in step (4) is 70 to 120°C, and the drying time is 10 to 30 minutes.
  • the multi-stage controllable hot rolling described in step (5) includes a pressure controllable range of 0.5 ⁇ 10bar, a temperature of 250 ⁇ 400°C, and a gap of 0 ⁇ 250um.
  • the temperature is 1200-2200°C, and the carbonization time is 3-50 minutes.
  • the wet film thickness of the high-carbon slurry C coated in step (8) is 100-400um, and the multi-stage drying is 40-70°C for 1-15 minutes, and 70-100°C for 1-15 minutes. 15min, bake at 100 ⁇ 250°C for 1 ⁇ 15min, bake at 250 ⁇ 400°C for 1 ⁇ 15min.
  • the high-carbon powder is one or more of carbon black, acetylene black, activated carbon, graphite, carbon nanotubes, carbon nanowires, graphene oxide, graphene, and fullerene;
  • the surfactants are triton and nonionic surfactants;
  • the resin is one or more of acrylic resin, epoxy resin, phenolic resin, polyacrylamide, polyvinylpyrrolidone, polyurethane, and polyvinyl alcohol.
  • the stabilizer is one of polyethylene glycol, hydroxyethyl cellulose, hydroxypropyl cellulose, cellulose hydroxypropyl methyl ether, carboxymethyl cellulose, lignin, and xanthan gum or more;
  • the hydrophobic agent is one or more of polytetrafluoroethylene, polyvinylidene fluoride, and fluorinated ethylene-propylene copolymer.
  • the present invention has the following advantages:
  • This application uses slurry A to evenly distribute the solid components of slurry A on the surface and inside of the carbon fiber felt, and then heat rolls it to make the thickness of the material evenly distributed, and then goes through high-temperature carbonization, slurry B and coating to make the pores evenly distributed. , thereby reducing the contact resistance to ensure the performance of the fuel cell.
  • Figure 1 is a flow chart of the preparation process of the gas diffusion layer for the fuel cell of the present application.
  • a method for preparing a gas diffusion layer for fuel cells Weigh 25g of graphite, 10g of Triton, 20g of epoxy resin and 5g of polyethylene glycol. After mechanical mixing, transfer to a high-speed mixer, add 440g of water, stir and disperse evenly, and obtain High carbon slurry A;
  • the rolling conditions should be set in advance, for example, the first-stage rolling pressure is 0.5bar, the temperature is 300°C, the gap is 160um, the second-stage rolling pressure is 0.8bar, and the temperature is 320 °C, gap 160um, three-stage rolling pressure 1bar, temperature 340°C, gap 150um, four-stage rolling pressure 2bar, temperature 350°C, gap 150um, to obtain calendered reinforced carbon fiber thin felt;
  • the above-mentioned calendered reinforced carbon fiber felt is carbonized using a high-temperature carbonization furnace.
  • the carbonization temperature is set to 1800°C and the carbonization time is 15 minutes to obtain calendered low-resistance carbon fiber paper;
  • a method for preparing a gas diffusion layer for fuel cells Weigh 40g of graphite, 10g of polyvinylpyrrolidone, 20g of epoxy resin and 5g of polyethylene glycol. After mechanical mixing, transfer to a high-speed mixer, add 425g of water, stir and disperse evenly, and obtain High carbon slurry A;
  • the rolling conditions should be set in advance, for example, the first-stage rolling pressure is 0.6bar, the temperature is 250°C, the gap is 170um, the second-stage rolling pressure is 0.9bar, and the temperature is 300 °C, gap 160um, three-stage rolling pressure 1.3bar, temperature 315°C, gap 150um, four-stage rolling pressure 2.3bar, temperature 330°C, gap 150um, to obtain calendered reinforced carbon fiber thin felt;
  • the above-mentioned calendered reinforced carbon fiber felt is carbonized using a high-temperature carbonization furnace.
  • the carbonization temperature is set to 2100°C and the carbonization time is 15 minutes to obtain calendered low-resistance carbon fiber paper;
  • This application uses slurry A to evenly distribute the solid components of slurry A on the surface and inside of the carbon fiber felt, and then heat rolls it to make the thickness of the material evenly distributed, and then goes through high-temperature carbonization, slurry B and coating to make the pores evenly distributed. , thereby reducing the contact resistance to ensure the performance of the fuel cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种燃料电池用气体扩散层的制备方法,属于燃料电池技术领域,包括以下步骤:(1)造浆A;(2)造浆B;(3)造浆C;(4)浸浆A;(5)热辊压;(6)高温碳化;(7)浸浆B;(8)涂布。本申请通过浸浆A,使A浆料的固体成分均匀分布于碳纤维薄毡的表面和内部,然后热辊压使得材料厚度分布均匀,再经过高温碳化、浸浆B和涂布使得孔隙分布均匀,从而减小接触电阻,以保证燃料电池的性能。

Description

一种燃料电池用气体扩散层的制备方法 技术领域
本发明属于燃料电池技术领域,具体涉及一种燃料电池用气体扩散层的制备方法。
背景技术
气体扩散层是制备燃料电池膜电极的关键材料,因此,气体扩散层的均匀性和平整度直接影响燃料电池的性能。目前的气体扩散层材料受限于生产工艺使用碳纤维毡本身厚度不均匀,不平整的影响,导致浆料填充后变得更不均匀,使得制备的气体扩散层的孔隙及厚度分布不均匀,接触电阻较大,从而影响燃料电池的性能。
技术问题
本发明的目的是针对现有的问题,提供了一种燃料电池用气体扩散层的制备方法。
技术解决方案
本发明是通过以下技术方案实现的:
一种燃料电池用气体扩散层的制备方法,包括以下步骤:
(1)造浆A:
将高碳粉体、表面活性剂、树脂和稳定剂机械混合后转移到高速搅拌机,加水搅拌进行分散,得到高碳浆料A;
(2)造浆B:
将疏水剂和稳定剂加水混合后转移到高速搅拌机进行分散,得到浆料B;
(3)造浆C:
将高碳粉体、表面活性剂和稳定剂机械混合后转移到高速搅拌机,加水和疏水剂搅拌进行分散,得到高碳浆料C;
(4)浸浆A:
用高碳浆料A浸润碳纤维薄毡并烘干得到增强碳纤维薄毡;
(5)热辊压:
对增强碳纤维薄毡进行多级可控热辊压获得压光增强碳纤维薄毡;
(6)高温碳化:
压光增强碳纤维薄毡经高温碳化炉碳化后得到压光低阻碳纤维纸;
(7)浸浆B:
用浆料B浸润压光低阻碳纤维纸并烘干得到压光疏水碳纤维纸;
(8)涂布:
将高碳浆料C涂布于压光疏水碳纤维纸的一面并经过多级烘干获得气体扩散层。
进一步地,步骤(1)中所述的高碳浆料A中的固液比为1/4~1/10,所述表面活性剂占固体含量的20%~30%,所述稳定剂占固体含量的3%~10%,所述树脂占固体含量的20%~50%。
进一步地,步骤(2)中所述的浆料B中的固液比为1/10~1/99,所述疏水剂占固体含量的70%~95%。
进一步地,步骤(3)中所述的高碳浆料C中的固液比为1/4~1/10,所述表面活性剂占固体含量的10%~20%,所述稳定剂占固体含量的3%~10%,所述疏水剂占固体含量的20%~50%。
进一步地,步骤(4)中所述的浸浆A中的烘干温度为70~120℃,时间 10~30min。
进一步地,步骤(5)中所述的多级可控热辊轧包括压力可控范围 0.5~10bar,温度250~400℃,间隙0~250um。
进一步地,步骤(6)所述的高温碳化,温度为1200~2200℃,碳化时间为 3~50min。
进一步地,步骤(8)中所述的涂布高碳浆料C的湿膜厚度为 100~400um,多级烘干为40~70℃烘烤1~15min,70~100℃烘烤1~15min, 100~250℃烘烤1~15min,250~400℃烘烤1~15min。
进一步地,所述的高碳粉体为碳黑、乙炔黑、活性碳、石墨、碳纳米管、碳纳米线、氧化石墨烯、石墨烯、富勒烯中的一种或多种;所述的表面活性剂为曲拉通、非离子型表面活性剂;所述的树脂为丙烯酸树脂、环氧树脂、酚醛树脂、聚丙烯酰胺、聚乙烯吡咯烷酮、聚氨酯、聚乙烯醇中的一种或多种;所述的稳定剂为聚乙二醇、羟乙基纤维素、羟丙基纤维素、纤维素羟丙基甲基醚、羧甲基纤维素、木质素、汉生胶中的一种或多种;所述的疏水剂为聚四氟乙烯、聚偏二氟乙烯、氟化乙丙共聚物中的一种或多种。
有益效果
本发明相比现有技术具有以下优点:
本申请通过浸浆A,使A浆料的固体成分均匀分布于碳纤维薄毡的表面和内部,然后热辊压使得材料厚度分布均匀,再经过高温碳化、浸浆B和涂布使得孔隙分布均匀,从而减小接触电阻,以保证燃料电池的性能。
附图说明
图1为本申请燃料电池用气体扩散层的制备工艺流程图。
本发明的实施方式
为了对本发明做更进一步的解释,下面结合附图及具体实施例进行阐述。
实施例1
一种燃料电池用气体扩散层的制备方法,称取石墨25g、曲拉通10g、环氧树脂20g和聚乙二醇5g,机械混合后转移到高速搅拌机,加水440g,进行搅拌分散均匀,得到高碳浆料A;
称取质量分数为60%的聚四氟乙烯分散液41g、聚乙二醇7g、与452g水混合后转移到高速搅拌机进行分散,得到浆料B;
称取乙炔黑30g、聚氧乙烯醚7g和聚乙二醇10g机械混合后转移到高速搅拌机,加水423g和质量分数为60%的聚四氟乙烯分散液30g搅拌进行分散,得到高碳浆料C;
用上述的高碳浆料A浸润碳纤维薄毡并放入90℃鼓风烘箱中烘烤20min,得到增强碳纤维薄毡;
对上述的增强碳纤维薄毡进行多级可控热辊压,应提前设置好辊压条件,例如一级辊压压力0.5bar,温度300℃,间隙160um,二级辊压压力0.8bar,温度320℃,间隙160um,三级辊压压力1bar,温度340℃,间隙150um,四级辊压压力2bar,温度350℃,间隙150um,获得压光增强碳纤维薄毡;
上述的压光增强碳纤维薄毡使用高温碳化炉碳化,设置碳化温度为 1800℃,碳化时间15min,得到压光低阻碳纤维纸;
用浆料B浸润压光低阻碳纤维纸并90℃烘干得到压光疏水碳纤维纸;
将高碳浆料C涂布于压光疏水碳纤维纸的一面,控制控制湿膜厚度为 300um,经过多级烘干,设置为一级烘干50℃烘烤10min,二级烘干80℃烘烤10min,三级烘干150℃烘烤10min,四级烘干350℃烘烤10min,获得气体扩散层。
实施例2
一种燃料电池用气体扩散层的制备方法,称取石墨40g、聚乙烯吡咯烷酮 10g、环氧树脂20g和聚乙二醇5g,机械混合后转移到高速搅拌机,加水 425g,进行搅拌分散均匀,得到高碳浆料A;
称取质量分数为50%的氟化乙丙共聚物分散液30g、聚乙二醇5g、与465g 水混合后转移到高速搅拌机进行分散,得到浆料B;
称取乙炔黑35g、聚氧乙烯醚10g和聚乙二醇10g机械混合后转移到高速搅拌机,加水410g和质量分数为50%的氟化乙丙共聚物分散液35g搅拌进行分散,得到高碳浆料C;
用上述的高碳浆料A浸润碳纤维薄毡并放入110℃鼓风烘箱中烘烤 15min,得到增强碳纤维薄毡;
对上述的增强碳纤维薄毡进行多级可控热辊压,应提前设置好辊压条件,例如一级辊压压力0.6bar,温度250℃,间隙170um,二级辊压压力0.9bar,温度300℃,间隙160um,三级辊压压力1.3bar,温度315℃,间隙150um,四级辊压压力2.3bar,温度330℃,间隙150um,获得压光增强碳纤维薄毡;
上述的压光增强碳纤维薄毡使用高温碳化炉碳化,设置碳化温度为 2100℃,碳化时间15min,得到压光低阻碳纤维纸;
用浆料B浸润压光低阻碳纤维纸并110℃烘干得到压光疏水碳纤维纸;
将高碳浆料C涂布于压光疏水碳纤维纸的一面,控制控制湿膜厚度为 300um,经过多级烘干,设置为一级烘干70℃烘烤10min,二级烘干100℃烘烤10min,三级烘干250℃烘烤10min,四级烘干330℃烘烤10min,获得气体扩散层。
本申请通过浸浆A,使A浆料的固体成分均匀分布于碳纤维薄毡的表面和内部,然后热辊压使得材料厚度分布均匀,再经过高温碳化、浸浆B和涂布使得孔隙分布均匀,从而减小接触电阻,以保证燃料电池的性能。
以上所述具体实施例仅为本发明的优选实施例之一,不局限于上述特定实施方式,不因此限制本发明的权利要求范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的各种变化或修改,或间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (9)

  1. 一种燃料电池用气体扩散层的制备方法,其特征在于,包括以下步骤:
    (1)造浆A:
    将高碳粉体、表面活性剂、树脂和稳定剂机械混合后转移到高速搅拌机,加水搅拌进行分散,得到高碳浆料A;
    (2)造浆B:
    将疏水剂和稳定剂加水混合后转移到高速搅拌机进行分散,得到浆料B;
    (3)造浆C:
    将高碳粉体、表面活性剂和稳定剂机械混合后转移到高速搅拌机,加水和疏水剂搅拌进行分散,得到高碳浆料C;
    (4)浸浆A:
    用高碳浆料A浸润碳纤维薄毡并烘干得到增强碳纤维薄毡;
    (5)热辊压:
    对增强碳纤维薄毡进行多级可控热辊压获得压光增强碳纤维薄毡;
    (6)高温碳化:
    压光增强碳纤维薄毡经高温碳化炉碳化后得到压光低阻碳纤维纸;
    (7)浸浆B:
    用浆料B浸润压光低阻碳纤维纸并烘干得到压光疏水碳纤维纸;
    (8)涂布:
    将高碳浆料C涂布于压光疏水碳纤维纸的一面并经过多级烘干获得气体扩散层。
  2. 根据权利要求1所述燃料电池用气体扩散层的制备方法,其特征在于:步骤(1)中所述的高碳浆料A中的固液比为1/4~1/10,所述表面活性剂占固体含量的20%~30%,所述稳定剂占固体含量的3%~10%,所述树脂占固体含量的20%~50%。
  3. 根据权利要求1所述燃料电池用气体扩散层的制备方法,其特征在于:步骤(2)中所述的浆料B中的固液比为1/10~1/99,所述疏水剂占固体含量的70%~95%。
  4. 根据权利要求1所述燃料电池用气体扩散层的制备方法,其特征在于:步骤(3)中所述的高碳浆料C中的固液比为1/4~1/10,所述表面活性剂占固体含量的10%~20%,所述稳定剂占固体含量的3%~10%,所述疏水剂占固体含量的20%~50%。
  5. 根据权利要求1所述燃料电池用气体扩散层的制备方法,其特征在于:步骤(4)中所述的浸浆A中的烘干温度为70~120℃,时间10~30min。
  6. 根据权利要求1所述燃料电池用气体扩散层的制备方法,其特征在于:步骤(5)中所述的多级可控热辊轧包括压力可控范围0.5~10bar,温度250~400℃,间隙0~250um。
  7. 根据权利要求1所述燃料电池用气体扩散层的制备方法,其特征在于:步骤(6)所述的高温碳化,温度为1200~2200℃,碳化时间为3~50min。
  8. 根据权利要求1所述燃料电池用气体扩散层的制备方法,其特征在于:步骤(8)中所述的涂布高碳浆料C的湿膜厚度为100~400um,多级烘干为40~70℃烘烤1~15min,70~100℃烘烤1~15min,100~250℃烘烤1~15min,250~400℃烘烤1~15min。
  9. 根据权利要求1所述燃料电池用气体扩散层的制备方法,其特征在于:所述的高碳粉体为碳黑、乙炔黑、活性碳、石墨、碳纳米管、碳纳米线、氧化石墨烯、石墨烯、富勒烯中的一种或多种;所述的表面活性剂为曲拉通、非离子型表面活性剂;所述的树脂为丙烯酸树脂、环氧树脂、酚醛树脂、聚丙烯酰胺、聚乙烯吡咯烷酮、聚氨酯、聚乙烯醇中的一种或多种;所述的稳定剂为聚乙二醇、羟乙基纤维素、羟丙基纤维素、纤维素羟丙基甲基醚、羧甲基纤维素、木质素、汉生胶中的一种或多种;所述的疏水剂为聚四氟乙烯、聚偏二氟乙烯、氟化乙丙共聚物中的一种或多种。
PCT/CN2023/093177 2022-05-12 2023-05-10 一种燃料电池用气体扩散层的制备方法 WO2023217168A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210520489.X 2022-05-12
CN202210520489.XA CN114927704A (zh) 2022-05-12 2022-05-12 一种燃料电池用气体扩散层的制备方法

Publications (1)

Publication Number Publication Date
WO2023217168A1 true WO2023217168A1 (zh) 2023-11-16

Family

ID=82809614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093177 WO2023217168A1 (zh) 2022-05-12 2023-05-10 一种燃料电池用气体扩散层的制备方法

Country Status (2)

Country Link
CN (1) CN114927704A (zh)
WO (1) WO2023217168A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114927704A (zh) * 2022-05-12 2022-08-19 上海碳际实业集团有限公司 一种燃料电池用气体扩散层的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150194688A1 (en) * 2012-07-02 2015-07-09 Toyota Jidosha Kabushiki Kaisha Fuel-cell gas diffusion layer and method of forming the same
CN110048127A (zh) * 2019-05-17 2019-07-23 深圳市通用氢能科技有限公司 燃料电池气体扩散层、燃料电池及制备方法
CN114142047A (zh) * 2021-11-29 2022-03-04 同济大学 一种燃料电池用高透气性气体扩散层的制备方法
CN114927704A (zh) * 2022-05-12 2022-08-19 上海碳际实业集团有限公司 一种燃料电池用气体扩散层的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162285B (zh) * 2018-11-08 2021-06-04 中国科学院大连化学物理研究所 一种燃料电池导电气体扩散层及其制备方法
CN110993965A (zh) * 2019-12-23 2020-04-10 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种气体扩散层中微孔层的制备方法
CN112609452A (zh) * 2020-12-15 2021-04-06 深圳市通用氢能科技有限公司 一种气体扩散层材料及制备方法
CN112563516B (zh) * 2020-12-28 2023-03-28 浙江唐锋能源科技有限公司 一种环保燃料电池气体扩散层及其制备方法
CN113991129A (zh) * 2021-10-28 2022-01-28 无锡威孚高科技集团股份有限公司 一种质子交换膜燃料电池气体扩散层微孔层及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150194688A1 (en) * 2012-07-02 2015-07-09 Toyota Jidosha Kabushiki Kaisha Fuel-cell gas diffusion layer and method of forming the same
CN110048127A (zh) * 2019-05-17 2019-07-23 深圳市通用氢能科技有限公司 燃料电池气体扩散层、燃料电池及制备方法
CN114142047A (zh) * 2021-11-29 2022-03-04 同济大学 一种燃料电池用高透气性气体扩散层的制备方法
CN114927704A (zh) * 2022-05-12 2022-08-19 上海碳际实业集团有限公司 一种燃料电池用气体扩散层的制备方法

Also Published As

Publication number Publication date
CN114927704A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2023217168A1 (zh) 一种燃料电池用气体扩散层的制备方法
CN105261733B (zh) 纳米硅基/碳复合材料的制备方法
CN112028058B (zh) 石墨烯复合导热膜的制备方法
CN111584887A (zh) 一种质子交换膜燃料电池用气体扩散层的制备方法
CN110048127A (zh) 燃料电池气体扩散层、燃料电池及制备方法
CN104934235B (zh) 一种超级电容器用电极的制备方法
CN111978931A (zh) 石墨烯复合浆料、石墨散热膜结构及其制备方法
CN112701297B (zh) 一种高稳定性非贵金属催化剂电极及其制备方法与应用
CN110190295A (zh) 低压低湿燃料电池气体扩散层、燃料电池及制备方法
CN113480328B (zh) 一种大尺度石墨烯导热卷膜及其制备方法
JP4861025B2 (ja) 固体高分子電解質型燃料電池用電極及びその製造方法
CN113206222A (zh) 一种低溶剂制备锂电池极片的方法及制得的极片
CN107675488A (zh) 一种石墨烯‑碳化硅纤维复合材料及其制备方法
CN110828869A (zh) 一种燃料电池膜电极及其制备方法、燃料电池
CN112038654B (zh) 双极板的制备方法及双极板
CN101083330A (zh) 气体扩散介质和燃料电池
CN111224057A (zh) 硅基负极用集流体及其制备方法和硅基负极极片
US20160028097A1 (en) Membrane electrode assembly of fuel cell
CN107324829A (zh) 一种石墨片的制备方法
CN108963191B (zh) 一种极片的制备方法
CN114267845B (zh) 一种燃料电池气体扩散层及其制备方法
CN115312777A (zh) 一种低曲折度厚电极及其制备方法和应用
CN113764624A (zh) 一种梯度结构高性能锂硫电池正极片的制备方法
CN112701300A (zh) 一种高稳定性碳骨架纳米纤维膜电极及其制备方法与应用
CN112501906A (zh) 取向碳纳米管纤维-石墨烯复合膜、其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802937

Country of ref document: EP

Kind code of ref document: A1