WO2023216825A1 - 防爆阀、电池、电池模组、电池包和车辆 - Google Patents

防爆阀、电池、电池模组、电池包和车辆 Download PDF

Info

Publication number
WO2023216825A1
WO2023216825A1 PCT/CN2023/089162 CN2023089162W WO2023216825A1 WO 2023216825 A1 WO2023216825 A1 WO 2023216825A1 CN 2023089162 W CN2023089162 W CN 2023089162W WO 2023216825 A1 WO2023216825 A1 WO 2023216825A1
Authority
WO
WIPO (PCT)
Prior art keywords
explosion
proof valve
groove
score
section
Prior art date
Application number
PCT/CN2023/089162
Other languages
English (en)
French (fr)
Inventor
王信月
袁万颂
程晗
潘秋
李凯
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2023216825A1 publication Critical patent/WO2023216825A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements

Definitions

  • the present disclosure relates to the field of battery technology, and in particular, to an explosion-proof valve, a battery, a battery module, a battery pack and a vehicle.
  • the opening area of the explosion-proof valve used for pressure relief is generally designed to be circular.
  • the circular opening area is easily limited by the setting position, and the opening area occupies a small area (i.e., the opening range) in the explosion-proof valve.
  • the opening range i.e., the opening range
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art.
  • one purpose of the present disclosure is to propose an explosion-proof valve that can alleviate the damage to the opening area caused by internal stress or external force, and increase the reliability of the explosion-proof valve and the safety of battery use.
  • the present disclosure also discloses a battery, including a battery case and the above-mentioned explosion-proof valve.
  • the present disclosure also discloses a battery module, including the above-mentioned battery.
  • the present disclosure also discloses a battery pack, including the above-mentioned battery or the above-mentioned battery module.
  • the present disclosure also discloses a vehicle, including the above-mentioned battery pack.
  • the explosion-proof valve is provided with a score groove
  • the explosion-proof valve includes an opening area
  • the opening area is an area formed by a predetermined opening boundary.
  • the shape of the orthographic projection of the opening area is non-circular
  • the outer edge of the orthographic projection of the opening area is the predetermined opening boundary
  • the area of the orthographic projection of the opening area is S 1 , so
  • the area of the orthographic projection of the explosion-proof valve is S, and the S 1 and S satisfy: S 1 /S ⁇ 0.3, where the units of S 1 and S are mm 2 .
  • controlling the shape of the explosion-proof valve can make the explosion-proof valve applicable to battery shells of different shapes, thereby increasing the scope of application of the explosion-proof valve.
  • the area ratio of the orthographic projection area S 1 of the opening area to the orthographic projection area S of the explosion-proof valve the proportion of the area of the opening area in the explosion-proof valve is increased, thereby ensuring the opening area of the explosion-proof valve.
  • Increase the working efficiency of the explosion-proof valve thereby allowing the internal pressure to be released in time after the battery is damaged, increasing the protection of the battery and reducing the cost of using the battery.
  • S 1 and S further satisfy: S 1 /S ⁇ 0.95.
  • S 1 and S respectively satisfy: 80mm 2 ⁇ S 1 ⁇ 1600mm 2 and 178.5mm 2 ⁇ S ⁇ 5212.5mm 2 .
  • the score groove includes two first score segments that are arranged oppositely and are arc-shaped, a second score segment that is linear, and two third score segments that are spaced apart and are linear. section, the second score section and the third score section are arranged in parallel, the two ends of the second score section are respectively connected to the two first score sections, and each of the third score sections
  • the score segment is connected to the corresponding first score segment; in the depth direction of the score groove, the two free ends of the orthographic projection outer edge of the score groove are connected to form a connection line, and the connection line Together with the outer edge of the orthographic projection of the scored groove, the predetermined opening boundary is formed.
  • the score groove includes two fourth score segments arranged oppositely and in an arc shape, and two fifth score segments disposed in parallel and in a linear shape, each of the fifth score segments Both ends of the segment are respectively connected to two of the fourth score segments, and the two fifth score segments and the two fourth score segments form a closed annular structure; at the end of the score groove In the depth direction, the outer edge of the orthographic projection of the scored groove constitutes the predetermined opening boundary.
  • the score groove includes a linear sixth score segment and four linear seventh score segments, and two ends of the sixth score segment are respectively connected to each other.
  • the seventh scoring section, the two seventh scoring sections are arranged at a preset angle; in the depth direction of the scoring groove, the two seventh scoring sections are located at the same end of the sixth scoring section.
  • a first arc is defined between the free ends of the orthographic projections of the score segments.
  • the first arc has the apex of the preset angle as the center of the circle, and the two points on the same side of the sixth score segment are
  • the first straight line is defined between free ends of the orthographic projection of the seventh score segment, and the two first arcs and the two first straight lines together constitute the predetermined opening boundary.
  • the thickness of the opening area is smaller than the thickness of other parts of the explosion-proof valve in the depth direction of the scored groove.
  • the thickness of the opening area is H 1 , and H 1 satisfies: 0.1mm ⁇ H 1 ⁇ 0.3mm.
  • the shape of the orthographic projection of the opening area is an oblong, Oval or polygonal.
  • the explosion-proof valve further includes a connecting section, a buffer section and a supporting section.
  • the connecting section is connected to the outer peripheral side of the supporting section, and the supporting section and the connecting section extend along the thickness of the supporting section.
  • the buffer sections are arranged at intervals in directions, the buffer section is connected between the connecting section and the support section, and the opening area is provided on the support section.
  • a groove is formed on the support section, and the scored groove is formed on a bottom wall of the groove.
  • an orthogonally projected outer edge of the groove and an orthogonally projected outer edge of the scored groove have an overlapping area.
  • the thickness of the opening area corresponding to the scored groove is H 2 , and the H 2 satisfies: 0.02mm ⁇ H 2 ⁇ 0.2mm.
  • the thickness of the support section is H 3
  • the thickness of the connecting section is H 4
  • the height of the explosion-proof valve is H 5
  • the wall thickness of the buffer section is D 1
  • the H 5 and D 1 respectively satisfy: 0.5mm ⁇ H 5 ⁇ 1.5mm, 0.2mm ⁇ D 1 ⁇ 0.8mm.
  • the width of the support section is D 2
  • the thickness of the support section is H 3
  • the D 2 , H 3 respectively satisfy: 0.2mm ⁇ D 2 ⁇ 2mm, 0.2mm ⁇ H 3 ⁇ 0.8mm.
  • the width of the connecting section is D 3
  • the thickness of the connecting section is H 4
  • the D 3 , H 4 respectively satisfy: 1mm ⁇ D 3 ⁇ 5mm, 0.2mm ⁇ H 4 ⁇ 0.8mm.
  • a battery according to an embodiment of the second aspect of the disclosure includes: a battery case; and an explosion-proof valve according to the first aspect of the disclosure, where the explosion-proof valve is provided on the battery case.
  • a battery module according to a third embodiment of the present disclosure includes the battery described in the second embodiment of the present disclosure.
  • the battery pack according to the fourth embodiment of the present disclosure includes the battery according to the second embodiment of the present disclosure, or the battery module according to the third embodiment of the present disclosure.
  • a vehicle according to an embodiment of the fifth aspect of the present disclosure including a battery according to the fourth embodiment of the present disclosure. Bag.
  • Figure 1 is a schematic diagram of a battery according to an embodiment of the present disclosure.
  • Figure 2 is a schematic diagram of an explosion-proof valve according to an embodiment of the present disclosure.
  • FIG 3 is a cross-sectional view of an explosion-proof valve according to an embodiment of the present disclosure.
  • Figure 4 is a schematic diagram of a C-shaped score groove according to an embodiment of the present disclosure.
  • Figure 5 is a schematic diagram of an X-shaped score groove according to an embodiment of the present disclosure.
  • Figure 6 is a schematic diagram of a Y-shaped score groove according to an embodiment of the present disclosure.
  • Figure 7 is a schematic diagram of a double Y-shaped score groove according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram comparing the pressure release rates of batteries according to Embodiment 1 of the present disclosure and Comparative Example 1 of the prior art.
  • FIG. 9 is a schematic diagram comparing the pressure release rates of batteries according to Embodiment 2 of the present disclosure and Comparative Example 2 of the prior art.
  • FIG. 10 is a schematic diagram comparing the pressure release rates of batteries according to Embodiment 3 of the present disclosure and Comparative Example 3 of the prior art.
  • FIG. 11 is a schematic diagram comparing the pressure release rates of batteries according to Embodiment 4 of the present disclosure and Comparative Example 4 of the prior art.
  • Figure 12 is a schematic diagram comparing the pressure release rates of batteries according to Embodiment 5 of the present disclosure and Comparative Example 5 of the prior art.
  • FIG. 13 is a schematic diagram comparing the pressure release rates of batteries according to Embodiment 6 of the present disclosure and Comparative Example 6 of the prior art.
  • FIG. 14 is a schematic diagram of a predetermined opening boundary of a C-shaped score groove according to an embodiment of the present disclosure.
  • Figure 15 is a schematic diagram of a vehicle according to an embodiment of the present disclosure.
  • the explosion-proof valve 20 is provided with a scored groove 25 .
  • the explosion protection valve 20 includes an opening area 24 .
  • the shape of the orthographic projection of the opening area 24 is non-circular, and the outer edge of the orthographic projection of the opening area 24 is a predetermined opening. Border 241.
  • the area of the orthographic projection of the opening area 24 is S 1
  • the area of the orthographic projection of the explosion-proof valve 20 is S.
  • S 1 and S satisfy: S 1 /S ⁇ 0.3, and the units of S 1 and S are both mm 2 .
  • the depth direction of the scored groove 25 is also the direction from bottom to top.
  • the opening area 24 may be: an area reserved for pressure relief when designing the explosion-proof valve 20.
  • the explosion-proof valve 20 is used for the battery 100 and the internal pressure of the battery 100 increases and requires pressure relief, the internal pressure of the battery 100 can be released from Open area 24 for discharge.
  • S 1 and S it is possible to ensure that the opening area of the opening area 24 is reasonable, so as to facilitate the pressure relief of the battery 100, thereby ensuring the pressure relief capability of the explosion-proof valve 20, improving the performance of the explosion-proof valve 20, and thereby improving the battery life. 100% safe to use.
  • controlling the shape of the explosion-proof valve 20 can make the explosion-proof valve 20 applicable to battery cases 10 of different shapes, thereby increasing the applicable range of the explosion-proof valve 20 .
  • the area ratio of the area S 1 of the orthographic projection of the opening area 24 to the area S of the orthographic projection of the explosion-proof valve 20 the proportion of the area of the opening area 24 in the explosion-proof valve 20 is increased, thereby ensuring the safety of the explosion-proof valve 20
  • the opening area increases the working efficiency of the explosion-proof valve 20, thereby allowing the internal pressure of the battery 100 to be released in time after damage, increasing the protection of the battery 100 and reducing the cost of using the battery 100.
  • S 1 and S further satisfy: S 1 /S ⁇ 0.95, 80mm 2 ⁇ S 1 ⁇ 1600mm 2 , and 178.5mm 2 ⁇ S ⁇ 5212.5mm 2 .
  • S 1 /S ⁇ 0.95, 80mm 2 ⁇ S 1 ⁇ 1600mm 2 , and 178.5mm 2 ⁇ S ⁇ 5212.5mm 2 When the total area S of the explosion-proof valve 20 is constant, it can be effectively avoided that when S 1 ⁇ 80 mm, the opening area of the opening area 24 is too small, causing the opening area 24 to fail to open normally. Or, when S 1 >1600mm, the opening area 24 occupies too large an area of the explosion-proof valve 20 , the structural stability of the explosion-proof valve 20 is reduced, and the opening area 24 is easily opened by mistake, affecting the service life of the explosion-proof valve 20 .
  • Comparative Examples 1 to 6 that is, the prior art
  • Examples 1 to 6 that is, the embodiments of the present application
  • the batteries in Comparative Examples 1 to 6 and Examples 1 to 1 were tested using the method specified in GB/T 31485-2015.
  • the battery 100 in 6 (using the explosion-proof valve 20 of the present application) is tested, and the corresponding pressure relief rate curve of the battery 100 is recorded.
  • the battery in the prior art is basically the same as the battery 100 in the embodiment.
  • the values of S 1 and S in Comparative Examples 1 to 6 are selected from Table 1, and the values of S 1 and S in Examples 1 to 6 are selected from Table 1. 2.
  • the final test results are shown in Figure 8 to Figure 13.
  • FIG. 8 is a graph showing changes in the air pressure inside the battery 100 when the internal pressure of the battery 100 increases and is released in Example 1 and Comparative Example 1. It can be seen from the graph that the change value of the air pressure drop in Example 1 per unit time is greater than the change value of the air pressure drop in Comparative Example 1.
  • the area S of the orthographic projection of the explosion-proof valve 20 is constant, the greater the area S 1 of the orthographic projection of the opening area 24 , the faster the pressure relief rate per unit time.
  • FIG. 9 is a graph showing changes in air pressure inside the battery 100 in Example 2 and Comparative Example 2 when the internal pressure of the battery 100 is increased and the pressure is released. It can be seen from the graph that the change value of the air pressure drop in Example 2 per unit time is greater than the change value of the air pressure drop in Comparative Example 2.
  • the area S of the orthographic projection of the explosion-proof valve 20 is constant, the greater the area S 1 of the orthographic projection of the opening area 24 , the faster the pressure relief rate per unit time.
  • FIG. 10 is a graph showing changes in the air pressure inside the battery 100 when the internal pressure of the battery 100 increases and is released in Example 3 and Comparative Example 3. It can be seen from the graph that the change value of the air pressure drop in Example 3 per unit time is greater than the change value of the air pressure drop in Comparative Example 3.
  • the area S of the orthographic projection of the explosion-proof valve 20 is constant, the greater the area S 1 of the orthographic projection of the opening area 24 , the faster the pressure relief rate per unit time.
  • FIG. 11 is a graph showing changes in the air pressure inside the battery 100 when the internal pressure of the battery 100 increases and is released in Example 4 and Comparative Example 4. It can be seen from the graph that the change value of the air pressure drop in Example 4 per unit time is greater than the change value of the air pressure drop in Comparative Example 4.
  • the area S of the orthographic projection of the explosion-proof valve 20 is constant, the greater the area S 1 of the orthographic projection of the opening area 24 , the faster the pressure relief rate per unit time.
  • FIG. 12 is a graph showing changes in air pressure inside the battery 100 when the internal pressure of the battery 100 increases and is released in Example 5 and Comparative Example 5. It can be seen from the graph that the change value of the air pressure drop in Example 5 per unit time is greater than the change value of the air pressure drop in Comparative Example 5.
  • the area S of the orthographic projection of the explosion-proof valve 20 is constant, the greater the area S 1 of the orthographic projection of the opening area 24 , the faster the pressure relief rate per unit time.
  • FIG. 13 is a graph showing changes in the air pressure inside the battery 100 when the internal pressure of the battery 100 increases and is released in Example 6 and Comparative Example 6. It can be seen from the graph that the change value of the air pressure drop in Example 6 per unit time is greater than the change value of the air pressure drop in Comparative Example 6.
  • the area S of the orthographic projection of the explosion-proof valve 20 is constant, the greater the area S 1 of the orthographic projection of the opening area 24 , the faster the pressure relief rate per unit time.
  • the exhaust volume of the explosion-proof valve 20 per unit time can be effectively increased to ensure the area of the opening area 24
  • the pressure relief requirement can be met, thereby improving the safety of the battery 100 using the explosion-proof valve 20 .
  • the scored groove 25 is a C-shaped scored groove, an X-shaped scored groove, a Y-shaped scored groove, or a double Y-shaped scored groove.
  • the pattern of the scored groove 25 is not limited to the above shape, and the scored groove 25 may be of any shape.
  • the scored groove 25 can be designed as needed to meet different usage situations, and the scored groove 25 can extend along the circumference of the explosion-proof valve.
  • the score groove 25 is a C-shaped score groove.
  • the score groove 25 includes two first score segments 251 that are oppositely arranged and have an arc shape, a second score segment 252 that is a linear shape, and two third score segments 253 that are spaced apart and have a linear shape.
  • the second score section 252 and the third score section 253 are arranged in parallel. Both ends of the second scored section 252 are connected to the two first scored sections 251 respectively.
  • Each third score segment 253 is connected to the corresponding first score segment 251 .
  • the second score segment 252 is connected to one end of the two first score segments 251, the other ends of the two first score segments 251 are respectively connected to a third score segment 253, and the two third score segments 253 are connected to each other.
  • the interval between segments 253 is set.
  • the two free ends of the orthographic projection outer edge of the scored groove 25 are connected to form a connecting line 263 . That is, the connection line between the edges of the two third score sections 253 away from the center of the explosion-proof valve is the connection line 263.
  • the connecting line 263 and the outer edge of the orthographic projection of the score groove 25 together form the predetermined opening boundary 241 .
  • a 1 represents the length of the second score segment 252
  • b 1 represents the distance between the outside of the second score segment 252 and the outside of the third score segment 253
  • c 1 represents the two third score segments 253. The distance between them is the length of the connecting line 263.
  • the cross-sectional area of the above-mentioned scored groove 25 may be rectangular or inverted trapezoidal.
  • the “cross section” here refers to a plane parallel to the depth direction of the scored groove 25 .
  • the width of the scored groove 25 gradually decreases in the direction toward the bottom of the scored groove 25 .
  • a 1 can be understood It can be understood as the length of the outer edge of the second scored section 252 located at the groove top or the opening, and b 1 can be understood as the diameter of the outer edge of the arc-shaped first scored section 251 located at the groove top or the opening.
  • the outer edge of the orthographic projection of the scored groove 25 includes two opposite semicircles, a 1 It can be understood as the distance between the centers of the two semicircles, and b 1 can be understood as the diameter of the semicircle.
  • the score groove 25 is a C-shaped score groove, and the opening area 24 is also provided with an X-shaped score groove that serves as a structural reinforcement.
  • the X-shaped score groove includes two arc-shaped eighth score segments 260 .
  • the two eighth score segments 260 are symmetrically arranged in the width direction of the explosion-proof valve (for example, the up and down direction in FIG. 5 ), and the vertices of the two eighth score segments 260 coincide with each other. Two ends of one eighth score segment 260 can extend and stop on the third score segment 253 respectively, and two ends of the other eighth score segment 260 can extend and stop on the second score segment 252 .
  • the corresponding thickness of the eighth score segment 260 on the opening area 24 may be greater than the corresponding thickness of the second score segment 252 on the opening area 24 .
  • a 2 represents the length of the second score section 252
  • b 2 represents the distance between the outside of the second score section 252 and the outside of the third score section 253 .
  • the cross-sectional area of the above-mentioned scored groove 25 may be rectangular or inverted trapezoidal.
  • the “cross section” here refers to a plane parallel to the depth direction of the scored groove 25 .
  • the width of the scored groove 25 gradually decreases in the direction toward the bottom of the scored groove 25 .
  • a 2 can be understood as the length of the outer edge of the second scored section 252 located at the top of the groove or the opening
  • b 2 can be understood as the length of the outer edge of the eighth scored section 260 located at the top of the groove or the opening. diameter of.
  • the outer edge of the orthographic projection of the scored groove 25 includes two opposite semicircles, b 2 can be understood As the diameter of the semicircle, a 2 can be understood as the distance between the centers of the two semicircles.
  • the score groove 25 is an annular score groove
  • the opening area 24 is also provided with a Y-shaped score groove for structural reinforcement.
  • the Y-shaped score groove is located in the annular score groove. on the inside and connected with the annular notched groove.
  • the annular score groove includes two fourth score segments 254 arranged oppositely and in an arc shape, and two fifth score segments 255 arranged in parallel and in a linear shape. Both ends of each fifth score segment 255 are connected to two fourth score segments 254 respectively, and the two fifth score segments 255 and the two fourth score segments 254 form a closed annular structure.
  • the outer edge of the orthographic projection of the scored groove 25 constitutes the predetermined opening boundary 241 .
  • the predetermined opening boundary 241 may be surrounded by two fifth score segments 255 and two fourth score segments 254 on one side edges away from the center of the explosion-proof valve.
  • the Y-shaped score groove includes two linear ninth score segments 261 and a linear tenth score segment 262 .
  • One end of the two ninth score segments 261 is connected to the tenth score segment 262 .
  • Formed between two ninth score segments 261 There is an included angle ⁇ .
  • the other ends of the two ninth score segments 261 may be connected to a fifth score segment 255 respectively.
  • the other end of the tenth score segment 262 may be connected to the fourth score segment 254 .
  • the corresponding thickness of the Y-shaped scored groove on the opening area 24 may be greater than the corresponding thickness of the annular scored groove, that is, the depth of the Y-shaped scored groove is smaller than the depth of the annular scored groove.
  • the opening area 24 protrudes outward under the action of the internal pressure, and the Y-shaped notched groove can resist the deformation of the opening area 24 through deformation, thereby increasing the structural strength and resistance to deformation of the opening area 24 ability, which can effectively prevent the accidental opening of the explosion-proof valve.
  • the area of the area defined within the predetermined opening boundary 241 that is, the area of the orthographic projection of the opening area 24 in the depth direction of the scored groove 25
  • Sy a 3 ⁇ b 3 + ⁇ ⁇ b 3 2 /4
  • the total length of the scored groove 25 is Ly
  • Ly 2c 3 +d 3
  • a 3 is the length of the fifth score section 255
  • b 3 is the distance between the outer sides of the two opposite fifth score sections 255 .
  • the cross-sectional area of the above-mentioned scored groove 25 may be rectangular or inverted trapezoidal.
  • the “cross section” here refers to a plane parallel to the depth direction of the scored groove 25 .
  • the width of the scored groove 25 gradually decreases in the direction toward the bottom of the scored groove 25 .
  • a 3 can be understood as the length of the outer edge of the fifth scored section 255 located at the top of the groove or the opening
  • b 3 can be understood as the length of the outer edge of the fourth scored section 254 located at the top of the groove or the opening. diameter of.
  • the outer edge of the orthographic projection of the scored groove 25 includes two opposite semicircles, b 3 can be understood As the diameter of the semicircle, a 3 can be understood as the distance between the centers of the two semicircles.
  • score groove 25 is a double Y-shaped score groove.
  • the double Y-shaped score groove includes a straight-line sixth score segment 256 and four straight-line seventh score segments 257. Two seventh score segments 257 arranged at a preset angle are respectively connected to two ends of the sixth score segment 256 .
  • a first arc 259 is defined between the free ends of the orthographic projections of the two seventh score segments 257 located at the same end of the sixth score segment 256.
  • the first arc 259 is divided into two parts.
  • the vertex of the preset angle of the seventh score segment 257 is the center of the circle.
  • a first straight line 258 is defined between the free ends of the orthographic projections of the two seventh score segments 257 located on the same side of the sixth score segment 256 .
  • the two first arcs 259 and the two first straight lines 258 together form the predetermined opening boundary 241 . It should be noted that since the widths of the sixth score segment 256 and the seventh score segment 257 are relatively small and can be ignored, the first arc 259 and the first straight line 258 may approximately intersect at one point.
  • the first arc 259 can be understood as: defined by the free ends of the orthographic projections of the two seventh score segments 257 located at the same end of the sixth score segment 256 and close to each other.
  • the first straight line 258 can be understood as: defined by the free ends of the orthographic projections of the two seventh score segments 257 located on the same side of the sixth score segment 256 and close to each other.
  • the free end of the seventh scored section 257 refers to the part of the seventh scored section 257 away from the sixth scored section 256 one end.
  • the two seventh score segments 257 located at the left end of the sixth score segment 256 are close to each other to form a connection with the sixth score segment 256 .
  • the two seventh score sections 257 on the right end of 256 extend away from each other.
  • the area of the area defined within the predetermined opening boundary 241 that is, the area of the orthographic projection of the opening area 24 in the depth direction of the score groove 25
  • a 4 is the length of the sixth scored section 256
  • b 4 is the distance between the free ends of the two seventh scored sections 257 located on the same side of the sixth scored section 256
  • c 4 is the seventh scored section.
  • 257, e is the distance between the two first straight lines 258, and d 4 is the length of the first straight line 258.
  • the scored grooves 25 of different shapes can change the structural strength of the opening area 24, and the appropriate scored groove 25 can be selected according to different design standards, which reduces the process difficulty of the explosion-proof valve and improves the pressure relief speed and speed of the explosion-proof valve. Improve the safety performance of battery 100.
  • the cross-sectional area of the above-mentioned scored groove 25 may be rectangular or inverted trapezoidal.
  • the “cross section” here refers to a plane parallel to the depth direction of the scored groove 25 .
  • the width of the scored groove 25 gradually decreases in the direction toward the bottom of the scored groove 25 .
  • a 4 can be understood as the length of the outer edge of the sixth score segment 256 located at the top of the groove or the opening, and b 4 is the length of the two seventh score segments 257 located on the same side of the sixth score segment 256 The distance between the free ends located at the groove top or opening, c 4 is the length of the outer edge of the seventh score section 257 located at the groove top or opening.
  • the shape of the orthographic projection of the opening area 24 is an oblong, elliptical or polygonal shape. Therefore, different shapes of opening areas 24 can be selected according to different usage scenarios of the explosion-proof valve 20 to meet different opening requirements and increase the practicality of the explosion-proof valve 20 .
  • the orthographic projection outer contour of the explosion-proof valve 20 includes two parallel second straight lines 27 , and two oppositely arranged second straight lines 27 .
  • Second arc 28 Both ends of the two second straight lines 27 are connected to the two second arcs 28 respectively.
  • the length of the second straight line 27 is L
  • the radius of each second arc 28 is R
  • the distance between the two second straight lines 27 is 2R
  • L 30mm
  • R 50mm.
  • the explosion-proof valve 20 can be reasonably installed on the battery case 10 , thereby facilitating the release of the internal pressure of the battery 100 .
  • a weld seam will be formed between the explosion-proof valve 20 and the case.
  • a weld seam will be formed between the explosion-proof valve 20 and the cover plate.
  • half of the width of the weld is the outer edge of the explosion-proof valve 20 .
  • the width of the weld refers to the distance between the outer contour and the inner contour of the orthographic projection of the weld in the depth direction of the notched groove.
  • the thickness of the opening area 24 is smaller than the thickness of other parts of the explosion-proof valve 20 in the depth direction of the scored groove 25 . That is, the thickness of the opening area 24 along the central axis of the explosion-proof valve 20 is smaller than the thickness of other parts of the explosion-proof valve 20 (for example, the support section 22 mentioned below). Therefore, the thickness of the opening area 24 is smaller than the thickness of other parts of the explosion-proof valve 20 to achieve thinning of the opening area 24 to facilitate the opening of the opening area 24 and to prevent the opening area 24 from being too thick and affecting the normal opening of the explosion-proof valve 20 .
  • the thickness of the opening area 24 is H 1 , and H 1 satisfies: 0.1mm ⁇ H 1 ⁇ 0.3mm. Therefore, controlling the thickness of the opening area 24 can make the thickness of the opening area 24 meet the requirements of product design, facilitate the smooth opening of the opening area 24, and ensure the safety of the explosion-proof valve 20.
  • the explosion-proof valve 20 also includes a connecting section 21 , a buffer section 23 and a supporting section 22 .
  • the explosion-proof valve 20 is connected to the battery case 10 through the connecting section 21 .
  • the connecting section 21 is connected to the outer peripheral side of the supporting section 22 .
  • the support section 22 and the connection section 21 are spaced apart along the thickness direction of the support section 22 , and the support section 22 is located on one side of the connection section 21 adjacent to the center of the battery case 10 .
  • the buffer section 23 is connected between the connecting section 21 and the supporting section 22 .
  • the opening area 24 is provided on the support section 22 .
  • the connecting section 21 and the supporting section 22 can be arranged horizontally, and one end of the buffer section 23 is connected to the inner peripheral side of the connecting section 21, and the other end of the buffering section 23 is connected to the outer peripheral side of the supporting section 22.
  • the connecting section 21 is connected to the battery case 10
  • the supporting section 22 is arranged closer to the center of the battery case 10 than the connecting section 21 . That is, the connecting section 21 , the buffering section 23 and the supporting section 22 form a structure that is concave toward the center of the battery case 10 .
  • the supporting section 22 is arranged away from the center of the battery housing 10 relative to the connecting section 21 .
  • the connecting section 21 , the buffering section 23 and the supporting section 22 are configured to form an outwardly protruding structure away from the center of the battery case 10 .
  • the force exerted by the connecting section 21 can be transferred to the buffer section 23 , preventing the support section 22 and the opening area 24 from being directly stressed, thereby improving the structural strength of the opening area 24 and the supporting section 22 .
  • the opening area 24 is provided in the middle of the support section 22.
  • the opening area 24 and the support section 22 can be integrally formed, or the opening area 24 and the support section 22 can be welded into a whole.
  • the explosion-proof valve 20 includes a connecting section 21 and a supporting section 22.
  • the connecting section 21 can achieve a fixed connection between the explosion-proof valve 20 and the battery case 10.
  • the supporting section 22 can increase the structural strength of the opening area 24 and prevent the opening area 24 from being subjected to external forces. Torsional deformation.
  • the buffer section 23 between the connection section 21 and the support section 22, the thermal stress during welding of the opening area 24 and the support section 22 can be absorbed, thereby increasing the reliability of the explosion-proof valve 20 and improving the safety of using the explosion-proof valve 20. Thereby, problems such as fire and explosion of the battery 100 are effectively avoided.
  • the support section 22 is arranged close to the center of the battery case 10 or away from the center of the battery case 10, which can avoid the impact of external force on the case causing the explosion-proof valve 20 to open, and prevent the opening area 24 from being stressed. It can effectively protect the explosion-proof valve 20 and increase the anti-explosion valve. The service life and use stability of the explosion valve 20.
  • the buffer section 23 can be vertically connected to the connecting section 21 and the supporting section 22 . That is, the buffer section 23 is perpendicular to both the connecting section 21 and the supporting section 22, which can easily convert the horizontal stress on the connecting section 21 into the stress in the direction perpendicular to the connecting section 21. By changing the direction of stress transmission, the stress transmission direction can be adjusted accordingly.
  • the dispersion reduces the stress on the support section 22, thereby protecting the opening area 24 from deformation due to stress, and the buffer section 23 vertically connects the connecting section 21 and the support section 22, which can improve the utilization of the space of the explosion-proof valve 20.
  • a groove 221 is formed on the support section 22 , and the scored groove 25 is formed on the bottom wall of the groove 221 . Therefore, the protection of the opening area 24 by the support section 22 can be increased. At the same time, the opening area 24 is thinned, so that when the internal pressure of the explosion-proof valve 20 increases and needs to be relieved, the opening area 24 can be opened smoothly to avoid failure of the explosion-proof valve 20 .
  • the thickness of the opening area 24 may vary in the depth direction of the scored groove 25 .
  • the thickness in the middle of the opening area 24 is smaller than the thickness at the edge, ensuring the strength of the connection between the opening area 24 and the support section 22 and reducing the production cost of the opening area 24 .
  • the orthogonally projected outer edge of the groove 221 and the orthogonally projected outer edge of the scored groove 25 have an overlapping area. That is, the score groove 25 is provided at the edge of the bottom wall of the groove 221 . This ensures that the area of the opening area 24 is maximized, which helps to improve the pressure relief capability of the explosion-proof valve 20 .
  • the thickness of the support section 22 at the corresponding scored groove 25 is H 2 , and H 2 satisfies: 0.02mm ⁇ H 2 ⁇ 0.2mm. . Therefore, by controlling the thickness of the corresponding scored groove 25 of the support section 22, the structural strength of the opening area 24 is not affected, and at the same time, the opening area 24 can be smoothly opened from the scored groove 25 to achieve pressure relief and improve the explosion-proof valve. 20 opening timeliness.
  • the side surface of the opening area 24 away from the center of the battery housing 10 is flush with the side surface of the support section 22 away from the center of the battery housing 10 .
  • the distance between the side surface of the opening area 24 adjacent to the center of the battery housing 10 and the center of the battery housing 10 is greater than the distance between the side surface of the support section 22 adjacent to the center of the battery housing 10 and the center of the battery housing 10 distance.
  • the opening area 24 is flush with the surface of the support section 22 away from the center of the battery housing 10 .
  • the thickness of the opening area 24 is preferably set to be smaller than the thickness of the support section 22 .
  • the distance between the side of the opening area 24 and the support section 22 adjacent to the center of the battery housing 10 and the center of the battery housing 10 is different.
  • the distance between the opening area 24 and the center of the battery case 10 is greater than the distance between the support section 22 and the center of the battery case 10 .
  • the impact of the oscillating electrolyte inside the battery case 10 on the opening area 24 can be reduced, preventing the explosion-proof valve 20 from releasing pressure when it does not reach the designed threshold, and increasing the cost of using the battery 100 .
  • the thinner thickness of the opening area 24 can facilitate the smooth opening of the explosion-proof valve 20 and further improve the safety of using the battery 100 .
  • the thickness of the support section 22 is H 3 and the thickness of the connecting section 21 is H 4 .
  • the explosion-proof valve 20 can be prevented from being too thick, so that when the explosion-proof valve 20 cooperates with the battery case 10, both sides of the explosion-proof valve 20 can be flush with the inner and outer surfaces of the battery case 10, thereby increasing the battery case.
  • the height of the explosion-proof valve 20 in the depth direction of the scored groove 25 is H 5 .
  • the wall thickness of the buffer section 23 (the distance along the radial direction of the explosion-proof valve, for example, the left-right direction in FIG. 3) is D 1 .
  • H 5 and D 1 respectively satisfy: 0.3mm ⁇ H 5 ⁇ 1.5mm, 0.2mm ⁇ D 1 ⁇ 0.8mm.
  • the explosion-proof valve 20 can better control the dimensions of the explosion-proof valve 20 when meeting the buffering effect design, so that the explosion-proof valve 20 and the battery case can be connected
  • the reliability of the assembly of the body 10 is increased, the assembly is better, and the impact on the installation of other internal components of the battery 100 is avoided.
  • the width of the support section 22 is D 2 in the thickness direction of the buffer section 23 (that is, the thickness direction of the battery 100 ).
  • the thickness of the support section 22 is H 3 .
  • D 2 and H 3 respectively satisfy: 0.2mm ⁇ D 2 ⁇ 2mm, 0.2mm ⁇ H 3 ⁇ 0.8mm. Therefore, by setting the width and thickness of the support section 22, the support section 22 can better support and protect the opening area 24 while ensuring its own structural strength to prevent the opening area 24 from being deformed by stress.
  • the width of the connecting section 21 is D 3 in the thickness direction of the buffer section 23 (that is, the thickness direction of the battery 100 ).
  • the thickness of the connecting section 21 is H 4 .
  • D 3 and H 4 respectively satisfy: 1mm ⁇ D 3 ⁇ 5mm, 0.2mm ⁇ H 4 ⁇ 0.8mm. Therefore, the thickness and width of the connecting section 21 are set appropriately to increase the reliability of the connection between the connecting section 21 and the battery case 10 .
  • controlling the thickness of the connecting section 21 can ensure that when the connecting section 21 is connected to one side of the battery case 10, it can be as close as possible to the surface of the battery case 10. It can be flush, which reduces the occupation of the internal space of the battery case 10 and is conducive to the arrangement of internal components of the battery case 10 .
  • the battery 100 according to the second embodiment of the present disclosure includes a battery case 10 and an explosion-proof valve 20 .
  • the explosion-proof valve 20 is provided on the battery case 10 . Therefore, by using the explosion-proof valve 20 of the first embodiment, the internal pressure of the battery 100 can be released in time after damage, thereby increasing the protection of the battery 100, improving the safety of the use of the battery 100, and also reducing the use of the battery 100. the cost of.
  • the battery module 200 according to the third embodiment of the present disclosure includes the battery 100 according to the second embodiment of the present disclosure.
  • the battery module 200 includes two end plates (not shown) and two side plates (not shown).
  • a plurality of batteries 100 are arranged in sequence to form a battery array.
  • Two end plates are provided at opposite ends of the battery array, and two side plates are provided at opposite sides of the battery array.
  • a plurality of batteries 100 included in the battery array are arranged in sequence along the thickness direction of the battery 100.
  • Two end plates can be distributed at both ends of the battery array along the thickness direction of the battery 100.
  • Two side plates can be along the length direction of the battery 100. or width distributed on both sides of the cell array.
  • the battery case 10 is provided with an opening, and the explosion-proof valve 20 can be provided on one side of the opening of the battery case 10 .
  • the connection section 21 of the explosion-proof valve 20 and the battery case 10 can be connected by welding.
  • the buffer section 23 is located in the opening and is opposite to the opening in the radial direction.
  • the support section 22 is connected to an end of the buffer section 23 away from the connection section 21 , and the surface of the support section 22 adjacent to the center of the battery case 10 is flush with the inner surface of the side of the battery case 10 with the opening. Therefore, the areas of the opening area 24 and the explosion-proof valve 20 can be controlled to maximize the opening area of the opening area 24 and further improve the safety of the battery 100 .
  • the buffer section 23 can absorb the stress of deformation and convert the force in the horizontal direction along the connecting section 21 into the force in the direction of the vertical support section 22 to avoid excessive concentration of stress affecting the opening area 24 stability, destroying the structure of the scored groove 25.
  • the scored groove 25 can be prevented from being deformed by force, and the influence of external forces (such as stress generated by thermal deformation of the explosion-proof valve 20 during welding) on the opening pressure of the explosion-proof valve 20 can be reduced.
  • the opening area 24 can be opened to release pressure in time, thereby increasing the safety of use of the battery 100.
  • the stress is absorbed and the transmission direction is changed, which reduces the impact of external force on the opening area 24 and extends the service life of the battery 100 .
  • the battery pack 300 according to the fourth embodiment of the present disclosure includes the battery 100 according to the second embodiment of the present disclosure, or the battery module 200 according to the third embodiment of the present disclosure.
  • the battery pack 300 includes a tray (not shown), and the tray is used to be fixed on the vehicle 400 .
  • the battery 100 in the above-mentioned second embodiment is directly arranged in the tray, or the battery module 200 in the above-mentioned third embodiment is Fixed in the tray.
  • the safety of use of the battery 100 can be increased, and the use safety of the battery module 200 and the battery pack 300 can also be improved.
  • the explosion-proof valve 20 of the battery 100 in the battery module 200 can be placed close to the bottom of the battery module 200, so that the battery 100 can prevent the airflow from rushing into the vehicle body when the battery 100 is heated and decompressed, thereby avoiding secondary hazards and improving the stability of the battery pack 300. sex.
  • a vehicle 400 according to an embodiment of the fifth aspect of the present disclosure includes the battery pack 300 according to the above-mentioned embodiment of the fourth aspect of the present disclosure.
  • the possibility of deflagration of the vehicle 400 can be reduced, and the possibility that the opening area 24 of the battery pack 300 may be damaged and deformed resulting in the opening of the explosion-proof valve 20 when the battery pack 300 is impacted by an external impact.
  • the buffer section 23 can absorb part of the stress and change the direction of force transmission, so that the battery pack 300 has good reliability, thereby reducing the use cost of the vehicle 400 .
  • first feature and second feature may include one or more of the features.
  • plural means two or more.
  • a first feature being “above” or “below” a second feature may include that the first and second features are in direct contact, or may include that the first and second features are not in direct contact but are in direct contact with each other. additional characteristic contacts between.
  • terms “above”, “above” and “above” a first feature on a second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is horizontally higher than Second characteristic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

一种车辆具有电池包。电池包包括电池或电池模组。电池模组包括电池。电池包括电池壳体和防爆阀。防爆阀设于电池壳体上。防爆阀上设有刻痕槽。防爆阀包括开启区。在刻痕槽的深度方向上,开启区的正投影的形状为非圆形。开启区的正投影的外缘为预定开启边界,且开启区的正投影的面积为S1,防爆阀的正投影的面积为S,S1、S满足:S1/S≥0.3,其中S1、S的单位均为mm2

Description

防爆阀、电池、电池模组、电池包和车辆
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2022年05月12日提交的名称为“电池、电池模组、电池包和车辆”的中国专利申请号“202221128849.3”的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及电池技术领域,尤其是涉及一种防爆阀、电池、电池模组、电池包和车辆。
背景技术
现有技术中,防爆阀上用于泄压时开启的开启区一般设计为圆形。然而,圆形的开启区容易受到设置位置的限制,并且开启区在防爆阀中占用的面积(即开启的范围)较小,从而导致泄压时,容易对防爆阀周边的线束造成影响,无法在第一时间泄压,增大了安全隐患。
公开内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开的一个目的在于提出一种防爆阀,可以缓解内部应力或者外力对开启区的破坏,增加防爆阀的可靠性和电池使用的安全性。
本公开还公开一种电池,包括电池壳体及上述的防爆阀。
本公开还公开一种电池模组,包括上述的电池。
本公开还公开一种电池包,包括上述的电池或上述的电池模组。
本公开还公开一种车辆,包括上述的电池包。
根据本公开第一方面实施例的防爆阀,所述防爆阀上设有刻痕槽,所述防爆阀包括开启区,所述开启区为预定开启边界围合形成的区域,在所述刻痕槽的深度方向上,所述开启区的正投影的形状为非圆形,所述开启区的正投影的外缘为预定开启边界,且所述开启区的正投影的面积为S1,所述防爆阀的正投影的面积为S,所述S1、S满足:S1/S≥0.3,其中S1、S的单位均为mm2
根据本公开实施例的防爆阀,控制防爆阀的形状可以使防爆阀适用不同形状的电池壳体上,增加防爆阀的适用范围。同时,通过控制开启区的正投影的面积S1与防爆阀的正投影的面积S的面积比,以增大开启区在防爆阀中面积的占比,从而保证防爆阀的开口面积, 增加防爆阀的工作效率,进而使电池受损后内部的压力能够及时泄出,增加对电池的保护,降低使用电池的成本。
在一些示例中,所述S1、S进一步满足:S1/S≤0.95。
在一些示例中,所述S1、S分别满足:80mm2≤S1≤1600mm2,178.5mm2≤S≤5212.5mm2
在一些示例中,所述刻痕槽包括相对设置且呈弧形的两个第一刻痕段、呈直线形的第二刻痕段、以及间隔设置且呈直线形的两个第三刻痕段,所述第二刻痕段与所述第三刻痕段平行设置,所述第二刻痕段的两端分别与两个所述第一刻痕段连接,每个所述第三刻痕段与对应的所述第一刻痕段连接;在所述刻痕槽的深度方向上,所述刻痕槽的正投影的外缘的两个自由端相连构成连接线,所述连接线与所述刻痕槽的正投影的外缘共同构成所述预定开启边界。
在一些示例中,所述刻痕槽包括相对设置且呈弧形的两个第四刻痕段,以及平行设置且呈直线形的两个第五刻痕段,每个所述第五刻痕段的两端分别与两个所述第四刻痕段连接,两个所述第五刻痕段和两个所述第四刻痕段构成封闭的环状结构;在所述刻痕槽的深度方向上,所述刻痕槽的正投影的外缘构成所述预定开启边界。
在一些示例中,所述刻痕槽包括呈直线形的第六刻痕段,以及呈直线形的四个第七刻痕段,所述第六刻痕段的两端分别连接有两个所述第七刻痕段,两个所述第七刻痕段呈预设夹角设置;在所述刻痕槽的深度方向上,位于所述第六刻痕段同一端的两个所述第七刻痕段的正投影的自由端之间限定出第一圆弧,所述第一圆弧以所述预设夹角的顶点为圆心,位于所述第六刻痕段同一侧的两个所述第七刻痕段的正投影的自由端之间限定出所述第一直线,两个所述第一圆弧和两个所述第一直线共同构成所述预定开启边界。
在一些示例中,在所述刻痕槽的深度方向上,所述防爆阀的正投影的外轮廓包括:平行的两个第二直线和相对设置的两个第二圆弧,两个所述第二直线的两端分别与两个所述第二圆弧连接,所述第二直线的长度为L,两个所述直线段之间的距离为2R,所述S、L、R满足:S=πR2+2RL,10mm≤L≤65mm,5mm≤R≤25mm。
在一些示例中,在所述刻痕槽的深度方向上,所述开启区的厚度小于所述防爆阀的其它部分的厚度。
在一些示例中,在所述刻痕槽的深度方向上,所述开启区的厚度为H1,所述H1满足:0.1mm≤H1≤0.3mm。
在一些示例中,在所述刻痕槽的深度方向上,所述开启区的正投影的形状为长圆形、 椭圆形或多边形。
在一些示例中,所述防爆阀还包括连接段、缓冲段和支撑段,所述连接段连接在所述支撑段的外周侧,所述支撑段与所述连接段沿所述支撑段的厚度方向间隔设置,所述缓冲段连接在所述连接段和所述支撑段之间,所述开启区设在所述支撑段上。
在一些示例中,所述支撑段上形成有凹槽,所述刻痕槽形成在所述凹槽的底壁上。
在一些示例中,在所述刻痕槽的深度方向上,所述凹槽的正投影的外缘与所述刻痕槽的正投影的外缘具有重合区域。
在一些示例中,在所述刻痕槽的深度方向上,所述开启区的对应所述刻痕槽处的厚度为H2,所述H2满足:0.02mm≤H2≤0.2mm。
在一些示例中,在所述刻痕槽的深度方向上,所述支撑段的厚度为H3,所述H2、H3满足:H2:H3=0.1~1。
在一些示例中,在所述刻痕槽的深度方向上,所述支撑段的厚度为H3,所述连接段的厚度为H4,所述H3、H4满足:H3:H4=0.25~1。
在一些示例中,在所述刻痕槽的深度方向上,所述防爆阀的高度为H5,在所述缓冲段的厚度方向上,所述缓冲段的壁厚为D1,所述H5、D1分别满足:0.5mm≤H5≤1.5mm,0.2mm≤D1≤0.8mm。
在一些示例中,在所述缓冲段的厚度方向上,所述支撑段的宽度为D2,在所述刻痕槽的深度方向上,所述支撑段的厚度为H3,所述D2、H3分别满足:0.2mm≤D2≤2mm,0.2mm≤H3≤0.8mm。
在一些示例中,在所述缓冲段的厚度方向上,所述连接段的宽度为D3,在所述刻痕槽的深度方向上,所述连接段的厚度为H4,所述D3、H4分别满足:1mm≤D3≤5mm,0.2mm≤H4≤0.8mm。
根据本公开第二方面实施例的电池,包括:电池壳体;及根据本公开上述第一方面实施所述的防爆阀,所述防爆阀设于所述电池壳体上。
根据本公开第三方面实施例的电池模组,包括根据本公开上述第二方面实施所述的电池。
根据本公开第四方面实施例的电池包,包括根据本公开上述第二方面实施例所述的电池,或根据本公开上述第三方面实施例所述的电池模组。
根据本公开第五方面实施例的车辆,包括根据本公开上述第四方面实施例所述的电池 包。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开实施例的电池的示意图。
图2是根据本公开实施例的防爆阀的示意图。
图3是根据本公开实施例的防爆阀的剖视图。
图4是根据本公开实施例的C形刻痕槽的示意图。
图5是根据本公开实施例的X形刻痕槽的示意图。
图6是根据本公开实施例的Y形刻痕槽的示意图。
图7是根据本公开实施例的双Y形刻痕槽的示意图。
图8是根据本公开实施例1和现有技术的对比例1的电池的泄压速率对比示意图。
图9是根据本公开实施例2和现有技术的对比例2的电池的泄压速率对比示意图。
图10是根据本公开实施例3和现有技术的对比例3的电池的泄压速率对比示意图。
图11是根据本公开实施例4和现有技术的对比例4的电池的泄压速率对比示意图。
图12是根据本公开实施例5和现有技术的对比例5的电池的泄压速率对比示意图。
图13是根据本公开实施例6和现有技术的对比例6的电池的泄压速率对比示意图。
图14是根据本公开实施例的C形刻痕槽的预定开启边界的示意图。
图15是根据本公开实施例的车辆的示意图。
附图标记:
电池100;
电池壳体10;
防爆阀20;连接段21;支撑段22;凹槽221;缓冲段23;开启区24;预定开启边
界241;刻痕槽25;第一刻痕段251;第二刻痕段252;第三刻痕段253;第四刻痕段254;第五刻痕段255;第六刻痕段256;第七刻痕段257;第一直线258;第一圆弧259;第八刻痕段260;第九刻痕段261;第十刻痕段262;连接线263;
第二直线27;第二圆弧28;
电池模组200;电池包300;车辆400。
具体实施方式
下面详细描述本公开的实施例,参考附图描述的实施例是示例性的,下面参考图2-图7描述根据本公开实施例的防爆阀20。
根据本公开第一方面实施例的防爆阀20,防爆阀20上设有刻痕槽25。防爆阀20包括开启区24。在刻痕槽25的深度方向(也即刻痕槽25的槽口到槽底的方向)上,开启区24的正投影的形状为非圆形,开启区24的正投影的外缘为预定开启边界241。开启区24的正投影的面积为S1,防爆阀20的正投影的面积为S,S1、S满足:S1/S≥0.3,S1、S的单位均为mm2。其中,如图3所示,刻痕槽25的深度方向也即由下至上的方向。
开启区24可以是:在设计防爆阀20时预留的用来泄压的区域,当防爆阀20用于电池100,且电池100内部压力增大需要泄压时,电池100内部的压力可以从开启区24排出。通过限定S1和S的比值可以保证开启区24开启的面积合理,以便于实现电池100的泄压,从而保证防爆阀20的泄压能力,提升了防爆阀20的使用性能,进而提升了电池100使用的安全性。
根据本公开实施例的防爆阀20,控制防爆阀20的形状可以使防爆阀20适用不同形状的电池壳体10上,增加防爆阀20的适用范围。同时,通过控制开启区24的正投影的面积S1与防爆阀20的正投影的面积S的面积比,以增大开启区24在防爆阀20中面积的占比,从而保证防爆阀20的开口面积,增加防爆阀20的工作效率,进而使电池100受损后内部的压力能够及时泄出,增加对电池100的保护,降低使用电池100的成本。
在一些实施例中,S1、S进一步满足:S1/S≤0.95,80mm2≤S1≤1600mm2,178.5mm2≤S≤5212.5mm2。在防爆阀20的总面积S一定的情况下,可以有效避免S1<80mm时开启区24开启的面积过小,导致开启区24存在无法正常开启的情况。或者,当S1>1600mm时,开启区24占用防爆阀20的面积过大,防爆阀20的结构稳定性降低,开启区24容易误开启,影响防爆阀20的使用寿命。由此,通过限定S1和S的取值范围,以使S1/S的比值在合理的范围内,保证开启区24的面积能够满足泄压的同时,增加了开启区24的结构强度,从而保证了开启区24与防爆阀20连接的稳定性。
下面通过对比例1~6(也即现有技术)和实施例1~6(也即本申请实施例)进行说明。采用GB/T 31485-2015规定的方法分别对对比例1~6中的电池、以及实施例1~ 6中的电池100(采用本申请的防爆阀20)进行测试,并记录相应的电池100的泄压速率曲线。现有技术的电池与实施例的电池100基本相同,其中,对比例1~6的S1和S的取值选自表1,实施例1~6的S1和S的取值选自表2,最后测试结果见图8至图13。
表1
表2
图8为实施例1和对比例1在电池100内部压力增加进行泄压时,电池100内部的气压变化曲线图。从曲线图中可以看出:单位时间内,实施例1气压下降的变化值大于对比例1中气压下降的变化值。防爆阀20的正投影的面积S一定时,开启区24的正投影的面积S1越大,单位时间内泄压的速率越快。
图9为实施例2和对比例2在电池100内部压力增加进行泄压时,电池100内部的气压变化曲线图。从曲线图中可以看出:单位时间内,实施例2气压下降的变化值大于对比例2中气压下降的变化值。防爆阀20的正投影的面积S一定时,开启区24的正投影的面积S1越大,单位时间内泄压的速率越快。
图10为实施例3和对比例3在电池100内部压力增加进行泄压时,电池100内部的气压变化曲线图。从曲线图中可以看出:单位时间内,实施例3气压下降的变化值大于对比例3中气压下降的变化值。防爆阀20的正投影的面积S一定时,开启区24的正投影的面积S1越大,单位时间内泄压的速率越快。
图11为实施例4和对比例4在电池100内部压力增加进行泄压时,电池100内部的气压变化曲线图。从曲线图中可以看出:单位时间内,实施例4气压下降的变化值大于对比例4中气压下降的变化值。防爆阀20的正投影的面积S一定时,开启区24的正投影的面积S1越大,单位时间内泄压的速率越快。
图12为实施例5和对比例5在电池100内部压力增加进行泄压时,电池100内部的气压变化曲线图。从曲线图中可以看出:单位时间内,实施例5气压下降的变化值大于对比例5中气压下降的变化值。防爆阀20的正投影的面积S一定时,开启区24的正投影的面积S1越大,单位时间内泄压的速率越快。
图13为实施例6和对比例6在电池100内部压力增加进行泄压时,电池100内部的气压变化曲线图。从曲线图中可以看出:单位时间内,实施例6气压下降的变化值大于对比例6中气压下降的变化值。防爆阀20的正投影的面积S一定时,开启区24的正投影的面积S1越大,单位时间内泄压的速率越快。
由此,结合实施例1-实施例6,在本申请技术方案所保护的S1/S的取值范围内,可以有效提高单位时间内防爆阀20的排气量,保证开启区24的面积能够满足泄压的要求,从而提升了使用该防爆阀20的电池100的安全性。
在一些实施例中,刻痕槽25为C形刻痕槽、X形刻痕槽、Y形刻痕槽或双Y形刻痕槽。刻痕槽25的样式不局限于上述形状,可以是任意形状的刻痕槽25。刻痕槽25可以根据需要设计满足不同的使用场合,且刻痕槽25可以沿着防爆阀的周向延伸。
根据本公开的一些具体实施例,结合图4和图5,刻痕槽25为C形刻痕槽。刻痕槽25包括相对设置且呈弧形的两个第一刻痕段251、呈直线形的第二刻痕段252,以及间隔设置且呈直线形的两个第三刻痕段253。第二刻痕段252与第三刻痕段253平行设置。第二刻痕段252的两端分别与两个第一刻痕段251连接。每个第三刻痕段253与对应的第一刻痕段251连接。换句话说,第二刻痕段252连接两个第一刻痕段251的一端,两个第一刻痕段251的另一端分别连接一个第三刻痕段253,且两个第三刻痕段253之间间隔设置。在刻痕槽25的深度方向上,刻痕槽25的正投影的外缘的两个自由端相连构成连接线263。即,两个第三刻痕段253远离防爆阀中心的一侧边缘之间的连线为连接线263。连接线263与刻痕槽25的正投影的外缘共同构成预定开启边界241。此时预定开启边界241内限定的区域的面积(也即在刻痕槽25的深度方向上,开启区24的正投影的面积)为Sc,Sc=a1×b1+π×b1 2/4,刻痕槽25的总长为Lc,Lc=2a1-c1+πb1。其中,a1表示第二刻痕段252的长度,b1表示第二刻痕段252的外侧与第三刻痕段253的外侧之间的距离,c1表示两个第三刻痕段253之间的距离,即连接线263的长度。
进一步地,上述刻痕槽25的横截面积可以为矩形,也可以为倒梯形。此处的“横截面”指的是:与刻痕槽25的深度方向相平行的平面。当刻痕槽25的横截面积为倒梯形时,刻痕槽25的宽度沿朝向刻痕槽25的槽底的方向逐渐减小。此时,a1可以理 解为第二刻痕段252的位于槽顶处或者开口处的外缘的长度,b1可以理解为弧形的第一刻痕段251的位于槽顶处或者开口处的外缘的直径。换言之,在刻痕槽25的深度方向(也即在所述刻痕槽25的槽口到槽底的方向)上,刻痕槽25的正投影的外缘包括两个相对的半圆,a1可以理解为两个半圆的圆心之间的距离,b1可以理解为半圆的直径。
可选地,如图5所示,刻痕槽25为C形刻痕槽,开启区24上还设有起到结构加强作用的X形刻痕槽。X形刻痕槽包括两个呈弧形的第八刻痕段260。两个第八刻痕段260在防爆阀的宽度方向(例如,图5中的上下方向)对称设置,且两个第八刻痕段260的顶点重合。其中一个第八刻痕段260的两端可以延伸并分别止抵在第三刻痕段253上,另一个第八刻痕段260分两端可以延伸并止抵在第二刻痕段252上。在刻痕槽25的深度方向上,开启区24上第八刻痕段260对应的厚度可以大于开启区24上第二刻痕段252对应的厚度。此时预定开启边界241内限定的区域的面积(也即在刻痕槽25的深度方向上,开启区24的正投影的面积)为Sx,Sx=Sc=a2×b2+π×b2 2/4,刻痕槽25的总长为Lx,Lx=Lc=2a2-c2+πb2。其中,a2表示第二刻痕段252的长度,b2表示第二刻痕段252的外侧与第三刻痕段253的外侧之间的距离。
进一步地,上述刻痕槽25的横截面积可以为矩形,也可以为倒梯形。此处的“横截面”指的是:与刻痕槽25的深度方向相平行的平面。当刻痕槽25的横截面为倒梯形时,刻痕槽25的宽度沿朝向刻痕槽25的槽底的方向逐渐减小。此时,a2可以理解为第二刻痕段252的位于槽顶处或开口处的外缘的长度,b2可以理解为第八刻痕段260的位于槽顶处或开口处的外缘的直径。换言之,在刻痕槽25的深度方向(也即在刻痕槽25的槽口到槽底的方向)上,刻痕槽25的正投影的外缘包括两个相对的半圆,b2可以理解为该半圆的直径,a2可以理解为两个半圆的圆心之间的距离。
在一些实施例中,如图6所示,刻痕槽25为环形刻痕槽,开启区24上还设有起结构加强作用的Y形刻痕槽,Y形刻痕槽位于环形刻痕槽的内侧且与环形刻痕槽连接。例如,环形刻痕槽包括相对设置且呈弧形的两个第四刻痕段254,以及平行设置且呈直线形的两个第五刻痕段255。每个第五刻痕段255的两端分别与两个第四刻痕段254连接,两个第五刻痕段255和两个第四刻痕段254构成封闭的环状结构。在刻痕槽25的深度方向上,刻痕槽25的正投影的外缘构成预定开启边界241。预定开启边界241可以由两个第五刻痕段255和两个第四刻痕段254远离防爆阀中心的一侧边缘围成。
Y形刻痕槽包括两个呈直线形的第九刻痕段261,以及一个呈直线形的第十刻痕段262。两个第九刻痕段261的一端与第十刻痕段262连接。两个第九刻痕段261之间形 成有夹角β。两个第九刻痕段261的另一端可以分别连接在一个第五刻痕段255上。第十刻痕段262的另一端可以与第四刻痕段254连接。开启区24上Y形刻痕槽对应的厚度可以大于环形刻痕槽对应的厚度,也即Y形刻痕槽的深度小于环形刻痕槽的深度。当电池100内部压力增大时,开启区24在内部压力的作用下向外凸出,Y形刻痕槽可以通过变形抵抗开启区24的变形,从而增加开启区24的结构强度和抵抗变形的能力,可以有效避免防爆阀的误开启。此时预定开启边界241内限定的区域的面积(也即在刻痕槽25的深度方向上,开启区24的正投影的面积)为Sy,Sy=a3×b3+π×b3 2/4,刻痕槽25的总长为Ly,Ly=2c3+d3。其中,a3为第五刻痕段255的长度,b3为相对的两个第五刻痕段255的外侧之间的距离。
进一步地,上述刻痕槽25的横截面积可以为矩形,也可以为倒梯形。此处的“横截面”指的是:与刻痕槽25的深度方向相平行的平面。当刻痕槽25的横截面为倒梯形时,刻痕槽25的宽度沿朝向刻痕槽25的槽底的方向逐渐减小。此时,a3可以理解为第五刻痕段255的位于槽顶处或开口处的外缘的长度,b3可以理解为第四刻痕段254的位于槽顶处或开口处的外缘的直径。换言之,在刻痕槽25的深度方向(也即在刻痕槽25的槽口到槽底的方向)上,刻痕槽25的正投影的外缘包括两个相对的半圆,b3可以理解为该半圆的直径,a3可以理解为两个半圆的圆心之间的距离。
在一些实施例中,参照图7,刻痕槽25为双Y形刻痕槽。在电池100内部压力增大需要泄压时,内部压力可以从双Y形刻痕槽处泄出,以使开启区24向支撑段翻转开实现泄压。例如,双Y形刻痕槽包括呈直线形的第六刻痕段256,以及呈直线形的四个第七刻痕段257。第六刻痕段256的两端分别连接有呈预设夹角设置的两个第七刻痕段257。在刻痕槽25的深度方向上,位于第六刻痕段256同一端的两个第七刻痕段257的正投影的自由端之间限定出第一圆弧259,第一圆弧259以两个第七刻痕段257的预设夹角的顶点为圆心。位于第六刻痕段256同一侧的两个第七刻痕段257的正投影的自由端之间限定出第一直线258。两个第一圆弧259和两个第一直线258共同构成预定开启边界241。需要说明的是,由于第六刻痕段256和第七刻痕段257的宽度相对较小,可以忽略不计,因此第一圆弧259和第一直线258可以近似相交于一点。第一圆弧259可以理解为:位于第六刻痕段256同一端的两个第七刻痕段257的正投影的彼此靠近一侧的自由端限定出。第一直线258可以理解为:位于第六刻痕段256同一侧的两个第七刻痕段257的正投影的彼此靠近一侧的自由端限定出。
可以理解的,第七刻痕段257的自由端是指第七刻痕段257的远离第六刻痕段256 的一端。如图7所示,沿从左到右的方向,位于第六刻痕段256左端的两个第七刻痕段257彼此靠近形成与第六刻痕段256的连接,位于第六刻痕段256右端的两个第七刻痕段257朝向彼此远离的方向延伸。此时预定开启边界241内限定的区域的面积(也即在刻痕槽25的深度方向上,开启区24的正投影的面积)为S双y 刻痕槽25的总长为L双y=a4+4c4。其中,a4为第六刻痕段256的长度,b4为位于第六刻痕段256同一侧的两个第七刻痕段257的自由端之间距离,c4为第七刻痕段257的长度,e为两个第一直线258之间的距离,d4为第一直线258的长度。
由此,不同形状的刻痕槽25可以改变开启区24的结构强度,可以根据设计标准的不同选择合适的刻痕槽25,降低了防爆阀的工艺难度,以提升防爆阀的泄压速度和提高电池100的安全性能。
进一步地,上述刻痕槽25的横截面积可以为矩形,也可以为倒梯形。此处的“横截面”指的是:与刻痕槽25的深度方向相平行的平面。当刻痕槽25的横截面为倒梯形时,刻痕槽25的宽度沿朝向刻痕槽25的槽底的方向逐渐减小。此时,a4可以理解为第六刻痕段256的位于槽顶处或开口处的外缘的长度,b4为位于第六刻痕段256同一侧的两个第七刻痕段257的位于槽顶处或开口处的自由端之间的距离,c4为第七刻痕段257的位于槽顶处或开口处的外缘的长度。
在一些实施例中,在刻痕槽25的深度方向上,开启区24的正投影的形状为长圆形、椭圆形或多边形。由此,可以根据防爆阀20使用场景的不同而选择不同形状的开启区24,以满足不同的开启需求,增加防爆阀20的实用性。
在一些实施例中,如图2和图4所示,在刻痕槽25的深度方向上,防爆阀20的正投影的外轮廓包括平行的两个第二直线27,以及相对设置的两个第二圆弧28。两个第二直线27的两端分别与两个第二圆弧28连接。第二直线27的长度为L,每个第二圆弧28的半径为R,两个第二直线27之间的距离为2R,S、L、R满足:S=πR2+2RL,10mm≤L≤65mm,5mm≤R≤25mm。可选地,L=30mm,R=50mm。由此,通过限定防爆阀20的形状,以使防爆阀20能够合理的安装在电池壳体10上,从而可以便于电池100内部压力的泄出。当防爆阀20与电池壳体10焊接固定后,防爆阀20与壳体之间会形成焊缝。或者,当防爆阀20与电池100的盖板焊接固定后,防爆阀20与盖板之间会形成焊缝。其中,焊缝的宽度的二分之一处即为防爆阀20的外缘。焊缝的宽度是指在刻痕槽的深度方向上,焊缝的正投影的外轮廓和内轮廓之间的间距。
在一些实施例中,在刻痕槽25的深度方向上,开启区24的厚度小于防爆阀20的其它部分的厚度。即,开启区24沿防爆阀20中心轴线方向的厚度小于防爆阀20其他部分(例如,下文中提到的支撑段22)的厚度。由此,开启区24的厚度小于防爆阀20其他部分的厚度,以实现对开启区24的减薄处理,便于开启区24的开启,避免开启区24厚度太厚,影响防爆阀20的正常开启。
在一些实施例中,如图3所示,在刻痕槽25的深度方向上,开启区24的厚度为H1,H1满足:0.1mm≤H1≤0.3mm。由此,控制开启区24的厚度,可以使开启区24的厚度符合产品设计的要求,便于开启区24的顺利开启,从而使防爆阀20的使用安全性得到保证。
在一些实施例中,如图3所示,防爆阀20还包括连接段21、缓冲段23和支撑段22。防爆阀20通过连接段21与电池壳体10相连。连接段21连接在支撑段22的外周侧。支撑段22与连接段21沿支撑段22的厚度方向间隔设置,且支撑段22位于连接段21的邻近电池壳体10中心的一侧。缓冲段23连接在连接段21和支撑段22之间。开启区24设在支撑段22上。
在防爆阀20的厚度方向上、连接段21与支撑段22可以水平设置,且缓冲段23的一端与连接段21的内周侧连接,缓冲段23的另一端与支撑段22的外周侧连接。在连接段21与电池壳体10连接时,支撑段22相对连接段21更靠近电池壳体10的中心设置。即,连接段21、缓冲段23和支撑段22构成一个向电池壳体10中心内凹的结构。或者,支撑段22相对连接段21远离电池壳体10的中心设置。即,连接段21、缓冲段23和支撑段22构造成一个远离电池壳体10中心外凸的结构。如此设置,连接段21受到的作用力可以传递给缓冲段23,避免支撑段22和开启区24直接受力,提高开启区24和支撑段22的结构强度。此外,开启区24设于支撑段22的中部,开启区24可以与支撑段22通过一体成型制造,或者开启区24与支撑段22焊接成一个整体。
由此,防爆阀20包括连接段21和支撑段22,连接段21可以实现防爆阀20与电池壳体10的固定连接,支撑段22可以增加开启区24的结构强度,避免开启区24受外力扭转变形。此外,通过在连接段21和支撑段22之间设置缓冲段23,可以吸收开启区24与支撑段22焊接时的热应力,增加防爆阀20的可靠性,提高使用防爆阀20的安全性,从而有效地避免电池100出现起火、爆炸等问题。另外,支撑段22靠近电池壳体10的中心一侧,或者远离电池壳体10中心的一侧设置,可以避免外力对壳体的撞击导致防爆阀20的开阀,避免开启区24受力,可以有效保护防爆阀20,增加防 爆阀20的使用寿命和使用稳定性。
在一些实施例中,缓冲段23与连接段21和支撑段22均可以是垂直连接。即,缓冲段23与连接段21和支撑段22均垂直,可以便于将连接段21受到的水平方向的应力转变成垂直连接段21方向的应力,通过改变应力传递的方向,实现对应力传递方向的分散,减小支撑段22受到的应力,从而保护开启区24不受应力的影响出现变形,并且缓冲段23垂直连接连接段21和支撑段22,可以提高对防爆阀20空间的利用性。
在一些实施例中,如图3所示,支撑段22上形成有凹槽221,刻痕槽25形成在凹槽221的底壁上。由此,可以增加支撑段22对开启区24的保护。同时,实现对开启区24的减薄处理,便于防爆阀20内部压力增加需要泄压时,开启区24能够顺利打开,避免防爆阀20失效。
此外,在刻痕槽25的深度方向上,开启区24的厚度可以是变化的。例如,开启区24中间的厚度小于边缘的厚度,保证开启区24与支撑段22连接的强度,降低开启区24的生产成本。
在一些实施例中,在刻痕槽25的深度方向上,凹槽221的正投影的外缘与刻痕槽25的正投影的外缘具有重合区域。也即,刻痕槽25设于凹槽221的底壁的边缘。由此,可以保证开启区24面积的最大化,有助于提高防爆阀20的泄压能力。
在一些实施例中,如图3所示,在刻痕槽25的深度方向上,支撑段22的对应刻痕槽25处的厚度为H2,H2满足:0.02mm≤H2≤0.2mm。由此,通过控制支撑段22的对应刻痕槽25处的厚度,在不影响开启区24的结构强度的同时,便于开启区24能够顺利从刻痕槽25处打开实现泄压,提升防爆阀20开启的及时性。
在一些实施例中,在刻痕槽25的深度方向上,支撑段22的厚度为H3,H2、H3满足:H2:H3=0.1~1。由此,通过控制支撑段22的对应凹槽221处的厚度与支撑段22的厚度在合适的比值范围内,开启区24可以满足防爆阀20设计的强度要求,并且支撑段22可以满足自身结构强度要求的同时,可以实现对开启区24的保护,以更好的控制防爆阀20的制造成本。
在一些实施例中,开启区24的远离电池壳体10中心的一侧表面与支撑段22的远离电池壳体10中心的一侧表面平齐。开启区24的邻近电池壳体10中心的一侧表面与电池壳体10的中心之间的距离大于支撑段22的邻近电池壳体10中心的一侧表面与电池壳体10的中心之间的距离。
可以理解的是,开启区24与支撑段22远离电池壳体10中心一侧的表面是平齐的。 为了保证开启区24的顺利打开,开启区24的厚度优先设置为小于支撑段22的厚度。此时,开启区24与支撑段22邻近电池壳体10中心的一侧与电池壳体10中心的距离不同。其中,开启区24到电池壳体10中心的距离大于支撑段22到电池壳体10中心的距离。由此,一方面,可以降低电池壳体10内部震荡的电解液对开启区24的冲击,防止防爆阀20未到设计的阈值时发生泄压,增大电池100使用的成本。另一方面,开启区24的厚度较薄可以便于防爆阀20的顺利开阀,进一步地提升使用电池100的安全性。
在一些实施例中,如图3所示,在刻痕槽25的深度方向上,支撑段22的厚度为H3,连接段21的厚度为H4,H3、H4满足:H3:H4=0.25~1。由此,合理的控制支撑段22和连接段21的厚度,以使H3:H4在合适的比例范围内,便于支撑段22对开启区24的支撑和防爆阀20与电池壳体10的连接。同时,可以避免防爆阀20的厚度过大,以使防爆阀20在与电池壳体10配合时,防爆阀20的两侧能够与电池壳体10的内表面、外表面平齐,增加电池壳体10容纳电芯的能力。
在一些实施例中,如图3所示,在刻痕槽25的深度方向上,防爆阀20的高度为H5。在缓冲段23的厚度方向(也即电池100的厚度方向)上,缓冲段23的壁厚(沿防爆阀径向上的距离,例如,图3中的左右方向)为D1。H5、D1分别满足:0.3mm≤H5≤1.5mm,0.2mm≤D1≤0.8mm。由此,通过控制防爆阀20的高度和缓冲段23的壁厚,以使防爆阀20在满足缓冲效果设计时,能够更好的控制防爆阀20的尺寸规格,从而使防爆阀20与电池壳体10装配的可靠性增加,装配性更好,避免对电池100内部其他部件安装产生影响。
在一些实施例中,如图2和图3所示,在缓冲段23的厚度方向(也即电池100的厚度方向)上,支撑段22的宽度为D2。在刻痕槽25的深度方向上,支撑段22的厚度为H3。D2、H3分别满足:0.2mm≤D2≤2mm,0.2mm≤H3≤0.8mm。由此,通过设置支撑段22的宽度和厚度,以使支撑段22能够保证自身结构强度的同时,可以更好地支撑和保护开启区24,以防止开启区24受到应力变形。
在一些实施例中,如图2所示,在缓冲段23的厚度方向(也即电池100的厚度方向)上,连接段21的宽度为D3。在刻痕槽25的深度方向上,连接段21的厚度为H4。D3、H4分别满足:1mm≤D3≤5mm,0.2mm≤H4≤0.8mm。由此,合理的设置连接段21的厚度和宽度,以增加连接段21与电池壳体10连接的可靠性。同时,控制连接段21的厚度,可以使连接段21在与电池壳体10的一侧连接时,能够与电池壳体10的表面尽可 能齐平,降低对电池壳体10内部空间的占用,有利于电池壳体10内部元件的设置。
根据本公开第二方面实施例的电池100,包括电池壳体10和防爆阀20。
具体而言,如图1-图3、以及图14所示,防爆阀20设于电池壳体10上。由此,通过采用上述第一方面实施例防爆阀20,电池100受损后内部的压力能够及时泄出,增加对电池100的保护,提升了电池100使用的安全性,并且也降低使用电池100的成本。
根据本公开第三方面实施例的电池模组200,参照图15,包括根据本公开上述第二方面实施例电池100。
其中,电池模组200包括两个端板(图未示出)和两个侧板(图未示出)。多个电池100依次排布形成电池阵列,两个端板设于电池阵列相对的两端,两个侧板设于电池阵列相对的两侧。例如,电池阵列包含的多个电池100沿电池100的厚度方向依次排布,两个端板可以沿电池100的厚度方向分布于电池阵列的两端,两个侧板可以沿电池100的长度方向或宽度分布于电池阵列的两侧。
结合图1-图3,电池壳体10上设有开口,防爆阀20可以设于电池壳体10的开口的一侧。防爆阀20的连接段21与电池壳体10可以通过焊接连接。缓冲段23位于开口内,在径向上与开口相对。支撑段22连接在缓冲段23远离连接段21的一端,且支撑段22邻近电池壳体10中心一侧的表面与电池壳体10设有开口一侧的内表面平齐。由此,可以通过控制开启区24与防爆阀20的面积,以使开启区24的开启面积最大化,进一步地提升电池100使用的安全性。
当电池100受到外力或者内应力作用时,缓冲段23可以吸收变形的应力,且将沿着连接段21在水平方向的力转变成垂直支撑段22方向的力,避免应力过于集中影响开启区24的稳定性,破坏刻痕槽25的结构。而且,可以避免刻痕槽25受力变形,降低外力(如焊接时防爆阀20热变形产生的应力)对防爆阀20开启压力的影响。
由此,通过采用上述防爆阀20,开启区24能够及时开启泄压,从而可以增加电池100使用的安全性。此外,通过防爆阀20的缓冲段23的设计,实现了对应力的吸收和传递方向的改变,降低了外力对开启区24的影响,延长了电池100的使用寿命。
根据本公开第四方面实施例的电池包300,参照图15,包括根据本公开上述第二方面实施例中的电池100,或根据本公开上述第三方面实施例中的电池模组200。
其中,电池包300包括托盘(图未示出),托盘用于固定在车辆400上。上述第二方面实施例中的电池100直接布置于托盘内,或上述第三方面实施例中的电池模组200 固定于托盘内。
由此,通过控制开启区24与防爆阀20的面积比值,可以增加电池100使用的安全性,也能够提升电池模组200和电池包300的使用安全性。电池模组200内电池100的防爆阀20可以靠近电池模组200的下方设置,以使电池100在受热泄压时能够避免气流冲向车身内部,避免二次危害,提高使用电池包300的稳定性。
根据本公开第五方面实施例的车辆400,参照图15,包括根据本公开上述第四方面实施例中的电池包300。
由此,可以降低车辆400爆燃的可能性,降低电池包300在受到外部撞击等情况下,开启区24受损变形导致防爆阀20的开启的可能性。而且,缓冲段23可以吸收部分应力并改变力的传递方向,以使电池包300具有良好的可靠性,从而可以降低车辆400的使用成本。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开的描述中,“第一特征”、“第二特征”可以包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上。在本公开的描述中,第一特征在第二特征“之上”或“之下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。在本公开的描述中,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (23)

  1. 一种防爆阀(20)其特征在于,所述防爆阀(20)上设有刻痕槽(25),所述防爆阀(20)包括开启区(24),在所述刻痕槽(25)的深度方向上,所述开启区(24)的正投影的形状为非圆形,所述开启区(24)的正投影的外缘为预定开启边界(241),且所述开启区(24)的正投影的面积为S1,所述防爆阀(20)的正投影的面积为S,所述S1、S满足:S1/S≥0.3,其中S1、S的单位均为mm2
  2. 根据权利要求1所述的防爆阀(20),其特征在于,所述S1、S进一步满足:S1/S≤0.95。
  3. 根据权利要求1或2所述的防爆阀(20),其特征在于,所述S1、S分别满足:80mm2≤S1≤1600mm2,178.5mm2≤S≤5212.5mm2
  4. 根据权利要求1-3中任一项所述的防爆阀(20),其特征在于,所述刻痕槽(25)包括相对设置且呈弧形的两个第一刻痕段(251)、呈直线形的第二刻痕段(252)、以及间隔设置且呈直线形的两个第三刻痕段(253),所述第二刻痕段(252)与所述第三刻痕段(253)平行设置,所述第二刻痕段(252)的两端分别与两个所述第一刻痕段(251)连接,每个所述第三刻痕段(253)与对应的所述第一刻痕段(251)连接;
    在所述刻痕槽(25)的深度方向上,所述刻痕槽(25)的正投影的外缘的两个自由端相连构成连接线(263),所述连接线(263)与所述刻痕槽(25)的正投影的外缘共同构成所述预定开启边界(241)。
  5. 根据权利要求1-3中任一项所述的防爆阀(20),其特征在于,所述刻痕槽(25)包括相对设置且呈弧形的两个第四刻痕段(254),以及平行设置且呈直线形的两个第五刻痕段(255),每个所述第五刻痕段(255)的两端分别与两个所述第四刻痕段(254)连接,两个所述第五刻痕段(255)和两个所述第四刻痕段(254)构成封闭的环状结构;
    在所述刻痕槽(25)的深度方向上,所述刻痕槽(25)的正投影的外缘构成所述预定开启边界(241)。
  6. 根据权利要求1-3中任一项所述的防爆阀(20),其特征在于,所述刻痕槽(25)包括呈直线形的第六刻痕段(256),以及呈直线形的四个第七刻痕段(257),所述第六刻痕段(256)的两端分别连接有两个所述第七刻痕段(257),两个所述第七刻痕段(257)呈预设夹角设置;
    在所述刻痕槽(25)的深度方向上,位于所述第六刻痕段(256)同一端的两个所述第七刻痕段(257)的正投影的自由端之间限定出第一圆弧(259),所述第一圆弧(259)以 所述预设夹角的顶点为圆心,位于所述第六刻痕段(256)同一侧的两个所述第七刻痕段(257)的正投影的自由端之间限定出第一直线(258),两个所述第一圆弧(259)和两个所述第一直线(258)共同构成所述预定开启边界(241)。
  7. 根据权利要求1-6中任一项所述的防爆阀(20),其特征在于,在所述刻痕槽(25)的深度方向上,所述防爆阀(20)的正投影的外轮廓包括平行的两个第二直线(27)和相对设置的两个第二圆弧(28),两个所述第二直线(27)的两端分别与两个所述第二圆弧(28)连接,所述第二直线(27)的长度为L,每个所述第二圆弧(28)的半径为R,两个所述第二直线(27)之间的距离为2R,所述S、L、R满足:S=πR2+2RL,10mm≤L≤65mm,5mm≤R≤25mm。
  8. 根据权利要求1-7中任一项所述的防爆阀(20),其特征在于,在所述刻痕槽(25)的深度方向上,所述开启区(24)的厚度小于所述防爆阀(20)的其它部分的厚度。
  9. 根据权利要求1-8中任一项所述的防爆阀(20),其特征在于,在所述刻痕槽(25)的深度方向上,所述开启区(24)的厚度为H1,所述H1满足:0.1mm≤H1≤0.3mm。
  10. 根据权利要求1-9中任一项所述的防爆阀(20),其特征在于,在所述刻痕槽(25)的深度方向上,所述开启区(24)的正投影的形状为长圆形、椭圆形或多边形。
  11. 根据权利要求1-10中任一项所述的防爆阀(20),其特征在于,所述防爆阀(20)还包括连接段(21)、缓冲段(23)和支撑段(22),所述连接段(21)连接在所述支撑段(22)的外周侧,所述支撑段(22)与所述连接段(21)沿所述支撑段(22)的厚度方向间隔设置,所述缓冲段(23)连接在所述连接段(21)和所述支撑段(22)之间,所述开启区(24)设在所述支撑段(22)上。
  12. 根据权利要求11所述的防爆阀(20),其特征在于,所述支撑段(22)上形成有凹槽(221),所述刻痕槽(25)形成在所述凹槽(221)的底壁上。
  13. 根据权利要求12所述的防爆阀(20),其特征在于,在所述刻痕槽(25)的深度方向上,所述凹槽(221)的正投影的外缘与所述刻痕槽(25)的正投影的外缘具有重合区域。
  14. 根据权利要求11-13中任一项所述的防爆阀(20),其特征在于,在所述刻痕槽(25)的深度方向上,所述支撑段(22)的对应所述刻痕槽(25)处的厚度为H2,所述H2满足:0.02mm≤H2≤0.2mm。
  15. 根据权利要求14所述的防爆阀(20),其特征在于,在所述刻痕槽(25)的深度方向上,所述支撑段(22)的厚度为H3,所述H2、H3满足:H2:H3=0.1~1。
  16. 根据权利要求11-15中任一项所述的防爆阀(20),其特征在于,在所述刻痕槽(25)的深度方向上,所述支撑段(22)的厚度为H3,所述连接段(21)的厚度为H4,所述H3、 H4满足:H3:H4=0.25~1。
  17. 根据权利要求11-16中任一项所述的防爆阀(20),其特征在于,在所述刻痕槽(25)的深度方向上,所防爆阀(20)的高度为H5,在所述缓冲段(23)的厚度方向上,所述缓冲段(23)的壁厚为D1,所述H5、D1分别满足:0.3mm≤H5≤1.5mm,0.2mm≤D1≤0.8mm。
  18. 根据权利要求11-17中任一项所述的防爆阀(20),其特征在于,在所述缓冲段(23)的厚度方向上,所述支撑段(22)的宽度为D2,在所述刻痕槽(25)的深度方向上,所述支撑段(22)的厚度为H3,所述D2、H3分别满足:0.2mm≤D2≤2mm,0.2mm≤H3≤0.8mm。
  19. 根据权利要求11-18中任一项所述的防爆阀(20),其特征在于,在所述缓冲段(23)的厚度方向上,所述连接段(21)的宽度为D3,在所述刻痕槽(25)的深度方向上,所述连接段(21)的厚度为H4,所述D3、H4分别满足:1mm≤D3≤5mm,0.2mm≤H4≤0.8mm。
  20. 一种电池(100)其特征在于,包括:
    电池壳体(10);及
    根据权利要求1-19中任一项所述的防爆阀(20),所述防爆阀(20)设于所述电池壳体(10)上。
  21. 一种电池模组(200),其特征在于,包括根据权利要求20所述的电池(100)。
  22. 一种电池包(300),其特征在于,包括根据权利要求20所述的电池(100),或根据权利要求21所述的电池模组(200)。
  23. 一种车辆(400),其特征在于,包括根据权利要求22所述的电池包(300)。
PCT/CN2023/089162 2022-05-12 2023-04-19 防爆阀、电池、电池模组、电池包和车辆 WO2023216825A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221128849.3 2022-05-12
CN202221128849.3U CN216980795U (zh) 2022-05-12 2022-05-12 电池、电池模组、电池包和车辆

Publications (1)

Publication Number Publication Date
WO2023216825A1 true WO2023216825A1 (zh) 2023-11-16

Family

ID=82341764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089162 WO2023216825A1 (zh) 2022-05-12 2023-04-19 防爆阀、电池、电池模组、电池包和车辆

Country Status (2)

Country Link
CN (1) CN216980795U (zh)
WO (1) WO2023216825A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117691297A (zh) * 2024-02-04 2024-03-12 蜂巢能源科技股份有限公司 防爆阀及电池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216980795U (zh) * 2022-05-12 2022-07-15 比亚迪股份有限公司 电池、电池模组、电池包和车辆
CN216980798U (zh) * 2022-05-12 2022-07-15 比亚迪股份有限公司 防爆阀、电池、电池模组、电池包以及车辆
CN114628845B (zh) * 2022-05-12 2022-09-09 比亚迪股份有限公司 电池、电池模组、电池包和车辆
WO2024016269A1 (zh) * 2022-07-21 2024-01-25 宁德时代新能源科技股份有限公司 电池和用电装置
WO2024098401A1 (zh) * 2022-11-11 2024-05-16 深圳海润新能源科技有限公司 电池端盖组件、储能装置以及用电设备
CN117638338B (zh) * 2024-01-25 2024-04-26 蜂巢能源科技股份有限公司 一种盖板组件及单体电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238558A (ja) * 2009-03-31 2010-10-21 Sanyo Electric Co Ltd 角形密閉型電池
CN111446388A (zh) * 2020-04-20 2020-07-24 欣旺达电动汽车电池有限公司 一种电池顶盖组件及单体电池
CN112382826A (zh) * 2021-01-15 2021-02-19 蜂巢能源科技有限公司 用于电芯的防爆阀、电芯及电池模组
CN114122613A (zh) * 2021-11-16 2022-03-01 苏州领湃新能源科技有限公司 一种防爆阀、动力电池盖板装置和动力电池
CN216980795U (zh) * 2022-05-12 2022-07-15 比亚迪股份有限公司 电池、电池模组、电池包和车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238558A (ja) * 2009-03-31 2010-10-21 Sanyo Electric Co Ltd 角形密閉型電池
CN111446388A (zh) * 2020-04-20 2020-07-24 欣旺达电动汽车电池有限公司 一种电池顶盖组件及单体电池
CN112382826A (zh) * 2021-01-15 2021-02-19 蜂巢能源科技有限公司 用于电芯的防爆阀、电芯及电池模组
CN114122613A (zh) * 2021-11-16 2022-03-01 苏州领湃新能源科技有限公司 一种防爆阀、动力电池盖板装置和动力电池
CN216980795U (zh) * 2022-05-12 2022-07-15 比亚迪股份有限公司 电池、电池模组、电池包和车辆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117691297A (zh) * 2024-02-04 2024-03-12 蜂巢能源科技股份有限公司 防爆阀及电池
CN117691297B (zh) * 2024-02-04 2024-04-19 蜂巢能源科技股份有限公司 电池防爆阀及电池

Also Published As

Publication number Publication date
CN216980795U (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2023216825A1 (zh) 防爆阀、电池、电池模组、电池包和车辆
WO2023217225A1 (zh) 防爆阀、电池、电池模组、电池包以及车辆
WO2023217245A1 (zh) 电池、电池模组、电池包和车辆
WO2023217244A1 (zh) 电池、电池模组、电池包和车辆
WO2022006894A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2022006895A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2023217228A1 (zh) 防爆阀、电池、电池模组、电池包以及车辆
WO2023217242A1 (zh) 防爆阀、电池、电池模组、电池包以及车辆
JP7394994B2 (ja) カバープレートユニット、電池セル、電池モジュール、電池パック及び装置
WO2022105010A1 (zh) 电池单体、电池及用电装置
US20220021069A1 (en) Secondary battery
WO2023142648A1 (zh) 用于电池的防爆阀贴片、端盖组件、电池和用电装置
WO2024125140A1 (zh) 极柱组件、端盖组件、电池、储能装置和用电设备
US20210313661A1 (en) Secondary battery and battery module
WO2023207402A1 (zh) 顶盖组件、电池单体、电池及用电设备
EP2348557B1 (en) Secondary battery
WO2024000945A1 (zh) 盖帽组件、电池、电池模组、电池包及车辆
WO2023236309A1 (zh) 电池箱体、电池以及用电装置
WO2024109920A1 (zh) 集流盘、储能装置及用电设备
JP2020514947A (ja) 安全ベントの離脱を防止するガイド部材を含むキャップアセンブリー
JP4117435B2 (ja) 電池モジュール
WO2023160389A1 (zh) 电池壳体、电池单体、电池和用电设备
JP3244026U (ja) フルタブ円筒形リチウム電池用電池蓋及びフルタブ円筒形リチウム電池
WO2023159840A1 (zh) 电池单体、电池以及用电装置
WO2023050098A1 (zh) 泄压装置、电池单体、电池及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802600

Country of ref document: EP

Kind code of ref document: A1