WO2024016269A1 - 电池和用电装置 - Google Patents

电池和用电装置 Download PDF

Info

Publication number
WO2024016269A1
WO2024016269A1 PCT/CN2022/107089 CN2022107089W WO2024016269A1 WO 2024016269 A1 WO2024016269 A1 WO 2024016269A1 CN 2022107089 W CN2022107089 W CN 2022107089W WO 2024016269 A1 WO2024016269 A1 WO 2024016269A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
wall
pressure relief
relief mechanism
battery cell
Prior art date
Application number
PCT/CN2022/107089
Other languages
English (en)
French (fr)
Inventor
李耀
陈小波
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020247024452A priority Critical patent/KR20240124382A/ko
Priority to CN202280061309.4A priority patent/CN117957701A/zh
Priority to PCT/CN2022/107089 priority patent/WO2024016269A1/zh
Priority to CN202320295586.3U priority patent/CN219643037U/zh
Publication of WO2024016269A1 publication Critical patent/WO2024016269A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and more specifically, to a battery and an electrical device.
  • This application provides a battery and an electrical device, which can improve safety.
  • a battery which includes a battery cell and a protective member.
  • the battery cell includes a pressure relief mechanism.
  • the protective member includes a protective area opposite to the pressure relief mechanism in a thickness direction of the pressure relief mechanism, and the protective area is used to block at least part of the material released by the battery cell through the pressure relief mechanism.
  • the gravimetric energy density of the battery cell is E; in the thickness direction, the minimum distance between the pressure relief mechanism and the protective area is L.
  • E and L satisfy: 2Wh/(kg ⁇ mm) ⁇ E/L ⁇ 7010Wh/(kg ⁇ mm).
  • E the higher the value of E, the more violent the chain reaction occurs inside the battery cell, and the higher the temperature and speed of the material released by the battery cell. Therefore, E The higher the value, the higher the requirement for the minimum distance L between the pressure relief mechanism and the protective area. If E is too large and L is too small, particles in high-temperature and high-speed substances will easily accumulate on thermally runaway battery cells and spread to normal battery cells, and will also be more likely to rebound to normal battery cells. This will both It will cause the risk of normal battery cells being burned and damaged, and it will also increase the temperature of normal battery cells, causing the risk of normal battery cells thermal runaway, leading to safety hazards.
  • E is too small and L is too large, the distance between the pressure relief mechanism and the protective area will be over-designed, which will reduce the utilization of the internal space of the battery and cause a waste of energy density of the battery.
  • the above technical solution limits the value of E/L to 2Wh/(kg ⁇ mm)-7010Wh/(kg ⁇ mm) to reduce the spacing design between the protective components and the pressure relief mechanism while taking into account the safety protection requirements of the battery.
  • the redundancy reduces the loss of battery energy density and improves battery safety.
  • E and L satisfy: 10 Wh/(kg ⁇ mm) ⁇ E/L ⁇ 800 Wh/(kg ⁇ mm).
  • the value of E is between 100 Wh/kg and 3505 Wh/kg.
  • the weight energy density of a battery cell is greater than or equal to 100Wh/kg, which can effectively increase the energy density of the battery and improve the endurance of electrical devices using batteries.
  • the weight energy density of a battery cell is less than or equal to 3505Wh/kg, which can keep thermal runaway battery cells under control and reduce safety risks.
  • the value of E is between 100 Wh/kg and 400 Wh/kg.
  • the value of L is 0.5mm-50mm.
  • the above technical solution limits the value of L to 0.5mm-50mm, in order to reduce the redundancy in the spacing design between the protective components and the pressure relief mechanism and reduce the loss of the battery's energy density while taking into account the safety protection requirements of the battery. Improve battery safety.
  • the value of L is 0.5mm-10mm.
  • a flow channel for the heat exchange medium to flow is provided inside the protective component.
  • the protective component can simultaneously perform protective functions and thermal management functions, which helps to simplify the structure of the battery and improve the energy density of the battery.
  • the protective component further includes a heat exchange area
  • the battery cell further includes a first wall
  • the pressure relief mechanism is disposed on the first wall.
  • the heat exchange area is used to connect the first wall to exchange heat with the first wall.
  • the heat exchange area exchanges heat with the first wall to adjust the temperature of the battery cells so that the battery cells work within a suitable temperature range and improve the cycle performance of the battery cells.
  • the battery further includes a thermally conductive structure, at least a portion of the thermally conductive structure being located between and connecting the first wall and the heat exchange area.
  • the thermally conductive structure may connect the first wall and the heat exchange area to enable stable heat exchange between the first wall and the heat exchange area.
  • the thermally conductive structure may also support the guard member such that the guard member is spaced apart from the pressure relief mechanism.
  • the battery cell further includes a first wall, and the pressure relief mechanism is disposed on the first wall.
  • the protective member includes a main body part and a support part.
  • the main body part is spaced apart from the first wall along the thickness direction.
  • the support part is located between the first wall and the main body part and is used to connect the first wall and the main body part.
  • the main body includes a protective zone.
  • the support part can not only fix the main body part to the battery cell, but also separate the protective area from the pressure relief mechanism. By adjusting the size of the support part, the minimum distance between the pressure relief mechanism and the protective zone can be adjusted.
  • the guard member is a flat plate structure.
  • the flat structure is easy to form and easy to install.
  • the protective member is located on the same side of the pressure relief mechanisms of the multiple battery cells.
  • the protection component includes multiple protection areas, and the multiple protection areas correspond to the pressure relief mechanisms of the multiple battery cells.
  • the protective component can cover the pressure relief mechanisms of multiple battery cells. No matter which battery cell experiences thermal runaway, the protective component can block high-temperature and high-velocity substances and reduce safety risks.
  • the battery further includes a case in which the battery cells and protective components are accommodated.
  • the protective component is fixed on the surface of the box facing the pressure relief mechanism.
  • the protective component can block the material released by the battery cells to reduce the thermal shock to the box, reduce the heat transferred to the box, reduce the risk of the box being melted through, and improve the safety of the battery.
  • the box can fix the protective components to reduce the risk of the protective components moving under the impact of high-temperature and high-speed materials, reduce the probability of impact damage to the protective components, and reduce the risk of protective failure of the protective components.
  • the battery cell includes a first wall, a second wall and a third wall, the pressure relief mechanism is provided on the first wall, the second wall is located on a side of the first wall away from the protective member, and the third wall is connected to First wall and second wall.
  • the battery cell further includes an electrode terminal disposed on at least one of the first wall, the second wall, and the third wall.
  • the material of the protective component includes at least one of inorganic salts, inorganic ceramics, elemental metals, elemental carbon, and organic colloids.
  • embodiments of the present application provide an electrical device, including the battery according to any embodiment of the first aspect, and the battery is used to provide electric energy.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • FIG. 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • Figure 4 is another structural schematic diagram of the battery shown in Figure 3, in which the pressure relief mechanism of the battery cell is in an actuated state;
  • FIG. 5 is an enlarged schematic diagram of the battery shown in Figure 3 at circular frame A;
  • Figure 6 is a schematic structural diagram of a battery cell of a battery provided by some embodiments of the present application.
  • Figure 7 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • Figure 8 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • Figure 9 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • Figure 10 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • Figure 11 is a schematic diagram of a battery during testing according to some embodiments of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • parallel includes not only the absolutely parallel situation, but also the roughly parallel situation that is conventionally recognized in engineering; at the same time, the term “perpendicular” includes not only the absolutely vertical situation, but also the roughly parallel situation that is conventionally recognized in engineering. vertical situation.
  • battery cells may include lithium-ion battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells or magnesium-ion battery cells, etc.
  • the embodiments of this application are not limited to this.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • the battery cells may be hard-shell battery cells, soft-pack battery cells or other types of battery cells.
  • the battery cell includes electrode components and electrolyte.
  • the electrode assembly includes a positive electrode piece, a negative electrode piece, and a separator.
  • Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector includes a positive electrode current collector and a positive electrode tab.
  • the positive electrode current collector is coated with the positive electrode active material layer.
  • the positive electrode tab is not coated with the positive electrode active material layer.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material layer includes a positive electrode active material.
  • the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode piece includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector includes a negative electrode current collector and a negative electrode tab.
  • the negative electrode current collector is coated with the negative electrode active material layer.
  • the negative electrode tab is not coated with the negative electrode active material layer.
  • the negative electrode current collector may be made of copper, and the negative electrode active material layer may include a negative electrode active material.
  • the negative electrode active material may be carbon or silicon.
  • the material of the isolator can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the pressure relief mechanism on the battery cell has an important impact on the safety of the battery cell. For example, when a short circuit, overcharge, etc. occurs, thermal runaway may occur inside the battery cell and the pressure may rise sharply. In this case, the internal pressure can be released outward by actuating the pressure relief mechanism to prevent the battery cells from exploding or catching fire.
  • the pressure relief mechanism may be an element or component that is activated when the battery cells reach certain conditions.
  • the pressure relief mechanism may be an element or component that is actuated to relieve the internal pressure and/or internal contents when the internal pressure or internal temperature of the battery cell reaches a predetermined threshold.
  • This threshold design varies based on design requirements. This threshold may depend on one or more materials of the positive electrode tab, negative electrode tab, electrolyte and separator in the battery cell.
  • the pressure relief mechanism can take the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, etc., and can specifically adopt a pressure-sensitive element or structure. That is, when the internal pressure of the battery cell reaches a predetermined threshold, the pressure relief mechanism executes The weak area provided in the action or pressure relief mechanism ruptures, thereby forming a pressure relief channel for internal pressure relief.
  • the pressure relief mechanism may also adopt a temperature-sensitive element or structure, that is, when the internal temperature of the battery cell reaches a predetermined threshold, the pressure relief mechanism takes action, thereby forming a pressure relief channel for the internal pressure to be released.
  • the pressure relief mechanism may also be an actively actuable component. For example, the pressure relief mechanism may be actuated upon receiving a control signal from the battery.
  • the pressure relief mechanism can also take other forms.
  • the pressure relief mechanism may be a lower-strength structure on the outer casing of the battery cell. When the battery cell is thermally out of control, the lower-strength structure cracks or deforms to form a pressure relief channel for internal pressure relief.
  • the pressure relief mechanism may be a welding mark on the casing of the battery cell.
  • the “actuation” mentioned in this application means that the pressure relief mechanism acts or is activated to a certain state, thereby allowing the internal pressure and/or internal materials of the battery cells to be released.
  • the actions generated by the pressure relief mechanism may include, but are not limited to: at least a portion of the pressure relief mechanism is ruptured, broken, torn or opened, etc.
  • the emissions from battery cells mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrode sheets, fragments of separators, high-temperature and high-speed gases generated by reactions, flames, etc.
  • the box is also provided with a pressure relief mechanism, and the pressure relief mechanism of the box is actuated to discharge emissions outside the box at a set position of the box.
  • the protective member can block the high-temperature and high-speed substances released by the battery cells and withstand the impact of high-temperature and high-speed substances, thereby reducing the battery's damage. Breakout risk and improved safety.
  • the gravimetric energy density of the battery cell is related to the temperature and rate of the material released by the battery cell; the higher the gravimetric energy density of the battery cell, the higher the temperature and speed of the material released by the battery cell. The easier it is for particles in the battery to accumulate, the easier it is to damage other components adjacent to the thermally runaway battery cell.
  • the inventor provides a technical solution that sets the distance between the pressure relief mechanism and the protective member according to the gravimetric energy density of the battery cells to reduce safety risks and waste of energy density of the battery.
  • Electrical devices can be vehicles, cell phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical device as a vehicle as an example.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • a battery 2 is provided inside the vehicle 1 .
  • the battery 2 can be provided at the bottom, head, or tail of the vehicle 1 .
  • the battery 2 may be used to power the vehicle 1 , for example, the battery 2 may serve as an operating power source for the vehicle 1 .
  • the vehicle 1 may also include a controller 3 and a motor 4.
  • the controller 3 is used to control the battery 2 to provide power to the motor 4, for example, to meet the power requirements for starting, navigation and driving of the vehicle 1.
  • the battery 2 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • Figure 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • the battery 2 includes a case 20 and a battery cell 10 .
  • the battery cell 10 is accommodated in the case 20 .
  • the box 20 is used to accommodate the battery cells 10, and the box 20 can be of various structures.
  • the box body 20 may include a first box body part 21 and a second box body part 22.
  • the first box body part 21 and the second box body part 22 cover each other.
  • the first box body part 21 and the second box body part 22 cover each other.
  • the two box portions 22 jointly define an accommodation space for accommodating the battery cells 10 .
  • the second box part 22 may be a hollow structure with one end open
  • the first box part 21 may be a plate-like structure
  • the first box part 21 covers the open side of the second box part 22, To form a box 20 with an accommodation space.
  • both the first box part 21 and the second box part 22 may be hollow structures with one side open, and the open side of the first box part 21 is covered with the second box part 22 Open side to form a box 20 with accommodating space.
  • the first box part 21 and the second box part 22 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • a sealing member may also be provided between the first box part 21 and the second box part 22, such as sealant, sealing ring, etc. .
  • the first box part 21 can also be called an upper box cover, and the second box part 22 can also be called a lower box 20 .
  • the battery 2 there may be one battery cell 10 or a plurality of battery cells 10 . If there are multiple battery cells 10, the multiple battery cells 10 can be connected in series, in parallel, or in mixed connection. Mixed connection means that the multiple battery cells 10 are both connected in series and in parallel.
  • the plurality of battery cells 10 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 10 can be accommodated in the box 20 ; of course, the plurality of battery cells 10 can also be connected in series first. They may be connected in parallel or mixed to form a battery module, and multiple battery modules may be connected in series, parallel or mixed to form a whole, and be accommodated in the box 20 .
  • Figure 3 is a schematic structural diagram of a battery provided by some embodiments of the present application
  • Figure 4 is another schematic structural diagram of the battery shown in Figure 3, in which the pressure relief mechanism of the battery cell is in an actuated state
  • Figure 5 is Figure 3 is an enlarged schematic diagram of the battery at circular frame A
  • Figure 6 is a schematic structural diagram of a battery cell provided by some embodiments of the present application
  • the battery 2 includes a battery cell 10 and a protective member 30 .
  • the battery cell 10 includes a pressure relief mechanism 11 .
  • the protection member 30 includes a protection area 31 opposite to the pressure relief mechanism 11 in the thickness direction Z of the pressure release mechanism 11 .
  • the protection area 31 is used to block at least part of the material released from the battery cell 10 via the pressure relief mechanism 11 .
  • the gravimetric energy density of the battery cell 10 is E; in the thickness direction Z, the minimum distance between the pressure relief mechanism 11 and the protection zone 31 is L.
  • E and L satisfy: 2Wh/(kg ⁇ mm) ⁇ E/L ⁇ 7010Wh/(kg ⁇ mm).
  • the pressure relief mechanisms 11 of the plurality of battery cells 10 all face the protective member 30 .
  • the pressure relief mechanism 11 When the battery cell 10 is in a normal state, the pressure relief mechanism 11 does not form a pressure relief channel.
  • the pressure relief mechanism 11 seals the electrode assembly 13 and the electrolyte of the battery cell 10 inside the battery cell 10 to reduce the risk of electrolyte leakage.
  • the pressure relief mechanism 11 When thermal runaway occurs inside the battery cell 10 , the pressure relief mechanism 11 is activated to form a pressure relief channel 111 ; the material inside the battery cell 10 can be released to the outside of the battery cell 10 via the pressure relief channel 111 .
  • the protective member 30 is a component of the battery 2 that withstands the thermal shock of high-temperature and high-velocity substances discharged from the battery cells 10 . When subjected to thermal shock by high-temperature and high-velocity substances released from the battery cells 10 , the protective member 30 will not be melted through or broken, thereby playing a protective role.
  • the protection member 30 may be a functional component in the battery 2, and may only serve as a thermal protection function, or it may also perform other functions while serving a thermal protection function.
  • the protective member 30 may be a thermal management component in the battery 2 , which can not only regulate the temperature of the battery cell 10 , but also block high-temperature and high-speed substances released from the battery cell 10 .
  • the protective member 30 may also be part of the outer envelope of the battery 2 .
  • guard member 30 is a separate member connected to the outer envelope of battery cell 10 or battery 2 .
  • the protective area 31 is a portion of the protective member 30 that overlaps the pressure relief mechanism 11 in the thickness direction Z.
  • the projection of the protective zone 31 in the thickness direction Z completely overlaps the projection of the pressure relief mechanism 11 in the thickness direction Z.
  • the protection member 30 may only include the protection area 31, that is, the entire protection member 30 and the pressure relief mechanism 11 overlap in the thickness direction Z; alternatively, in addition to the protection area 31, the protection member 30 may also include no areas in the thickness direction Z. The area overlapping the pressure relief mechanism 11.
  • the protective area 31 of the protective member 30 may be one or multiple.
  • the plurality of protection areas 31 of the protection member 30 may be respectively opposite to the pressure relief mechanisms 11 of the plurality of battery cells 10 .
  • protection zone 31 and the pressure relief mechanism 11 Other components may or may not exist between the protection zone 31 and the pressure relief mechanism 11 .
  • the thermal shock resistance of the protection member 30 is better than that of the components located between the protection area 31 and the pressure relief mechanism 11 .
  • the components located between the protection area 31 and the pressure relief mechanism 11 may be leaked by the battery cells 10 The high-temperature and high-speed substances released rush through.
  • the protective member 30 may be a plate structure, a frame structure or other structures.
  • the protective member 30 may be a flat plate with uniform thickness or a plate with uneven thickness.
  • the protective member 30 may be an integral structure or a structure assembled from multiple sub-components.
  • the protective member 30 can be fixed to the battery cell 10 , the box of the battery 2 , or other components of the battery 2 , which is not limited in the embodiment of the present application.
  • the unit of the gravimetric energy density E of the battery cell 10 is Wh/kg (Watt-hour per kilogram).
  • E C/G
  • C is the capacity of the battery cell 10
  • G is the weight of the battery cell 10.
  • the inventor limited the value of E/L to 2Wh/(kg ⁇ mm)-7010Wh/(kg ⁇ mm), in order to reduce the protection area 31 and pressure relief mechanism while taking into account the safety protection requirements of the battery 2
  • the redundant design of the spacing between 11 reduces the loss of energy density of the battery 2 and improves the safety of the battery 2.
  • the value of E/L is 2Wh/(kg ⁇ mm), 10Wh/(kg ⁇ mm), 50Wh/(kg ⁇ mm), 100Wh/(kg ⁇ mm), 500Wh/(kg ⁇ mm ), 800Wh/(kg ⁇ mm), 1000Wh/(kg ⁇ mm), 3000Wh/(kg ⁇ mm), 5000Wh/(kg ⁇ mm), 7000Wh/(kg ⁇ mm) or 7010Wh/(kg ⁇ mm).
  • E and L satisfy: 10 Wh/(kg ⁇ mm) ⁇ E/L ⁇ 800 Wh/(kg ⁇ mm).
  • the value of E is between 100 Wh/kg and 3505 Wh/kg.
  • the weight energy density of the battery cell 10 is greater than or equal to 100Wh/kg, which can effectively increase the energy density of the battery 2 and improve the endurance of the electrical device using the battery 2.
  • the weight energy density of the battery cell 10 is less than or equal to 3505Wh/kg, which can keep the thermal runaway battery cell 10 in a controllable state and reduce safety risks.
  • the value of E is 100Wh/kg, 200Wh/kg, 300Wh/kg, 400Wh/kg, 600Wh/kg, 1000Wh/kg, 2000Wh/kg, 3000Wh/kg or 3505Wh/kg.
  • the value of E is between 100 Wh/kg and 400 Wh/kg.
  • the value of L is 0.5mm-50mm.
  • L is too small, the particles in the high-temperature and high-velocity substances will easily accumulate on the thermally runaway battery cells 10 and spread to the normal battery cells 10 , and will also be more likely to rebound to the normal battery cells 10 , which will cause The risk of the normal battery cells 10 being burned or damaged will also increase the temperature of the normal battery cells 10 , causing the risk of thermal runaway of the normal battery cells 10 , resulting in potential safety hazards. If L is too large, the distance between the pressure relief mechanism 11 and the protective area 31 will be over-designed, which will reduce the internal space utilization of the battery 2 and cause a waste of the energy density of the battery 2 .
  • the value of L is limited to 0.5mm-50mm, so as to reduce the redundancy in the spacing design between the protection area 31 and the pressure relief mechanism 11 and reduce the risk of the battery 2 while taking into account the safety protection requirements of the battery 2.
  • the loss of energy density improves the safety of battery 2.
  • the value of L is greater than or equal to 0.5mm, so that the space between the protective component 30 and the pressure relief mechanism 11 can be smoothly exhausted, thereby reducing the risk of untimely exhaust due to insufficient exhaust space, and improving Safety, reducing the possibility of battery 2 explosion.
  • the value of L is 0.5mm, 1mm, 5mm, 10mm, 20mm, 30mm or 50mm.
  • the value of L is 0.5mm-10mm.
  • the pressure relief mechanism 11 when the battery cell 10 is thermally out of control, the pressure relief mechanism 11 needs to perform certain actions (for example, a part of the pressure relief mechanism 11 is broken or folded) to form the relief channel 111 .
  • the value of L is greater than or equal to 0.5mm to provide space for the action of the pressure relief mechanism 11 and reduce the risk of the protective member 30 interfering with the action of the pressure relief mechanism 11, thereby allowing the battery cell 10 to release pressure in a timely manner.
  • the pressure relief mechanism 11 when the battery cell 10 is thermally runaway, the pressure relief mechanism 11 is activated and forms a pressure relief channel 111 .
  • the axial direction of the pressure relief channel 111 is parallel to the thickness direction Z of the pressure relief mechanism 11 .
  • the battery 2 further includes a case 20 in which the battery cell 10 and the protective member 30 are accommodated.
  • the box 20 may be an outer envelope of the battery 2, and the battery cells 10 are located inside the outer envelope.
  • the box 20 can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells 10 .
  • the pressure relief mechanism 11 of the battery cell 10 may face the bottom wall 20b of the box 20, the top wall 20a of the box 20, or the side wall 20c of the box 20.
  • the protective member 30 is fixed on the surface of the box 20 facing the pressure relief mechanism 11 .
  • the box 20 can fix the protective member 30 to reduce the risk of the protective member 30 moving under the impact of high-temperature and high-speed substances, reduce the probability of impact damage to the protective member 30, and reduce the risk of protective failure of the protective member 30.
  • the protective member 30 can also block the material released from the battery cell 10 to reduce the thermal shock to the box 20 and reduce the heat transferred to the box 20, thereby reducing the risk of the box 20 being melted through and improving the battery 2's durability. safety.
  • the protective component 30 is fixed to the box body 20 by bonding, welding, fastener connection or snapping.
  • the protective member 30 can also be fixed to the box 20 in other ways.
  • the thermal shock resistance of the protective member 30 is better than the thermal shock resistance of the box 20 .
  • Thermal shock resistance refers to the ability of a material to withstand rapid changes in temperature without damaging it. In other words, when impacted by the same high-temperature and high-speed substance, the protective member 30 is less likely to be damaged than the box body 20 .
  • shielding member 30 may act as an insulator to reduce heat transfer to case 20 .
  • the box body 20 may be made of some materials that are not resistant to high temperatures, such as polyester materials.
  • the box body 20 can also be made of some relatively high-temperature resistant materials, such as aluminum, steel or other metals.
  • the material of the protective member 30 includes at least one of inorganic salts, inorganic ceramics, elemental metals, elemental carbon, and organic colloids.
  • inorganic salts include silicates.
  • the material of shield member 30 includes mica.
  • the inorganic ceramic includes at least one of aluminum oxide, silicon oxide, boron carbide, boron nitride, silicon carbide, silicon nitride, and zirconium oxide.
  • the elemental metal material includes at least one of copper, iron, aluminum, tungsten, and titanium.
  • the elemental carbon includes at least one of amorphous carbon and graphite.
  • the organic colloid includes at least one of epoxy structural glue, acrylic structural glue, polyimide structural glue, maleimide structural glue, polyurethane structural glue, and acrylic structural glue.
  • the material of the protective member 30 includes at least two of inorganic salts, inorganic ceramics, elemental metals, elemental carbon, and organic colloids.
  • the composite structure formed of multiple materials can improve the thermal shock resistance and thermal insulation properties of the protective component 30 .
  • the protective member 30 includes a carbon fiber plate formed of carbon fiber cloth and organic colloid.
  • the protective member 30 includes a resin sheet formed of inorganic ceramic powder and organic colloid.
  • the protective member 30 includes a stack of graphite layers and metal layers.
  • the protective member 30 includes a composite fiber sheet composed of carbon fiber and ceramic fiber.
  • protective member 30 includes a ceramic layer and a metal mesh connected to the ceramic layer.
  • the melting point of guard member 30 is greater than the melting point of case 20 .
  • the protective component 30 has better thermal shock resistance than the box body 20 , thereby serving a thermal protection function and reducing the risk of damage to the box body 20 .
  • guard member 30 has a melting point greater than 1000°C.
  • the protective member 30 has a high melting point and is not easily melted when subjected to thermal shock, so that the protective member 30 has better thermal shock resistance and reduces the risk of the protective member 30 being punctured.
  • guard member 30 has a melting point greater than 1500°C.
  • the battery cell 10 includes a casing 12 , an electrode assembly 13 , an electrolyte, and other functional components.
  • the electrode assembly 13 and the electrolyte are contained in the casing 12 of the battery cell 10 .
  • the pressure relief mechanism 11 is provided on the housing 12 .
  • the shell 12 may be a hard shell, for example, the shell 12 may be made of aluminum alloy; the shell 12 may also be a soft shell, for example, the shell 12 may be made of aluminum plastic film.
  • the battery cell 10 includes a first wall 12a, and the pressure relief mechanism 11 is provided on the first wall 12a.
  • the pressure relief mechanism 11 can be fixed to the first wall 12a by welding, bonding or other means; alternatively, the pressure relief mechanism 11 and the first wall 12a can be integrally formed.
  • the first wall 12a may be a shell wall of the housing 12 facing the protective member 30 and having a certain thickness.
  • the first wall 12a of the battery cell 10 may be opposite to the bottom wall 20b of the box 20, or may be opposite to the top wall 20a of the box 20, or may be opposite to the side wall 20c of the box 20.
  • the thickness direction Z of the pressure relief mechanism 11 is parallel to the thickness direction of the first wall 12a.
  • the first wall 12a is provided with a through hole, and the pressure relief mechanism 11 is received in the through hole and seals the through hole.
  • the through hole is a stepped hole, and the pressure relief mechanism 11 is fixed on the stepped surface.
  • the outer surface of the pressure relief mechanism 11 is recessed relative to the outer surface of the first wall 12a. In the embodiment of the present application, the pressure relief mechanism 11 can be hidden to reduce the risk of the pressure relief mechanism 11 being damaged by components outside the battery cell 10 .
  • the battery cell 10 includes an electrode terminal 14 mounted on the housing 12 for electrical connection with the electrode assembly 13 .
  • the electrode terminal 14 is used to electrically connect the electrode assembly 13 to the circuit outside the battery cell 10 to realize charging and discharging of the battery cell 10 .
  • the battery cell 10 includes a first wall 12a, a second wall 12b and a third wall 12c.
  • the pressure relief mechanism 11 is provided on the first wall 12a, and the second wall 12b is located away from the protection member of the first wall 12a. 30, the third wall 12c connects the first wall 12a and the second wall 12b.
  • the battery cell 10 further includes an electrode terminal 14 disposed on at least one of the first wall 12a, the second wall 12b, and the third wall 12c.
  • the battery cell 10 is a cylindrical battery cell, and the third wall 12c is one and cylindrical; in other examples, the battery cell 10 is a square battery cell, and the third wall 12c is multiple. , a plurality of third walls 12c are arranged along the circumferential direction of the first wall 12a and form a square cylinder.
  • the plurality of electrode terminals 14 may include a positive electrode terminal and a negative electrode terminal.
  • the positive electrode terminal and the negative electrode terminal are disposed on the same wall of the battery cell 10, such as the first wall 12a, the second wall 12b, or the third wall 12c.
  • the positive electrode terminal and the negative electrode terminal are respectively disposed on two walls of the battery cell 10, for example, the positive electrode terminal and the negative electrode terminal are respectively disposed on the first wall 12a and the second wall 12b, the positive electrode terminal and negative electrode terminals are provided on the first wall 12a and the third wall 12c respectively, or the positive electrode terminal and the negative electrode terminal are provided on the second wall 12b and the third wall 12c respectively.
  • both the positive electrode terminal and the negative electrode terminal are mounted on the first wall 12a.
  • guard member 30 is a flat plate structure.
  • the flat structure is easy to form and easy to install.
  • the thickness of the protective member 30 is 0.5mm-5mm.
  • the protective member 30 is in the battery. 2 also takes up more space and weight.
  • the inventor limits the thickness of the protective member 30 to 0.5mm-5mm in order to reduce redundancy in the size design of the protective member 30 while taking into account thermal protection requirements, reduce the loss of energy density of the battery 2, and reduce the molding of the protective member 30 Difficulty, improve the safety of battery 2.
  • Figure 7 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • the pressure relief mechanisms 11 of the multiple battery cells 10 may face the same side.
  • the pressure relief mechanisms 11 of the multiple battery cells 10 all face the top wall 20 a of the box 20 .
  • the pressure relief mechanisms 11 of the multiple battery cells 10 may also face different sides.
  • the pressure relief mechanisms 11 of some of the battery cells 10 may face the top wall 20 a of the box 20
  • the pressure relief mechanisms 11 of some of the battery cells 10 may face the top wall 20 a of the box 20 .
  • the pressure relief mechanism 11 faces the bottom wall of the box 20 .
  • the protection member 30 there is one protection member 30 , and the protection member 30 includes multiple protection areas 31 , and the multiple protection areas 31 correspond to the pressure relief mechanisms 11 of the multiple battery cells 10 one-to-one.
  • the protective member 30 can cover the pressure relief mechanisms 11 of multiple battery cells 10 at the same time.
  • the number of protection members 30 is the same as that of the battery cells 10 , and each protection member 30 includes a protection area 31 .
  • the protection areas 31 of the multiple protection members 30 are connected to the pressure relief mechanisms 11 of the multiple battery cells 10 .
  • Each protective member 30 only covers the pressure relief mechanism 11 of one battery cell 10 .
  • each protective member 30 includes at least two protective areas 31 .
  • Each protective member 30 can cover the pressure relief mechanisms 11 of at least two battery cells 10 .
  • part of the protective members 30 includes only one protective area 31 , and the remaining part of the protective members 30 includes at least two protective areas 31 .
  • Some protective members 30 only cover the pressure relief mechanism 11 of one battery cell 10 , and some protective members 30 can cover the pressure relief mechanisms 11 of at least two battery cells 10 .
  • the protective member 30 is located on the same side of the pressure relief mechanisms 11 of the multiple battery cells 10 .
  • the protection member 30 includes a plurality of protection areas 31 , and the plurality of protection areas 31 correspond to the pressure relief mechanisms 11 of the plurality of battery cells 10 in one-to-one correspondence.
  • the protective member 30 can cover the pressure relief mechanisms 11 of multiple battery cells 10. No matter which battery cell 10 experiences thermal runaway, the protective member 30 can block high-temperature and high-velocity substances and reduce safety risks.
  • Figure 8 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • a flow channel 32 for the heat exchange medium to flow is provided inside the protective member 30 .
  • the heat exchange medium can be a liquid or a gas.
  • the heat exchange medium can be water, a mixture of water and ethylene glycol, or air.
  • the heat exchange medium When the heat exchange medium flows through the flow channel 32, it can exchange heat with the battery cell 10 through the protective member 30, thereby adjusting the temperature of the battery cell 10 so that the battery cell 10 operates within a suitable temperature range.
  • the heat exchange medium can also exchange heat with other components of the battery 2 through the protective member 30 .
  • the protective member 30 in the embodiment of the present application can simultaneously perform protective functions and thermal management functions, which helps to simplify the structure of the battery 2 and improve the energy density of the battery 2 .
  • the wall of the flow channel 32 melts to form an opening, and the heat exchange medium in the flow channel 32 can pass through the opening and the pressure relief mechanism 11
  • the pressure relief channel is injected into the interior of the battery cell 10, thereby cooling the battery cell 10, slowing down the reaction inside the battery cell 10, and reducing safety risks.
  • the protective component 30 further includes a heat exchange area 33
  • the battery cell 10 further includes a first wall 12a
  • the pressure relief mechanism 11 is provided on the first wall 12a.
  • the heat exchange area 33 is used to connect the first wall 12a to exchange heat with the first wall 12a.
  • the flow channel 32 can be provided in the heat exchange area 33.
  • the heat exchange area 33 can be directly connected to the first wall 12a, or indirectly connected to the first wall 12a through other heat conductive structures.
  • the heat exchange area 33 exchanges heat with the first wall 12a, thereby adjusting the temperature of the battery cell 10 so that the battery cell 10 operates within a suitable temperature range and improves the cycle performance of the battery cell 10.
  • the battery 2 further includes a thermally conductive structure 40, at least part of the thermally conductive structure 40 is located between the first wall 12a and the heat exchange area 33 and connects the first wall 12a and the heat exchange area 33.
  • the thermal conductive structure 40 may connect the first wall 12a and the heat exchange area 33 to stabilize heat exchange between the first wall 12a and the heat exchange area 33.
  • the thermally conductive structure 40 may also support the guard member 30 to space the guard member 30 from the pressure relief mechanism 11 .
  • thermally conductive structure 40 includes thermally conductive glue. Thermal conductive glue bonds the first wall 12a and the heat exchange area 33.
  • the first wall 12a faces the bottom wall 20b of the box 20, and the protective member 30 is located on the underside of the first wall 12a.
  • the electrode terminal 14 is provided on the second wall 12b.
  • Figure 9 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • the battery cell 10 further includes a first wall 12a, and the pressure relief mechanism 11 is provided on the first wall 12a.
  • the protective member 30 includes a main body part 34 and a support part 35.
  • the main body part 34 is spaced apart from the first wall 12a along the thickness direction Z.
  • the support part 35 is located between the first wall 12a and the main body part 34 and is used to connect the first wall 12a and the main body. Department 34.
  • the body portion 34 includes a protective zone 31 .
  • the support part 35 and the main body part 34 may be an integral structure.
  • the support part 35 and the main body part 34 are also two independently formed components, and the two may be connected as one through bonding, abutment, welding or other methods.
  • the support portion 35 can not only fix the main body portion 34 to the battery cell 10 , but also separate the protective area 31 from the pressure relief mechanism 11 . By adjusting the size of the support portion 35, the minimum distance L between the pressure relief mechanism 11 and the protective area 31 can be adjusted.
  • the protective member 30 is located on the lower side of the battery cell 10 , and the protective member 30 provides support for the battery cell 10 .
  • the support portion 35 may be attached to the lower side of the battery cell 10 to fix the battery cell 10 on the upper side of the protective member 30 .
  • Figure 10 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • the first wall 12 a of the battery cell 10 faces the top wall 20 a of the box 20
  • the second wall 12 b faces the bottom wall 20 b of the box 20
  • the electrode terminal 14 is mounted on the third wall 12c.
  • the present application also provides an electrical device, including the battery of any of the above embodiments, and the battery is used to provide electrical energy to the electrical device.
  • the powered device can be any of the aforementioned devices or systems that use batteries.
  • the present application provides a battery 2, which includes a battery cell 10, a box 20 and a protective member 30.
  • the battery cell 10 and the protective member 30 are accommodated in the box.
  • the battery cell 10 includes a first wall 12a and a pressure relief mechanism 11 provided on the first wall 12a.
  • the first wall 12a faces the top wall 20a of the box 20.
  • the protective member 30 has a flat structure and is fixed to the top wall 20a of the box 20.
  • the protective member 30 includes a protective area 31 opposite to the pressure relief mechanism 11 in the thickness direction Z of the pressure relief mechanism 11.
  • the protective area 31 is used to block the battery. At least part of the material released by the monomer 10 is released through the pressure relief mechanism 11 .
  • the gravimetric energy density of the battery cell 10 is E; in the thickness direction Z, the minimum distance between the pressure relief mechanism 11 and the protection zone 31 is L.
  • E and L satisfy: 2Wh/(kg ⁇ mm) ⁇ E/L ⁇ 7010Wh/(kg ⁇ mm).
  • the gravimetric energy density E of the battery cell 10 is measured to be 100Wh/kg.
  • the protective component 30 is a flat plate, its thickness is 4mm, and its material is a composite plate composed of boron nitride and carbon fiber.
  • the dimension H of the accommodation cavity of the box 20 in the height direction (that is, the direction in which the dimension l3 is located, which is parallel to the thickness direction of the pressure relief mechanism 11) is 104.2 mm.
  • the minimum distance L between the protective component 30 and the pressure relief mechanism 11 is 0.2 mm.
  • (v) Trigger the thermal runaway of a battery cell 10 in the middle of the box 20 to cause the battery cell 10 to release material outward.
  • the battery cell 10 can be acupunctured or heated to cause the battery cell 10 to leak.
  • Body 10 thermal runaway. Keep it for 1 hour, observe whether the other three battery cells 10 have thermal runaway, and record the number M of thermal runaway battery cells 10 among these three battery cells 10 .
  • Example 2-16 For the test method of Example 2-16, refer to Example 1. The differences between Example 2-16 and Example 1 are as shown in Table 1. For example, the gravimetric energy density E of the battery cell can be adjusted by changing the chemical system of the battery cell. The minimum distance L between the protective component and the pressure relief mechanism can be changed by changing the size H of the box.
  • Comparative Example 1-4 For the test method of Comparative Example 1-4, refer to Example 1. The differences between Comparative Example 1-4 and Example 1 are as shown in Table 1.
  • the embodiments of the present application limit the value of E/L to be greater than or equal to 2Wh/(kg ⁇ mm), which can reduce the distance between the pressure relief mechanism and the protective member. Through design, the internal space utilization of the battery is improved and the waste of battery energy density is reduced.
  • the embodiments of the present application limit the value of E/L to less than or equal to 7010Wh/(kg ⁇ mm), so as to reduce the thermal runaway of a certain battery cell.
  • the thermal impact of the cell reduces the risk of thermal runaway of other battery cells and improves safety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电池和用电装置。电池包括电池单体和防护构件。电池单体包括泄压机构。防护构件包括在泄压机构的厚度方向上与泄压机构相对的防护区,防护区用于阻挡电池单体经由泄压机构泄放的至少部分物质。电池单体的重量能量密度为E;在厚度方向上,泄压机构与防护区的最小间距为L。E和L满足:2Wh/(kg·mm)≤E/L≤7010Wh/(kg·mm)。本申请实施例能够在兼顾电池的安全防护要求的前提下,减少防护构件与泄压机构之间间距设计的冗余,减小电池的能量密度的损失,提高电池的安全性。

Description

电池和用电装置 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电池和用电装置。
背景技术
随着电池技术的不断进步,各种以电池作为储能设备的新能源产业得到了迅速的发展。在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供了一种电池和用电装置,其能提高安全性。
第一方面,本申请实施例提供了一种电池,其包括电池单体和防护构件。电池单体包括泄压机构。防护构件包括在泄压机构的厚度方向上与泄压机构相对的防护区,防护区用于阻挡电池单体经由泄压机构泄放的至少部分物质。电池单体的重量能量密度为E;在厚度方向上,泄压机构与防护区的最小间距为L。E和L满足:2Wh/(kg·mm)≤E/L≤7010Wh/(kg·mm)。
在一般情况下,当电池单体出现热失控时,E的值越高,电池单体内部发生的链式反应越剧烈,电池单体泄放的物质的温度和速度也越高,因此,E的值越高,对泄压机构与防护区的最小间距L的要求也越高。如果E偏大而L偏小,高温高速物质中的颗粒物容易堆积在热失控的电池单体上并蔓延到正常的电池单体上,也更容易反弹到正常的电池单体上,这既会造成正常的电池单体被烧伤、破损的风险,还会增大正常的电池单体的温度,引发正常的电池单体热失控的风险,导致安全隐患。如果E偏小而L偏大,将会造成泄压机构和防护区之间的间距过设计,减小电池内部空间利用率,造成电池的能量密度的浪费。上述技术方案将E/L的值限定在2Wh/(kg·mm)-7010Wh/(kg·mm),以在兼顾电池的安全防护要求的前提下,减少防护构件与泄压机构之间间距设计的冗余,减小电池的能量密度的损失,提高电池的安全性。
在一些实施例中,E和L满足:10Wh/(kg·mm)≤E/L≤800Wh/(kg·mm)。
在一些实施例中,E的值为100Wh/kg-3505Wh/kg。电池单体的重量能量密度大于或等于100Wh/kg,可以有效地提升电池的能量密度,提高使用电池的用电装置的续航能力。电池单体的重量能量密度小于或等于3505Wh/kg,可以使热失控的电池单体处于可控状态,降低安全风险。
在一些实施例中,E的值为100Wh/kg-400Wh/kg。
在一些实施例中,L的值为0.5mm-50mm。
上述技术方案将L的值限定在0.5mm-50mm,以在兼顾电池的安全防护要求的前提下,减少防护构件与泄压机构之间间距设计的冗余,减小电池的能量密度的损失,提高电池的安全性。
在一些实施例中,L的值为0.5mm-10mm。
在一些实施例中,防护构件内部设有供换热介质流动的流道。防护构件可以同时起到防护功能和热管理功能,这样有助于简化电池的结构,提高电池的能量密度。
在一些实施例中,防护构件还包括换热区,电池单体还包括第一壁,泄压机构设于第一壁。换热区用于连接第一壁,以与第一壁换热。换热区与第一壁换热,从而调节电池单体的温度,以使电池单体在合适的温度范围内工作,改善电池单体的循环性能。
在一些实施例中,电池还包括导热结构,导热结构的至少部分位于第一壁和换热区之间并连接第一壁和换热区。导热结构可以连接第一壁和换热区,以使第一壁和换热区之间稳定换热。导热结构还可以支撑防护构件,以使防护构件与泄压机构间隔开。
在一些实施例中,电池单体还包括第一壁,泄压机构设于第一壁。防护构件包括主体部和支撑部,主体部与第一壁沿厚度方向间隔设置,支撑部位于第一壁和主体部之间并用于连接第一壁和主体部。主体部包括防护区。
上述技术方案中,支撑部既可以将主体部固定到电池单体,还能够将防护区与泄压机构间隔开。通过调整支撑部的尺寸,可以调节泄压机构与防护区的最小间距。
在一些实施例中,防护构件为平板结构。平板结构易于成型,且方便安装。
在一些实施例中,电池单体为多个,防护构件位于多个电池单体的泄压机构的同一侧。防护构件包括多个防护区,多个防护区与多个电池单体的泄压机构一一对应。
上述技术方案中,防护构件能够覆盖多个电池单体的泄压机构,无论哪个电池单体出现热失控,防护构件均能够起到阻隔高温高速物质的作用,降低安全风险。
在一些实施例中,电池还包括箱体,电池单体和防护构件容纳于箱体内。防护构件固定于箱体朝向泄压机构的表面。
上述技术方案中,防护构件可阻挡电池单体泄放的物质,以减小箱体受到的热冲击,并减少传递至箱体的热量,降低箱体被熔穿的风险,提高电池的安全性。箱体可以固定防护构件,以降低防护构件在高温高速物质的冲击下窜动的风险,减小防护构件出现撞击破损的概率,降低防护构件防护失效的风险。
在一些实施例中,电池单体包括第一壁、第二壁和第三壁,泄压机构设于第一壁,第二壁位于第一壁的背离防护构件的一侧,第三壁连接第一壁和第二壁。电池单体还包括电极端子,电极端子设置于第一壁、第二壁和第三壁中的至少一者。
在一些实施例中,防护构件的材料包括无机盐、无机陶瓷、金属单质、单质碳和有机胶体中的至少一种。
第二方面,本申请实施例提供了一种用电装置,包括第一方面任一实施例的电 池,电池用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸示意图;
图3为本申请一些实施例提供的电池的一结构示意图;
图4为图3所示的电池的另一结构示意图,其中,电池的电池单体的泄压机构处于致动状态;
图5为图3所示的电池在圆框A处的放大示意图;
图6为本申请一些实施例提供的电池的电池单体的结构示意图;
图7为本申请一些实施例提供的电池的一结构示意图;
图8为本申请另一些实施例提供的电池的结构示意图;
图9为本申请另一些实施例提供的电池的结构示意图;
图10为本申请另一些实施例提供的电池的结构示意图;
图11为本申请一些实施例提供的电池在测试过程中的示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安 装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中术语“平行”不仅包括绝对平行的情况,也包括了工程上常规认知的大致平行的情况;同时,“垂直”也不仅包括绝对垂直的情况,还包括工程上常规认知的大致垂直的情况。
本申请中,电池单体可以包括锂离子电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体可以为硬壳电池单体、软包电池单体或其它类型的电池单体。
电池单体包括电极组件和电解液。示例性地,电极组件包括正极极片、负极极片和隔离件。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极集流部和正极极耳,正极集流部涂覆有正极活性物质层,正极极耳未涂覆正极活性物质层。以锂离子电池单体为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极集流部和负极极耳,负极集流部涂覆有负极活性物质层,负极极耳未涂覆负极活性物质层。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。隔离件的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
电池单体上的泄压机构对电池单体的安全性有着重要影响。例如,当发生短路、过充等现象时,可能会导致电池单体内部发生热失控从而压力骤升。这种情况下通过泄压机构致动可以将内部压力向外释放,以防止电池单体爆炸、起火。
泄压机构可以是在电池单体达到一定条件时致动的元件或部件。示例性地,泄压机构可以是在电池单体的内部压力或内部温度达到预定阈值时致动以泄放内部压力和/或内部物质的元件或部件。该阈值设计根据设计需求不同而不同。该阈值可能取决于电池单体中的正极极片、负极极片、电解液和隔离件中一种或几种的材料。
泄压机构可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏元件或构造,即,当电池单体的内部压力达到预定阈值时,泄压机构执行动作或者泄压机构中设有的薄弱区破裂,从而形成可供内部压力泄放的泄压通道。可替代地,泄压机构也可采用温敏元件或构造,即当电池单体的内部温度达到预定阈值时,泄压机构执行动作,从而形成可供内部压力泄放的泄压通道。可替代地,泄压机构也可为能够主动致动的部件,示例性地,泄压机构可以在接收到电池的控制信号时致动。
泄压机构还可以采用其它形式。示例性地,泄压机构可为电池单体的外壳上的强度较低的结构,当电池单体热失控时,强度较低的结构开裂或变形,以形成供内部压力泄放的泄压通道。例如,泄压机构可为电池单体的外壳上的焊印。
本申请中所提到的“致动”是指泄压机构产生动作或被激活至一定的状态,从而使得电池单体的内部压力和/或内部物质得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构在致动时,电池单体的内部的高温高速物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力的情况下使电池单体发生泄压,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单体的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离件的碎片、反应产生的高温高速气体、火焰,等等。
当电池单体热失控时,电池单体将排放物泄放到箱体内。箱体也设有泄压机构,箱体的泄压机构致动,以在箱体的设定位置将排放物排放到箱体外。
发明人注意到,电池单体泄放的排放物处于高温高速状态,在排放物的冲击下,可能会导致电池被冲破,造成电池外部起火,引发安全隐患。
在发现上述问题后,发明人尝试在与电池单体的泄压机构相对的位置设置防护构件,防护构件可以阻挡电池单体泄放的高温高速物质,承受高温高速物质的冲击,从而降低电池被冲破的风险,提高安全性。
发明人经过研究发现,高温高速物质中的颗粒物在受到防护构件的阻挡之后,会向周围反弹或溅射。如果泄压机构和防护构件的距离过小,那么颗粒物可能会堆积在电池单体上并蔓延到其它部件(例如,与热失控电池单体相邻的正常电池单体),也可能会反弹到其它部件,从而增加了这些部件被破坏的风险,引发安全隐患。为了降低安全隐患,发明人尝试增大泄压机构和防护构件之间的间距,然而,增大间距会减小电池内部空间利用率,降低电池的能量密度。如果泄压机构和防护构件之间的间距过设计,则会造成能量密度的浪费。发明人经过进一步研究发现,在电池单体热失控时,电池单体的重量能量密度与电池单体泄放的物质的温度和速率相关联;电池单体的重量能量密度越高,高温高速物质中的颗粒物越容易出现堆积,也越容易破坏与热失控的电池单体相邻的其它部件。
鉴于此,发明人提供了一种技术方案,其根据电池单体的重量能量密度来设定泄压机构和防护构件之间的间距,以降低安全风险,并减少电池的能量密度的浪费。
本申请实施例描述的技术方案适用于使用电池的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1为本申请一些实施例提供的车辆的结构示意图。
如图1所示,车辆1的内部设置有电池2,电池2可以设置在车辆1的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器3和马达4,控制器3用来控制电池2为马达4供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
图2为本申请一些实施例提供的电池的爆炸示意图。
如图2所示,电池2包括箱体20和电池单体10,电池单体10容纳于箱体20内。
箱体20用于容纳电池单体10,箱体20可以是多种结构。在一些实施例中,箱体20可以包括第一箱体部21和第二箱体部22,第一箱体部21与第二箱体部22相互盖合,第一箱体部21和第二箱体部22共同限定出用于容纳电池单体10的容纳空间。
在一些实施例中,第二箱体部22可以是一端开口的空心结构,第一箱体部21为板状结构,第一箱体部21盖合于第二箱体部22的开口侧,以形成具有容纳空间的箱体20。在另一些实施例中,第一箱体部21和第二箱体部22也均可以是一侧开口的空心结构,第一箱体部21的开口侧盖合于第二箱体部22的开口侧,以形成具有容纳空间的箱体20。
第一箱体部21和第二箱体部22可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部21与第二箱体部22连接后的密封性,第一箱体部21与第二箱体部22之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部21盖合于第二箱体部22的顶部,第一箱体部21亦可称之为上箱盖,第二箱体部22亦可称之为下箱体20。
在电池2中,电池单体10可以是一个,也可以是多个。若电池单体10为多个,多个电池单体10之间可串联或并联或混联,混联是指多个电池单体10中既有串联又有 并联。多个电池单体10之间可直接串联或并联或混联在一起,再将多个电池单体10构成的整体容纳于箱体20内;当然,也可以是多个电池单体10先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体20内。
图3为本申请一些实施例提供的电池的一结构示意图;图4为图3所示的电池的另一结构示意图,其中,电池的电池单体的泄压机构处于致动状态;图5为图3所示的电池在圆框A处的放大示意图;图6为本申请一些实施例提供的电池的电池单体的结构示意图;
参照图3至图6,本申请实施例的电池2包括电池单体10和防护构件30。电池单体10包括泄压机构11。防护构件30包括在泄压机构11的厚度方向Z上与泄压机构11相对的防护区31,防护区31用于阻挡电池单体10经由泄压机构11泄放的至少部分物质。电池单体10的重量能量密度为E;在厚度方向Z上,泄压机构11与防护区31的最小间距为L。E和L满足:2Wh/(kg·mm)≤E/L≤7010Wh/(kg·mm)。
电池单体10可以为一个,也可以为多个。示例性地,电池单体10为多个。可选地,多个电池单体10的泄压机构11均朝向防护构件30。
在电池单体10处于正常状态时,泄压机构11未形成泄压通道。泄压机构11将电池单体10的电极组件13和电解液封闭在电池单体10的内部,以降低电解液泄漏的风险。当电池单体10内部发生热失控时,泄压机构11致动,以形成泄压通道111;电池单体10内部的物质可以经由泄压通道111泄放到电池单体10的外部。
防护构件30为电池2的用于承受电池单体10泄放的高温高速物质的热冲击的部件。在受到电池单体10泄放的高温高速物质的热冲击时,防护构件30不会被熔穿或冲破,从而起到防护作用。
防护构件30可以是电池2中的功能部件,其可以仅起到热防护的功能,也可以在起到热防护功能的同时,还能实现其它功能。在一些示例中,防护构件30可以是电池2中的热管理部件,其既可以调节电池单体10的温度,还可以起到阻挡电池单体10泄放的高温高速物质。在另一些示例中,防护构件30也可以是电池2的外包络的一部分。在又一些示例中,防护构件30为连接到电池单体10或电池2的外包络的独立构件。
防护区31为防护构件30的在厚度方向Z上与泄压机构11重叠的部分。示例性地,防护区31在厚度方向Z上的投影与泄压机构11在厚度方向Z上的投影完全重叠。
防护构件30可以仅包括防护区31,即防护构件30整体与泄压机构11在厚度方向Z上重叠;可替代地,除了防护区31之外,防护构件30还可包括在厚度方向Z上不与泄压机构11重叠的区域。
防护构件30的防护区31可以为一个,也可以为多个。示例性地,防护构件30的多个防护区31可分别与多个电池单体10的泄压机构11相对。
防护区31和泄压机构11之间可以存在其它部件,也可以不存在其它构件。示例性地,防护区31和泄压机构11之间可以存在某些部件,例如电池单体10的用于保护泄压机构11的绝缘贴片、电池2的线束隔离板或其它部件。防护构件30的抗热冲击性能优于位于防护区31和泄压机构11之间的部件的抗热冲击性能,位于防护区31和 泄压机构11之间的部件可能会被电池单体10泄放的高温高速物质冲穿。
防护构件30可以为板状结构、框体结构或其它结构。示例性地,防护构件30可以是厚度均匀的平板,也可以是厚度不均匀的板。
防护构件30可以是一体式结构,也可以是由多个子部件组装而成的结构。
防护构件30可以固定于电池单体10,也可以固定于电池2的箱体,还可以固定于电池2的其它部件,本申请实施例对此不作限制。
电池单体10的重量能量密度E的单位为Wh/kg(瓦时每千克)。E=C/G,C为电池单体10的容量,G为电池单体10的重量。
在一般情况下,当电池单体10出现热失控时,E的值越高,电池单体10内部发生的链式反应越剧烈,电池单体10泄放的物质的温度和速度也越高,因此,E的值越高,对泄压机构11与防护区31的最小间距L的要求也越高。如果E偏大而L偏小,高温高速物质中的颗粒物容易堆积在热失控的电池单体10上并蔓延到正常的电池单体10上,也更容易反弹到正常的电池单体10上,这既会造成正常的电池单体10被烧伤、破损的风险,还会增大正常的电池单体10的温度,引发正常的电池单体10热失控的风险,导致安全隐患。如果E偏小而L偏大,将会造成泄压机构11和防护区31之间的间距过设计,减小电池2内部空间利用率,造成电池2的能量密度的浪费。
发明人经过研究,将E/L的值限定在2Wh/(kg·mm)-7010Wh/(kg·mm),以在兼顾电池2的安全防护要求的前提下,减少防护区31与泄压机构11之间间距设计的冗余,减小电池2的能量密度的损失,提高电池2的安全性。
在一些实施例中,E/L的值为2Wh/(kg·mm)、10Wh/(kg·mm)、50Wh/(kg·mm)、100Wh/(kg·mm)、500Wh/(kg·mm)、800Wh/(kg·mm)、1000Wh/(kg·mm)、3000Wh/(kg·mm)、5000Wh/(kg·mm)、7000Wh/(kg·mm)或7010Wh/(kg·mm)。
在一些实施例中,E和L满足:10Wh/(kg·mm)≤E/L≤800Wh/(kg·mm)。
在一些实施例中,E的值为100Wh/kg-3505Wh/kg。
电池单体10的重量能量密度大于或等于100Wh/kg,可以有效地提升电池2的能量密度,提高使用电池2的用电装置的续航能力。电池单体10的重量能量密度小于或等于3505Wh/kg,可以使热失控的电池单体10处于可控状态,降低安全风险。
示例性地,E的值为100Wh/kg、200Wh/kg、300Wh/kg、400Wh/kg、600Wh/kg、1000Wh/kg、2000Wh/kg、3000Wh/kg或3505Wh/kg。
在一些实施例中,E的值为100Wh/kg-400Wh/kg。
在一些实施例中,L的值为0.5mm-50mm。
如果L过小,高温高速物质中的颗粒物容易堆积在热失控的电池单体10上并蔓延到正常的电池单体10上,也更容易反弹到正常的电池单体10上,这既会造成正常的电池单体10被烧伤、破损的风险,还会增大正常的电池单体10的温度,引发正常的电池单体10热失控的风险,导致安全隐患。L过大,将会造成泄压机构11和防护区31之间的间距过设计,减小电池2内部空间利用率,造成电池2的能量密度的浪费。
本申请实施例将L的值限定在0.5mm-50mm,以在兼顾电池2的安全防护要求的前提下,减少防护区31与泄压机构11之间间距设计的冗余,减小电池2的能量密度的 损失,提高电池2的安全性。
本申请实施例使L的值大于或等于0.5mm,以使防护构件30与泄压机构11之间的空间能够顺畅排气,从而降低因排气空间不足而引发排气不及时的风险,提高安全性,降低电池2爆炸的可能性。
示例性地,L的值为0.5mm、1mm、5mm、10mm、20mm、30mm或50mm。
在一些实施例中,L的值为0.5mm-10mm。
在一些实施例中,在电池单体10热失控时,泄压机构11需要执行一定的动作(例如,泄压机构11的一部分破裂、翻折),以形成泄放通道111。可选地,L的值大于或等于0.5mm,以为泄压机构11的动作提供空间,降低防护构件30干涉泄压机构11动作的风险,进而使电池单体10及时泄压。
在一些实施例中,在电池单体10热失控时,泄压机构11致动并形成泄压通道111。可选地,泄压通道111的轴向平行于泄压机构11的厚度方向Z。
在一些实施例中,电池2还包括箱体20,电池单体10和防护构件30容纳于箱体20内。
箱体20可为电池2的外包络,电池单体10位于外包络的内部。箱体20可以避免液体或其他异物影响电池单体10的充电或放电。
电池单体10的泄压机构11可以朝向箱体20的底壁20b,也可以朝向箱体20的顶壁20a,还可以朝向箱体20的侧壁20c。
在一些实施例中,防护构件30固定于箱体20朝向泄压机构11的表面。箱体20可以固定防护构件30,以降低防护构件30在高温高速物质的冲击下窜动的风险,减小防护构件30出现撞击破损的概率,降低防护构件30防护失效的风险。防护构件30还可阻挡电池单体10泄放的物质,以减小箱体20受到的热冲击,并减少传递至箱体20的热量,降低箱体20被熔穿的风险,提高电池2的安全性。
在一些实施例中,防护构件30通过粘接、焊接、紧固件连接或卡接固定于箱体20。当然,防护构件30也可以通过其它方式固定于箱体20。
在一些实施例中,防护构件30的抗热冲击性能优于箱体20的抗热冲击性能。抗热冲击性能指的是材料承受温度的急剧变化而不致破坏的能力。换言之,在受到相同的高温高速物质的冲击时,防护构件30相较于箱体20更不容易破损。
在一些实施例中,防护构件30可以起到隔热作用,以减少传递至箱体20的热量。在电池单体10热失控时,由于防护构件30的存在,传导至箱体20的热量较少,因此,本申请实施例可以降低对箱体20的材质的要求。示例性地,箱体20可以采用一些不耐高温的材质,例如聚酯材料。当然,箱体20也可采用一些相对耐高温的材质,例如铝、钢或其它金属。
在一些实施例中,防护构件30的材料包括无机盐、无机陶瓷、金属单质、单质碳和有机胶体中的至少一种。
在一些示例中,无机盐包括硅酸盐。可选地,防护构件30的材料包括云母。
在一些示例中,无机陶瓷包括氧化铝、氧化硅、碳化硼、氮化硼、碳化硅、氮化硅和氧化锆中的至少一种。
在一些示例中,金属单质类材料包括铜、铁、铝、钨和钛中的至少一种。
在一些示例中,单质碳包括无定形碳和石墨中的至少一种。
在一些示例中,有机胶体包括环氧树脂结构胶、丙烯酸酯结构胶、聚酰亚胺结构胶、马来酰亚胺结构胶、聚氨酯结构胶和亚克力结构胶中的至少一种。
在一些实施例中,防护构件30的材料包括无机盐、无机陶瓷、金属单质、单质碳和有机胶体中的至少两种。
多种材料形成的复合结构,能够改善防护构件30抗热冲击性能和热绝缘性能。
在一些实施例中,防护构件30包括由碳纤维布和有机胶体形成的碳纤维板。
在一些实施例中,防护构件30包括由无机陶瓷粉和有机胶体形成的树脂片。
在一些实施例中,防护构件30包括层叠设置的石墨层和金属层。
在一些实施例中,防护构件30包括由碳纤维及陶瓷纤维组成的复合纤维片。
在一些实施例中,防护构件30包括陶瓷层和连接于陶瓷层的金属网。
在一些实施例中,防护构件30的熔点大于箱体20的熔点。防护构件30相对于箱体20具有更好的抗热冲击性能,从而起到热防护功能,降低箱体20破损的风险。
在一些实施例中,防护构件30的熔点大于1000℃。防护构件30具有较高的熔点,其在受到热冲击时不易熔化,从而使防护构件30具有较好的抗热冲击性能,降低防护构件30被冲穿的风险。
在一些实施例中,防护构件30的熔点大于1500℃。
在一些实施例中,电池单体10包括外壳12、电极组件13、电解液以及其它功能性部件,电极组件13和电解液容纳于电池单体10的外壳12内。泄压机构11设置于外壳12。
外壳12可为硬质外壳,例如,外壳12可由铝合金制成;外壳12也可为软质外壳,比如外壳12可由铝塑膜制成。
在一些实施例中,电池单体10包括第一壁12a,泄压机构11设于第一壁12a。泄压机构11可通过焊接、粘接或其它方式固定于第一壁12a;可替代地,泄压机构11与第一壁12a可一体形成。
第一壁12a可为外壳12的面向防护构件30的具有一定厚度的壳壁。
电池单体10的第一壁12a可以与箱体20的底壁20b相对,也可以与箱体20的顶壁20a相对,还可以与箱体20的侧壁20c相对。
在一些实施例中,泄压机构11的厚度方向Z平行于第一壁12a的厚度方向。
在一些实施例中,第一壁12a设有通孔,泄压机构11容纳于通孔并密封通孔。可选地,通孔为台阶孔,泄压机构11固定于台阶面。
在一些实施例中,泄压机构11的外表面相对于第一壁12a的外表面凹陷。本申请实施例可以将泄压机构11隐藏,以降低泄压机构11被电池单体10外部的构件损伤的风险。
在一些实施例中,电池单体10包括电极端子14,电极端子14安装于外壳12并用于与电极组件13电连接。电极端子14用于将电极组件13与电池单体10外部的电路电连接,以实现电池单体10的充放电。示例性地,电极端子14可以为多个。
在一些实施例中,电池单体10包括第一壁12a、第二壁12b和第三壁12c,泄压机构11设于第一壁12a,第二壁12b位于第一壁12a的背离防护构件30的一侧,第三壁12c连接第一壁12a和第二壁12b。电池单体10还包括电极端子14,电极端子14设置于第一壁12a、第二壁12b和第三壁12c中的至少一者。
第三壁12c可为一个或多个。在一些示例中,电池单体10为圆柱电池单体,第三壁12c为一个且为圆筒状;在另一些示例中,电池单体10为方形电池单体,第三壁12c为多个,多个第三壁12c沿着第一壁12a的周向设置并形成方筒。
电极端子14可为多个,多个电极端子14可包括正极电极端子和负极电极端子。在一些示例中,正极电极端子和负极电极端子设置于电池单体10的同一个壁,例如,第一壁12a、第二壁12b或第三壁12c。在另一些示例中,正极电极端子和负极电极端子分别设置于电池单体10的两个壁,例如,正极电极端子和负极电极端子分别设置于第一壁12a和第二壁12b、正极电极端子和负极电极端子分别设置于第一壁12a和第三壁12c,或者正极电极端子和负极电极端子分别设置于第二壁12b和第三壁12c。
可选地,如图3所示,正极电极端子和负极电极端子均安装于第一壁12a。
在一些实施例中,防护构件30为平板结构。平板结构易于成型,且方便安装。
示例性地,防护构件30的厚度为0.5mm-5mm。
防护构件30的厚度越小,防护构件30被高温高速物质冲穿的风险越高;防护构件30的厚度越大,防护构件30被高温高速物质冲穿的风险越低,但防护构件30在电池2中占用的空间和重量也越大。发明人将防护构件30的厚度限定在0.5mm-5mm,以在兼顾热防护要求的前提下减少防护构件30尺寸设计的冗余,减小电池2的能量密度的损失,降低防护构件30的成型难度,提高电池2的安全性。
图7为本申请一些实施例提供的电池的一结构示意图。
如图7所示,在一些实施例中,电池单体10为多个。
多个电池单体10的泄压机构11可以朝向同一侧,示例性地,多个电池单体10的泄压机构11均朝向箱体20的顶壁20a。可替代地,多个电池单体10的泄压机构11也可以朝向不同侧,例如,部分的电池单体10的泄压机构11朝向箱体20的顶壁20a,部分的电池单体10的泄压机构11朝向箱体20的底壁。
防护构件30可以为一个或多个。
在一些示例中,防护构件30为一个,且防护构件30包括多个防护区31,多个防护区31与多个电池单体10的泄压机构11一一对应。防护构件30能够同时覆盖多个电池单体10的泄压机构11。
在另一些示例中,防护构件30与电池单体10的数量相同,各防护构件30包括一个防护区31,多个防护构件30的防护区31与多个电池单体10的泄压机构11一一对应。每个防护构件30仅覆盖一个电池单体10的泄压机构11。
在又一些示例中,防护构件30为多个,每个防护构件30包括至少两个防护区31。每个防护构件30能够覆盖至少两个电池单体10的泄压机构11。
在再一些示例中,防护构件30为多个,部分的防护构件30仅包括一个防护区31,剩余部分的防护构件30包括至少两个防护区31。有些防护构件30仅覆盖一个电 池单体10的泄压机构11,有些防护构件30能够覆盖至少两个电池单体10的泄压机构11。
在一些实施例中,电池单体10为多个,防护构件30位于多个电池单体10的泄压机构11的同一侧。防护构件30包括多个防护区31,多个防护区31与多个电池单体10的泄压机构11一一对应。
防护构件30能够覆盖多个电池单体10的泄压机构11,无论哪个电池单体10出现热失控,防护构件30均能够起到阻隔高温高速物质的作用,降低安全风险。
图8为本申请另一些实施例提供的电池的结构示意图。
如图8所示,防护构件30内部设有供换热介质流动的流道32。
换热介质可以是液体或气体,可选地,换热介质可采用诸如水、水和乙二醇的混合液、或者空气等。
换热介质从流道32流过时,可以通过防护构件30与电池单体10换热,从而调节电池单体10的温度,以使电池单体10在合适的温度范围内工作。当然,换热介质也可通过防护构件30与电池2的其它部件换热。
本申请实施例的防护构件30可以同时起到防护功能和热管理功能,这样有助于简化电池2的结构,提高电池2的能量密度。
在一些实施例中,在电池单体10泄放的物质作用于流道32的壁时,流道32的壁熔化以形成开口,流道32内的换热介质可经由开口和泄压机构11的泄压通道喷射到电池单体10的内部,从而对电池单体10进行降温,减缓电池单体10内部的反应,降低安全风险。
在一些实施例中,防护构件30还包括换热区33,电池单体10还包括第一壁12a,泄压机构11设于第一壁12a。换热区33用于连接第一壁12a,以与第一壁12a换热。
流道32可设于换热区33。
换热区33可直接连接于第一壁12a,也可通过其它导热结构间接地连接于第一壁12a。
换热区33与第一壁12a换热,从而调节电池单体10的温度,以使电池单体10在合适的温度范围内工作,改善电池单体10的循环性能。
在一些实施例中,电池2还包括导热结构40,导热结构40的至少部分位于第一壁12a和换热区33之间并连接第一壁12a和换热区33。
导热结构40可以连接第一壁12a和换热区33,以使第一壁12a和换热区33之间稳定换热。导热结构40还可以支撑防护构件30,以使防护构件30与泄压机构11间隔开。
在一些实施例中,导热结构40包括导热胶。导热胶粘接第一壁12a和换热区33。
在一些实施例中,第一壁12a面向箱体20的底壁20b,防护构件30位于第一壁12a的下侧。电极端子14设置于第二壁12b。
图9为本申请另一些实施例提供的电池的结构示意图。
如图9所示,在一些实施例中,电池单体10还包括第一壁12a,泄压机构11设于第一壁12a。防护构件30包括主体部34和支撑部35,主体部34与第一壁12a沿厚度方向Z间隔设置,支撑部35位于第一壁12a和主体部34之间并用于连接第一壁12a和主体部34。主体部34包括防护区31。
支撑部35可为一个或多个。
支撑部35与主体部34可为一体式结构。可替代地,支撑部35与主体部34也为独立成型的两个构件,两者可通过粘接、靠接、焊接或其它方式连为一体。
支撑部35既可以将主体部34固定到电池单体10,还能够将防护区31与泄压机构11间隔开。通过调整支撑部35的尺寸,可以调节泄压机构11与防护区31的最小间距L。
在一些实施例中,防护构件30位于电池单体10的下侧,防护构件30为电池单体10提供支撑作用。示例性地,支撑部35可附接至电池单体10的下侧,以将电池单体10固定在防护构件30上侧。
图10为本申请另一些实施例提供的电池的结构示意图。
如图10所示,在一些实施例中,电池单体10的第一壁12a面向箱体20的顶壁20a,第二壁12b面向箱体20的底壁20b。电极端子14安装于第三壁12c。
根据本申请的一些实施例,本申请还提供了一种用电装置,包括以上任一实施例的电池,电池用于为用电装置提供电能。用电装置可以是前述任一应用电池的设备或系统。
根据本申请的一些实施例,参照图3至图6,本申请提供了一种电池2,其包括电池单体10、箱体20和防护构件30,电池单体10和防护构件30容纳于箱体20内。
电池单体10包括第一壁12a和设于第一壁12a的泄压机构11,第一壁12a面向箱体20的顶壁20a。防护构件30为平板结构且固定于箱体20的顶壁20a,且防护构件30包括在泄压机构11的厚度方向Z上与泄压机构11相对的防护区31,防护区31用于阻挡电池单体10经由泄压机构11泄放的至少部分物质。
电池单体10的重量能量密度为E;在厚度方向Z上,泄压机构11与防护区31的最小间距为L。E和L满足:2Wh/(kg·mm)≤E/L≤7010Wh/(kg·mm)。
以下结合实施例进一步说明本申请。
为了使本申请的发明目的、技术方案和有益技术效果更加清晰,以下结合实施例进一步详细描述本申请。但是,应当理解的是,本申请的实施例仅仅是为了解释本申请,并非为了限制本申请,且本申请的实施例并不局限于说明书中给出的实施例。实施例中未注明具体实验条件或操作条件的按常规条件制作,或按材料供应商推荐的条件制作。
实施例1:
(i)参照图6和图11,制备四个方形的电池单体10,电池单体10的长度l  1为220mm,宽度l 2为44mm,高度l 3为100mm。在泄压机构11的厚度方向Z上,泄压机构11的外表面与第一壁12a的外表面齐平。
(ii)测量电池单体10的重量能量密度E为100Wh/kg。
(iii)将四个电池单体10沿宽度方向(即尺寸l 2所在的方向)依次布置,相邻的电池单体10之间设置厚度为5mm的隔热垫50。隔热垫50粘接于电池单体10。
(iv)将四个电池单体10放置到密闭的箱体20内,并在箱体20的位于电池单体10上方的壁(以下称之为箱体20的顶壁20a)上贴附防护构件30,防护构件30为平板,其厚度为4mm,材质为氮化硼和碳纤维构成的复合板。箱体20的容纳腔在高度方向(即尺寸l 3所在的方向,该方向平行于泄压机构11的厚度方向)上的尺寸H为104.2mm。经过测量和计算,在高度方向上,防护构件30与泄压机构11最小间距L为0.2mm。计算电池单体10在高度方向上的空间利用率T,T=l 3/H。
(v)触发箱体20内的中部的一个电池单体10的热失控,使电池单体10向外泄放物质,例如,可通过针刺或加热该电池单体10,以使该电池单体10热失控。保持1小时,观察其它的三个电池单体10是否出现热失控,并记录这三个电池单体10中热失控的电池单体10的数量M。
实施例2-16:实施例2-16的测试方法参照实施例1,实施例2-16与实施例1的区别如表1。示例性地,可通过改变电池单体的化学体系来调整电池单体的重量能量密度E。可通过改变箱体的尺寸H来改变防护构件与泄压机构最小间距L。
对比例1-4:对比例1-4的测试方法参照实施例1,对比例1-4与实施例1的区别如表1。
表1
Figure PCTCN2022107089-appb-000001
Figure PCTCN2022107089-appb-000002
参照实施例1-16和对比例1-2,本申请实施例将E/L的值限定为大于或等于2Wh/(kg·mm),可以减小泄压机构和防护构件之间的间距的过设计,提高电池内部空间利用率,减少电池的能量密度的浪费。
参照实施例1-16和对比例3-4,本申请实施例将E/L的值限定为小于或等于7010Wh/(kg·mm),以在某个电池单体热失控时,减少其它电池单体受到的热影响,降低其它电池单体热失控的风险,提高安全性。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (16)

  1. 一种电池,包括:
    电池单体,包括泄压机构;
    防护构件,包括在所述泄压机构的厚度方向上与所述泄压机构相对的防护区,所述防护区用于阻挡所述电池单体经由所述泄压机构泄放的至少部分物质;
    其中,所述电池单体的重量能量密度为E;在所述厚度方向上,所述泄压机构与所述防护区的最小间距为L;E和L满足:
    2Wh/(kg·mm)≤E/L≤7010Wh/(kg·mm)。
  2. 根据权利要求1所述的电池,其中,E和L满足:
    10Wh/(kg·mm)≤E/L≤800Wh/(kg·mm)。
  3. 根据权利要求1或2所述的电池,其中,E的值为100Wh/kg-3505Wh/kg。
  4. 根据权利要求3所述的电池,其中,E的值为100Wh/kg-400Wh/kg。
  5. 根据权利要求1-4任一项所述的电池,其中,L的值为0.5mm-50mm。
  6. 根据权利要求5所述的电池,其中,L的值为0.5mm-10mm。
  7. 根据权利要求1-6任一项所述的电池,其中,所述防护构件内部设有供换热介质流动的流道。
  8. 根据权利要求7所述的电池,其中,所述防护构件还包括换热区,所述电池单体还包括第一壁,所述泄压机构设于所述第一壁;
    所述换热区用于连接所述第一壁,以与所述第一壁换热。
  9. 根据权利要求8所述的电池,还包括导热结构,所述导热结构的至少部分位于所述第一壁和所述换热区之间并连接所述第一壁和所述换热区。
  10. 根据权利要求1-6任一项所述的电池,其中,
    所述电池单体还包括第一壁,所述泄压机构设于所述第一壁;
    所述防护构件包括主体部和支撑部,所述主体部与所述第一壁沿所述厚度方向间隔设置,所述支撑部位于所述第一壁和所述主体部之间并用于连接所述第一壁和所述主体部;
    所述主体部包括所述防护区。
  11. 根据权利要求1-6任一项所述的电池,其中,所述防护构件为平板结构。
  12. 根据权利要求1-11任一项所述的电池,其中,所述电池单体为多个,所述防护构件位于多个所述电池单体的所述泄压机构的同一侧;
    所述防护构件包括多个所述防护区,多个所述防护区与多个所述电池单体的所述泄压机构一一对应。
  13. 根据权利要求1-12任一项所述的电池,还包括箱体,所述电池单体和所述防护构件容纳于所述箱体内;
    所述防护构件固定于所述箱体朝向所述泄压机构的表面。
  14. 根据权利要求1-13任一项所述的电池,其中,所述电池单体包括第一壁、第二壁和第三壁,所述泄压机构设于所述第一壁,所述第二壁位于所述第一壁的背离所述防护构件的一侧,所述第三壁连接所述第一壁和所述第二壁;
    所述电池单体还包括电极端子,所述电极端子设置于所述第一壁、所述第二壁和所述第三壁中的至少一者。
  15. 根据权利要求1-14任一项所述的电池,其中,所述防护构件的材料包括无机盐、无机陶瓷、金属单质、单质碳和有机胶体中的至少一种。
  16. 一种用电装置,包括根据权利要求1-15任一项所述的电池,所述电池用于提供电能。
PCT/CN2022/107089 2022-07-21 2022-07-21 电池和用电装置 WO2024016269A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247024452A KR20240124382A (ko) 2022-07-21 2022-07-21 전지 및 전기 장치
CN202280061309.4A CN117957701A (zh) 2022-07-21 2022-07-21 电池和用电装置
PCT/CN2022/107089 WO2024016269A1 (zh) 2022-07-21 2022-07-21 电池和用电装置
CN202320295586.3U CN219643037U (zh) 2022-07-21 2023-02-23 电池和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107089 WO2024016269A1 (zh) 2022-07-21 2022-07-21 电池和用电装置

Publications (1)

Publication Number Publication Date
WO2024016269A1 true WO2024016269A1 (zh) 2024-01-25

Family

ID=87821516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107089 WO2024016269A1 (zh) 2022-07-21 2022-07-21 电池和用电装置

Country Status (3)

Country Link
KR (1) KR20240124382A (zh)
CN (2) CN117957701A (zh)
WO (1) WO2024016269A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112332013A (zh) * 2019-09-26 2021-02-05 宁德时代新能源科技股份有限公司 电池包、车辆及缓解电池包热失控蔓延的控制方法
CN213026308U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置
CN214428739U (zh) * 2020-12-31 2021-10-19 江苏塔菲尔动力系统有限公司 一种防热失控的组件及电池模组
CN215955428U (zh) * 2021-07-07 2022-03-04 江苏正力新能电池技术有限公司 一种用于电池模组的模组上盖及其电池模组
CN216054969U (zh) * 2021-07-09 2022-03-15 江苏正力新能电池技术有限公司 一种带泄压通道的模组扣板及其电池模组
CN216980795U (zh) * 2022-05-12 2022-07-15 比亚迪股份有限公司 电池、电池模组、电池包和车辆
CN216980797U (zh) * 2022-05-12 2022-07-15 比亚迪股份有限公司 防爆阀、电池、电池模组、电池包以及车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112332013A (zh) * 2019-09-26 2021-02-05 宁德时代新能源科技股份有限公司 电池包、车辆及缓解电池包热失控蔓延的控制方法
CN213026308U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置
CN214428739U (zh) * 2020-12-31 2021-10-19 江苏塔菲尔动力系统有限公司 一种防热失控的组件及电池模组
CN215955428U (zh) * 2021-07-07 2022-03-04 江苏正力新能电池技术有限公司 一种用于电池模组的模组上盖及其电池模组
CN216054969U (zh) * 2021-07-09 2022-03-15 江苏正力新能电池技术有限公司 一种带泄压通道的模组扣板及其电池模组
CN216980795U (zh) * 2022-05-12 2022-07-15 比亚迪股份有限公司 电池、电池模组、电池包和车辆
CN216980797U (zh) * 2022-05-12 2022-07-15 比亚迪股份有限公司 防爆阀、电池、电池模组、电池包以及车辆

Also Published As

Publication number Publication date
CN219643037U (zh) 2023-09-05
KR20240124382A (ko) 2024-08-16
CN117957701A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
WO2022006894A1 (zh) 电池及其相关装置、制备方法和制备设备
US11699829B2 (en) Box of battery, battery, power consumpiion apparatus, method for producing battery and apparatus for producing battery
WO2023004723A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023050631A1 (zh) 端盖组件、电池单体、电池以及用电装置
WO2023098258A1 (zh) 电池单体、电池以及用电装置
EP4092818B1 (en) Battery box body, battery, electric device, and method for preparing box body
US20220320677A1 (en) Battery cell and manufacturing method and system therefor, battery and electric device
KR102686170B1 (ko) 전지 및 그 관련장치, 제조방법 및 제조설비
WO2023133722A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2023179192A1 (zh) 电池和用电设备
US20220320673A1 (en) Battery, power consumption device, method and device for producing battery
WO2023159840A1 (zh) 电池单体、电池以及用电装置
US11817601B2 (en) Battery, power consumption device, method and device for producing battery
WO2024007451A1 (zh) 电池和用电装置
US20220311084A1 (en) Battery, power consumption apparatus, method and apparatus for producing battery
WO2024011578A1 (zh) 电池和用电装置
WO2022006896A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2023236220A1 (zh) 电池单体、电池及用电设备
WO2024016269A1 (zh) 电池和用电装置
KR20240123388A (ko) 전지 및 전기 기기
WO2024011583A1 (zh) 电池和用电装置
EP4345984A1 (en) Battery and electrical apparatus
WO2023050080A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
WO2023133755A1 (zh) 电池、用电装置、制备电池的方法和装置
EP4456303A1 (en) Battery and electric device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951545

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280061309.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247024452

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2024120563

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2401004795

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 202417056546

Country of ref document: IN