WO2024011578A1 - 电池和用电装置 - Google Patents

电池和用电装置 Download PDF

Info

Publication number
WO2024011578A1
WO2024011578A1 PCT/CN2022/105942 CN2022105942W WO2024011578A1 WO 2024011578 A1 WO2024011578 A1 WO 2024011578A1 CN 2022105942 W CN2022105942 W CN 2022105942W WO 2024011578 A1 WO2024011578 A1 WO 2024011578A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure relief
protective
battery
axial direction
relief hole
Prior art date
Application number
PCT/CN2022/105942
Other languages
English (en)
French (fr)
Inventor
柯剑煌
陈小波
李耀
陈世龙
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/105942 priority Critical patent/WO2024011578A1/zh
Priority to CN202280061535.2A priority patent/CN117941152A/zh
Priority to KR1020247024742A priority patent/KR20240129189A/ko
Priority to CN202320295253.0U priority patent/CN219917470U/zh
Publication of WO2024011578A1 publication Critical patent/WO2024011578A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and more specifically, to a battery and an electrical device.
  • Batteries are widely used in electronic devices, such as mobile phones, laptops, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes, electric tools, etc.
  • This application provides a battery and an electrical device, which can improve safety.
  • a battery including a box, a battery unit and a protective member.
  • the box includes a first wall.
  • the battery unit is accommodated in the box, and the battery unit is provided with a pressure relief mechanism.
  • the pressure relief mechanism is used to form a pressure relief hole to release the material inside the battery unit.
  • the protective member is accommodated in the box, at least part of the protective member is located between the first wall and the pressure relief mechanism and is used to cover the pressure relief hole in the axial direction of the pressure relief hole.
  • the minimum axial dimension of the part of the protective component covering the pressure relief hole in the axial direction is D.
  • the flow rate of the gas discharged by the battery unit through the pressure relief hole is G. D and G satisfy: 2 ⁇ 10 -3 mm ⁇ s/ L ⁇ D/G ⁇ 3.3 ⁇ 10 -1 mm ⁇ s/L.
  • the above technical solution limits the value of D/G to 2 ⁇ 10 -3 mm ⁇ s/L-3.3 ⁇ 10 -1 mm ⁇ s/L to reduce redundancy in the size design of protective components while taking into account thermal protection requirements. , reduce the loss of battery energy density and improve battery safety.
  • D and G satisfy: 2 ⁇ 10 -3 mm ⁇ s/L ⁇ D/G ⁇ 2 ⁇ 10 -1 mm ⁇ s/L.
  • the value of D is 0.5mm-5mm, so as to reduce the redundancy in the size design of the protective components, reduce the loss of the energy density of the battery, reduce the molding difficulty of the protective components, and improve the thermal protection requirements. Battery safety.
  • the size of the guard member is larger than the size of the pressure relief hole in any direction perpendicular to the axial direction.
  • the protective component has a larger size than the pressure relief hole, which can effectively block gas, reduce the risk of gas directly impacting the first wall, and improve safety.
  • the volumetric energy density of the battery unit is E, and D and E satisfy: 1 ⁇ 10 -3 mm ⁇ L/Wh ⁇ D/E ⁇ 1 ⁇ 10 -2 mm ⁇ L/Wh.
  • the volumetric energy density E of the battery unit is positively related to the flow rate G; compared with the flow rate G, the volumetric energy density E of the battery unit is easier to determine.
  • the above technical solution uses the volumetric energy density E to indirectly characterize the flow rate G, and limits the value of D through the volumetric energy density E, so as to reduce the redundancy in the size design of the protective components and reduce the energy of the battery while taking into account the thermal protection requirements.
  • the loss of density reduces the difficulty of designing protective components.
  • D and E satisfy: 1 ⁇ 10 ⁇ 3 mm ⁇ L/Wh ⁇ D/E ⁇ 6 ⁇ 10 ⁇ 3 mm ⁇ L/Wh.
  • the size of the pressure relief hole in the direction of the largest dimension of the pressure relief hole perpendicular to the axial direction, is k; the size of the protective member along the direction of the largest dimension is K; k, K and G satisfy: K>k , (K/k)/G ⁇ 3 ⁇ 10 -3 s/L.
  • the above technical solution limits the dimensional relationship between the protective component and the pressure relief hole in the maximum size direction based on the gas flow rate G produced by the battery unit when it is thermally runaway, so that the temperature of the part of the first wall that is not blocked by the protective component is at a certain level. range to reduce the risk of first wall breakage.
  • k, K and G satisfy: (K/k)/G ⁇ 8 ⁇ 10 -3 s/L.
  • k, K and G satisfy: (K/k)/G ⁇ 20s/L.
  • the minimum distance between the protective component and the pressure relief hole in the axial direction is h, and h and D satisfy: 0.2 ⁇ h/D ⁇ 250.
  • the protective member is a flat plate structure, and the thickness direction of the protective member is parallel to the axial direction.
  • the flat plate structure is easy to form.
  • the thickness of the protective member gradually decreases from the middle to both sides, and the thickness direction of the protective member is parallel to the axial direction.
  • the thickest portion of the protective member covers at least part of the pressure relief hole in the axial direction.
  • the thickest part of the protective member is opposite to the pressure relief hole and can withstand a large thermal shock to reduce the risk of the protective member being punched through.
  • the two ends of the protective component receive less thermal shock and can have a smaller thickness to reduce the weight and volume of the protective component and increase the energy density of the battery.
  • the protective component includes a base region and a reinforcing region connected to the base region, and the axial dimension of the reinforcing region is greater than the axial dimension of the base region.
  • the reinforced area covers at least part of the pressure relief hole. The reinforced area is opposite to the pressure relief hole and can withstand greater thermal shock to reduce the risk of the protective component being punched through.
  • the reinforced area completely covers the pressure relief hole in the axial direction.
  • the reinforced area can withstand greater thermal shock to reduce the risk of the protective component being penetrated.
  • the base area is not opposite to the pressure relief hole in the axial direction, and can have a smaller thickness to reduce the weight and volume of the protective component and improve the energy density of the battery.
  • the size of the protective member in the direction of the largest dimension of the pressure relief hole perpendicular to the axial direction, is K, and the size of the reinforced area is K 1 .
  • K, K 1 and G satisfy: K>K 1 , (K/K 1 )/G ⁇ 2 ⁇ 10 -1 s/L.
  • the reinforcement region and the base region are both flat plate structures, and the thickness directions of the reinforcement region and the thickness direction of the base region are both parallel to the axial direction.
  • the reinforcement region has an axial dimension D
  • the base region has an axial dimension d.
  • the size of the pressure relief hole is k
  • the size of the reinforcement area is K 1 .
  • D, d, k and K 1 satisfy: 0.04 ⁇ (K 1 /k)/(D/d) ⁇ 300.
  • the ratio of D/d can increase. That is, the thickness requirement of the matrix area is reduced.
  • the thermal runaway protection requirements required by the base region increase.
  • the ratio of D/d can decrease, that is, the thickness requirement of the base region increases.
  • the protective component includes a first protective plate and a second protective plate that are stacked in the axial direction, and the portion where the first protective plate and the second protective plate overlap in the axial direction and the second protective plate constitute a reinforced area, The portion of the first protective plate and the second protective plate that do not overlap in the axial direction constitutes the base region.
  • the first protective plate and the second protective plate are laminated together to form a protective member with a difference in thickness, thereby simplifying the molding process of the protective member.
  • the second protective plate is disposed on a side of the first protective plate facing the pressure relief mechanism. This technical solution can improve the flatness of the side of the protective component away from the pressure relief mechanism and facilitate the fixation of the protective component with other components.
  • a plurality of second protective plates are spaced apart in the direction of the largest dimension of the pressure relief hole perpendicular to the axial direction.
  • both the first protective plate and the second protective plate have a flat plate structure, and the thickness direction of the first protective plate and the thickness direction of the second protective plate are both parallel to the axial direction.
  • the first protective plate has a flat plate structure, and the thickness direction of the first protective plate is parallel to the axial direction. In the direction of the largest dimension of the pressure relief hole perpendicular to the axial direction, the axial dimension of the second protective plate gradually decreases from the middle to both ends.
  • the largest portion of the second protective plate along the axial direction may be opposite to the pressure relief hole to withstand a larger thermal shock and reduce the risk of the protective member being punched through.
  • the two ends of the second protective plate are less subject to thermal shock and can have a smaller thickness to reduce the weight and volume of the second protective plate and increase the energy density of the battery.
  • the material of the second protective plate is different from the material of the first protective plate.
  • the first protective plate and the second protective plate are made of different materials, so that the characteristics of different materials can be combined to form a protective component with better thermal shock resistance. Compared with the first protective plate and the second protective plate made of the same material, the first protective plate and the second protective plate made of different materials can make the structure of the protective component more diverse.
  • the first wall is located on the upper or lower side of the battery cell.
  • the protective member has a melting point greater than 1000°C.
  • the protective component has a high melting point and is not easily melted when subjected to thermal shock, thereby giving the protective component better thermal shock resistance and reducing the risk of the protective component being punctured.
  • the shield member has a melting point greater than the melting point of the first wall.
  • the protective component has better thermal shock resistance than the first wall, thereby performing a thermal protection function and reducing the risk of damage to the first wall.
  • the guard member is secured to the first wall.
  • the first wall can fix the protective component to reduce the risk of the protective component moving under the impact of high-temperature and high-speed gas, reduce the probability of impact damage to the protective component, and reduce the risk of protective failure of the protective component.
  • the protective component is fixed to the first wall by bonding, welding, fastener connection or snap-fitting.
  • embodiments of the present application provide an electrical device, including the battery according to any embodiment of the first aspect, and the battery is used to provide electric energy.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • FIG. 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • Figure 4 is another structural schematic diagram of the battery shown in Figure 3, in which the pressure relief mechanism of the battery unit of the battery is in an actuated state;
  • FIG. 5 is an enlarged schematic diagram of the battery shown in Figure 4 at circular frame A;
  • Figure 6 is a schematic structural diagram of a battery unit of a battery provided by some embodiments of the present application.
  • Figure 7 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • Figure 8 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • Figure 9 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • Figure 10 is an enlarged schematic diagram of Figure 9 at box B;
  • Figure 11 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • Figure 12 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • Figure 13 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • Figure 14 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • Figure 15 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • parallel includes not only the absolutely parallel situation, but also the roughly parallel situation that is conventionally recognized in engineering; at the same time, the term “perpendicular” includes not only the absolutely vertical situation, but also the roughly parallel situation that is conventionally recognized in engineering. vertical situation.
  • the battery unit may include a lithium-ion battery unit, a lithium-sulfur battery unit, a sodium-lithium-ion battery unit, a sodium-ion battery unit or a magnesium-ion battery unit, etc., which are not limited in the embodiments of this application.
  • the battery unit may be in the shape of a cylinder, a flat body, a cuboid, or other shapes, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • Batteries generally include a case for packaging one or more battery cells. The case prevents liquid or other foreign matter from affecting the charging or discharging of the battery unit.
  • the pressure relief mechanism on the battery unit has an important impact on the safety of the battery unit. For example, when a short circuit, overcharge, etc. occurs, thermal runaway may occur inside the battery unit and the pressure may rise sharply. In this case, the internal pressure can be released outward by actuating the pressure relief mechanism to prevent the battery unit from exploding or catching fire.
  • the pressure relief mechanism may be an element or component that is activated when the battery cell reaches certain conditions.
  • the pressure relief mechanism may be an element or component that is actuated to relieve the internal pressure and/or internal contents when the internal pressure or internal temperature of the battery cell reaches a predetermined threshold.
  • This threshold design varies based on design requirements. This threshold may depend on the material of one or more of the positive electrode tab, negative electrode tab, electrolyte, and separator in the battery cell.
  • the pressure relief mechanism can take the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, etc., and can specifically adopt a pressure-sensitive element or structure, that is, when the internal pressure of the battery cell reaches a predetermined threshold, the pressure relief mechanism performs an action Or the weak area provided in the pressure relief mechanism ruptures, thereby forming a pressure relief hole for the internal pressure to be released.
  • the pressure relief mechanism may also adopt a temperature-sensitive element or structure, that is, when the internal temperature of the battery unit reaches a predetermined threshold, the pressure relief mechanism takes action, thereby forming a pressure relief hole for releasing the internal pressure.
  • the pressure relief mechanism may also be an actively actuable component. For example, the pressure relief mechanism may be actuated upon receiving a control signal from the battery.
  • the pressure relief mechanism can also take other forms.
  • the pressure relief mechanism may be a lower-strength structure on the casing of the battery unit. When the battery unit is thermally out of control, the lower-strength structure cracks or deforms to form a pressure relief hole for internal pressure relief.
  • the pressure relief mechanism may be a solder stamp on the casing of the battery cell.
  • the "activation" mentioned in this application means that the pressure relief mechanism acts or is activated to a certain state, so that the internal pressure and/or internal materials of the battery unit can be released.
  • the actions generated by the pressure relief mechanism may include, but are not limited to: at least a portion of the pressure relief mechanism is ruptured, broken, torn or opened, etc.
  • the emissions from battery cells mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrode sheets, fragments of separators, high-temperature and high-speed gases generated by reactions, flames, etc.
  • the box is also provided with a pressure relief mechanism, and the pressure relief mechanism of the box is actuated to discharge emissions outside the box at a set position of the box.
  • the protective member can block the high-temperature and high-speed substances released by the battery unit, so as to reduce the thermal shock to the box and reduce the temperature of the box. Reduce the risk of breakage and improve safety.
  • the inventor provides a technical solution that sets the size of the protective member according to the flow rate of gas discharged from the battery unit to reduce the risk of the protective member being melted through and reduce the waste of energy density of the battery.
  • Electrical devices can be vehicles, cell phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical device as a vehicle as an example.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • a battery 2 is provided inside the vehicle 1 , and the battery 2 can be provided at the bottom, head, or tail of the vehicle 1 .
  • the battery 2 may be used to power the vehicle 1 , for example, the battery 2 may be used as an operating power source for the vehicle 1 .
  • the vehicle 1 may also include a controller 3 and a motor 4.
  • the controller 3 is used to control the battery 2 to provide power to the motor 4, for example, to meet the power requirements for starting, navigation and driving of the vehicle 1.
  • the battery 2 can not only be used as the operating power source of the vehicle 1, but also can be used as the driving power source of the vehicle 1, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1.
  • Figure 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • the battery 2 includes a case 20 and a battery unit 10 .
  • the battery unit 10 is accommodated in the case 20 .
  • the box 20 is used to accommodate the battery unit 10, and the box 20 can be of various structures.
  • the box body 20 may include a first box body part 21 and a second box body part 22.
  • the first box body part 21 and the second box body part 22 cover each other.
  • the first box body part 21 and the second box body part 22 cover each other.
  • the two box portions 22 jointly define an accommodation space for accommodating the battery unit 10 .
  • the second box part 22 may be a hollow structure with one end open
  • the first box part 21 may be a plate-like structure
  • the first box part 21 covers the open side of the second box part 22, To form a box 20 with an accommodation space.
  • both the first box part 21 and the second box part 22 may be hollow structures with one side open, and the open side of the first box part 21 is covered with the second box part 22 Open side to form a box 20 with accommodating space.
  • the first box part 21 and the second box part 22 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • a sealing member may also be provided between the first box part 21 and the second box part 22, such as sealant, sealing ring, etc. .
  • the first box part 21 can also be called an upper box cover, and the second box part 22 can also be called a lower box 20 .
  • the battery unit 10 may be one or multiple. If there are multiple battery units 10 , the multiple battery units 10 may be connected in series, in parallel, or in mixed connection. Mixed connection means that the multiple battery units 10 are connected in series and in parallel. Multiple battery units 10 can be directly connected in series, parallel, or mixed together, and then the entire battery unit 10 is housed in the box 20 ; of course, multiple battery units 10 can also be connected in series or parallel first or A battery module is formed by a mixed connection, and multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 20 .
  • FIG. 3 is a schematic structural diagram of a battery provided by some embodiments of the present application
  • Figure 4 is another schematic structural diagram of the battery shown in Figure 3, in which the pressure relief mechanism of the battery unit of the battery is in an actuated state
  • Figure 5 is a diagram 4 is an enlarged schematic diagram of the battery at circular frame A
  • FIG. 6 is a schematic structural diagram of a battery unit provided by some embodiments of the present application
  • FIG. 7 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • the battery 2 in the embodiment of the present application includes a box 20 , a battery unit 10 and a protective member 30 .
  • the box 20 includes a first wall 21a.
  • the battery unit 10 is accommodated in the box 20 .
  • the battery unit 10 is provided with a pressure relief mechanism 11 .
  • the pressure relief mechanism 11 is used to form a pressure relief hole 111 to release the material inside the battery unit 10 .
  • the protective member 30 is accommodated in the box 20 . At least part of the protective member 30 is located between the first wall 21 a and the pressure relief mechanism 11 and is used to cover the pressure relief hole 111 in the axial direction Z of the pressure relief hole 111 .
  • the minimum size of the portion of the protective member 30 covering the pressure relief hole 111 in the axial direction Z along the axial direction Z is D.
  • the flow rate of the gas discharged by the battery unit 10 through the pressure relief hole 111 is G.
  • D and G satisfy: 2 ⁇ 10 -3 mm ⁇ s/L ⁇ D/G ⁇ 3.3 ⁇ 10 -1 mm ⁇ s/L.
  • the box 20 may be an outer envelope of the battery 2, and the battery unit 10 is located inside the outer envelope.
  • the case 20 can prevent liquid or other foreign matter from affecting the charging or discharging of the battery unit 10 .
  • the first wall 21a of the box 20 is a wall of the box 20 opposite to the pressure relief mechanism 11 in the axial direction Z.
  • the first wall 21 a can be the top wall of the box 20 located on the upper side of the battery unit 10 , the bottom wall of the box 20 located on the lower side of the battery unit 10 , or the first wall 21 a of the box 20 located on one side of the battery unit 10 Side wall; of course, the first wall 21a can also be a wall of the box 20 located at other positions.
  • the first wall 21a may be a part of the first box part or a part of the second box part.
  • first wall 21a may be in a flat plate shape, a curved plate shape or other shapes.
  • the pressure relief mechanisms 11 of the plurality of battery units 10 all face the first wall 21a.
  • Battery unit 10 includes one or more battery cells.
  • the battery cell is the smallest unit that makes up the battery, and it can realize the functions of charging and discharging on its own.
  • the battery cells can be cylindrical battery cells, square case battery cells, soft pack battery cells or other battery cells.
  • the battery cell includes a battery cell casing, an electrode assembly 13, an electrolyte and other functional components.
  • the electrode assembly 13 and the electrolyte are contained in the battery cell casing.
  • the electrode assembly includes a positive electrode piece, a negative electrode piece, and a separator.
  • Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector includes a positive electrode current collector and a positive electrode tab.
  • the positive electrode current collector is coated with the positive electrode active material layer.
  • the positive electrode tab is not coated with the positive electrode active material layer.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material layer includes a positive electrode active material.
  • the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode piece includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector includes a negative electrode current collector and a negative electrode tab.
  • the negative electrode current collector is coated with the negative electrode active material layer.
  • the negative electrode tab is not coated with the negative electrode active material layer.
  • the negative electrode current collector may be made of copper, and the negative electrode active material layer may include a negative electrode active material.
  • the negative electrode active material may be carbon or silicon.
  • the material of the isolator can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the battery cell shell can be a hard shell, for example, the battery cell shell can be made of aluminum alloy; the battery cell shell can also be a soft shell, for example, the battery cell shell can be made of aluminum plastic film.
  • the battery unit 10 may be a battery cell
  • the housing 12 of the battery unit 10 is the battery cell housing
  • the pressure relief mechanism 11 may be disposed on the housing 12 .
  • the battery unit 10 includes a housing 12 and a plurality of battery cells accommodated in the housing 12 , and the pressure relief mechanism 11 may be disposed on the housing 12 .
  • the housing 12 of the battery unit 10 includes a second wall 12a facing the first wall 21a.
  • the pressure relief mechanism 11 is installed on the second wall 12a.
  • the second wall 12a is located on a side of the electrode assembly 13 facing the first wall 21a.
  • the pressure relief mechanism 11 can be fixed to the second wall 12a by welding, bonding or other means.
  • the pressure relief mechanism 11 and the second wall 12a can be integrally formed.
  • the pressure relief mechanism 11 When the battery unit 10 is in a normal state, the pressure relief mechanism 11 does not form a pressure relief hole 111 .
  • the pressure relief mechanism 11 seals the electrode assembly 13 and the electrolyte of the battery unit 10 inside the battery unit 10 to reduce the risk of electrolyte leakage.
  • the pressure relief mechanism 11 When thermal runaway occurs inside the battery unit 10 , the pressure relief mechanism 11 is activated to form a pressure relief hole 111 ; the material inside the battery unit 10 can be discharged to the outside of the battery unit 10 through the pressure relief hole 111 .
  • the material discharged through the pressure relief hole 111 includes high-temperature and high-speed gas.
  • the pressure relief hole 111 will limit the flow direction of the gas, causing part of the gas to be ejected generally along the axial direction Z of the pressure relief hole 111 .
  • the protective member 30 may be entirely located between the first wall 21 a and the pressure relief mechanism 11 , or may be only partially located between the first wall 21 a and the pressure relief mechanism 11 .
  • the first wall 21a and the pressure relief mechanism 11 are arranged along the axial direction Z, and in the axial direction Z, at least part of the protective member 30 is located between the first wall 21a and the pressure relief mechanism 11.
  • the protective member 30 can cover the pressure relief hole 111 in the axial direction Z.
  • “the protective member 30 covers the pressure relief hole 111 in the axial direction Z of the pressure relief hole 111” means that the projection of the pressure relief hole 111 along the axial direction Z is located at the projection of the protective member 30 along the axial direction Z. Inside. The projected area of the protective member 30 along the axial direction Z may be greater than or equal to the projected area of the pressure relief hole 111 along the axial direction Z.
  • the protective member 30 may be a plate structure, a frame structure or other structures.
  • the protective member 30 may be a flat plate with uniform thickness or a plate with uneven thickness.
  • the protective member 30 may be an integral structure or a structure assembled from multiple sub-components.
  • the protective member 30 can be fixed to the first wall 21a, the battery unit 10, or other components in the box 20, which is not limited in the embodiment of the present application.
  • Thermal shock resistance of the protective member 30 is better than that of the first wall 21a.
  • Thermal shock resistance refers to the ability of a material to withstand rapid changes in temperature without damaging it. In other words, when impacted by the same high-temperature and high-velocity substance, the protective member 30 is less likely to be damaged than the first wall 21a.
  • the part of the protective member 30 covering the pressure relief hole 111 in the axial direction Z may be simply called a protective part, and the projection of the protective part along the axial direction Z completely overlaps with the projection of the pressure relief hole 111 along the axial direction Z.
  • the protective part is more susceptible to impact by high-temperature and high-velocity substances.
  • the unit of flow rate G is liter/second (L/s).
  • the flow rate G may be the average flow rate of gas discharged by the battery unit 10 through the pressure relief hole 111 .
  • V is the amount of gas (unit L) produced by the thermal runaway of the battery unit 10 at normal temperature and pressure (25°C, 1 atm), and t is the time of the thermal runaway of the battery unit 10 .
  • the flow rate G of the battery unit 10 can be measured according to the following method.
  • Test sample battery unit 10 in a fully charged state.
  • Test environment a sealed tank (no obvious volume change or gas leakage occurs during the thermal runaway process of the battery unit 10), the space inside the tank is V 0 , and the tank is at normal temperature and pressure (25°C, 1atm).
  • Test process Place the battery unit 10 in a sealed tank and trigger the thermal runaway of the battery unit 10.
  • the pressure relief mechanism 11 of the battery unit 10 is activated and forms a pressure relief hole 111.
  • the material released by the battery unit 10 will cause a thermal runaway in the tank. Changes in temperature and pressure; 15 minutes after the thermal runaway of the battery unit 10, the temperature in the tank is balanced. At this time, the air pressure in the tank is detected as P 1 and the temperature at the center of the tank is T 0 ; according to the ideal state equation, normal temperature can be obtained Under normal pressure (25°C, 1atm), the amount of gas generated by thermal runaway of battery unit 10 is:
  • the method of triggering thermal runaway of the battery unit 10 can refer to GB 38031-2020 C.5.3.4.
  • the center point of the tank may be the geometric center of the inner cavity of the tank.
  • the time t for the thermal runaway of the battery unit 10 is: the time interval from the start of the thermal runaway of the battery unit 10 to when the air pressure in the sealed tank reaches the maximum value.
  • the gas released when the battery unit 10 is in thermal runaway acts on the protective member 30.
  • the protective member 30 can reduce the thermal shock to the first wall 21a, reduce the heat transferred to the first wall 21a, and reduce the thermal shock of the first wall 21a.
  • the risk of melt-through improves the safety of battery 2.
  • the larger the value of D the lower the risk of the protective member 30 being penetrated by gas, and the less heat is transferred to the first wall 21a.
  • the inventor limited the value of D/G to 2 ⁇ 10 -3 mm ⁇ s/L-3.3 ⁇ 10 -1 mm ⁇ s/L, in order to reduce the size design of the protective component by 30 while taking into account the thermal protection requirements.
  • the redundancy reduces the loss of energy density of the battery 2 and improves the safety of the battery 2.
  • the value of D/G is 2 ⁇ 10 -3 mm ⁇ s/L, 5 ⁇ 10 -3 mm ⁇ s/L, 1 ⁇ 10 -2 mm ⁇ s/L, 5 ⁇ 10 -2 mm ⁇ s/L, 1 ⁇ 10 -1 mm ⁇ s/L, 2 ⁇ 10 -1 mm ⁇ s/L, 3 ⁇ 10 -1 mm ⁇ s/L or 3.3 ⁇ 10 -1 mm ⁇ s/L.
  • the shielding member 30 may act as an insulator to reduce heat transfer to the first wall 21a.
  • the battery unit 10 is thermally runaway, due to the presence of the protective member 30 , less heat is conducted to the first wall 21 a . Therefore, embodiments of the present application can reduce the material requirements for the box 20 .
  • the box body 20 may be made of some materials that are not resistant to high temperatures, such as polyester materials.
  • the box body 20 can also be made of some relatively high-temperature resistant materials, such as aluminum, steel or other metals.
  • the value of D/G can be adaptively reduced to reduce the space and weight occupied by the protective member 30 and increase the energy density of the battery 2 .
  • D and G satisfy: 2 ⁇ 10 -3 mm ⁇ s/L ⁇ D/G ⁇ 2 ⁇ 10 -1 mm ⁇ s/L.
  • the value of D is 0.5mm-5mm.
  • the value of D is 0.5mm, 1mm, 2mm, 3mm, 4mm or 5mm.
  • the protective member 30 is thermally insulating and has a thermal conductivity less than the thermal conductivity of the first wall 21a.
  • the protective member 30 can play a thermal insulation role to reduce the heat transmitted to the first wall 21a when the battery unit 10 is thermally runaway.
  • the protective member 30 may also have good thermal conductivity. The protective member 30 can quickly conduct heat to the surroundings, reduce heat accumulation, and lower the temperature of the first wall 21a.
  • the material of the protective member 30 includes at least one of inorganic salts, inorganic ceramics, elemental metals, elemental carbon, and organic colloids.
  • inorganic salts include silicates.
  • the inorganic ceramic includes at least one of aluminum oxide, silicon oxide, boron carbide, boron nitride, silicon carbide, silicon nitride, and zirconium oxide.
  • the elemental metal material includes at least one of copper, iron, aluminum, tungsten, and titanium.
  • the elemental carbon includes at least one of amorphous carbon and graphite.
  • the organic colloid includes at least one of epoxy structural glue, acrylic structural glue, polyimide structural glue, maleimide structural glue, polyurethane structural glue, and acrylic structural glue.
  • the material of the protective member 30 includes at least two of inorganic salts, inorganic ceramics, elemental metals, elemental carbon, and organic colloids.
  • the composite structure formed of multiple materials can improve the thermal shock resistance and thermal insulation properties of the protective component 30 .
  • the protective member 30 includes a carbon fiber plate formed of carbon fiber cloth and organic colloid.
  • the protective member 30 includes a resin sheet formed of inorganic ceramic powder and organic colloid.
  • the protective member 30 includes a stack of graphite layers and metal layers.
  • the protective member 30 includes a composite fiber sheet composed of carbon fiber and ceramic fiber.
  • protective member 30 includes a ceramic layer and a metal mesh connected to the ceramic layer.
  • guard member 30 has a melting point greater than 1000°C.
  • the protective member 30 has a high melting point and is not easily melted when subjected to thermal shock, so that the protective member 30 has better thermal shock resistance and reduces the risk of the protective member 30 being punctured.
  • guard member 30 has a melting point greater than 1500°C.
  • the shield member 30 has a melting point greater than the melting point of the first wall 21a.
  • the protective member 30 has better thermal shock resistance than the first wall 21a, thereby performing a thermal protection function and reducing the risk of damage to the first wall 21a.
  • guard member 30 is secured to first wall 21a.
  • the first wall 21a can fix the protective member 30 to reduce the risk of the protective member 30 moving under the impact of high-temperature and high-speed gas, reduce the probability of impact damage to the protective member 30, and reduce the risk of protective failure of the protective member 30.
  • the protective member 30 is fixed to the first wall 21a by bonding, welding, fastener connection or snapping.
  • the protective member 30 can also be fixed to the first wall 21a in other ways.
  • the protective member 30 is disposed on the inner surface of the first wall 21a.
  • the first wall 21a is located on the upper or lower side of the battery cell 10 .
  • the first wall 21 a is located on the upper side of the battery unit 10 .
  • the volumetric energy density of the battery unit 10 is E, and D and E satisfy: 1 ⁇ 10 -3 mm ⁇ L/Wh ⁇ D/E ⁇ 1 ⁇ 10 -2 mm ⁇ L/Wh.
  • the unit of volumetric energy density E is Wh/L.
  • E C/V 1
  • C is the capacity of the battery unit 10
  • V 1 is the volume of the battery unit 10 .
  • the volume of the casing 12 of the battery unit 10 is taken as the volume of the battery unit 10 , and the volume of the poles 14 of the battery unit 10 protruding from the casing 12 is not considered.
  • volumetric energy density E of the battery unit 10 The higher the volumetric energy density E of the battery unit 10, the greater the thermal shock of the gas to the protective member 30, and the greater the demand for D from the protective member 30; conversely, the lower the volumetric energy density E of the battery unit 10, the greater the thermal shock of the protective member 30.
  • the thermal shock of the gas is also small, and the demand for D of the protective component 30 is also smaller.
  • the volumetric energy density E of the battery unit 10 is positively related to the flow rate G; compared with the flow rate G, the volumetric energy density E of the battery unit 10 is easier to determine.
  • the inventor tried to use the volumetric energy density E to indirectly characterize the flow rate G, and used the volumetric energy density E to limit the value of D, thereby reducing the difficulty of designing the protective component 30 .
  • the values of D/E are 1 ⁇ 10 -3 mm ⁇ L/Wh, 2 ⁇ 10 -3 mm ⁇ L/Wh, 4 ⁇ 10 -3 mm ⁇ L/Wh, 6 ⁇ 10 -3 mm ⁇ L/Wh, 8 ⁇ 10 -3 mm ⁇ L/Wh or 1 ⁇ 10 -2 mm ⁇ L/Wh.
  • D and E satisfy: 1 ⁇ 10 ⁇ 3 mm ⁇ L/Wh ⁇ D/E ⁇ 6 ⁇ 10 ⁇ 3 mm ⁇ L/Wh.
  • the size of the protective member 30 is larger than the size of the pressure relief hole 111 in any direction perpendicular to the axis Z.
  • the gas released through the pressure relief hole 111 mainly flows along the axial direction Z of the pressure relief hole 111.
  • part of the gas and particles and other substances carried by the gas may also disperse to the surroundings after passing through the pressure relief hole 111.
  • the protective member 30 has a larger size than the pressure relief hole 111, which can effectively block gas, reduce the risk of gas directly impacting the first wall 21a, and improve safety.
  • the size of the pressure relief hole 111 is k in the maximum dimension direction X perpendicular to the axial direction Z; the size of the protective member 30 along the maximum dimension direction X is K. k, K and G satisfy: K>k, (K/k)/G ⁇ 3 ⁇ 10 -3 s/L.
  • the size of the pressure relief hole 111 along one direction is greater than or equal to the size of the pressure relief hole 111 along other directions. This direction is called the maximum size direction X of the pressure relief hole 111 .
  • the size K of the protection member 30 is the size of the protection member 30 along the maximum dimension direction X of the pressure relief hole 111 .
  • the inventor Based on the flow rate G of gas produced by the battery unit 10 during thermal runaway, the inventor defines the dimensional relationship between the protective member 30 and the pressure relief hole 111 in the maximum size direction The temperature of the part is within a certain range to reduce the risk of damage to the first wall 21a.
  • the protective member 30 may have a smaller size, which can reduce the space and weight of the battery 2 occupied by the protective member 30 and increase the energy density.
  • the protective member 30 may have a larger size, which can increase the range of the first wall 21a blocked by the protective member 30 to reduce the size of the first wall. 21a temperature.
  • k, K and G satisfy: (K/k)/G ⁇ 8 ⁇ 10 -3 s/L.
  • k, K and G satisfy: (K/k)/G ⁇ 20s/L. This embodiment can reduce the redundancy in the size design of the protective member 30 and reduce the loss of energy density of the battery 2 .
  • the value of (K/k)/G is 3 ⁇ 10 -3 s/L, 5 ⁇ 10 -3 s/L, 8 ⁇ 10 -3 s/L, 1 ⁇ 10 -2 s/ L, 5 ⁇ 10 -2 s/L, 1 ⁇ 10 -1 s/L, 5 ⁇ 10 -1 s/L, 1s/L, 5s/L, 10s/L, 15s/L, 20s/L.
  • the minimum distance between the protective member 30 and the pressure relief hole 111 in the axial direction Z is h, and h and D satisfy: 0.2 ⁇ h/D ⁇ 250.
  • multiple battery units 10 are disposed in the box 20 , and the protective member 30 is used to cover the pressure relief holes 111 of the multiple battery units 10 in the axial direction Z. No matter which battery unit 10 experiences thermal runaway, the protective member 30 can block high-temperature and high-velocity substances and reduce the risk of damage to the first wall 21a.
  • the protective member 30 is a flat plate structure, and the thickness direction of the protective member 30 is parallel to the axial direction Z.
  • the thickness of the protective member 30 is D.
  • the battery includes a plurality of battery cells 10 arranged in sequence; for example, the arrangement direction Y of the plurality of battery cells 10 is perpendicular to the axial direction Z and the maximum size direction X.
  • Figure 8 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • the thickness of the protective member 30 gradually decreases from the middle to both sides. Parallel to axis Z. The thickest portion of the protective member 30 covers at least part of the pressure relief hole 111 in the axial direction Z.
  • the thickest part of the protective member 30 is opposite to the pressure relief hole 111 and can withstand a large thermal shock to reduce the risk of the protective member 30 being punctured.
  • the two ends of the protective member 30 receive less thermal shock and may have a smaller thickness to reduce the weight and volume of the protective member 30 and increase the energy density of the battery 2 .
  • the protective member 30 forms a slope on the side facing the pressure relief hole 111.
  • the slope can guide the flow of gas and reduce the thermal shock to the protective member 30.
  • FIG. 9 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • FIG. 10 is an enlarged schematic diagram of block B in FIG. 9 .
  • the protective member 30 includes a base region 30a and a reinforcement region 30b connected to the base region 30a.
  • the size of the reinforcement region 30b along the axial direction Z is larger than that of the base region 30a along the axial direction Z. size of.
  • the reinforced area 30b covers at least part of the pressure relief hole 111 .
  • the reinforced area 30b is opposite to the pressure relief hole 111 and can withstand a large thermal shock to reduce the risk of the protective member 30 being punctured.
  • the reinforced area 30b completely covers the pressure relief hole 111 .
  • the reinforced area 30b can withstand greater thermal shock to reduce the risk of the protective member 30 being punctured.
  • the base region 30 a is not opposite to the pressure relief hole 111 in the axial direction Z, and may have a smaller thickness to reduce the weight and volume of the protective member 30 and increase the energy density of the battery 2 .
  • the size of the protective member 30 is K
  • the size of the reinforced area 30b is K 1 .
  • K, K 1 and G satisfy: K>K 1 , (K/K 1 )/G ⁇ 2 ⁇ 10 -1 s/L.
  • the two base regions 30a are symmetrical about a virtual plane perpendicular to the maximum dimension direction X.
  • both the reinforcement region 30b and the base region 30a have a flat plate structure, and the thickness direction of the reinforcement region 30b and the thickness direction of the base region 30a are both parallel to the axial direction Z.
  • the thickness of the reinforced area 30b is D.
  • the reinforcement region 30b has a dimension D along the axial direction Z
  • the base region 30a has a dimension d along the axial direction Z.
  • the size of the pressure relief hole 111 is k
  • the size of the reinforced area 30b is K 1 .
  • D, d, k and K 1 satisfy: 0.04 ⁇ (K 1 /k)/(D/d) ⁇ 300.
  • the ratio of D/d increases. It can be increased, that is, the thickness of the base region 30a is required to be decreased. As the value of K 1 /k decreases, the thermal runaway protection requirements of the base region 30 a increase. Correspondingly, the ratio of D/d can decrease, that is, the thickness of the base region 30 a increases.
  • the inventor limits the value of (K 1 /k)/(D/d) to 0.04-300 in order to reduce the redundancy in the size design of the protective component 30 and reduce the energy density of the battery 2 while taking into account the thermal protection requirements. loss and improve the safety of battery 2.
  • Figure 11 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • the protective member 30 includes a first protective plate 31 and a second protective plate 32 that are stacked in the axial direction Z.
  • the overlapping portions and the second protective plate 32 constitute the reinforcement area 30b, and the non-overlapping portions of the first protective plate 31 and the second protective plate 32 in the axial direction Z constitute the base area 30a.
  • the material of the first protective plate 31 and the second protective plate 32 may be the same or different.
  • the second protective plate 32 may be disposed on the side of the first protective plate 31 facing the pressure relief mechanism 11 , or may be disposed on the side of the first protective plate 31 facing away from the pressure relief mechanism 11 .
  • the number of the second protective plate 32 may be one or multiple, and this is not limited in the embodiment of the present application.
  • the second protective plate 32 may be a flat plate with uniform thickness or a plate with uneven thickness.
  • the first protective plate 31 and the second protective plate 32 are laminated together to form the protective member 30 having a thickness difference.
  • This embodiment can simplify the molding process of the protective member 30 .
  • the second protective plate 32 is disposed on a side of the first protective plate 31 facing the pressure relief mechanism 11 .
  • This embodiment can improve the flatness of the side of the protective member 30 away from the pressure relief mechanism 11 and facilitate the fixation of the protective member 30 with other components.
  • both the first protective plate 31 and the second protective plate 32 are flat-plate structures, and the thickness directions of the first protective plate 31 and the second protective plate 32 are both parallel to the axial direction Z.
  • the material of the second protective plate 32 is different from the material of the first protective plate 31 .
  • the first protective plate 31 and the second protective plate 32 are made of different materials, so that the characteristics of different materials can be combined to form a protective component 30 with better thermal shock resistance.
  • the first protective plate 31 and the second protective plate 32 made of different materials can make the structure of the protective member 30 more varied. .
  • the second protective plate 32 has better thermal shock resistance than the first protective plate 31 .
  • the melting point of the second protective plate 32 is greater than the melting point of the first protective plate 31 .
  • the melting point of the second protective plate 32 is greater than 1000°C.
  • the embodiment of the present application does not limit the melting point of the first protective plate 31.
  • the melting point of the first protective plate 31 may be greater than, equal to, or less than 1000°C.
  • the second protective plate 32 is bonded to the first protective plate 31 .
  • Figure 12 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • the first protective plate 31 has a flat plate structure, and the thickness direction of the first protective plate 31 is parallel to the axial direction Z.
  • the size of the second protective plate 32 along the axial direction Z gradually decreases from the middle to both ends.
  • the largest portion of the second protective plate 32 along the axial direction Z may be opposite to the pressure relief hole 111 to withstand a large thermal shock and reduce the risk of the protective member 30 being punched through.
  • the two ends of the second protective plate 32 are less subject to thermal shock and may have a smaller thickness to reduce the weight and volume of the second protective plate 32 and increase the energy density of the battery 2 .
  • the second protective plate 32 forms an inclined surface on the side facing the pressure relief hole 111 , and the inclined surface can guide the flow of gas and reduce the thermal shock to the second protective plate 32 .
  • Figure 13 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • the number of second protective plates 32 and the number of reinforced areas 30b are the same.
  • the second protective plate 32 is a flat plate structure.
  • a plurality of second protective plates 32 are spaced apart in the maximum dimension direction X perpendicular to the axial direction Z of the pressure relief hole 111 .
  • Figure 14 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • the first protective plate 31 is a flat plate structure, and the thickness direction of the first protective plate 31 is parallel to the axial direction Z.
  • the size of each second protective plate 32 along the axial direction Z gradually decreases from the middle to both ends.
  • Figure 15 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • the first wall 21 a may be disposed on the lower side of the battery unit 10 .
  • the present application also provides an electrical device, including the battery of any of the above embodiments, and the battery is used to provide electrical energy to the electrical device.
  • the powered device can be any of the aforementioned devices or systems that use batteries.
  • the present application provides a battery 2 , which includes a box 20 , a battery unit 10 and a protective member 30 .
  • the battery unit 10 is accommodated in the box 20 .
  • the box 20 includes a first wall 21 a located on the upper side of the battery unit 10 .
  • the battery unit 10 is provided with a pressure relief mechanism 11 , and the pressure relief mechanism 11 is used to form a pressure relief hole 111 to release the material inside the battery unit 10 .
  • the protective member 30 is accommodated in the box 20 and fixed to the first wall 21a. At least part of the protective member 30 is located between the first wall 21 a and the pressure relief mechanism 11 and serves to cover the pressure relief hole 111 in the axial direction Z of the pressure relief hole 111 . In any direction perpendicular to the axial direction Z, the size of the protective member 30 is larger than the size of the pressure relief hole 111 .
  • the minimum size of the portion of the protective member 30 covering the pressure relief hole 111 in the axial direction Z along the axial direction Z is D.
  • the flow rate of the gas discharged by the battery unit 10 through the pressure relief hole 111 is G.
  • D and G satisfy: 2 ⁇ 10 -3 mm ⁇ s/L ⁇ D/G ⁇ 3.3 ⁇ 10 -1 mm ⁇ s/L.
  • the protective member is connected to the pressure relief mechanism of the battery unit. Opposite and used to cover the pressure relief hole.
  • the protective component is a flat plate, its thickness D is 1mm, and its material is a composite plate composed of boron nitride and carbon fiber. In the axial direction of the pressure relief hole, the distance h between the protective component and the pressure relief hole is 15mm.
  • Example 2-9 For the test method of Example 2-9, refer to Example 1. The differences between Example 2-9 and Example 1 are as shown in Table 1. For example, the flow rate G of the battery cell can be changed by changing the chemical system of the battery cell.
  • Comparative Example 1-4 For the test method of Comparative Example 1-4, refer to Example 1. The differences between Comparative Example 1-4 and Example 1 are as shown in Table 1.
  • Example 1 G(L/s) D(mm) D/G(mm ⁇ s/L) T 1 (°C) Whether to break through Example 1 500 1 2 ⁇ 10-3 821 no Example 2 500 3 6 ⁇ 10-3 749 no Example 3 500 6 12 ⁇ 10-3 667 no Example 4 500 9 18 ⁇ 10-3 497 no Example 5 200 4 20 ⁇ 10-3 486 no Example 6 200 6 30 ⁇ 10-3 454 no Example 7 15 1.5 100 ⁇ 10-3 432 no Example 8 15 3 200 ⁇ 10-3 387 no Example 9 15 5 333 ⁇ 10-3 351 no Comparative example 1 500 0.5 1 ⁇ 10-3 1388 yes
  • Comparative example 2 500 0.9 1.8 ⁇ 10 -3 1088 yes Comparative example 3 15 6 400 ⁇ 10-3 329 no Comparative example 4 15 7.5 500 ⁇ 10-3 307 no
  • the embodiments of the present application limit the value of D/G to be greater than or equal to 2 ⁇ 10 -3 mm ⁇ s/L, which can reduce the risk of the protective member being penetrated, so as to Meet the thermal protection requirements of the battery.
  • the protective component can block the conduction of heat, reduce the heat transferred to the box, and lower the temperature of the box.
  • D/G reaches a certain level, the temperature of the box can meet the demand.
  • This embodiment limits the value of D/G to less than or equal to 3.3 ⁇ 10 -1 mm ⁇ s/L to reduce redundancy in the size design of protective components, reduce the loss of battery energy density, and improve battery safety.
  • the protective member is opposite to the pressure relief mechanism of the battery unit and is used to cover the pressure relief hole.
  • the protective component is a flat plate, its thickness D is 5mm, and its material is a composite plate composed of boron nitride and carbon fiber. In the axial direction of the pressure relief hole, the distance h between the protective component and the pressure relief hole is 15mm.
  • Example 11-15 For the test method of Example 11-15, refer to Example 10. The differences between Example 11-15 and Example 10 are as shown in Table 2. For example, the volumetric energy density E of the battery cell can be changed by changing the chemical system of the battery cell.
  • Comparative Example 5-8 For the test method of Comparative Example 5-8, refer to Example 10. The differences between Comparative Example 5-8 and Example 10 are as shown in Table 2.
  • the embodiments of the present application limit the value of D/E to be greater than or equal to 1 ⁇ 10 -3 mm ⁇ L/Wh, which can reduce the risk of the protective component being penetrated. Meet the thermal protection requirements of the battery.
  • the protective member can block the conduction of heat, reduce the heat transferred to the box, and lower the temperature of the box.
  • D/E reaches a certain level, the temperature of the box can meet the demand.
  • This embodiment limits the value of D/E to less than or equal to 10 ⁇ 10 -3 mm ⁇ L/Wh to reduce redundancy in the size design of protective components, reduce the loss of battery energy density, and improve battery safety.
  • the protective member is opposite to the pressure relief mechanism of the battery unit and is used to cover the pressure relief hole.
  • the protective component is a flat plate, its thickness D is 2mm, and its material is a composite plate composed of boron nitride and carbon fiber. In the axial direction of the pressure relief hole, the distance h between the protective component and the pressure relief hole is 15mm. In the direction of the largest dimension of the pressure relief hole, the dimension K of the protective member is 180 mm.
  • Example 17-22 For the test method of Example 17-22, refer to Example 16. The differences between Example 17-22 and Example 16 are as shown in Table 3. For example, the flow rate G of the battery cell can be changed by changing the chemical system of the battery cell.
  • Comparative Example 9-11 For the test method of Comparative Example 9-11, refer to Example 16. The differences between Comparative Example 9-11 and Example 16 are as shown in Table 3.
  • K part of the gas released through the pressure relief hole may disperse and act on the area of the first wall that is not covered by the protective component, causing the temperature of the first wall to be higher. high.
  • K it is preferable to make K greater than k to increase the protection range of the protective component, reduce the risk of gas directly impacting the first wall, reduce the temperature of the first wall, and improve safety.
  • the embodiment of the present application limits the value of (K/k)/G to be greater than or equal to 3 ⁇ 10 -3 s/L, so that the first wall is not protected
  • the temperature of the shielded part of the component is within a certain range to reduce the risk of damage to the first wall.
  • the protective component has a thickened structure in the middle, that is, the protective component includes a reinforced area in the middle and base areas on both sides.
  • the thickness D of the reinforced area is 2 mm
  • the thickness of the base area is 1 mm.
  • the material of the protective component is a composite plate composed of boron nitride and carbon fiber.
  • the reinforcement area is directly opposite to the pressure relief hole, and the distance h between the reinforcement area and the pressure relief hole is 15mm.
  • the size K of the protective component is 180mm
  • the size K1 of the reinforcement area is 60mm
  • the size of each base area is 60mm.
  • Example 24-25 For the test method of Example 24-25, refer to Example 23. The differences between Example 24-25 and Example 23 are as shown in Table 4.
  • Comparative Example 12-13 For the test method of Comparative Example 12-13, refer to Example 23. The differences between Comparative Example 12-13 and Example 23 are as shown in Table 4.
  • the embodiments of the present application limit the value of (K/K 1 )/G to be less than or equal to 2 ⁇ 10 -1 s/L, so that the reinforcement region and the base region can Block high-temperature and high-speed materials to reduce the heat transferred to the first wall and lower the temperature of the first wall.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请实施例提供一种电池和用电装置。电池包括箱体、电池单元和防护构件。箱体包括第一壁。电池单元容纳于箱体内,电池单元设有泄压机构,泄压机构用于形成泄压孔,以泄放电池单元内部的物质。防护构件容纳于箱体内,防护构件的至少部分位于第一壁和泄压机构之间并用于在泄压孔的轴向上覆盖泄压孔。防护构件在轴向上覆盖泄压孔的部分沿轴向的最小尺寸为D,电池单元经由泄压孔泄放的气体的流量为G,D和G满足:2×10 -3mm·s/L≤D/G≤3.3×10 -1mm·s/L。本申请实施例可以在兼顾热防护要求的前提下减少防护构件尺寸设计的冗余,减小电池的能量密度的损失,提高电池的安全性。

Description

电池和用电装置 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电池和用电装置。
背景技术
电池广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。
如何提高电池的安全性,是电池技术中的一个研究方向。
发明内容
本申请提供了一种电池和用电装置,其能提高安全性。
第一方面,本申请实施例提供了一种电池,包括箱体、电池单元和防护构件。箱体包括第一壁。电池单元容纳于箱体内,电池单元设有泄压机构,泄压机构用于形成泄压孔,以泄放电池单元内部的物质。防护构件容纳于箱体内,防护构件的至少部分位于第一壁和泄压机构之间并用于在泄压孔的轴向上覆盖泄压孔。防护构件在轴向上覆盖泄压孔的部分沿轴向的最小尺寸为D,电池单元经由泄压孔泄放的气体的流量为G,D和G满足:2×10 -3mm·s/L≤D/G≤3.3×10 -1mm·s/L。
电池单元在热失控时产气的流量G越高,防护构件受到气体的热冲击也大,防护构件对D的需求也越大;反之,电池单元在热失控时产气的流量G越低,防护构件受到气体的热冲击也小,防护构件对D的需求也越小。在流量G确定时,需要保证D的最小值,以降低防护构件被冲穿的风险,并减少传递至第一壁的热量。当然,D的值越大,防护构件的体积和重量也越大;在流量G确定时,可以限定D的最大值,以减少防护构件尺寸设计的冗余。上述技术方案将D/G的值限定在2×10 -3mm·s/L-3.3×10 -1mm·s/L,以在兼顾热防护要求的前提下减少防护构件尺寸设计的冗余,减小电池的能量密度的损失,提高电池的安全性。
在一些实施方式中,D和G满足:2×10 -3mm·s/L≤D/G≤2×10 -1mm·s/L。
在一些实施方式中,D的值为0.5mm-5mm,以在兼顾热防护要求的前提下减少防护构件尺寸设计的冗余,减小电池的能量密度的损失,降低防护构件的成型难度,提高电池的安全性。
在一些实施方式中,在垂直于轴向的任意方向上,防护构件的尺寸均大于泄压孔的尺寸。防护构件相较于泄压孔具有较大的尺寸,其可有效地阻挡气体,降低气体直接冲击第一壁的风险,提高安全性。
在一些实施方式中,电池单元的体积能量密度为E,D和E满足:1×10 -3mm· L/Wh≤D/E≤1×10 -2mm·L/Wh。
电池单元的体积能量密度E在原则上与流量G正相关;相较于流量G,电池单元的体积能量密度E更容易确定。上述技术方案以体积能量密度E来间接地表征流量G,并通过体积能量密度E来限定D的值,以在兼顾热防护要求的前提下减少防护构件尺寸设计的冗余,减小电池的能量密度的损失,降低防护构件设计的难度。
在一些实施方式中,D和E满足:1×10 -3mm·L/Wh≤D/E≤6×10 -3mm·L/Wh。
在一些实施方式中,在泄压孔的垂直于轴向的最大尺寸方向上,泄压孔的尺寸为k;防护构件沿最大尺寸方向的尺寸为K;k、K以及G满足:K>k,(K/k)/G≥3×10 -3s/L。
电池单元在热失控时产气的流量G越高,意味着电池单元泄放的气体对防护构件的热冲击越剧烈,气体以及其它所携带的物质溅射到第一壁的未被防护构件遮挡的部分的风险越高,第一壁的未被防护构件遮挡的部分的温度也越高。上述技术方案根据电池单元在热失控时产气的流量G,限定了防护构件与泄压孔在最大尺寸方向上的尺寸关系,以使第一壁的未被防护构件遮挡的部分的温度处于一定的范围内,以降低第一壁破损的风险。
在一些实施方式中,k、K以及G满足:(K/k)/G≥8×10 -3s/L。
在一些实施方式中,k、K以及G满足:(K/k)/G≤20s/L。该技术方案可以减小防护构件尺寸设计的冗余,降低电池的能量密度的损失。
在一些实施方式中,防护构件与泄压孔在轴向上的最小距离为h,h和D满足:0.2≤h/D≤250。将h/D的值限定在0.2-250,以在兼顾热防护要求的前提下减少防护构件尺寸设计的冗余,减小电池的能量密度的损失,提高电池的安全性。
在一些实施方式中,防护构件为平板结构,防护构件的厚度方向平行于轴向。平板结构易于成型。
在一些实施方式中,在泄压孔的垂直于轴向的最大尺寸方向上,防护构件的厚度从中间向两侧逐渐减小,防护构件的厚度方向平行于轴向。
防护构件的厚度最大的部分在轴向上覆盖泄压孔的至少部分。防护构件的厚度最大的部分与泄压孔相对,其能够承受较大的热冲击,以减小防护构件被冲穿的风险。防护构件的两端受到的热冲击较小,可以具有较小的厚度,以减小防护构件的重量和体积,提高电池的能量密度。
在一些实施方式中,防护构件包括基体区和连接于基体区的加强区,加强区沿轴向的尺寸大于基体区沿轴向的尺寸。在轴向上,加强区覆盖泄压孔的至少部分。加强区与泄压孔相对,其能够承受较大的热冲击,以减小防护构件被冲穿的风险。
在一些实施方式中,在轴向上,加强区完全覆盖泄压孔。加强区能够承受较大的热冲击,以减小防护构件被冲穿的风险。基体区在轴向上不与泄压孔相对,其可以具有较小的厚度,以减小防护构件的重量和体积,提高电池的能量密度。
在一些实施方式中,在泄压孔的垂直于轴向的最大尺寸方向上,防护构件的尺寸为K,加强区的尺寸为K 1。K、K 1以及G满足:K>K 1,(K/K 1)/G≤2×10 -1s/L。
电池单元在热失控时产气的流量G越高,意味着电池单元泄放的气体对防护构 件的热冲击越剧烈,防护构件对加强区的尺寸要求也越高。发明人将(K/K 1)/G的值限定为小于或等于2×10 -1s/L,以使加强区和基体区可以阻隔高温高速物质,以减少传递到第一壁的热量,降低第一壁的温度。
在一些实施方式中,加强区和基体区均为平板结构,加强区的厚度方向和基体区的厚度方向均平行于轴向。
在一些实施方式中,加强区沿轴向的尺寸为D,基体区沿轴向的尺寸为d。在泄压孔的垂直于轴向的最大尺寸方向上,泄压孔的尺寸为k,加强区的尺寸为K 1。D、d、k以及K 1满足:0.04≤(K 1/k)/(D/d)≤300。
随着K 1/k数值上升,加强区在电池单元热失控时承受的热冲击的占比加大,基体区需承担的热失控防护要求下降,对应地,D/d的比值上可以上升,即基体区的厚度要求下降。随着K 1/k数值下降,基体区所需承担的热失控防护要求增大,对应地,D/d的比值上可以下降,即基体区的厚度要求增大。当K 1/k足够小,基体区所需承担的热失控防护要求较大,D/d存在最小值,即d存在最大值,以满足基体区热失控防护要求;当K 1/k足够大,基体区所需承担的热失控防护要求较小,D/d存在最大值,即d存在最小值。将(K 1/k)/(D/d)的值限定在0.04-300,以在兼顾热防护要求的前提下减少防护构件尺寸设计的冗余,减小电池的能量密度的损失,提高电池的安全性。
在一些实施方式中,防护构件包括沿轴向层叠设置的第一防护板和第二防护板,第一防护板与第二防护板在轴向上重叠的部分以及第二防护板构成加强区,第一防护板与第二防护板在轴向上不重叠的部分构成基体区。第一防护板和第二防护板层叠在一起,以形成具有厚度差异的防护构件,从而简化防护构件的成型工艺。
在一些实施方式中,第二防护板设置于第一防护板的面向泄压机构的一侧。该技术方案可以提高防护构件背离泄压机构一侧的平整性,便于防护构件与其它部件固定。
在一些实施方式中,第二防护板为多个,多个第二防护板间隔设置。
在一些实施方式中,在泄压孔的垂直于轴向的最大尺寸方向上,多个第二防护板间隔设置。
在一些实施方式中,第一防护板和第二防护板均为平板结构,第一防护板的厚度方向和第二防护板的厚度方向均平行于轴向。
在一些实施方式中,第一防护板为平板结构,第一防护板的厚度方向平行于轴向。在泄压孔的垂直于轴向的最大尺寸方向上,第二防护板沿轴向的尺寸从中间向两端逐渐减小。
第二防护板沿轴向的尺寸最大的部分可以与泄压孔相对,以承受较大的热冲击,减小防护构件被冲穿的风险。第二防护板的两端受到的热冲击较小,可以具有较小的厚度,以减小第二防护板的重量和体积,提高电池的能量密度。
在一些实施方式中,第二防护板的材质和第一防护板的材质不同。第一防护板和第二防护板采用不同的材质,这样可以结合不同材质的特性,复合出抗热冲击性能更好的防护构件。相较于由同种材质制备出的第一防护板和第二防护板,由不同材质制备出的第一防护板和第二防护板可以使防护构件的结构更为多变。
在一些实施方式中,第一壁位于电池单元的上侧或下侧。
在一些实施方式中,防护构件的熔点大于1000℃。防护构件具有较高的熔点,其在受到热冲击时不易熔化,从而使防护构件具有较好的抗热冲击性能,降低防护构件被冲穿的风险。
在一些实施方式中,防护构件的熔点大于第一壁的熔点。防护构件相对于第一壁具有更好的抗热冲击性能,从而起到热防护功能,降低第一壁破损的风险。
在一些实施方式中,防护构件固定于第一壁。第一壁可以固定防护构件,以降低防护构件在高温高速气体的冲击下窜动的风险,减小防护构件出现撞击破损的概率,降低防护构件防护失效的风险。
在一些实施方式中,防护构件通过粘接、焊接、紧固件连接或卡接固定于第一壁。
第二方面,本申请实施例提供了一种用电装置,包括第一方面任一实施方式的电池,电池用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸示意图;
图3为本申请一些实施例提供的电池的一结构示意图;
图4为图3所示的电池的另一结构示意图,其中,电池的电池单元的泄压机构处于致动状态;
图5为图4所示的电池在圆框A处的放大示意图;
图6为本申请一些实施例提供的电池的电池单元的结构示意图;
图7为本申请一些实施例提供的电池的一结构示意图;
图8为本申请另一些实施例提供的电池的一结构示意图;
图9为本申请另一些实施例提供的电池的一结构示意图;
图10为图9在方框B处的放大示意图;
图11为本申请另一些实施例提供的电池的一结构示意图;
图12为本申请另一些实施例提供的电池的一结构示意图;
图13为本申请另一些实施例提供的电池的一结构示意图;
图14为本申请另一些实施例提供的电池的一结构示意图;
图15为本申请另一些实施例提供的电池的一结构示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中术语“平行”不仅包括绝对平行的情况,也包括了工程上常规认知的大致平行的情况;同时,“垂直”也不仅包括绝对垂直的情况,还包括工程上常规认知的大致垂直的情况。
本申请中,电池单元可以包括锂离子电池单元、锂硫电池单元、钠锂离子电池单元、钠离子电池单元或镁离子电池单元等,本申请实施例对此并不限定。电池单元可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单元以提供更高的电压和容量的单一的物理模块。电池一般包括用于封装一个或多个电池单元的箱体。箱体可以避免液体或其他异物影响电池单元的充电或放电。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
电池单元上的泄压机构对电池单元的安全性有着重要影响。例如,当发生短路、过充等现象时,可能会导致电池单元内部发生热失控从而压力骤升。这种情况下通过泄压机构致动可以将内部压力向外释放,以防止电池单元爆炸、起火。
泄压机构可以是在电池单元达到一定条件时致动的元件或部件。示例性地,泄压机构可以是在电池单元的内部压力或内部温度达到预定阈值时致动以泄放内部压力和/或内部物质的元件或部件。该阈值设计根据设计需求不同而不同。该阈值可能取决于电池单元中的正极极片、负极极片、电解液和隔离件中一种或几种的材料。
泄压机构可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏元件或构造,即,当电池单元的内部压力达到预定阈值时,泄压机构执行动作或者泄压机构中设有的薄弱区破裂,从而形成可供内部压力泄放的泄压孔。可替代地,泄压机构也可采用温敏元件或构造,即当电池单元的内部温度达到预定阈值时,泄压机构执行动作,从而形成可供内部压力泄放的泄压孔。可替代地,泄压机构也可为能够主动致动的部件,示例性地,泄压机构可以在接收到电池的控制信号时致动。
泄压机构还可以采用其它形式。示例性地,泄压机构可为电池单元的外壳上的强度较低的结构,当电池单元热失控时,强度较低的结构开裂或变形,以形成供内部压力泄放的泄压孔。例如,泄压机构可为电池单元的外壳上的焊印。
本申请中所提到的“致动”是指泄压机构产生动作或被激活至一定的状态,从而使得电池单元的内部压力和/或内部物质得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构在致动时,电池单元的内部的高温高速物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力的情况下使电池单元发生泄压,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单元的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离件的碎片、反应产生的高温高速气体、火焰,等等。
当电池单元热失控时,电池单元将排放物泄放到箱体内。箱体也设有泄压机构,箱体的泄压机构致动,以在箱体的设定位置将排放物排放到箱体外。
发明人注意到,电池单元泄放出的排放物处于高温高速状态,如果排放物冲击箱体,可能会造成箱体破损,导致排放物不从箱体的泄压机构处泄压,而从箱体的破损点泄压,从而造成电池外部起火的风险,引发安全隐患。
在发现上述问题后,发明人尝试在与电池单元的泄压机构相对的位置设置防护构件,防护构件可以阻挡电池单元泄放的高温高速物质,以减小箱体受到的热冲击,降低箱体破损的风险,提高安全性。
发明人经过研究发现,在电池单元热失控时,如果电池单元产气过于剧烈,那么厚度较小的防护构件可能会被电池单元释放的高温高速气体冲穿,造成防护构件上形成穿孔、高温高速气体经由穿孔冲击箱体,引发箱体破损的风险。为了降低防护构件被气体冲穿的风险,发明人尝试增大防护构件的尺寸,然而,增大防护构件的尺寸 会减小电池的能量密度,如果防护构件的尺寸过设计,则会造成能量密度的浪费。
鉴于此,发明人提供了一种技术方案,其根据电池单元泄放的气体的流量来设定防护构件的尺寸,以降低防护构件被熔穿的风险,并减少电池的能量密度的浪费。
本申请实施例描述的技术方案适用于使用电池的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1为本申请一些实施例提供的车辆的结构示意图。
如图1所示,车辆1的内部设置有电池2,电池2可以设置在车辆1的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器3和马达4,控制器3用来控制电池2为马达4供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
图2为本申请一些实施例提供的电池的爆炸示意图。
如图2所示,电池2包括箱体20和电池单元10,电池单元10容纳于箱体20内。
箱体20用于容纳电池单元10,箱体20可以是多种结构。在一些实施例中,箱体20可以包括第一箱体部21和第二箱体部22,第一箱体部21与第二箱体部22相互盖合,第一箱体部21和第二箱体部22共同限定出用于容纳电池单元10的容纳空间。
在一些实施例中,第二箱体部22可以是一端开口的空心结构,第一箱体部21为板状结构,第一箱体部21盖合于第二箱体部22的开口侧,以形成具有容纳空间的箱体20。在另一些实施例中,第一箱体部21和第二箱体部22也均可以是一侧开口的空心结构,第一箱体部21的开口侧盖合于第二箱体部22的开口侧,以形成具有容纳空间的箱体20。
第一箱体部21和第二箱体部22可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部21与第二箱体部22连接后的密封性,第一箱体部21与第二箱体部22之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部21盖合于第二箱体部22的顶部,第一箱体部21亦可称之为上箱盖,第二箱体部22亦可称之为下箱体20。
在电池2中,电池单元10可以是一个,也可以是多个。若电池单元10为多个, 多个电池单元10之间可串联或并联或混联,混联是指多个电池单元10中既有串联又有并联。多个电池单元10之间可直接串联或并联或混联在一起,再将多个电池单元10构成的整体容纳于箱体20内;当然,也可以是多个电池单元10先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体20内。
图3为本申请一些实施例提供的电池的一结构示意图;图4为图3所示的电池的另一结构示意图,其中,电池的电池单元的泄压机构处于致动状态;图5为图4所示的电池在圆框A处的放大示意图;图6为本申请一些实施例提供的电池的电池单元的结构示意图;图7为本申请一些实施例提供的电池的一结构示意图。
如图3至图7所示,本申请实施例的电池2包括箱体20、电池单元10和防护构件30。箱体20包括第一壁21a。电池单元10容纳于箱体20内,电池单元10设有泄压机构11,泄压机构11用于形成泄压孔111,以泄放电池单元10内部的物质。防护构件30容纳于箱体20内,防护构件30的至少部分位于第一壁21a和泄压机构11之间并用于在泄压孔111的轴向Z上覆盖泄压孔111。防护构件30在轴向Z上覆盖泄压孔111的部分沿轴向Z的最小尺寸为D,电池单元10经由泄压孔111泄放的气体的流量为G,D和G满足:2×10 -3mm·s/L≤D/G≤3.3×10 -1mm·s/L。
箱体20可为电池2的外包络,电池单元10位于外包络的内部。箱体20可以避免液体或其他异物影响电池单元10的充电或放电。
箱体20的第一壁21a为箱体20的在轴向Z上与泄压机构11相对的壁。第一壁21a可以是箱体20的位于电池单元10上侧的顶壁,可以是箱体20的位于电池单元10下侧的底壁,也可以是箱体20的位于电池单元10一侧的侧壁;当然,第一壁21a也可以是箱体20的位于其它位置的壁。示例性地,第一壁21a可以是第一箱体部的一部分,也可以是第二箱体部的一部分。
本实施例对第一壁21a的形状不作限制。示例性地,第一壁21a可以呈平板状、曲板状或其它形状。
电池单元10可以为一个,也可以为多个。示例性地,电池单元10为多个。可选地,多个电池单元10的泄压机构11均朝向第一壁21a。
电池单元10包括一个或多个电池单体。电池单体是组成电池的最小单元,其独自能够实现充放电的功能。电池单体可以为圆柱电池单体、方壳电池单体、软包电池单体或其它电池单体。
电池单体包括电池单体外壳、电极组件13、电解液以及其它功能性部件,电极组件13和电解液容纳于电池单体外壳内。
示例性地,电极组件包括正极极片、负极极片和隔离件。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极集流部和正极极耳,正极集流部涂覆有正极活性物质层,正极极耳未涂覆正极活性物质层。以锂离子电池单体为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负 极集流部和负极极耳,负极集流部涂覆有负极活性物质层,负极极耳未涂覆负极活性物质层。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。隔离件的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。电池单体外壳可为硬质外壳,比如电池单体外壳可由铝合金制成;电池单体外壳也可为软质外壳,比如电池单体外壳可由铝塑膜制成。
在一些示例中,电池单元10可为一个电池单体,电池单元10的外壳12即为电池单体外壳,泄压机构11可设置于外壳12。在另一些示例中,电池单元10包括外壳12和容纳于外壳12内的多个电池单体,泄压机构11可设置于外壳12。
示例性地,电池单元10的外壳12包括面向第一壁21a的第二壁12a,泄压机构11安装于第二壁12a,第二壁12a位于电极组件13的面向第一壁21a的一侧。泄压机构11可以通过焊接、粘接或其它方式固定于第二壁12a,可替代地,泄压机构11与第二壁12a可一体形成。
在电池单元10处于正常状态时,泄压机构11未形成泄压孔111。泄压机构11将电池单元10的电极组件13和电解液封闭在电池单元10的内部,以降低电解液泄漏的风险。当电池单元10内部发生热失控时,泄压机构11致动,以形成泄压孔111;电池单元10内部的物质可以经由泄压孔111泄放到电池单元10的外部。
示例性地,经由泄压孔111泄放的物质包括高温高速气体。泄压孔111会限定气体的流向,使部分气体大体沿泄压孔111的轴向Z喷出。
防护构件30可以整体位于第一壁21a和泄压机构11之间,也可仅部分位于第一壁21a和泄压机构11之间。示例性地,第一壁21a和泄压机构11沿轴向Z设置,在轴向Z上,防护构件30的至少部分位于第一壁21a和泄压机构11之间。
在泄压机构11致动并形成泄压孔111时,防护构件30能够在轴向Z上覆盖泄压孔111。在本实施例中,“防护构件30在泄压孔111的轴向Z上覆盖泄压孔111”指的是:泄压孔111沿轴向Z的投影位于防护构件30沿轴向Z的投影内。防护构件30沿轴向Z的投影的面积可以大于或等于泄压孔111沿轴向Z的投影的面积。
防护构件30可以为板状结构、框体结构或其它结构。示例性地,防护构件30可以是厚度均匀的平板,也可以是厚度不均匀的板。
防护构件30可以是一体式结构,也可以是由多个子部件组装而成的结构。
防护构件30可以固定于第一壁21a,也可以固定于电池单元10,还可以固定于箱体20内的其它部件,本申请实施例对此不作限制。
防护构件30的抗热冲击性能优于第一壁21a的抗热冲击性能。抗热冲击性能指的是材料承受温度的急剧变化而不致破坏的能力。换言之,在受到相同的高温高速物质的冲击时,防护构件30相较于第一壁21a更不容易破损。
防护构件30在轴向Z上覆盖泄压孔111的部分可简称为防护部,防护部沿轴向Z的投影与泄压孔111沿轴向Z的投影完全重叠。相较于防护构件30的其它部分,防护部更容易受到高温高速物质的冲击。
流量G的单位为升/秒(L/s)。在本申请实施例中,流量G可以是电池单元10经由泄压孔111泄放的气体的平均流量。
电池单元10经由泄压孔111泄放的气体的流量G=V/t。V为电池单元10热失控所产生的在常温常压(25℃,1atm)下的气体量(单位L),t为电池单元10热失控的时间。
示例性地,电池单元10的流量G可按照下述方法测得。
测试样品:处于满充状态下的电池单元10。
测试环境:一个密闭罐体(在电池单元10热失控的过程中不发生明显的体积变化和气体泄露),罐体内的空间为V 0,罐体内为常温常压状态(25℃,1atm)。
测试流程:将电池单元10放在密闭罐体内并触发电池单元10的热失控,电池单元10的泄压机构11致动并形成泄压孔111,电池单元10泄放的物质会造成罐体内发生温度和压力的变化;电池单元10热失控15min之后,罐体内的温度均衡,此时,检测罐体内的气压为P 1,罐体中心点的温度为T 0;根据理想状态方程,可以获常温常压(25℃,1atm)下,电池单元10热失控所产生的气体量为:
Figure PCTCN2022105942-appb-000001
在上述测试流程中,R为气体常数,R=8.314J/(mol·K),24.5为常温常压下的气体摩尔体积。触发电池单元10的热失控的方法可参照GB 38031-2020 C.5.3.4。罐体中心点可以是罐体的内腔的几何中心。
电池单元10热失控的时间t为:从电池单元10热失控开始,到密闭罐体内的气压达到最大值时的时间间隔。
电池单元10在热失控时泄放的气体作用在防护构件30上,防护构件30能够减小第一壁21a受到的热冲击,并减少传递至第一壁21a的热量,降低第一壁21a被熔穿的风险,提高电池2的安全性。D的值越大,防护构件30被气体冲穿的风险越低,传递至第一壁21a的热量也越少。
电池单元10在热失控时产气的流量G越高,防护构件30受到气体的热冲击也大,防护构件30对D的需求也越大;反之,电池单元10在热失控时产气的流量G越低,防护构件30受到气体的热冲击也小,防护构件30对D的需求也越小。在流量G确定时,需要保证D的最小值,以降低防护构件30被冲穿的风险,并减少传递至第一壁21a的热量。当然,D的值越大,防护构件30的体积和重量也越大;在流量G确定时,可以限定D的最大值,以在兼顾热防护要求的前提下减少防护构件30尺寸设计的冗余,减小电池2的能量密度的损失。
发明人经过研究,将D/G的值限定在2×10 -3mm·s/L-3.3×10 -1mm·s/L,以在兼顾热防护要求的前提下减少防护构件30尺寸设计的冗余,减小电池2的能量密度的损失,提高电池2的安全性。
在一些实施例中,D/G的值为2×10 -3mm·s/L、5×10 -3mm·s/L、1×10 -2mm·s/L、5×10 -2mm·s/L、1×10 -1mm·s/L、2×10 -1mm·s/L、3×10 -1mm·s/L或3.3×10 -1mm·s/L。
在一些实施例中,防护构件30可以起到隔热作用,以减少传递至第一壁21a的热量。在电池单元10热失控时,由于防护构件30的存在,传导至第一壁21a的热量较少,因此,本申请实施例可以降低对箱体20的材质的要求。
示例性地,箱体20可以采用一些不耐高温的材质,例如聚酯材料。当然,箱 体20也可采用一些相对耐高温的材质,例如铝、钢或其它金属。当箱体20采用相对耐高温的材质时,D/G的值可以适应性地减小,以减小防护构件30占用的空间和重量,提高电池2的能量密度。
在一些实施例中,D和G满足:2×10 -3mm·s/L≤D/G≤2×10 -1mm·s/L。
在一些实施例中,D的值为0.5mm-5mm。可选地,D的值为0.5mm、1mm、2mm、3mm、4mm或5mm。
D的值越小,防护构件30被气体冲穿的风险越高;D的值越大,防护构件30被气体冲穿的风险越低,但防护构件30在电池2中占用的空间和重量也越大。发明人将D的值限定在0.5mm-5mm,以在兼顾热防护要求的前提下减少防护构件30尺寸设计的冗余,减小电池2的能量密度的损失,降低防护构件30的成型难度,提高电池2的安全性。
在一些实施例中,防护构件30具有热绝缘性,其导热率小于第一壁21a的导热率。防护构件30能够起到隔热的作用,以在电池单元10热失控时减少传导至第一壁21a的热量。在另一些替代地实施例中,防护构件30也可具有较好的导热性,防护构件30能够将热量快速地向周围传导,减少热量的聚集,降低第一壁21a的温度。
在一些实施例中,防护构件30的材料包括无机盐、无机陶瓷、金属单质、单质碳和有机胶体中的至少一种。
在一些示例中,无机盐包括硅酸盐。
在一些示例中,无机陶瓷包括氧化铝、氧化硅、碳化硼、氮化硼、碳化硅、氮化硅和氧化锆中的至少一种。
在一些示例中,金属单质类材料包括铜、铁、铝、钨和钛中的至少一种。
在一些示例中,单质碳包括无定形碳和石墨中的至少一种。
在一些示例中,有机胶体包括环氧树脂结构胶、丙烯酸酯结构胶、聚酰亚胺结构胶、马来酰亚胺结构胶、聚氨酯结构胶和亚克力结构胶中的至少一种。
在一些实施例中,防护构件30的材料包括无机盐、无机陶瓷、金属单质、单质碳和有机胶体中的至少两种。
多种材料形成的复合结构,能够改善防护构件30抗热冲击性能和热绝缘性能。
在一些实施例中,防护构件30包括由碳纤维布和有机胶体形成的碳纤维板。
在一些实施例中,防护构件30包括由无机陶瓷粉和有机胶体形成的树脂片。
在一些实施例中,防护构件30包括层叠设置的石墨层和金属层。
在一些实施例中,防护构件30包括由碳纤维及陶瓷纤维组成的复合纤维片。
在一些实施例中,防护构件30包括陶瓷层和连接于陶瓷层的金属网。
在一些实施例中,防护构件30的熔点大于1000℃。防护构件30具有较高的熔点,其在受到热冲击时不易熔化,从而使防护构件30具有较好的抗热冲击性能,降低防护构件30被冲穿的风险。
在一些实施例中,防护构件30的熔点大于1500℃。
在一些实施例中,防护构件30的熔点大于第一壁21a的熔点。防护构件30相对于第一壁21a具有更好的抗热冲击性能,从而起到热防护功能,降低第一壁21a破损 的风险。
在一些实施例中,防护构件30固定于第一壁21a。第一壁21a可以固定防护构件30,以降低防护构件30在高温高速气体的冲击下窜动的风险,减小防护构件30出现撞击破损的概率,降低防护构件30防护失效的风险。
在一些实施例中,防护构件30通过粘接、焊接、紧固件连接或卡接固定于第一壁21a。当然,防护构件30也可以通过其它方式固定于第一壁21a。
在一些实施例中,防护构件30设置于第一壁21a的内表面。
在一些实施例中,第一壁21a位于电池单元10的上侧或下侧。示例性地,如图3所示,第一壁21a位于电池单元10的上侧。
在一些实施例中,电池单元10的体积能量密度为E,D和E满足:1×10 -3mm·L/Wh≤D/E≤1×10 -2mm·L/Wh。
体积能量密度E的单位为Wh/L。E=C/V 1,C为电池单元10的容量,V 1为电池单元10的体积。
示例性地,以电池单元10的外壳12的体积作为电池单元10的体积,不考虑电池单元10的凸出于外壳12的极柱14的体积。例如,方形电池单元10的外壳12的长宽高分别为l  1、l 2和l 3,V 1=l  1×l 2×l 3
在一般情况下,当电池单元10出现热失控时,E的值越高,电池单元10内部发生的链式反应越剧烈,电池单元10释放的气体的温度越高、流量G越大。
电池单元10的体积能量密度E越高,防护构件30受到气体的热冲击也大,防护构件30对D的需求也越大;反之,电池单元10的体积能量密度E越低,防护构件30受到气体的热冲击也小,防护构件30对D的需求也越小。在体积能量密度E确定时,需要保证D的最小值,以降低防护构件30被冲穿的风险,并减少传递至第一壁21a的热量。当然,D的值越大,防护构件30的体积和重量也越大;在体积能量密度E确定时,可以限定D的最大值,以在兼顾热防护要求的前提下减少防护构件30尺寸设计的冗余,减小电池2的能量密度的损失。
电池单元10的体积能量密度E与流量G正相关;相较于流量G,电池单元10的体积能量密度E更容易确定。发明人通过试验和计算,尝试以体积能量密度E来间接地表征流量G,并通过体积能量密度E来限定D的值,降低防护构件30设计的难度。
可选地,D/E的值为1×10 -3mm·L/Wh、2×10 -3mm·L/Wh、4×10 -3mm·L/Wh、6×10 -3mm·L/Wh、8×10 -3mm·L/Wh或1×10 -2mm·L/Wh。
在一些实施例中,D和E满足:1×10 -3mm·L/Wh≤D/E≤6×10 -3mm·L/Wh。
在一些实施例中,在垂直于轴向Z的任意方向上,防护构件30的尺寸均大于泄压孔111的尺寸。
经由泄压孔111泄放出的气体,主要沿泄压孔111的轴向Z流动,当然,部分的气体以及气体所携带的颗粒等物质在穿过泄压孔111后,也可能向周围发散。在本实施例中,防护构件30相较于泄压孔111具有较大的尺寸,其可有效地阻挡气体,降低气体直接冲击第一壁21a的风险,提高安全性。
在一些实施例中,在泄压孔111的垂直于轴向Z的最大尺寸方向X上,泄压孔 111的尺寸为k;防护构件30沿最大尺寸方向X的尺寸为K。k、K以及G满足:K>k,(K/k)/G≥3×10 -3s/L。
在垂直于轴向Z的多个方向中,泄压孔111沿其中一个方向的尺寸大于或等于泄压孔111沿其它方向的尺寸,这一个方向称之为泄压孔111的最大尺寸方向X。防护构件30的尺寸K为防护构件30沿泄压孔111的最大尺寸方向X的尺寸。
电池单元10在热失控时产气的流量G越高,意味着电池单元10泄放的气体对防护构件30的热冲击越剧烈,气体以及其它所携带的物质溅射到第一壁21a的未被防护构件30遮挡的部分的风险越高,第一壁21a的未被防护构件30遮挡的部分的温度也越高。
发明人根据电池单元10在热失控时产气的流量G,限定了防护构件30与泄压孔111在最大尺寸方向X上的尺寸关系,以使第一壁21a的未被防护构件30遮挡的部分的温度处于一定的范围内,以降低第一壁21a破损的风险。
当电池单元10在热失控时产气的流量G较小时,防护构件30可以具有较小的尺寸,这样可以减小防护构件30占用的电池2的空间和重量,提高能量密度。当电池单元10在热失控时产气的流量G较大时,防护构件30可以具有较大的尺寸,这样可以增大第一壁21a的被防护构件30遮挡的范围,以减小第一壁21a的温度。
在一些实施例中,k、K以及G满足:(K/k)/G≥8×10 -3s/L。
在一些实施例中,k、K以及G满足:(K/k)/G≤20s/L。本实施例可以减小防护构件30尺寸设计的冗余,降低电池2的能量密度的损失。
在一些实施例中,(K/k)/G的值为3×10 -3s/L、5×10 -3s/L、8×10 -3s/L、1×10 -2s/L、5×10 -2s/L、1×10 -1s/L、5×10 -1s/L、1s/L、5s/L、10s/L、15s/L、20s/L。
在一些实施例中,防护构件30与泄压孔111在轴向Z上的最小距离为h,h和D满足:0.2≤h/D≤250。
当h足够低,作用于防护构件30上的气体的温度和速度基本没有下降,防护构件30受到的热冲击较大,对应地,D存在一个最小值以确保防护效果。当h足够高时,作用于防护构件30上的气体的温度和速度显著下降,防护构件30受到的热冲击较小,对应地,D存在一个最大值,以在兼容热失控防护要求的同时具有经济性,减少设计冗余。发明人经过试验和计算,将h/D的值限定在0.2-250,以在兼顾热防护要求的前提下减少防护构件30尺寸设计的冗余,减小电池2的能量密度的损失,提高电池2的安全性。
在一些实施例中,箱体20内设有多个电池单元10,防护构件30用于在轴向Z上覆盖多个电池单元10的泄压孔111。无论哪个电池单元10出现热失控,防护构件30均能够起到阻隔高温高速物质的作用,降低第一壁21a破损的风险。
在一些实施例中,防护构件30为平板结构,防护构件30的厚度方向平行于轴向Z。示例性地,防护构件30的厚度为D。
在一些实施例中,电池包括多个依次排布的电池单元10;示例性地,多个电池单元10的排布方向Y垂直于轴向Z和最大尺寸方向X。
图8为本申请另一些实施例提供的电池的一结构示意图。
如图8所示,在一些实施例中,在泄压孔111的垂直于轴向Z的最大尺寸方向X上,防护构件30的厚度从中间向两侧逐渐减小,防护构件30的厚度方向平行于轴向Z。防护构件30的厚度最大的部分在轴向Z上覆盖泄压孔111的至少部分。
防护构件30的厚度最大的部分与泄压孔111相对,其能够承受较大的热冲击,以减小防护构件30被冲穿的风险。防护构件30的两端受到的热冲击较小,可以具有较小的厚度,以减小防护构件30的重量和体积,提高电池2的能量密度。
在一些实施例中,防护构件30在面向泄压孔111的一侧形成斜面,斜面可以引导气体流动,减小防护构件30受到的热冲击,
图9为本申请另一些实施例提供的电池的一结构示意图;图10为图9在方框B处的放大示意图。
如图9和图10所示,在一些实施例中,防护构件30包括基体区30a和连接于基体区30a的加强区30b,加强区30b沿轴向Z的尺寸大于基体区30a沿轴向Z的尺寸。在轴向Z上,加强区30b覆盖泄压孔111的至少部分。
加强区30b与泄压孔111相对,其能够承受较大的热冲击,以减小防护构件30被冲穿的风险。
在一些实施例中,在轴向Z上,加强区30b完全覆盖泄压孔111。加强区30b能够承受较大的热冲击,以减小防护构件30被冲穿的风险。基体区30a在轴向Z上不与泄压孔111相对,其可以具有较小的厚度,以减小防护构件30的重量和体积,提高电池2的能量密度。
在一些实施例中,在泄压孔111的垂直于轴向Z的最大尺寸方向X上,防护构件30的尺寸为K,加强区30b的尺寸为K 1。K、K 1以及G满足:K>K 1,(K/K 1)/G≤2×10 -1s/L。
电池单元10在热失控时产气的流量G越高,意味着电池单元10泄放的气体对防护构件30的热冲击越剧烈,防护构件30对加强区30b的尺寸要求也越高。发明人将(K/K 1)/G的值限定为小于或等于2×10 -1s/L,以使加强区30b和基体区30a可以阻隔高温高速物质,以减少传递到第一壁21a的热量,降低第一壁21a的温度。
在一些实施例中,基体区30a为两个,两个基体区30a分别位于加强区30b沿最大尺寸方向X的两侧。
在一些实施例中,两个基体区30a关于垂直于最大尺寸方向X的一虚拟平面对称。
在一些实施例中,加强区30b和基体区30a均为平板结构,加强区30b的厚度方向和基体区30a的厚度方向均平行于轴向Z。
示例性地,加强区30b的厚度为D。
在一些实施例中,加强区30b沿轴向Z的尺寸为D,基体区30a沿轴向Z的尺寸为d。在泄压孔111的垂直于轴向Z的最大尺寸方向X上,泄压孔111的尺寸为k,加强区30b的尺寸为K 1。D、d、k以及K 1满足:0.04≤(K 1/k)/(D/d)≤300。
随着K 1/k数值上升,加强区30b在电池单元10热失控时承受的热冲击的占比 加大,基体区30a需承担的热失控防护要求下降,对应地,D/d的比值上可以上升,即基体区30a的厚度要求下降。随着K 1/k数值下降,基体区30a所需承担的热失控防护要求增大,对应地,D/d的比值上可以下降,即基体区30a的厚度要求增大。当K 1/k足够小,基体区30a所需承担的热失控防护要求较大,D/d存在最小值,即d存在最大值,以满足基体区30a热失控防护要求;当K 1/k足够大,基体区30a所需承担的热失控防护要求较小,D/d存在最大值,即d存在最小值,以兼容热失控防护要求的同时具有经济性,减少设计冗余。
发明人将(K 1/k)/(D/d)的值限定在0.04-300,以在兼顾热防护要求的前提下减少防护构件30尺寸设计的冗余,减小电池2的能量密度的损失,提高电池2的安全性。
图11为本申请另一些实施例提供的电池的一结构示意图。
如图11所示,在一些实施例中,防护构件30包括沿轴向Z层叠设置的第一防护板31和第二防护板32,第一防护板31与第二防护板32在轴向Z上重叠的部分以及第二防护板32构成加强区30b,第一防护板31与第二防护板32在轴向Z上不重叠的部分构成基体区30a。
第一防护板31的材质与第二防护板32的材质可以相同,也可以不同。
第二防护板32可以设置在第一防护板31的面向泄压机构11的一侧,也可以设置在第一防护板31的背向泄压机构11的一侧。
第二防护板32的数量可以为一个,也可以为多个,本申请实施例对此不作限制。
第二防护板32可以是厚度均匀的平板,也可以是厚度不均匀的板。
第一防护板31和第二防护板32层叠在一起,以形成具有厚度差异的防护构件30。本实施例可以简化防护构件30的成型工艺。
在一些实施例中,第二防护板32设置于第一防护板31的面向泄压机构11的一侧。
本实施例可以提高防护构件30背离泄压机构11一侧的平整性,便于防护构件30与其它部件固定。
在一些实施例中,第一防护板31和第二防护板32均为平板结构,第一防护板31的厚度方向和第二防护板32的厚度方向均平行于轴向Z。
在一些实施例中,第二防护板32的材质和第一防护板31的材质不同。第一防护板31和第二防护板32采用不同的材质,这样可以结合不同材质的特性,复合出抗热冲击性能更好的防护构件30。相较于由同种材质制备出的第一防护板31和第二防护板32,由不同材质制备出的第一防护板31和第二防护板32可以使防护构件30的结构更为多变。
在一些实施例中,第二防护板32的抗热冲击性能优于第一防护板31。
在一些实施例中,第二防护板32的熔点大于第一防护板31的熔点。示例性地,第二防护板32的熔点大于1000℃。本申请实施例对第一防护板31的熔点不作限制,第一防护板31的熔点可大于、等于或小于1000℃。
在一些实施例中,第二防护板32粘接于第一防护板31。
图12为本申请另一些实施例提供的电池的一结构示意图。
如图12所示,在一些实施例中,第一防护板31为平板结构,第一防护板31的厚度方向平行于轴向Z。在泄压孔111的垂直于轴向Z的最大尺寸方向X上,第二防护板32沿轴向Z的尺寸从中间向两端逐渐减小。
第二防护板32沿轴向Z的尺寸最大的部分可以与泄压孔111相对,以承受较大的热冲击,减小防护构件30被冲穿的风险。第二防护板32的两端受到的热冲击较小,可以具有较小的厚度,以减小第二防护板32的重量和体积,提高电池2的能量密度。
在一些实施例中,第二防护板32在面向泄压孔111的一侧形成斜面,斜面可以引导气体流动,减小第二防护板32受到的热冲击。
图13为本申请另一些实施例提供的电池的一结构示意图。
如图13所述,在一些实施例中,第二防护板32为多个,多个第二防护板32间隔设置。
在一些实施例中,第二防护板32的数量和加强区30b的数量相同。
在一些实施例中,第二防护板32为平板结构。
在一些实施例中,在泄压孔111的垂直于轴向Z的最大尺寸方向X上,多个第二防护板32间隔设置。
图14为本申请另一些实施例提供的电池的一结构示意图。
如图14所示,在一些实施例中,第二防护板32为多个,多个第二防护板32间隔设置或连续设置。
在一些实施例中,第一防护板31为平板结构,第一防护板31的厚度方向平行于轴向Z。在泄压孔111的垂直于轴向Z的最大尺寸方向X上,各第二防护板32沿轴向Z的尺寸从中间向两端逐渐减小。
图15为本申请另一些实施例提供的电池的一结构示意图。
如图15所示,在一些实施例中,第一壁21a可设置于电池单元10的下侧。
根据本申请的一些实施例,本申请还提供了一种用电装置,包括以上任一实施例的电池,电池用于为用电装置提供电能。用电装置可以是前述任一应用电池的设备或系统。
根据本申请的一些实施例,参照图3至图7,本申请提供了一种电池2,其包括箱体20、电池单元10和防护构件30。电池单元10容纳于箱体20内。箱体20包括位于电池单元10的上侧的第一壁21a。电池单元10设有泄压机构11,泄压机构11用于形成泄压孔111,以泄放电池单元10内部的物质。
防护构件30容纳于箱体20内并固定于第一壁21a。防护构件30的至少部分位于第一壁21a和泄压机构11之间并用于在泄压孔111的轴向Z上覆盖泄压孔111。在垂直于轴向Z的任意方向上,防护构件30的尺寸均大于泄压孔111的尺寸。
防护构件30在轴向Z上覆盖泄压孔111的部分沿轴向Z的最小尺寸为D,电池单元10经由泄压孔111泄放的气体的流量为G,D和G满足:2×10 -3mm·s/L≤D/G≤3.3×10 -1mm·s/L。
以下结合实施例进一步说明本申请。
为了使本申请的发明目的、技术方案和有益技术效果更加清晰,以下结合实施例进一步详细描述本申请。但是,应当理解的是,本申请的实施例仅仅是为了解释本申请,并非为了限制本申请,且本申请的实施例并不局限于说明书中给出的实施例。实施例中未注明具体实验条件或操作条件的按常规条件制作,或按材料供应商推荐的条件制作。
实施例1:
(i)制备两个相同的方形的电池单元,各电池单元的长度l 1为220mm,宽度l 2为44mm,高度l 3为100mm。
(ii)测试一个电池单元经由泄压孔泄放的气体的流量G,G为500L/s。
(iii)将另一个电池单元放置到密闭的箱体内,并在箱体的位于电池单元上方的壁(以下称之为第一壁)上贴附防护构件,防护构件与电池单元的泄压机构相对并用于覆盖泄压孔。防护构件为平板,其厚度D为1mm,其材质为氮化硼和碳纤维构成的复合板。在泄压孔的轴向上,防护构件与泄压孔的间距h为15mm。
(iv)触发箱体内的电池单元的热失控,使电池单元形成泄压孔并向外泄放物质。在电池单元热失控的过程中,在防护构件背离电池单元的表面的多个位点检测温度,并记录防护构件背离电池单元的表面的最高温度T 1
(v)在电池单元热失控结束后,打开箱体,观察防护构件是否被冲穿。
实施例2-9:实施例2-9的测试方法参照实施例1,实施例2-9与实施例1的区别如表1。示例性地,可通过改变电池单元的化学体系,来改变电池单元的流量G。
对比例1-4:对比例1-4的测试方法参照实施例1,对比例1-4与实施例1的区别如表1。
表1
  G(L/s) D(mm) D/G(mm·s/L) T 1(℃) 是否冲穿
实施例1 500 1 2×10 -3 821
实施例2 500 3 6×10 -3 749
实施例3 500 6 12×10 -3 667
实施例4 500 9 18×10 -3 497
实施例5 200 4 20×10 -3 486
实施例6 200 6 30×10 -3 454
实施例7 15 1.5 100×10 -3 432
实施例8 15 3 200×10 -3 387
实施例9 15 5 333×10 -3 351
对比例1 500 0.5 1×10 -3 1388
对比例2 500 0.9 1.8×10 -3 1088
对比例3 15 6 400×10 -3 329
对比例4 15 7.5 500×10 -3 307
参照实施例1-9和对比例1-2,本申请实施例将D/G的值限定为大于或等于2×10 -3mm·s/L,可以降低防护构件被冲穿的风险,以满足电池的热防护要求。
参照实施例1-9和对比例3-4,防护构件能够阻隔热量的传导,减少传递至箱体的热量,降低箱体的温度。当D/G大到一定程度时,即可使箱体的温度满足需求。本实施例将D/G的值限定为小于或等于3.3×10 -1mm·s/L,以减少防护构件尺寸设计的冗余,减小电池的能量密度的损失,提高电池的安全性。
实施例10:
(i)制备方形的电池单元,电池单元的长度l 1为220mm,宽度l 2为44mm,高度l 3为100mm。电池单元的体积能量密度E为500Wh/L。
(ii)将电池单元放置到密闭的箱体内,并在箱体的位于电池单元上方的第一壁上贴附防护构件,防护构件与电池单元的泄压机构相对并用于覆盖泄压孔。防护构件为平板,其厚度D为5mm,其材质为氮化硼和碳纤维构成的复合板。在泄压孔的轴向上,防护构件与泄压孔的间距h为15mm。
(iii)触发箱体内的电池单元的热失控,使电池单元形成泄压孔并向外泄放物质。在电池单元热失控的过程中,在防护构件背离电池单元的表面的多个位点检测温度,并记录防护构件背离电池单元的表面的最高温度T 1
(iv)在电池单元热失控结束后,打开箱体,观察防护构件是否被冲穿。
实施例11-15:实施例11-15的测试方法参照实施例10,实施例11-15与实施例10的区别如表2。示例性地,可通过改变电池单元的化学体系,来改变电池单元的体积能量密度E。
对比例5-8:对比例5-8的测试方法参照实施例10,对比例5-8与实施例10的区别如表2。
表2
Figure PCTCN2022105942-appb-000002
Figure PCTCN2022105942-appb-000003
参照实施例10-15和对比例5-6,本申请实施例将D/E的值限定为大于或等于1×10 -3mm·L/Wh,可以降低防护构件被冲穿的风险,以满足电池的热防护要求。
参照实施例10-15和对比例7-8,防护构件能够阻隔热量的传导,减少传递至箱体的热量,降低箱体的温度。当D/E大到一定程度时,即可使箱体的温度满足需求。本实施例将D/E的值限定为小于或等于10×10 -3mm·L/Wh,以减少防护构件尺寸设计的冗余,减小电池的能量密度的损失,提高电池的安全性。
实施例16:
(i)制备两个相同的方形的电池单元,各电池单元的长度l 1为220mm,宽度l 2为44mm,高度l 3为100mm。
(ii)测试一个电池单元经由泄压孔泄放的气体的流量G,G为200L/s。在泄压孔的垂直于轴向的最大尺寸方向上,泄压孔的尺寸k为60mm。
(iii)将另一个电池单元放置到密闭的箱体内,并在箱体的位于电池单元上方的第一壁上贴附防护构件,防护构件与电池单元的泄压机构相对并用于覆盖泄压孔。防护构件为平板,其厚度D为2mm,其材质为氮化硼和碳纤维构成的复合板。在泄压孔的轴向上,防护构件与泄压孔的间距h为15mm。在泄压孔的最大尺寸方向上,防护构件的尺寸K为180mm。
(iv)触发箱体内的电池单元的热失控,使电池单元形成泄压孔并向外泄放物质。在电池单元热失控的过程中,检测第一壁的靠近防护构件的沿最大尺寸方向的边缘且未被防护构件覆盖的区域的温度,并记录最高温度T 2
(v)在电池单元热失控结束后,打开箱体,观察防护构件是否被冲穿。
实施例17-22:实施例17-22的测试方法参照实施例16,实施例17-22与实施例16的区别如表3。示例性地,可通过改变电池单元的化学体系,来改变电池单元的流量G。
对比例9-11:对比例9-11的测试方法参照实施例16,对比例9-11与实施例16的区别如表3。
表3
Figure PCTCN2022105942-appb-000004
Figure PCTCN2022105942-appb-000005
参照实施例16-22和对比例9,当K=k时,经由泄压孔泄放出的部分气体可能发散并作用在第一壁的未被防护构件覆盖的区域,造成第一壁的温度较高。本申请实施例优选使K大于k,以增大防护构件的防护范围,降低气体直接冲击第一壁的风险,减小第一壁的温度,提高安全性。
参照实施例16-22和对比例10-11,本申请实施例将(K/k)/G的值限定为大于或等于3×10 -3s/L,以使第一壁的未被防护构件遮挡的部分的温度处于一定的范围内,以降低第一壁破损的风险。
实施例23:
(i)制备两个相同的方形的电池单元,各电池单元的长度l 1为220mm,宽度l 2为44mm,高度l 3为100mm。
(ii)测试一个电池单元经由泄压孔泄放的气体的流量G,G为15L/s。在泄压孔的垂直于轴向的最大尺寸方向上,泄压孔的尺寸k为50mm。
(iii)将另一个电池单元放置到密闭的箱体内,并在箱体的位于电池单元上方的第一壁上贴附防护构件,防护构件与电池单元的泄压机构相对并用于覆盖泄压孔。防护构件为中部加厚的结构,即防护构件包括中部的加强区和两侧的基体区,加强区的厚度D为2mm,基体区的厚度为1mm。防护构件的材质为氮化硼和碳纤维构成的复合板。在泄压孔的轴向上,加强区与泄压孔正对,且加强区与泄压孔的间距h为15mm。在泄压孔的最大尺寸方向上,防护构件的尺寸K为180mm,加强区的尺寸K 1为60mm,各基体区的尺寸为60mm。
(iv)触发箱体内的电池单元的热失控,使电池单元形成泄压孔并向外泄放物质。在电池单元热失控的过程中,在基体区背离电池单元的表面的多个位点检测温度,并记录基体区背离电池单元的表面的最高温度T 3
(v)在电池单元热失控结束后,打开箱体,观察防护构件是否被冲穿。
实施例24-25:实施例24-25的测试方法参照实施例23,实施例24-25与实施例23的区别如表4。
对比例12-13:对比例12-13的测试方法参照实施例23,对比例12-13与实施例23的区别如表4。
表4
Figure PCTCN2022105942-appb-000006
参照实施例24-25和对比例12-13,本申请实施例将(K/K 1)/G的值限定为小于或等于2×10 -1s/L,以使加强区和基体区可以阻隔高温高速物质,以减少传递到第一壁的热量,降低第一壁的温度。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (30)

  1. 一种电池,包括:
    箱体,包括第一壁;
    电池单元,容纳于所述箱体内,所述电池单元设有泄压机构,所述泄压机构用于形成泄压孔,以泄放所述电池单元内部的物质;以及
    防护构件,容纳于所述箱体内,所述防护构件的至少部分位于所述第一壁和所述泄压机构之间并用于在所述泄压孔的轴向上覆盖所述泄压孔,
    其中,所述防护构件在所述轴向上覆盖所述泄压孔的部分沿所述轴向的最小尺寸为D,所述电池单元经由所述泄压孔泄放的气体的流量为G,D和G满足:
    2×10 -3mm·s/L≤D/G≤3.3×10 -1mm·s/L。
  2. 根据权利要求1所述的电池,其中,D和G满足:
    2×10 -3mm·s/L≤D/G≤2×10 -1mm·s/L。
  3. 根据权利要求1或2所述的电池,其中,D的值为0.5mm-5mm。
  4. 根据权利要求1-3任一项所述的电池,其中,在垂直于所述轴向的任意方向上,所述防护构件的尺寸均大于所述泄压孔的尺寸。
  5. 根据权利要求1-4任一项所述的电池,其中,所述电池单元的体积能量密度为E,D和E满足:
    1×10 -3mm·L/Wh≤D/E≤1×10 -2mm·L/Wh。
  6. 根据权利要求5所述的电池,其中,D和E满足:
    1×10 -3mm·L/Wh≤D/E≤6×10 -3mm·L/Wh。
  7. 根据权利要求1-6任一项所述的电池,其中,在所述泄压孔的垂直于所述轴向的最大尺寸方向上,所述泄压孔的尺寸为k;所述防护构件沿所述最大尺寸方向的尺寸为K;k、K以及G满足:
    K>k,(K/k)/G≥3×10 -3s/L。
  8. 根据权利要求7所述的电池,其中,k、K以及G满足:
    (K/k)/G≥8×10 -3s/L。
  9. 根据权利要求7或8所述的电池,其中,k、K以及G满足:
    (K/k)/G≤20s/L。
  10. 根据权利要求1-9任一项所述的电池,其中,所述防护构件与所述泄压孔在所述轴向上的最小距离为h,h和D满足:
    0.2≤h/D≤250。
  11. 根据权利要求1-10任一项所述的电池,其中,所述防护构件为平板结构,所述防护构件的厚度方向平行于所述轴向。
  12. 根据权利要求1-10任一项所述的电池,其中,在所述泄压孔的垂直于所述轴向的最大尺寸方向上,所述防护构件的厚度从中间向两侧逐渐减小,所述防护构件的厚度方向平行于所述轴向;
    所述防护构件的厚度最大的部分在所述轴向上覆盖所述泄压孔的至少部分。
  13. 根据权利要求1-10任一项所述的电池,其中,所述防护构件包括基体区和连接于所述基体区的加强区,所述加强区沿所述轴向的尺寸大于所述基体区沿所述轴向的尺寸;
    在所述轴向上,所述加强区覆盖所述泄压孔的至少部分。
  14. 根据权利要求13所述的电池,其中,在所述轴向上,所述加强区完全覆盖所述泄压孔。
  15. 根据权利要求14所述的电池,其中,
    在所述泄压孔的垂直于所述轴向的最大尺寸方向上,所述防护构件的尺寸为K,所述加强区的尺寸为K 1
    K、K 1以及G满足:
    K>K 1,(K/K 1)/G≤2×10 -1s/L。
  16. 根据权利要求14或15所述的电池,其中,所述加强区和所述基体区均为平板结构,所述加强区的厚度方向和所述基体区的厚度方向均平行于所述轴向。
  17. 根据权利要求16所述的电池,其中,所述加强区沿所述轴向的尺寸为D,所述基体区沿所述轴向的尺寸为d;
    在所述泄压孔的垂直于所述轴向的最大尺寸方向上,所述泄压孔的尺寸为k,所述加强区的尺寸为K 1
    D、d、k以及K 1满足:0.04≤(K 1/k)/(D/d)≤300。
  18. 根据权利要求13-17任一项所述的电池,其中,所述防护构件包括沿所述轴向层叠设置的第一防护板和第二防护板,所述第一防护板与所述第二防护板在所述轴向上重叠的部分以及所述第二防护板构成所述加强区,所述第一防护板与所述第二防护板在所述轴向上不重叠的部分构成所述基体区。
  19. 根据权利要求18所述的电池,其中,所述第二防护板设置于所述第一防护板的面向泄压机构的一侧。
  20. 根据权利要求18或19所述的电池,其中,所述第二防护板为多个,所述多个第二防护板间隔设置。
  21. 根据权利要求20所述的电池,其中,在所述泄压孔的垂直于所述轴向的最大尺寸方向上,多个所述第二防护板间隔设置。
  22. 根据权利要求18-21任一项所述的电池,其中,所述第一防护板和所述第二防护板均为平板结构,所述第一防护板的厚度方向和所述第二防护板的厚度方向均平行于所述轴向。
  23. 根据权利要求18-21任一项所述的电池,其中,所述第一防护板为平板结构,所述第一防护板的厚度方向平行于所述轴向;
    在所述泄压孔的垂直于所述轴向的最大尺寸方向上,所述第二防护板沿所述轴向的尺寸从中间向两端逐渐减小。
  24. 根据权利要求18-23任一项所述的电池,其中,所述第二防护板的材质和所述第一防护板的材质不同。
  25. 根据权利要求1-24任一项所述的电池,其中,所述第一壁位于所述电池单元的上侧或下侧。
  26. 根据权利要求1-25任一项所述的电池,其中,所述防护构件的熔点大于1000℃。
  27. 根据权利要求1-26任一项所述的电池,其中,所述防护构件的熔点大于所述第一壁的熔点。
  28. 根据权利要求1-27任一项所述的电池,其中,所述防护构件固定于所述第一壁。
  29. 根据权利要求28所述的电池,其中,所述防护构件通过粘接、焊接、紧固件连接或卡接固定于所述第一壁。
  30. 一种用电装置,包括根据权利要求1-29任一项所述的电池,所述电池用于提供电能。
PCT/CN2022/105942 2022-07-15 2022-07-15 电池和用电装置 WO2024011578A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2022/105942 WO2024011578A1 (zh) 2022-07-15 2022-07-15 电池和用电装置
CN202280061535.2A CN117941152A (zh) 2022-07-15 2022-07-15 电池和用电装置
KR1020247024742A KR20240129189A (ko) 2022-07-15 2022-07-15 전지 및 전기기기
CN202320295253.0U CN219917470U (zh) 2022-07-15 2023-02-23 电池和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105942 WO2024011578A1 (zh) 2022-07-15 2022-07-15 电池和用电装置

Publications (1)

Publication Number Publication Date
WO2024011578A1 true WO2024011578A1 (zh) 2024-01-18

Family

ID=88424309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105942 WO2024011578A1 (zh) 2022-07-15 2022-07-15 电池和用电装置

Country Status (3)

Country Link
KR (1) KR20240129189A (zh)
CN (2) CN117941152A (zh)
WO (1) WO2024011578A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118589084A (zh) * 2024-04-18 2024-09-03 中国矿业大学 矿井下防爆锂电池热失控灾害消除及废能提取系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211907477U (zh) * 2020-03-27 2020-11-10 湖北亿纬动力有限公司 电池以及电池模组
CN213026308U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置
CN114175363A (zh) * 2020-07-10 2022-03-11 宁德时代新能源科技股份有限公司 电池及其相关装置、制备方法和制备设备
WO2022104548A1 (zh) * 2020-11-17 2022-05-27 宁德时代新能源科技股份有限公司 电池、使用电池的装置、电池的制备方法和制备设备
CN216720203U (zh) * 2022-02-10 2022-06-10 中创新航科技股份有限公司 电池箱体及电池包

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211907477U (zh) * 2020-03-27 2020-11-10 湖北亿纬动力有限公司 电池以及电池模组
CN213026308U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置
CN114175363A (zh) * 2020-07-10 2022-03-11 宁德时代新能源科技股份有限公司 电池及其相关装置、制备方法和制备设备
WO2022104548A1 (zh) * 2020-11-17 2022-05-27 宁德时代新能源科技股份有限公司 电池、使用电池的装置、电池的制备方法和制备设备
CN216720203U (zh) * 2022-02-10 2022-06-10 中创新航科技股份有限公司 电池箱体及电池包

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118589084A (zh) * 2024-04-18 2024-09-03 中国矿业大学 矿井下防爆锂电池热失控灾害消除及废能提取系统

Also Published As

Publication number Publication date
KR20240129189A (ko) 2024-08-27
CN219917470U (zh) 2023-10-27
CN117941152A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
US11955654B2 (en) Battery, and related device, preparation method and preparation apparatus thereof
US11699829B2 (en) Box of battery, battery, power consumpiion apparatus, method for producing battery and apparatus for producing battery
EP4195367B1 (en) Battery and related apparatus, production method and production device therefor
WO2022067810A1 (zh) 电池、装置、电池的制备方法以及制备装置
US20230070894A1 (en) Battery, apparatus, and preparation method and preparation apparatus of battery
WO2023159840A1 (zh) 电池单体、电池以及用电装置
WO2023133722A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
US20240204343A1 (en) Battery and electrical device
US11817601B2 (en) Battery, power consumption device, method and device for producing battery
WO2023185380A1 (zh) 电池模块、电池、用电设备
WO2024011578A1 (zh) 电池和用电装置
US20240222758A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
WO2022006896A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2023236220A1 (zh) 电池单体、电池及用电设备
WO2024092442A1 (zh) 电池和用电设备
WO2024011583A1 (zh) 电池和用电装置
WO2024016269A1 (zh) 电池和用电装置
US20230387561A1 (en) Battery and electric apparatus
WO2024000509A1 (zh) 电池和用电装置
EP4009433B1 (en) Battery, electric apparatus, and battery manufacturing method and device
WO2024059963A1 (zh) 电池单体、电池及用电装置
WO2023071710A1 (zh) 电池单体、电池及用电设备
WO2023133755A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023230746A1 (zh) 电池单体、电池及用电装置
WO2024040528A1 (zh) 电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280061535.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247024742

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022950697

Country of ref document: EP

Effective date: 20240724