WO2022104548A1 - 电池、使用电池的装置、电池的制备方法和制备设备 - Google Patents

电池、使用电池的装置、电池的制备方法和制备设备 Download PDF

Info

Publication number
WO2022104548A1
WO2022104548A1 PCT/CN2020/129476 CN2020129476W WO2022104548A1 WO 2022104548 A1 WO2022104548 A1 WO 2022104548A1 CN 2020129476 W CN2020129476 W CN 2020129476W WO 2022104548 A1 WO2022104548 A1 WO 2022104548A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cell
battery cells
pressure relief
guide channel
Prior art date
Application number
PCT/CN2020/129476
Other languages
English (en)
French (fr)
Inventor
梁成都
徐晓富
叶永煌
金海族
陈文伟
刘倩
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20961839.6A priority Critical patent/EP4064437A4/en
Priority to CN202080102561.6A priority patent/CN115917861A/zh
Priority to PCT/CN2020/129476 priority patent/WO2022104548A1/zh
Publication of WO2022104548A1 publication Critical patent/WO2022104548A1/zh
Priority to US18/054,698 priority patent/US20230066562A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/358External gas exhaust passages located on the battery cover or case
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/392Arrangements for facilitating escape of gases with means for neutralising or absorbing electrolyte; with means for preventing leakage of electrolyte through vent holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular, to a battery, a device using the battery, a method for preparing the battery, and a device for preparing the battery.
  • Devices such as automobiles, electric bicycles, ships, and energy storage cabinets include batteries, which provide electrical energy for the devices.
  • the battery includes a plurality of battery cells and a box body, the plurality of battery cells are arranged in sequence, and the box body is arranged around the outside of the plurality of battery cells, and forms protection for the plurality of battery cells.
  • Positive and negative electrodes are arranged on the box body, and each battery cell is connected with the positive and negative electrodes.
  • the battery cell is provided with a pressure relief mechanism, which is used to actuate to release the internal pressure of the battery cell when the internal pressure or temperature of the battery cell reaches a threshold value, and the battery cell discharges the discharge through the pressure relief mechanism into the space formed between the battery cell and the box.
  • embodiments of the present application provide a battery, a device using the battery, a method for preparing the battery, and a device for preparing the battery, the battery can accommodate more emissions, and the battery has a higher safety factor.
  • a first aspect of the embodiments of the present application provides a battery, which includes a plurality of battery cells, at least one of the battery cells is provided with a pressure relief mechanism, and the pressure relief mechanism is used to reduce the internal pressure of the battery cell. or actuation when the internal temperature reaches a threshold value to release the internal pressure of the battery cells; a protective box, the protective box is used to form protection for the plurality of battery cells; the protective box is provided with a diversion channel, The diversion channel is used for diverting the exhaust discharged from the pressure relief mechanism; the plurality of battery cells include a first battery cell and a second battery cell that are arranged adjacently, the first battery cell
  • the battery cell includes a pressure relief end provided with the pressure relief mechanism, and the pressure relief end of the first battery cell is in a direction away from the diversion channel and the pressure relief end of the second battery cell close to the pressure relief end. One end is staggered to increase the volume of the guide channel.
  • the protective box includes a protective plate, the protective plate is spaced from the plurality of battery cells, and the guide channel is formed between the protective plate and the plurality of battery cells
  • the protective plate is provided with a concave portion, and the concave portion is used to increase the volume of the guide channel, wherein the concave portion is directed from the protective plate to the side facing away from the plurality of battery cells.
  • a recess is formed on one side, and the recess has an inner cavity, and the inner cavity is used to communicate with the guide channel.
  • the recessed portion is disposed opposite to the first battery cell.
  • the protective box includes a support plate, the support plate is attached to the plurality of battery cells, and the guide channel is provided on the support plate away from the plurality of batteries One side of the unit; the support plate is provided with a through hole, the through hole is used for the discharge to pass through, and the through hole is communicated with the guide channel.
  • the energy density of the first battery cell is greater than the energy density of the second battery cell.
  • the energy density of the first battery cell is 1.1-1.6 times the energy density of the second battery cell.
  • the first battery cell and the second battery cell are provided in multiples, and the first battery cell and the second battery cell are arranged in n numbers.
  • the first battery cells and the m second battery cells are arranged alternately, wherein n ⁇ 1, m ⁇ 1.
  • the battery includes a plurality of battery cells and a protective box, and the plurality of battery cells are arranged in the protective box, so that the protective box can protect the plurality of battery cells. form protection.
  • the plurality of battery cells include a first battery cell and a second battery cell, and the pressure relief end of the first battery cell is staggered from the end of the second battery cell close to the pressure relief end in a direction away from the diversion channel.
  • the volume of the guide tube channel can be increased, so that the pressure relief buffer space in the protective box is larger, the protective box can accommodate more discharges, and the safety factor of the battery is higher.
  • a second aspect of the embodiments of the present application provides a device using a battery, which includes the battery described in the first aspect above, and the battery provides electrical energy for the device.
  • a third aspect of the embodiments of the present application provides a method for preparing a battery, which is used to prepare the battery described in the first aspect, including: providing a plurality of battery cells, at least one of the plurality of battery cells is provided with a pressure relief A mechanism, wherein the plurality of battery cells includes a first battery cell and a second battery cell arranged adjacently; a protective box is provided; the plurality of battery cells are assembled in the protective box, and are installed in the protective box.
  • a diversion channel is formed in the protective box; the pressure relief end of the first battery cell and the end of the second battery cell close to the pressure relief end are arranged staggered.
  • a fourth aspect of the embodiments of the present application provides a battery manufacturing device for preparing the battery described in the first aspect, including: a battery cell preparation module for preparing the plurality of battery cells, at least one of the battery cells
  • the battery cells are provided with a pressure relief mechanism, wherein the plurality of battery cells include a first battery cell and a second battery cell arranged adjacently; a protective box preparation module is used to prepare the protective box; assembly The module is used for assembling the plurality of battery cells in the protective box; at this time, connect the pressure relief end of the first battery cell with the pressure relief end of the second battery cell close to the pressure relief end Stagger the settings at one end.
  • FIG. 1 is a schematic structural diagram of a device using a battery provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram 1 of the battery disclosed in the embodiment of the present application.
  • Fig. 3 is the exploded structure schematic diagram of Fig. 2;
  • FIG. 4 is a schematic structural diagram of the battery cell when the pressure relief mechanism is located at the top of the battery cell in FIG. 3;
  • FIG. 5 is a schematic structural diagram of the battery cell when the pressure relief mechanism is located at the bottom end of the battery cell in FIG. 3;
  • FIG. 6 is a second structural schematic diagram of the battery disclosed in the embodiment of the present application.
  • Fig. 7 is the structural representation of part A in Fig. 6;
  • FIG. 8 is a third structural schematic diagram of the battery disclosed in the embodiment of the present application.
  • Fig. 9 is the structural representation of part B in Fig. 8.
  • FIG. 10 is a schematic diagram 4 of the structure of the battery disclosed in the embodiment of the present application.
  • Fig. 11 is the structural representation of part C in Fig. 10;
  • FIG. 12 is a schematic structural diagram 5 of the battery disclosed in the embodiment of the present application.
  • Fig. 13 is the structural representation of part D in Fig. 12;
  • FIG. 14 is a sixth schematic structural diagram of the battery disclosed in the embodiment of the present application.
  • 20 protective box; 21: protective plate; 211: recessed part; 22: supporting plate; 221: through hole; 23: side plate; 24: bottom plate;
  • a battery in the related art, includes a plurality of battery cells arranged side by side and a protective box surrounding the battery cells, and a flow guide channel is formed in the protective box.
  • a flow guide channel is formed in the protective box.
  • the plurality of battery cells provided in the embodiments of the present application include at least two first battery cells and second battery cells that are staggered, and one of the first battery cells and the second battery cells In this way, the volume of the diversion channel is increased, the pressure relief buffer space in the protective box is larger, and a larger volume of discharge can be circulated, and the safety factor of the battery is higher.
  • FIG. 1 is a schematic structural diagram of a device using a battery provided by an embodiment of the present application.
  • an embodiment of the present application provides a device using a battery.
  • the device may be a mobile device such as a vehicle 50, a ship, or a small aircraft, or a non-mobile device that can provide electrical energy, such as an energy storage cabinet.
  • the vehicle 50 may be a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid electric vehicle, an extended-range vehicle, or the like.
  • the vehicle 50 may include a driving mechanism 51 , a control mechanism 52 , and a battery 1 .
  • the control mechanism 52 is electrically connected to the driving mechanism 51 for controlling the driving mechanism 51 to start and stop as required, so as to drive the vehicle 50 to walk or park.
  • the battery 1 is electrically connected to the control mechanism 52 for providing power to the control mechanism 52 .
  • the power-consuming components in the vehicle 50 may also include audio and the like.
  • FIG. 2 is a first structural schematic diagram of the battery disclosed in the embodiment of the present application.
  • FIG. 3 is a schematic diagram of the explosion structure of FIG. 2 .
  • FIG. 4 is a schematic structural diagram of the battery cell when the pressure relief mechanism is located at the top of the battery cell in FIG. 3 .
  • FIG. 5 is a schematic structural diagram of the battery cell in FIG. 3 when the pressure relief mechanism is located at the bottom end of the battery cell.
  • FIG. 6 is a second structural schematic diagram of the battery disclosed in the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of part A in FIG. 6 .
  • FIG. 8 is a third structural schematic diagram of the battery disclosed in the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of part B in FIG. 8 .
  • FIG. 10 is a fourth schematic structural diagram of the battery disclosed in the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of part C in FIG. 10 .
  • the battery 1 includes a plurality of battery cells 10 , and at least one battery cell 10 is provided with a pressure relief mechanism 14 .
  • each battery cell 10 is provided with a pressure relief mechanism 14 . Both are provided with a pressure relief mechanism 14 .
  • the pressure relief mechanism 14 is used to actuate to release the internal pressure of the battery cells 10 when the internal pressure or the internal temperature of the battery cells 10 reaches a threshold value;
  • the protective box 20 is used for forming a plurality of battery cells 10 Protection;
  • the protective box 20 is provided with a guide channel 40, and the guide channel 40 is used to guide the discharge from the pressure relief mechanism 14;
  • the plurality of battery cells 10 include adjacently arranged first battery cells 101 and
  • the first battery cell 101 includes a pressure relief end provided with the pressure relief mechanism 14 , and the pressure relief end of the first battery cell 101 is in a direction away from the guide channel 40 and the pressure relief end of the second battery cell 102 .
  • One end close to the pressure relief end is staggered to increase the volume of the guide channel 40 .
  • the battery 1 includes a plurality of battery cells 10 , and the structure of the battery cells 10 may be well known to those skilled in the art.
  • the battery cells 10 in the present application may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, etc., which are not limited in the embodiments of the present application.
  • the battery cell 10 may be in the form of a cylinder, a flat body, a rectangular parallelepiped, or other shapes, which are not limited in the embodiments of the present application.
  • the battery cells 10 are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells, and soft-pack battery cells, which are not limited in the embodiments of the present application.
  • the battery cell 10 generally includes an electrode assembly 11 and an electrolyte (not shown).
  • the electrode assembly 11 is composed of a positive pole piece, a negative pole piece, and is arranged between the positive pole piece and the negative pole piece.
  • the battery cell 10 mainly relies on the movement of metal ions between the positive pole piece and the negative pole piece to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the current collector without the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer, The current collector not coated with the positive electrode active material layer is used as the positive electrode tab 111 .
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium, or lithium manganate.
  • the negative pole piece includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the current collector without the negative electrode active material layer is protruded from the current collector that has been coated with the negative electrode active material layer, The current collector not coated with the negative electrode active material layer serves as the negative electrode tab 112 .
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive tabs 111 is multiple and stacked together, and the number of negative tabs 112 is multiple and stacked together.
  • the material of the diaphragm can be polypropylene (referred to as PP for short) or polyethylene (referred to as PE for short).
  • the electrode assembly 11 may be a wound structure or a laminated structure, and the number of the electrode assembly 11 may be one or more, which is not specifically limited in this embodiment of the present application.
  • the battery cell 10 further includes a casing 15, in which the electrode assembly 11 and the electrolyte are packaged. Alloy, it can also be plastic material or aluminum plastic film.
  • the casing 15 is also provided with a positive electrode terminal 12 and a negative electrode terminal 13, the positive electrode tab 111 is electrically connected to the positive electrode terminal 12, and the negative electrode tab 112 is electrically connected to the negative electrode terminal 13 to output electrical energy.
  • the above-mentioned pressure relief mechanism 14 is also provided on the casing 15, and the pressure relief mechanism 14 can be arranged at any position of the casing 15.
  • the pressure relief mechanism 14 can be arranged on the top (as shown in FIG. 5) or the side (not shown), the pressure relief mechanism 14 can also be arranged between the positive electrode terminal 12 and the negative electrode terminal 13, which is not specifically limited in this application, as long as the battery can be released The internal pressure of the monomer 10 may be sufficient.
  • the pressure relief mechanism 14 refers to an element or component that can be actuated to release the internal pressure and/or internal substances when the internal pressure or internal temperature of the battery cell 10 reaches a predetermined threshold.
  • the pressure relief mechanism 14 can specifically take the form of an explosion-proof valve, a gas valve, a pressure relief valve or a safety valve, and can specifically adopt a pressure-sensitive or temperature-sensitive element or structure, that is, when the internal pressure or temperature of the battery cell 10 is When the predetermined threshold value is reached, the pressure relief mechanism 14 performs an action or the weak structure provided in the pressure relief mechanism 14 is destroyed, thereby forming an opening or a channel for releasing the internal pressure.
  • the threshold referred to in this application may be a pressure threshold or a temperature threshold, and the design of the threshold varies according to different design requirements, for example, it may be based on the internal pressure or internal temperature of the battery cell 10 that is considered to be dangerous or at risk of runaway design or determine the threshold. And, the threshold value may depend on, for example, the materials used for one or more of the positive electrode sheet, the negative electrode sheet, the electrolyte and the separator in the battery cell 10 .
  • the “actuation” mentioned in this application means that the pressure relief mechanism 14 is actuated or activated to a certain state, so that the internal pressure of the battery cell 10 can be released.
  • Actions produced by the pressure relief mechanism 14 may include, but are not limited to, at least a portion of the pressure relief mechanism 14 being ruptured, shattered, torn or opened, and the like.
  • the emissions from the battery cells 10 mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrode sheets, fragments of separators, high-temperature and high-pressure gas generated by the reaction, flames, etc. .
  • the high temperature and high pressure discharge is discharged towards the direction of the battery cell where the pressure relief mechanism 14 is provided, and may be discharged more specifically in the direction towards the area where the pressure relief mechanism 14 is actuated, and the power and destructive power of such discharge may be very large , may even be enough to break through one or more components in that direction.
  • a plurality of battery cells 10 are arranged side by side, and the plurality of battery cells 10 are connected in a preset series-parallel manner through a bus component (not shown). device is powered.
  • the plurality of battery cells 10 can be divided into multiple groups, and each group of battery cells 10 is packaged separately to form a battery module, and the plurality of battery modules are packaged again to form the above-mentioned battery 1 .
  • a plurality of battery cells 10 may also be directly packaged to form the above-mentioned battery 1 . This embodiment does not limit the packaging form of the battery 1 .
  • the protective box 20 may include a protective plate 21 , four side plates 23 and a bottom plate 24 .
  • the protective plate 21 , the four side plates 23 and the bottom plate 24 are connected and surround the outside of the plurality of battery cells 10 .
  • the material of the protective box 20 may be metal, plastic, or the like.
  • the guide channel 40 is formed inside the protective box 20 to prevent the discharge from being discharged to the outside of the protective box 20 , that is, to prevent the discharge from causing damage to the surrounding environment and users when the battery 1 is ruptured.
  • the battery 1 has an arrangement direction X, a width direction Y and a height direction Z, and the arrangement direction X, the width direction Y and the height direction Z are perpendicular to each other.
  • the pressure relief mechanism 14 may be disposed at any end along the height direction Z or at any end along the width direction Y of the battery cell 10 . Then, when the pressure relief mechanisms 14 of the plurality of battery cells 10 are located at different positions, the number of the guide channels 40 may be one or more.
  • the plurality of battery cells 10 include at least two battery cells 10 arranged staggered.
  • the pressure relief mechanism 14 of the first battery cell 101 is disposed at its own height along the height direction.
  • the top of Z, the top of the first battery cell 101 along the height direction Z is the pressure relief end of the first battery cell 101
  • the pressure relief mechanism 14 of the second battery cell 102 can be arranged on its own along the height direction Z. Either end or any end along the width direction Y.
  • the second battery cell 102 may not be provided with the pressure relief mechanism 14 .
  • the staggered arrangement of the first battery cell 101 and the second battery cell 102 means that the top end of the first battery cell 101 along the height direction Z is in a direction away from the flow guide channel 40 relative to the direction of the second battery cell 102 .
  • the top of the height direction Z is staggered.
  • the volume-increasing portion of the guide channel 40 is surrounded by the following walls, that is, the top surface of the first battery cell 101 and the two second battery cells 102 adjacent to the first battery cell 101 .
  • This side surface namely the oblique straight dotted line filling part in FIG. 7 , FIG. 9 and FIG. 11 .
  • the volume-increasing part of the guide channel 40 is surrounded by the following walls, that is, the top surface of the first battery cell 101 and the first The side surfaces of the second battery cells 102 adjacent to the battery cells 101 and the inner wall surfaces of the side plates 23 .
  • the size of the volume-enhancing portion of the guide channel 40 can be adjusted.
  • the battery 1 further includes another guide channel 40 .
  • the pressure relief mechanism 14 of the second battery cell 102 is disposed at one end of the second battery cell 102 along the width direction Y.
  • the staggered arrangement of the first battery cells 101 and the second battery cells 102 may further include that the second battery cells 102 are staggered relative to the first battery cells 101 along the width direction Y, so as to increase the flow rate of the guide channel 40 . volume.
  • the first battery cell 101 and the second battery cell 102 are staggered, as long as the volume of any one or more guide channels 40 can be increased .
  • the confluence component and the pressure relief mechanism 14 of the battery cell 10 may be located at the same end of the battery cell 10 , or may be located at different ends of the battery cell 10 .
  • the pressure relief mechanism 14 of the first battery cell 101 is located at the height direction Z
  • the top of the first battery cell 101 along the height direction Z is arranged at the top of the confluence component.
  • the present embodiment does not limit the installation position of the pressure relief mechanism 14 of the second battery cell 102 .
  • the battery 1 provided in this embodiment has at least a flow guide channel 40 disposed at the top of the first battery cell 101 .
  • the protective box 20 includes a protective plate 21 , the protective plate 21 is spaced apart from the plurality of battery cells 10 , and the guide channel 40 is formed between the protective plate 21 and the plurality of battery cells 10 .
  • the protective plate 21 is provided with a recessed portion 211 , and the recessed portion 211 is used to increase the volume of the diversion channel 40 , wherein the recessed portion 211
  • the protective plate 21 is recessed toward the side facing away from the plurality of battery cells 10 , and the recessed portion 211 has an inner cavity for communicating with the guide channel 40 .
  • the protective plate 21 is in the shape of a plate, and the concave portion 211 is concave toward the side away from the battery cell 10 .
  • the protective plate 21 faces the side of the battery cell 10 to form a concave portion 211 , and the inner cavity of the concave portion 211 and the flow guide
  • the channel 40 is connected, the volume of the diversion channel 40 is further increased, and the enlarged part is the inner cavity of the concave part 211, that is, the filling part of the rectangular dotted line in FIG. 9 and FIG. 11, which can supply a larger volume of discharge flow, the pressure relief buffer space and safety factor of the battery 1 are further improved.
  • the concave portion 211 may be disposed opposite to any one of the battery cells 10 .
  • the number of the concave portions 211 may be one or more, which is not limited in this embodiment.
  • the concave portion 211 may be disposed opposite to the battery cell 10 with a larger volume of gas production or a larger volume of emissions to be discharged.
  • the recessed portion 211 is disposed opposite to the first battery cell 101 .
  • the part corresponding to the first battery cell 101 in the guide channel 40 may include three parts, namely the top surface of the first battery cell 101 and the two second battery cells adjacent to the first battery cell 101 The area enclosed by the two sides of the body 102 (the filled portion of the oblique straight dashed line in FIGS. 7 , 9 and 11 ), the guide channel 40 itself, and the inner cavity of the recess 211 (the rectangular dashed line in FIGS.
  • the pressure relief mechanism 14 of each battery cell 10 may be located at the top of its own height direction Z.
  • the battery 1 has a guide channel 40 and the structure of the battery 1 is relatively compact.
  • both the bus component and the pressure relief mechanism 14 of the first battery cell 101 may be located at the bottom end along the height direction Z or at any end along the width direction Y of the first battery cell 101 .
  • the structure is similar to the above-mentioned embodiment, and is not repeated in this embodiment.
  • FIG. 12 is a schematic structural diagram V of the battery disclosed in the embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of part D in FIG. 12 .
  • the pressure relief mechanism 14 of the first battery cell 101 is located at the bottom end in the height direction Z of the first battery cell 101 , and the confluence component is arranged at the top end of the first battery cell 101 along the height direction Z as In this case, the present embodiment does not limit the installation position of the pressure relief mechanism 14 of the second battery cell 102 .
  • the pressure relief mechanism 14 of the second battery cell 102 may be located at the bottom end or the top end in the height direction Z of the second battery cell 102 .
  • the battery 1 provided in this embodiment has at least a flow guide channel 40 disposed at the bottom end of the first battery cell 101 .
  • the protective box 20 further includes a support plate 22 disposed inside the support plate 22 , the support plate 22 is located at the bottom end of the first battery cell 101 along the height direction Z, and the support plate 22 is attached to the plurality of battery cells 10 to guide the flow of electricity.
  • the channel 40 is provided on a side of the support plate 22 away from the plurality of battery cells 10 . That is, the guide channel 40 is formed between the support plate 22 and the bottom plate 24 of the protective box 20 , so that the discharge of the discharge to the outside of the protective box 20 can be avoided.
  • the support plate 22 is provided with a through hole 221 for allowing the discharge to pass through, and the through hole 221 communicates with the guide channel 40 .
  • the through hole 221 may be disposed opposite to the pressure relief mechanism 14 of the first battery cell 101, so that the discharge can directly enter the guide channel 40 through the through hole 221, so that the discharge of the discharge is smoother.
  • the shape of the through hole 221 is adapted to the shape of the pressure relief mechanism 14.
  • the through hole 221 may be a circular hole, a square hole, an oblong hole, or the like.
  • the bottom ends of the first battery cells 101 and the second battery cells 102 along the height direction Z can be arranged flush or staggered, as long as The guide channel 40 may be formed at a position corresponding to the first battery cell 101 .
  • the bottom end of the first battery cell 101 along the height direction Z and the bottom end of the second battery cell 102 along the height direction Z can be staggered, and the first battery cell 101 The bottom end in the height direction Z is located between both ends of the second battery cell 102 .
  • the volume of the diversion channel 40 is increased, the pressure relief buffer space of the protective box 20 of the battery 1 is larger, and a larger volume of discharge can be circulated, and the safety factor of the battery 1 is higher.
  • the height difference between the bottom end of the first battery cell 101 along the height direction Z and the bottom end of the second battery cell 102 along the height direction Z is proportional to the volume increase of the diversion channel 40, and the greater the height difference, the The larger the volume increase of the guide channel 40 is, the size of the height difference can be set as required.
  • the pressure relief mechanism 14 of the second battery cell 102 when the pressure relief mechanism 14 of the second battery cell 102 is not disposed at the bottom end along its own height direction Z, at this time, the area of the support plate 22 corresponding to the second battery cell 102 Can be in contact with the base plate.
  • the bottom ends of the first battery cell 101 and the second battery cell 102 are staggered along their own height direction Z, so that the guide channel 40 is formed under the first battery cell 101 .
  • the height difference between the bottom end of the first battery cell 101 along the height direction Z and the bottom end of the second battery cell 102 along the height direction Z can be increased.
  • the inside of the protective box 20 is also provided with a support plate 22, and the support plate 22 is used to support a plurality of battery cells body 10.
  • the pressure relief mechanisms 14 of the plurality of battery cells 10 are located at the top along the height direction Z, the plurality of battery cells 10 can be directly connected to the bottom plate 24 of the protective box 20 , and the bottom plate 24 is used to support the plurality of battery cells 10.
  • the side surface of the support plate 22 or the bottom plate 24 in contact with the plurality of battery cells 10 is flat (as shown in FIGS. 6 and 8 ).
  • the side surfaces of the support plate 22 or the bottom plate 24 in contact with the plurality of battery cells 10 are concave and convex surfaces (as shown in FIGS. 10 and 12 ).
  • the bottom plate 24 is provided with a recessed support portion, and the first battery cell 101 is along the height direction Z
  • the bottom end of the first battery cell 101 can be extended into and supported in the support portion, so that the bottom end of the first battery cell 101 is inserted into the support portion, the bottom end of the first battery cell 101 is relatively fixed to the bottom plate 24, and the first battery cell 101 is relatively It is stable, and the fastening effect of the battery 1 is good.
  • the bottom wall of the first battery cell 101 is in contact with the bottom wall surface of the support portion, and the side wall of the first battery cell 101 is in contact with the side wall surface of the support portion.
  • the limit of the bottom end of the body 101 Even if the first battery cell 101 is pressed by the adjacent battery cells 10 , for example, the second battery cell 102 is displaced and pressed against the first battery cell 101 , at this time, only the first battery cell 101 is compressed.
  • the part of the battery cell 101 protruding from the support part will be offset, and the part of the first battery cell 101 located in the support part is still clamped with the support part, that is, the fastening effect of the first battery cell 101 is better.
  • the battery 1 as a whole has better stability.
  • the bottom plate 24 when the bottom plate 24 is provided with a concave support portion, the bottom plate 24 is also provided with a corresponding convex portion, and the second battery cell 102 can be supported on the convex portion.
  • the protruding portion can be bonded and fixed with the bottom plate 24 or integrally formed.
  • the bottom plate 24 may be a plate-like structure, the protruding portion is connected to the bottom plate 24, and the protruding portion and the bottom plate 24 together form a concave-convex supporting surface.
  • the strength of the bottom plate 24 is high.
  • the outer surface of the bottom plate 24 is flat, which facilitates the assembly of the battery 1 and the device.
  • the clamping principle between the supporting plate 22 and the battery cells 10 is similar to that between the bottom plate and the battery cells 10 , which is not repeated in this embodiment.
  • FIG. 14 is a sixth schematic structural diagram of the battery disclosed in the embodiment of the present application.
  • the battery 1 may further include an elastic member 30 , and the elastic member 30 is connected to the bottom plate 24 for supporting the battery cell 10 .
  • the elastic member 30 may be a spring, elastic rubber, etc., which is not limited in this embodiment.
  • each battery cell 10 may be provided with an elastic member 30 correspondingly, so as to buffer and dampen each battery cell 10 respectively.
  • an accommodating groove (not shown) is provided on the bottom plate 24 , and the accommodating groove is used for accommodating the elastic member 30 .
  • the elastic member 30 can be elastically deformed in the accommodating groove.
  • the accommodating groove can play a guiding role, so as to prevent the elastic member 30 from being skewed during the deformation process, thereby causing the battery cell 10 to be skewed.
  • the number of the accommodating grooves may be less than the number of the battery cells 10 , so as to avoid too many accommodating grooves to reduce the strength of the bottom plate 24 .
  • the elastic member 30 is connected to the support plate 22 , which will not be repeated in this embodiment.
  • the first battery cell 101 and the second battery cell 102 may be the same battery cell, or may be different battery cells.
  • the "same” mentioned here means that the first battery cell 101 and the second battery cell 102 are basically the same in terms of chemical system, shape, size, volume, mass, energy density, etc., and the “different” mentioned here It means that at least one of the first battery cell 101 and the second battery cell 102 is significantly different in chemical system, shape, size, volume, mass, energy density and the like.
  • the energy density of the first battery cell 101 is greater than the energy density of the second battery cell 102 , wherein the energy density refers to the energy released by the battery per unit mass or unit volume, that is, the weight Energy density or volumetric energy density.
  • the energy density of the first battery cell 101 is 1.1-1.6 times the energy density of the second battery cell 102 .
  • the energy density of the first battery cell 101 is greater than that of the second battery cell 102, and the volume of the discharge generated when the pressure relief mechanism 14 of the first battery cell 101 is actuated is larger.
  • the volume of the guide channels 40 disposed opposite to the battery cells 101 is conducive to smoother discharge of the exhaust.
  • the first battery cell 101 may be a ternary lithium battery cell, for example, a lithium nickel cobalt manganate (LiNiMnCoO 2 , NCM) battery cell or a lithium nickel cobalt aluminate (LiNiCoAlO 2 ) battery cell. , NCA) battery cells
  • the second battery cells 102 may be lithium iron phosphate (LiFePO 4 , LFP) battery cells or lithium cobalt oxide (LiCoO 2 ) battery cells.
  • this embodiment does not limit the number of the first battery cells 101 and the second battery cells 102 .
  • the numbers of the first battery cells 101 and the second battery cells 102 can be set as required. Exemplarily, the number of the first battery cells 101 is one, and the number of the second battery cells 102 is one. The number of the first battery cells 101 is one, and the number of the second battery cells 102 is plural. Of course, the numbers of the first battery cells 101 and the second battery cells 102 may also be multiple.
  • the first battery cells 101 and the second battery cells 102 are composed of n first battery cells 101 and m second battery cells
  • the arrangement of the bodies 102 is alternately arranged, wherein n ⁇ 1, m ⁇ 1, and both n and m are integers.
  • the present embodiment does not limit the arrangement of the first battery cells 101 and the second battery cells 102 .
  • the present embodiment does not limit the arrangement of the first battery cells 101 and the second battery cells 102 .
  • three first battery cells 101 , two second battery cells 102 , and four first battery cells 101 are arranged in sequence.
  • the first battery cell 101 and the second battery cell 102 may be arranged adjacent to each other in sequence, that is, both sides of the first battery cell 101 are arranged adjacent to the second battery cell 102, and the second battery cell 102 is arranged adjacent to each other. Both sides of the body 102 are disposed adjacent to the first battery cell 101 .
  • the first battery cells 101 with a large discharge amount and the second battery cells 102 with a small discharge amount are alternately arranged, so as to avoid the accumulation of excessive discharge in a certain area of the guide channel 40, which is helpful for
  • the discharge of the first battery cell 101 and the discharge of the second battery cell 102 are evenly distributed in the guide channel 40 , the pressure distribution in the guide channel 40 is relatively uniform, and the safety factor of the battery 1 is high.
  • the embodiment of the present application also provides a method for preparing a battery 1, which is used for preparing the above-mentioned battery 1, which includes:
  • S100 providing a plurality of battery cells 10, arranging the plurality of battery cells 10 side by side along the arrangement direction X, at least one battery cell 10 is provided with a pressure relief mechanism 14, wherein the plurality of battery cells 10 include adjacently arranged The first battery cell 101 and the second battery cell 102 .
  • the embodiment of the present application also provides a manufacturing equipment for a battery 1, which is used for preparing the above-mentioned battery 1, which includes: a battery cell preparation module for preparing a plurality of battery cells 10, and at least one battery cell 10 is provided with a pressure relief The mechanism 14, wherein the plurality of battery cells 10 includes a first battery cell 101 and a second battery cell 102 arranged adjacently; a protective box preparation module for preparing the protective box 20; an assembly module for combining the plurality of The battery cells 10 are assembled in the protective box 20; at this time, the pressure relief end of the first battery cell 101 and the end of the second battery cell 102 close to the pressure relief end are staggered.
  • the battery cell preparation module, the protective box preparation module, and the assembly module may be independent of each other, or may be components of the preparation equipment, which are not limited in this embodiment.
  • the battery cell 10 and the protective box 20 are prepared through the battery cell preparation module and the protective box preparation module, and the guide channel 40 is formed on the protective box 20 .
  • the battery cells 10 can be arranged side by side, so that the assembling module can accommodate the plurality of battery cells 10 arranged side by side in the protective box 20 . Then, the pressure relief end of the first battery cell 101 and the end close to the pressure relief end of the second battery cell 102 are staggered, so that the volume of the guide channel 40 is increased, and the space for the discharge flow in the guide channel 40 is provided. larger, the pressure relief buffer space of the battery 1 is larger, and the safety factor of the battery 1 is higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种电池、使用电池的装置、电池的制备方法和制备设备,该电池包括多个电池单体,至少一个电池单体设有泄压机构,泄压机构用于在电池单体的内部压力或内部温度达到阈值时致动以泄放电池单体的内部压力;防护箱,防护箱用于对多个电池单体形成防护;防护箱设置有导流通道,导流通道用于对从泄压机构排出的排放物进行导流;多个电池单体包括相邻设置的第一电池单体和第二电池单体,第一电池单体包括设置泄压机构的泄压端,第一电池单体的泄压端沿远离导流通道的方向与第二电池单体的靠近泄压端的一端错开设置,以增大导流通道的体积。本申请实施例提供的电池安全系数较高。

Description

电池、使用电池的装置、电池的制备方法和制备设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电池、使用电池的装置、电池的制备方法和制备设备。
背景技术
汽车、电动自行车、船舶、储能电柜等装置包括电池,电池为装置提供电能。
电池包括多个电池单体和箱体,多个电池单体依次排列,箱体围设在多个电池单体的外侧,并对多个电池单体形成防护。箱体上设有正负极,每个电池单体均与正负极连接。电池工作时,电池单体内部的活性物质与电解液发生化学反应并为负载提供电能。其中,电池单体上设有泄压机构,其用于在电池单体的内部压力或温度达到阈值时致动以泄放电池单体的内部压力,电池单体通过泄压机构排出的排放物进入电池单体与箱体之间形成的空间内。
然而,当电池中的其中一些电池单体产生的气体较多时,排放物的体积量以及压力均较大,容易导致电池的箱体破裂,电池的安全系数较低。
发明内容
鉴于上述问题,本申请实施例提供一种电池、使用电池的装置、电池的制备方法和制备设备,该电池可以容纳更多的排放物,电池的安全系数较高。
为了实现上述目的,本申请实施例提供如下技术方案:
本申请实施例的第一方面提供一种电池,其包括多个电池单体,至少一个所述电池单体设有泄压机构,所述泄压机构用于在所述电池单体的内部压力或内部温度达到阈值时致动以泄放所述电池单体的内部压力;防护箱,所述防护箱用于对所述多个电池单体形成防护;所述防护箱设置有导流通道,所述导流通道用于对从所述泄压机构排出的排放物进行导流;所述多个电池单体包括相邻设置的第一电池单体和第二电 池单体,所述第一电池单体包括设置所述泄压机构的泄压端,所述第一电池单体的泄压端沿远离所述导流通道的方向与所述第二电池单体的靠近所述泄压端的一端错开设置,以增大所述导流通道的体积。
在一些可选的实施方式中,所述防护箱包括防护板,所述防护板与所述多个电池单体间隔设置,所述导流通道形成于所述防护板与所述多个电池单体之间;所述防护板设有凹陷部,所述凹陷部用于增大所述导流通道的体积,其中,所述凹陷部由所述防护板朝向背离所述多个电池单体的一侧凹陷形成,所述凹陷部具有内腔,所述内腔用于与所述导流通道连通。
在一些可选的实施方式中,所述凹陷部与所述第一电池单体相对设置。
在一些可选的实施方式中,所述防护箱包括支撑板,所述支撑板附接于所述多个电池单体,所述导流通道设置在所述支撑板的远离所述多个电池单体的一侧;所述支撑板设置有通孔,所述通孔用于供所述排放物穿过,所述通孔与所述导流通道连通。
在一些可选的实施方式中,所述第一电池单体的能量密度大于所述第二电池单体的能量密度。
在一些可选的实施方式中,所述第一电池单体的能量密度为所述第二电池单体的能量密度的1.1-1.6倍。
在一些可选的实施方式中,所述第一电池单体和所述第二电池单体均设置为多个,且所述第一电池单体和所述第二电池单体以n个所述第一电池单体、m个所述第二电池单体的排布方式交替排列,其中,n≧1,m≧1。
与相关技术相比,本申请实施例提供的电池具有如下优点:电池包括多个电池单体和防护箱,多个电池单体设置在防护箱内,这样,防护箱可以对多个电池单体形成防护。多个电池单体包括第一电池单体和第二电池单体,通过将第一电池单体的泄压端沿远离导流通道的方向与第二电池单体的靠近泄压端的一端错开设置,可以增大导流筒通道的体积,这样,防护箱内的泄压缓冲空间较大,防护箱可以容纳更多的排放物,电池的安全系数较高。
本申请实施例的第二方面提供一种使用电池的装置,其包括上述第一方面所述 的电池,所述电池为所述装置提供电能。
本申请实施例的第三方面提供一种电池的制备方法,用于制备上述第一方面所述的电池,包括:提供多个电池单体,至少一个所述多个电池单体设置有泄压机构,其中,所述多个电池单体包括相邻设置的第一电池单体和第二电池单体;提供防护箱;将所述多个电池单体装配在所述防护箱内,并在所述防护箱内形成导流通道;将所述第一电池单体的泄压端与所述第二电池单体的靠近所述泄压端的一端错开设置。
本申请实施例的第四方面提供一种电池的制造设备,用于制备上述第一方面所述的电池,包括:电池单体制备模块,用于制备所述多个电池单体,至少一个所述电池单体设置有泄压机构,其中,所述多个电池单体包括相邻设置的第一电池单体和第二电池单体;防护箱制备模块,用于制备所述防护箱;装配模块,用于将所述多个电池单体装配在所述防护箱内;此时,将所述第一电池单体的泄压端与所述第二电池单体的靠近所述泄压端的一端错开设置。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请实施例提供的使用电池的装置的结构示意图;
图2是本申请实施例公开的电池的结构示意图一;
图3是图2的爆炸结构示意图;
图4是图3中泄压机构位于电池单体顶端时的电池单体的结构示意图;
图5是图3中泄压机构位于电池单体底端时的电池单体的结构示意图;
图6是本申请实施例公开的电池的结构示意图二;
图7是图6中A部分的结构示意图;
图8是本申请实施例公开的电池的结构示意图三;
图9是图8中B部分的结构示意图;
图10是本申请实施例公开的电池的结构示意图四;
图11是图10中C部分的结构示意图;
图12是本申请实施例公开的电池的结构示意图五;
图13是图12中D部分的结构示意图;
图14是本申请实施例公开的电池的结构示意图六;
在附图中,附图并未按照实际的比例绘制。
标记说明:
1:电池;
10:电池单体;101:第一电池单体;102:第二电池单体;11:电极组件;111:正极极耳;112:负极极耳;12:正电极端子;13:负电极端子;14:泄压机构;15:壳体;
20:防护箱;21:防护板;211:凹陷部;22:支撑板;221:通孔;23:侧板;24:底板;
30:弹性件;
40:导流通道;
50:车辆;51:驱动机构;52:控制机构。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可 拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
相关技术中,电池包括多个并排设置的电池单体以及围在电池单体外的防护箱,防护箱内形成导流通道。这样,电池单体的泄压机构致动时,电池单体内的排放物经泄压机构排放至导流通道内。然而,其中一些电池单体产生的排放物较多时,排放物的体积量以及压力均较大,容易导致电池的防护箱破裂,电池的安全系数较低。
有鉴于此,本申请实施例提供的多个电池单体中至少包括两个错开设置的第一电池单体和第二电池单体,且第一电池单体和第二电池单体中的一者沿远离导流通道的方向偏移,这样,导流通道的体积增大,防护箱内的泄压缓冲空间较大,可供更大体积量的排放物流通,电池的安全系数较高。
图1是本申请实施例提供的使用电池的装置的结构示意图。
请参阅图1,本申请实施例提供一种使用电池的装置。其中,装置可以为车辆50、船舶、小型飞机等移动设备,也可以是储能电柜等能够提供电能的非移动设备。以车辆50为例,其可以为新能源汽车,该新能源汽车可以为纯电动汽车,也可以为混合动力汽车或增程式汽车等。车辆50可以包括驱动机构51、控制机构52以及电池1,控制机构52与驱动机构51电连接,用于根据需要控制驱动机构51启停,以实现带动车辆50行走或驻车。电池1与控制机构52电连接,用于为控制机构52提供电能。其中,车辆50中的耗电组件还可以包括音响等。
图2是本申请实施例公开的电池的结构示意图一。图3是图2的爆炸结构示意图。图4为图3中泄压机构位于电池单体顶端时的电池单体的结构示意图。图5为图3中泄压机构位于电池单体底端时的电池单体的结构示意图。图6是本申请实施例公开的电池的结构示意图二。图7为图6中A部分的结构示意图。图8是本申请实施例公开的电池的结构示意图三。图9为图8中B部分的结构示意图。图10是本申请实施例公开的电池的结构示意图四。图11为图10中C部分的结构示意图。
请参阅图2至图11,在一些可选的实施方式中,电池1包括多个电池单体10,至少一个电池单体10设有泄压机构14,可选的,每个电池单体10均设有泄压机构14。泄压机构14用于在电池单体10的内部压力或内部温度达到阈值时致动以泄放电池单体10的内部压力;防护箱20,防护箱20用于对多个电池单体10形成防护;防护箱20设置有导流通道40,导流通道40用于对从泄压机构14排出的排放物进行导流; 多个电池单体10包括相邻设置的第一电池单体101和第二电池单体102,第一电池单体101包括设置泄压机构14的泄压端,第一电池单体101的泄压端沿远离导流通道40的方向与第二电池单体102的靠近泄压端的一端错开设置,以增大导流通道40的体积。
具体的,请参阅图2至图5,电池1包括多个电池单体10,电池单体10的结构可以为本领域技术人员熟知的结构。本申请中的电池单体10可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体10可呈圆柱体、扁平体、长方体或其他形状等,本申请实施例对此也不限定。电池单体10一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
如图4和图5所示,电池单体10通常包括电极组件11和电解液(未示出),电极组件11由正极极片、负极极片、设置在正极极片和负极极片之间的隔膜组成,电池单体10主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳111。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳112。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳111的数量为多个且层叠在一起,负极极耳112的数量为多个且层叠在一起。隔膜的材质可以为聚丙烯(简称为PP)或聚乙烯(简称为PE)等。此外,电极组件11可以是卷绕式结构,也可以是叠片式结构,电极组件11的数量可以为一个或多个,本申请实施例对此不做具体限制。
电池单体10还包括壳体15,电极组件11和电解液均封装在壳体15内,壳体15可以为中空的长方体、正方体或圆柱体,壳体15的材质可以为铝或钢及其合金,也可以是塑料材质或者铝塑膜。壳体15上还设置有正电极端子12和负电极端子13,正极极耳111与正电极端子12电连接,负极极耳112与负电极端子13电连接,以输出电能。壳体15上还设置有上述泄压机构14,泄压机构14可以设置在壳体15的任意位 置,例如泄压机构14可以设置在壳体15的顶部(如图4所示)、底部(如图5所示)或侧部(未示出),泄压机构14也可以设置在正电极端子12和负电极端子13之间,本申请对此不做具体的限制,只要可以实现释放电池单体10的内部压力即可。
泄压机构14是指在电池单体10的内部压力或内部温度达到预定阈值时能够致动以泄放内部压力和/或内部物质的元件或部件。泄压机构14具体可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体10的内部压力或温度达到预定阈值时,泄压机构14执行动作或者泄压机构14中设有的薄弱结构被破坏,从而形成可供内部压力泄放的开口或通道。本申请中所称的阈值可以是压力阈值或温度阈值,该阈值的设计根据设计需求的不同而不同,例如可根据被认为是存在危险或失控风险的电池单体10的内部压力或内部温度值而设计或确定该阈值。并且,该阈值例如可能取决于电池单体10中的正极极片、负极极片、电解液和隔离膜中的一种或几种所用的材料。
本申请中所提到的“致动”是指泄压机构14产生动作或被激活至一定的状态,从而使得电池单体10的内部压力得以被泄放。泄压机构14产生的动作可以包括但不限于:泄压机构14中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构14在致动时,电池单体的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力或温度的情况下使电池单体10发生泄压,从而避免潜在的更严重的事故发生。本申请中所提到的来自电池单体10的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。高温高压的排放物朝向电池单体的设置泄压机构14的方向排放,并且可更具体地沿朝向泄压机构14致动的区域的方向排放,这种排放物的威力和破坏力可能很大,甚至可能足以冲破在该方向上的一个或多个零部件。
多个电池单体10并排设置,多个电池单体10通过汇流部件(未示出)以预设的串并联方式连接,这样,能够通过汇流部件将各个电池单体10形成的电流导出并为装置供电。
多个电池单体10可以分为多组,且每组电池单体10分别封装形成电池模组,多个电池模组再次封装形成上述电池1。可选的,多个电池单体10也可以直接封装并形成上述电池1。本实施例不对电池1的封装形式进行限制。
以方形电池单体为例,多个方形电池单体可以直接通过防护箱20封装形成电池 1。其中,防护箱20可以包括防护板21、四个侧板23以及底板24,防护板21、四个侧板23以及底板24相连并围在多个电池单体10的外侧。防护箱20的材质可以为金属、塑料等。
导流通道40形成在防护箱20的内部,以避免排放物排放至防护箱20外,也就是避免电池1破裂时排放物对周围环境以及使用人员造成损害。
如图3所示,电池1具有排列方向X、宽度方向Y和高度方向Z,排列方向X、宽度方向Y和高度方向Z两两垂直。
其中,泄压机构14可以设置在电池单体10沿高度方向Z的任意一端或者沿宽度方向Y的任意一端。那么,当多个电池单体10的泄压机构14位于不同位置时,导流通道40的个数可以为一个或多个。
为增大导流通道40的体积,多个电池单体10包括至少两个错开设置的电池单体10。请参阅图6至图11,以导流通道40设置在第一电池单体101沿高度方向Z的顶端为例,此时,第一电池单体101的泄压机构14设置在自身沿高度方向Z的顶端,第一电池单体101的沿高度方向Z的顶端即为第一电池单体101的泄压端,第二电池单体102的泄压机构14可以设置在自身沿高度方向Z的任意一端或者沿宽度方向Y的任意一端。可选的,第二电池单体102也可以不设置泄压机构14。那么,第一电池单体101和第二电池单体102错开设置指的是,第一电池单体101沿高度方向Z的顶端沿远离导流通道40的方向相对于第二电池单体102沿高度方向Z的顶端错开设置。这样,导流通道40体积增大的部分由以下几个壁面围成,即第一电池单体101的顶端面以及与第一电池单体101相邻的两个第二电池单体102的两个侧面,即图7、图9和图11中的倾斜直虚线填充部分。
可以理解的,当第一电池单体101与侧板23相邻时,导流通道40体积增大的部分由以下几个壁面围成,即第一电池单体101的顶端面、与第一电池单体101相邻的第二电池单体102的侧面以及侧板23的内壁面。
此时,可以通过调节第一电池单体101沿高度方向Z的顶端与第二电池单体102沿高度方向Z的顶端之间的高度差,来调节导流通道40体积增大部分的大小。
可以理解的,当第二电池单体102的泄压机构14未设置在沿高度方向Z的顶端时,电池1还包括另一导流通道40。示例性的,第二电池单体102的泄压机构14设置在第二电池单体102沿宽度方向Y的一端。此时,第一电池单体101和第二电池单体 102错开设置还可以包括第二电池单体102沿宽度方向Y相对于第一电池单体101错开,以增大该导流通道40的体积。
也就是说,当电池1设置有多个导流通道40时,第一电池单体101和第二电池单体102错开设置,只要能增大任意一个或多个导流通道40的体积即可。
本申请实施例通过增大导流通道40的体积,可以供更大体积量的排放物流通,这样,电池1的防护箱20的泄压缓冲空间较大,电池1的安全系数较高。
在一些可选的实施方式中,汇流部件与电池单体10的泄压机构14可以位于电池单体10的同一端,也可以位于电池单体10的不同端。
当汇流部件与电池单体10的泄压机构14位于电池单体10的同一端时,请继续参阅图6至图11,以第一电池单体101的泄压机构14位于自身高度方向Z的顶端,且汇流部件设置在第一电池单体101沿高度方向Z的顶端为例,此时,本实施例不限制第二电池单体102的泄压机构14的设置位置。且本实施例提供的电池1至少具有设置在第一电池单体101顶端的导流通道40。
具体的,防护箱20包括防护板21,防护板21与多个电池单体10间隔设置,导流通道40形成于防护板21与多个电池单体10之间。
为进一步提高电池1的泄压缓冲空间以及安全系数,请参阅图8至图11,防护板21设有凹陷部211,凹陷部211用于增大导流通道40的体积,其中,凹陷部211由防护板21朝向背离多个电池单体10的一侧凹陷形成,凹陷部211具有内腔,内腔用于与导流通道40连通。
具体的,防护板21呈板状,凹陷部211朝向背离电池单体10的一侧凹陷,这样,防护板21朝向电池单体10的侧面形成凹陷部211,凹陷部211的内腔与导流通道40连通,导流通道40的体积进一步增大,增大的部分即为凹陷部211的内腔,即图9和图11中的矩形虚线填充部分,这样可以供更大体积量的排放物流通,电池1的泄压缓冲空间以及安全系数进一步提高。
其中,凹陷部211可以与任一电池单体10相对设置。且凹陷部211的个数可以为一个或多个,本实施例不进行限制。
在一些可选的实施方式中,凹陷部211可以与产气量或者待排放的排放物体积量较大的电池单体10相对设置。示例性的,凹陷部211与第一电池单体101相对设置。这样,导流通道40中与第一电池单体101相对应的部分可以包括三个部分,即第 一电池单体101顶端面以及与第一电池单体101相邻的两个第二电池单体102的两个侧面围成的区域(图7、图9和图11中的倾斜直虚线填充部分)、导流通道40本身以及凹陷部211的内腔(图9和图11中的矩形虚线填充部分),也就是与第一电池单体101相对应位置处的导流通道40的空间较大,排放物可以顺利进入导流通道40内,减缓了排放物与导流通道40内壁面的冲击,电池1的安全系数较高。
在一些可选的实施方式中,每个电池单体10的泄压机构14可以均位于沿自身高度方向Z的顶端,此时,电池1具有一个导流通道40,电池1的结构较为紧凑。
在一些可选的实施方式中,汇流部件以及第一电池单体101的泄压机构14可以均位于第一电池单体101的沿高度方向Z的底端或沿宽度方向Y的任意一端,其结构与上述实施例相似,本实施例不再赘述。
当汇流部件与电池单体10的泄压机构14位于电池单体10的不同端时,其结构与上述实施例相似,本实施例不再赘述。
图12位本申请实施例公开的电池的结构示意图五。图13位图12中D部分的结构示意图。
请参阅图12和图13,本实施例以第一电池单体101的泄压机构14位于自身高度方向Z的底端,且汇流部件设置在第一电池单体101沿高度方向Z的顶端为例进行说明,此时,本实施例不限制第二电池单体102的泄压机构14的设置位置。示例性的,第二电池单体102的泄压机构14可以位于自身高度方向Z的底端或顶端。那么,本实施例提供的电池1至少具有设置在第一电池单体101底端的导流通道40。
防护箱20还包括设置在其内部的支撑板22,支撑板22位于第一电池单体101的沿高度方向Z的底端,且支撑板22附接于多个电池单体10上,导流通道40设置在支撑板22的远离多个电池单体10的一侧。也就是说,导流通道40形成在支撑板22与防护箱20的底板24之间,这样能避免排放物排放至防护箱20外。
此时,为了排放第一电池单体101的排放物,支撑板22设置有通孔221,通孔221用于供排放物穿过,通孔221与导流通道40连通。其中,通孔221可以与第一电池单体101的泄压机构14相对设置,以利于排放物可以直接通过通孔221进入导流通道40内,使排放物的排放更为顺畅。
其中,通孔221的形状与泄压机构14的形状相适配,例如,通孔221可以为圆形孔、方形孔、长圆形孔等。
此时,根据第二电池单体102的泄压机构14设置位置的不同,第一电池单体101和第二电池单体102沿高度方向Z的底端均可以平齐设置或错开设置,只要与第一电池单体101对应的位置处形成导流通道40即可。
那么,为了增大导流通道40的体积,第一电池单体101沿高度方向Z的底端与第二电池单体102沿高度方向Z的底端可以错开设置,且第一电池单体101沿高度方向Z的底端位于第二电池单体102的两端之间。这样,导流通道40的体积增大,电池1的防护箱20的泄压缓冲空间较大,可以供更大体积量的排放物流通,电池1的安全系数较高。
其中,第一电池单体101沿高度方向Z的底端与第二电池单体102沿高度方向Z的底端错开的高度差与导流通道40的体积增大量呈正比,高度差越大,导流通道40的体积增大量越大,高度差的大小可以根据需要进行设置。
示例性的,请参阅图12,当第二电池单体102的泄压机构14不设置在沿自身高度方向Z的底端,此时,支撑板22的与第二电池单体102对应的区域可以与底板接触。此时,电池1装配过程中,第一电池单体101和第二电池单体102沿自身高度方向Z的底端错开设置,以使第一电池单体101的下方形成导流通道40。那么,本实施例中,为增大导流通道40的体积,可以增大第一电池单体101沿高度方向Z的底端与第二电池单体102沿高度方向Z的底端的高度差。
对于支撑板22和底板24,当电池单体10沿高度方向Z的底端设有泄压机构14时,防护箱20的内部还设置有支撑板22,支撑板22用于支撑多个电池单体10。当多个电池单体10的泄压机构14均位于沿高度方向Z的顶端时,多个电池单体10可直接与防护箱20的底板24连接,该底板24用于支撑多个电池单体10。
当多个电池单体10沿高度方向Z的底端平齐时,支撑板22或底板24的与多个电池单体10接触的侧面为平面(如图6和图8所示)。当多个电池单体10沿高度方向Z的底端错开设置时,支撑板22或底板24的与多个电池单体10接触的侧面为凹凸面(如图10和图12所示)。
请继续参阅图10,当第一电池单体101和第二电池单体102沿高度方向Z的底端错开时,底板24上设有凹陷的支撑部,第一电池单体101沿高度方向Z的底端可以伸入并支撑在支撑部内,使得第一电池单体101的底端与支撑部插接,第一电池单体101的底端与底板24相对固定,第一电池单体101较为稳固,电池1的紧固效果好。
具体的,第一电池单体101的底壁与支撑部的底壁面接触,第一电池单体101的侧壁与支撑部的侧壁面接触,这样,支撑部的内壁面形成对第一电池单体101底端的限位。即使第一电池单体101受到相邻的电池单体10的挤压,例如,第二电池单体102发生偏移,并对第一电池单体101形成挤压,此时,也只有第一电池单体101中伸出支撑部的部分会发生偏移,第一电池单体101的位于支撑部内的部分仍然与支撑部卡接,也就是第一电池单体101的紧固效果较好。电池1作为一个整体,其稳定性也较好。
可以理解的,当底板24上设置凹陷的支撑部,底板24上还对应设置有凸起部,第二电池单体102可以支撑在凸起部上。
其中,凸起部可以与底板24粘接固定或一体成型。请参阅10,此时,底板24可以为板状结构,凸起部连接在底板24上,凸起部与底板24共同形成凹凸支撑面。此时,底板24的强度较高。且底板24的外侧面为平面,便于电池1与装置的组装。
当然,当支撑板22上设有凹陷的支撑部时,支撑板22与电池单体10的卡接原理与底板与电池单体10的卡接原理类似,本实施例不再赘述。
图14是本申请实施例公开的电池的结构示意图六。请参阅图14,在一些可选的实施方式中,电池1还可以包括弹性件30,弹性件30与底板24连接,用于支撑电池单体10。这样,可以提高电池单体10以及电池1的减震、抗冲击能力。弹性件30可以为弹簧、弹性橡胶等,本实施例不进行限制。
其中,每个电池单体10可以对应设置一个弹性件30,以分别对每个电池单体10进行缓冲减震。
为固定弹性件30,底板24上设有容置槽(未示出),容置槽用于容置弹性件30。这样,当电池1受到冲击,电池单体10相对于底板24发生偏移时,弹性件30可在容置槽内发生弹性变形。此时,容置槽可以起到导向作用,避免弹性件30在变形过程中发生歪斜,导致电池单体10发生歪斜。
容置槽的个数可以少于电池单体10的个数,以避免容置槽过多的降低底板24的强度。
当然,当防护箱20内设有支撑板22时,弹性件30与支撑板22连接,本实施例不再赘述。
在一些可选的实施方式中,第一电池单体101和第二电池单体102可以为相同 的电池单体,也可以为不同的电池单体。这里所说的“相同”是指第一电池单体101和第二电池单体102在化学体系、形状、尺寸、体积、质量、能量密度等方面基本保持一致,而这里所说的“不同”是指第一电池单体101和第二电池单体102在化学体系、形状、尺寸、体积、质量、能量密度等方面中至少有一者有明显差异。
在一些可选的实施方式中,第一电池单体101的能量密度大于第二电池单体102的能量密度,其中,能量密度指的是单位质量或单位体积的电池所放出的能量,即重量能量密度或体积能量密度。在一些实施方式中,第一电池单体101的能量密度为第二电池单体102的能量密度的1.1-1.6倍。第一电池单体101的能量密度大于第二电池单体102的能量密度,第一电池单体101的泄压机构14致动时产生的排放物的体积量较大,通过增大与第一电池单体101相对设置的导流通道40的体积,有利于排放物的排放更加顺畅。
在一些可选的实施方式中,第一电池单体101可以为三元锂电池单体,具体例如为镍钴锰酸锂(LiNiMnCoO 2,NCM)电池单体或者镍钴铝酸锂(LiNiCoAlO 2,NCA)电池单体,第二电池单体102可以为磷酸铁锂(LiFePO 4,LFP)电池单体或者钴酸锂(LiCoO 2)电池单体。
在一些可选的实施方式中,本实施例不对第一电池单体101和第二电池单体102的个数进行限制。第一电池单体101和第二电池单体102的个数可以根据需要进行设置。示例性的,第一电池单体101的个数为一个、第二电池单体102的个数为一个。第一电池单体101的个数为一个,第二电池单体102的个数为多个。当然,第一电池单体101和第二电池单体102的个数还可以均为多个。
当第一电池单体101和第二电池单体102均设置为多个时,第一电池单体101和第二电池单体102以n个第一电池单体101、m个第二电池单体102的排布方式交替排列,其中,n≧1,m≧1,且n和m均为整数。
也就是说,本实施例不限制第一电池单体101和第二电池单体102的排列方式。例如,3个第一电池单体101、2个第二电池单体102、4个第一电池单体101依次排列设置。
可选的,第一电池单体101和第二电池单体102可以依次相邻设置,也就是第一电池单体101的两侧均与第二电池单体102相邻设置,第二电池单体102的两侧均与第一电池单体101相邻设置。这样,排放量较大的第一电池单体101以及排放量较 小的第二电池单体102交替设置,可以避免导流通道40内的某一区域内存积过多的排放物,有助于第一电池单体101的排放物以及第二电池单体102的排放物均匀分布在导流通道40内,导流通道40内的压力分布较为均匀,电池1的安全系数较高。
本申请实施例还提供一种电池1的制备方法,用于制备上述电池1,其包括:
S100、提供多个电池单体10,将多个电池单体10沿排列方向X并列设置,至少一个电池单体10设置有泄压机构14,其中,多个电池单体10包括相邻设置的第一电池单体101和第二电池单体102。
S200、提供防护箱20。
S300、将多个电池单体10装配在防护箱20内,并在防护箱20内形成导流通道40。其中,泄压机构14致动时,能够将电池单体10内部和导流通道40连通。
S400、将第一电池单体101的泄压端与第二电池单体102的靠近泄压端的一端错开设置。这样,导流通道40的体积增大,导流通道40内供排放物流通的空间较大,电池1的泄压缓冲空间较大,电池1的安全系数较高。
本申请实施例还提供一种电池1的制造设备,用于制备上述电池1,其包括:电池单体制备模块,用于制备多个电池单体10,至少一个电池单体10设置有泄压机构14,其中,多个电池单体10包括相邻设置的第一电池单体101和第二电池单体102;防护箱制备模块,用于制备防护箱20;装配模块,用于将多个电池单体10装配在防护箱20内;此时,将第一电池单体101的泄压端与第二电池单体102的靠近泄压端的一端错开设置。
其中,电池单体制备模块、防护箱制备模块、装配模块之间可以相互独立,也可以为制备设备中的组成部分,本实施例不进行限制。
具体的,制备电池1时,首先通过电池单体制备模块和防护箱制备模块制备电池单体10和防护箱20,并在防护箱20上形成导流通道40。
在装配电池1过程中或者装配电池1之前,可以将各个电池单体10并排设置,这样,装配模块可以将并排后的多个电池单体10容置在防护箱20内。然后将第一电池单体101的泄压端与第二电池单体102的靠近泄压端的一端错开设置,这样,导流通道40的体积增大,导流通道40内供排放物流通的空间较大,电池1的泄压缓冲空间较大,电池1的安全系数较高。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情 况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (10)

  1. 一种电池,包括:
    多个电池单体,至少一个所述电池单体设有泄压机构,所述泄压机构用于在所述电池单体的内部压力或内部温度达到阈值时致动以泄放所述电池单体的内部压力;
    防护箱,所述防护箱用于对所述多个电池单体形成防护;所述防护箱设置有导流通道,所述导流通道用于对从所述泄压机构排出的排放物进行导流;
    所述多个电池单体包括相邻设置的第一电池单体和第二电池单体,所述第一电池单体包括设置所述泄压机构的泄压端,所述第一电池单体的泄压端沿远离所述导流通道的方向与所述第二电池单体的靠近所述泄压端的一端错开设置,以增大所述导流通道的体积。
  2. 根据权利要求1所述的电池,其中,所述防护箱包括防护板,所述防护板与所述多个电池单体间隔设置,所述导流通道形成于所述防护板与所述多个电池单体之间;
    所述防护板设有凹陷部,所述凹陷部用于增大所述导流通道的体积,其中,所述凹陷部由所述防护板朝向背离所述多个电池单体的一侧凹陷形成,所述凹陷部具有内腔,所述内腔用于与所述导流通道连通。
  3. 根据权利要求2所述的电池,其中,所述凹陷部与所述第一电池单体相对设置。
  4. 根据权利要求1-3任一项所述的电池,其中,所述防护箱包括支撑板,所述支撑板附接于所述多个电池单体,所述导流通道设置在所述支撑板的远离所述多个电池单体的一侧;
    所述支撑板设置有通孔,所述通孔用于供所述排放物穿过,所述通孔与所述导流通道连通。
  5. 根据权利要求1-4任一项所述的电池,其中,所述第一电池单体的能量密度大于所述第二电池单体的能量密度。
  6. 根据权利要求5所述的电池,其中,所述第一电池单体的能量密度为所述第二电池单体的能量密度的1.1-1.6倍。
  7. 根据权利要求1-6任一项所述的电池,其中,所述第一电池单体和所述第二电池 单体均设置为多个,且所述第一电池单体和所述第二电池单体以n个所述第一电池单体、m个所述第二电池单体的排布方式交替排列,其中,n≧1,m≧1。
  8. 一种使用电池的装置,其包括权利要求1-7任一项所述的电池,所述电池为所述装置提供电能。
  9. 一种电池的制备方法,用于制备权利要求1-7任一项所述的电池,包括:
    提供多个电池单体,至少一个所述电池单体设置有泄压机构,其中,所述多个电池单体包括相邻设置的第一电池单体和第二电池单体;
    提供防护箱;
    将所述多个电池单体装配在所述防护箱内,并在所述防护箱内形成导流通道;
    将所述第一电池单体的设置所述泄压机构的一端与所述第二电池单体错开设置。
  10. 一种电池的制造设备,用于制备权利要求1-7任一项所述的电池,包括:
    电池单体制备模块,用于制备所述多个电池单体,至少一个所述电池单体设置有泄压机构,其中,所述多个电池单体包括相邻设置的第一电池单体和第二电池单体;
    防护箱制备模块,用于制备所述防护箱;
    装配模块,用于将所述多个电池单体装配在所述防护箱内;此时,所述第一电池单体的设置所述泄压机构的一端与所述第二电池单体错开设置。
PCT/CN2020/129476 2020-11-17 2020-11-17 电池、使用电池的装置、电池的制备方法和制备设备 WO2022104548A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20961839.6A EP4064437A4 (en) 2020-11-17 2020-11-17 BATTERY, APPARATUS USING SAME, AND MANUFACTURING METHOD AND DEVICE FOR BATTERY
CN202080102561.6A CN115917861A (zh) 2020-11-17 2020-11-17 电池、使用电池的装置、电池的制备方法和制备设备
PCT/CN2020/129476 WO2022104548A1 (zh) 2020-11-17 2020-11-17 电池、使用电池的装置、电池的制备方法和制备设备
US18/054,698 US20230066562A1 (en) 2020-11-17 2022-11-11 Battery, apparatus using battery, and preparation method and preparation device of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/129476 WO2022104548A1 (zh) 2020-11-17 2020-11-17 电池、使用电池的装置、电池的制备方法和制备设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/054,698 Continuation US20230066562A1 (en) 2020-11-17 2022-11-11 Battery, apparatus using battery, and preparation method and preparation device of battery

Publications (1)

Publication Number Publication Date
WO2022104548A1 true WO2022104548A1 (zh) 2022-05-27

Family

ID=81707982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129476 WO2022104548A1 (zh) 2020-11-17 2020-11-17 电池、使用电池的装置、电池的制备方法和制备设备

Country Status (4)

Country Link
US (1) US20230066562A1 (zh)
EP (1) EP4064437A4 (zh)
CN (1) CN115917861A (zh)
WO (1) WO2022104548A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024011578A1 (zh) * 2022-07-15 2024-01-18 宁德时代新能源科技股份有限公司 电池和用电装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201498554U (zh) * 2009-09-11 2010-06-02 深圳市雄韬电源科技有限公司 利于散热的电池组排列结构
CN102484235A (zh) * 2010-07-30 2012-05-30 松下电器产业株式会社 电池模块
CN103311562A (zh) * 2012-03-12 2013-09-18 联想(北京)有限公司 一种充电电池及其充电控制方法和放电控制方法
CN108807726A (zh) * 2017-04-28 2018-11-13 罗伯特·博世有限公司 具有多个电池单池的电池
KR20190023917A (ko) * 2017-08-30 2019-03-08 주식회사 엘지화학 원통형 이차전지 모듈
CN110190212A (zh) * 2018-12-29 2019-08-30 比亚迪股份有限公司 动力电池包及车辆
CN110720158A (zh) * 2018-01-17 2020-01-21 株式会社Lg化学 具有散热和防止链式燃烧结构的多层柱形电池模块及包含其的电池组

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4370027B2 (ja) * 1999-10-08 2009-11-25 パナソニック株式会社 組電池
US7855011B2 (en) * 2008-08-28 2010-12-21 International Battery, Inc. Monoblock lithium ion battery
JP6094810B2 (ja) * 2013-07-17 2017-03-15 トヨタ自動車株式会社 非水電解質二次電池
JP6256846B2 (ja) * 2013-10-31 2018-01-10 パナソニックIpマネジメント株式会社 電池モジュール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201498554U (zh) * 2009-09-11 2010-06-02 深圳市雄韬电源科技有限公司 利于散热的电池组排列结构
CN102484235A (zh) * 2010-07-30 2012-05-30 松下电器产业株式会社 电池模块
CN103311562A (zh) * 2012-03-12 2013-09-18 联想(北京)有限公司 一种充电电池及其充电控制方法和放电控制方法
CN108807726A (zh) * 2017-04-28 2018-11-13 罗伯特·博世有限公司 具有多个电池单池的电池
KR20190023917A (ko) * 2017-08-30 2019-03-08 주식회사 엘지화학 원통형 이차전지 모듈
CN110720158A (zh) * 2018-01-17 2020-01-21 株式会社Lg化学 具有散热和防止链式燃烧结构的多层柱形电池模块及包含其的电池组
CN110190212A (zh) * 2018-12-29 2019-08-30 比亚迪股份有限公司 动力电池包及车辆

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024011578A1 (zh) * 2022-07-15 2024-01-18 宁德时代新能源科技股份有限公司 电池和用电装置

Also Published As

Publication number Publication date
US20230066562A1 (en) 2023-03-02
EP4064437A4 (en) 2023-09-13
CN115917861A (zh) 2023-04-04
EP4064437A1 (en) 2022-09-28

Similar Documents

Publication Publication Date Title
WO2022006894A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2022006895A1 (zh) 电池及其相关装置、制备方法和制备设备
CN213026307U (zh) 电池、包括电池的装置和制备电池的设备
WO2023004723A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2022105010A1 (zh) 电池单体、电池及用电装置
EP3965214B1 (en) Battery and related apparatus thereof and preparation method and preparation device therefor
US20230061760A1 (en) Battery, apparatus, and preparation method and preparation apparatus of battery
WO2022006898A1 (zh) 电池及其相关装置、制备方法和制备设备
US20230231263A1 (en) Battery, apparatus, and preparation method and preparation apparatus of battery
US20220416232A1 (en) Electrode assembly, method and system for manufacturing same, battery cell, and battery
WO2022246840A1 (zh) 端盖组件、电池单体、电池及用电设备
WO2022104548A1 (zh) 电池、使用电池的装置、电池的制备方法和制备设备
US20230344059A1 (en) Battery, electric device, and method and device for manufacturing battery
US20230071423A1 (en) Battery, apparatus using battery, and preparation method and preparation device of battery
WO2023134479A1 (zh) 电池和用电设备
WO2023134319A1 (zh) 电池和用电设备
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023130266A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法和装置
WO2022170487A1 (zh) 电池单体、电池、用电装置以及制备电池单体的方法
WO2023173428A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
RU2805991C1 (ru) Батарея и связанное с ней устройство, способ ее изготовления и устройство для ее изготовления
WO2022252010A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
EP4354574A1 (en) Battery, electrical device, and method and device for preparing battery
WO2023173416A1 (zh) 泄压机构、电池单体、电池及用电设备
CN219610664U (zh) 电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020961839

Country of ref document: EP

Effective date: 20220623

NENP Non-entry into the national phase

Ref country code: DE