WO2024000509A1 - 电池和用电装置 - Google Patents

电池和用电装置 Download PDF

Info

Publication number
WO2024000509A1
WO2024000509A1 PCT/CN2022/103111 CN2022103111W WO2024000509A1 WO 2024000509 A1 WO2024000509 A1 WO 2024000509A1 CN 2022103111 W CN2022103111 W CN 2022103111W WO 2024000509 A1 WO2024000509 A1 WO 2024000509A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
wall
battery cell
box
battery according
Prior art date
Application number
PCT/CN2022/103111
Other languages
English (en)
French (fr)
Inventor
李星
张辰辰
金海族
李振华
牛少军
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/103111 priority Critical patent/WO2024000509A1/zh
Publication of WO2024000509A1 publication Critical patent/WO2024000509A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery and an electrical device.
  • Electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy conservation and environmental protection.
  • battery technology is an important factor related to their development.
  • the present application provides a battery and a power-consuming device, which can ensure that the battery has a high energy density and at the same time make the battery have high safety.
  • the application provides a battery, including: a battery cell, the battery cell includes a casing and a pressure relief mechanism, the pressure relief mechanism is provided on the first wall of the casing; a blocking member, along the The thickness direction of the first wall, the blocking member is arranged opposite to the first wall, the projection of the blocking member on the first wall covers at least a part of the pressure relief mechanism, the blocking member is in contact with the first wall.
  • An exhaust gap is formed between the first walls; wherein, the size of the exhaust gap is D, the capacity of the battery cell is C, satisfying 0.01 ⁇ D/C ⁇ 0.14, the unit of D is mm, and the unit of C is The unit is Ah.
  • the blocking member is the first place where the high-temperature gas encounters after the battery cell is exhausted.
  • the blocking member reduces the speed of the high-temperature gas and even causes backflow, thereby affecting the battery cells. Due to the exhaust efficiency of the battery, the gas inside the battery cell is not discharged in a timely manner. The closer the blocking member is to the pressure relief mechanism, that is, the smaller the exhaust gap D, the greater the impact on the exhaust efficiency, and the slower the exhaust is. , at the same time, the heat return will have a greater impact on adjacent battery cells, and may even cause adjacent battery cells to fail, and the risk of battery explosion will be greater.
  • the exhaust gap D is related to the energy density of the battery.
  • the exhaust gap D is smaller, the energy density of the battery is greater.
  • the larger the exhaust gap D is, the energy density of the battery is smaller.
  • the battery provided by this application can satisfy 0.01 ⁇ D/C ⁇ 0.14 (the unit of D is mm, the unit of C is Ah), so that the battery has higher energy density under the condition of higher safety. .
  • 0.02 ⁇ D/C ⁇ 0.08 is satisfied.
  • the battery satisfies 0.02 ⁇ D/C ⁇ 0.08 to further limit the ratio between the exhaust gap D of each battery cell in the battery and the capacity C of the battery cell, so as to optimize the internal space of the battery so that the battery It has higher safety and higher energy density.
  • 0.03 ⁇ D/C ⁇ 0.05 is satisfied.
  • the battery satisfies 0.03 ⁇ D/C ⁇ 0.05, further limiting the ratio between the exhaust gap D of each battery cell in the battery and the capacity C of the battery cell, balancing the safety and energy density of the battery. , making the battery have a higher energy density while ensuring the safety of the battery.
  • the housing further includes a second wall, two third walls and two fourth walls, the first wall and the second wall are arranged oppositely along the first direction, and the two The two third walls are arranged oppositely along the second direction, the two fourth walls are arranged oppositely along the third direction, the first direction, the second direction and the third direction are perpendicular to each other, and the first The area of the wall, the area of the second wall and the area of the third wall are all smaller than the area of the fourth wall.
  • the battery cell is a square battery cell, and the area of the first wall, the second wall and the third wall are all smaller than the area of the fourth wall, so the surface of the fourth wall is the surface of the battery cell. Big noodles.
  • the battery further includes a box, the battery cells are arranged in the box, the box includes a top wall, a bottom wall and a side wall, the top wall and the bottom wall are The walls are arranged oppositely along the third direction, the side walls are surrounding the bottom wall, and the side walls connect the top wall and the bottom wall.
  • the battery cells are placed in the box and are protected by the top wall, bottom wall and side walls, which can prevent external objects from affecting the battery cells and ensure the normal operation of the battery;
  • the third direction is the height direction of the box, that is, the plane where the fourth wall of the battery cell is located is parallel to the plane where the top wall or the bottom wall is located.
  • the battery cell can be regarded as lying flat in the box.
  • the size of the battery cell in the third direction is X, satisfying 0.1 ⁇ D/X ⁇ 1, and the unit of X is mm.
  • the third direction is the direction in which the two large surfaces of the battery cell face each other, and the dimension X of the battery cell in the third direction can also be regarded as the thickness dimension of the battery cell.
  • the thickness of the battery cell is related to the capacity of the battery cell. The larger the capacity of the battery cell, the thicker the battery cell can be. Therefore, the thickness of the battery cell affects the energy density and safety of the battery. Among them, when D/X>1 (the unit of ), there is insufficient exhaust gap D. After the thermal runaway of the battery cell, the high-temperature gas inside cannot be discharged in time, causing the casing to rupture or even the battery to explode. For this reason, in this application, when the battery cell is placed flat, the battery cell satisfies 0.1 ⁇ D/X ⁇ 1 (the unit of High energy density.
  • 0.1 ⁇ D/X ⁇ 0.5 is satisfied.
  • the battery satisfies 0.1 ⁇ D/X ⁇ 0.5 to further limit the ratio between the exhaust gap of each battery cell and the thickness of the battery cell (the size X of the battery cell in the third direction) , to optimize the battery so that the battery has higher safety and higher energy density.
  • 0.25 ⁇ D/X ⁇ 0.45 is satisfied.
  • the battery satisfies 0.25 ⁇ D/X ⁇ 0.45, further limiting the ratio between the exhaust gap D of each battery cell and the thickness of the battery cell, balancing the safety and energy density of the battery while ensuring Under the condition of battery safety, it has higher energy density.
  • the size of the battery cell in the first direction is H, satisfying 0.05 ⁇ D/H ⁇ 0.5, and the unit of H is mm.
  • the first direction is the direction in which the first wall and the second wall are opposite, and the pressure relief mechanism is arranged on the first wall.
  • the size H of the battery cell in the first direction can also be regarded as the height size of the battery.
  • the height of the battery cell is related to the capacity of the battery cell. The larger the capacity of the battery cell, the higher the battery cell can be. Therefore, the height of the battery cell affects the energy density and safety of the battery.
  • 0.05 ⁇ D/H ⁇ 0.25 is satisfied.
  • the battery satisfies 0.05 ⁇ D/H ⁇ 0.25 to further limit the ratio of the exhaust gap of each battery cell and the height of the battery cell (the size H of the battery cell in the first direction) relationship to optimize the battery so that the battery has higher safety and higher energy density.
  • 0.13 ⁇ D/H ⁇ 0.23 is satisfied.
  • the battery satisfies 0.13 ⁇ D/H ⁇ 0.23, further limiting the ratio between the exhaust gap D of each battery cell and the height of the battery cell, balancing the safety and energy density of the battery while ensuring Under the condition of battery safety, the battery has higher energy density.
  • the size of the battery cell in the second direction is L, satisfying 0.03 ⁇ D/L ⁇ 0.3, and the unit of L is mm.
  • the second direction is the direction in which the two second walls face each other.
  • the dimension L of the battery cell in the second direction can also be regarded as the length dimension of the battery.
  • the length of the battery cell is related to the capacity of the battery cell. The larger the capacity of the battery cell, the longer the battery cell can be. Therefore, the length of the battery cell affects the energy density and safety of the battery.
  • D/L>0.3 there is an issue that the exhaust gap D is too large, which leads to a waste of space inside the battery and affects the battery energy density; when D/L is less than 0.03, there is an insufficient exhaust gap D and the battery cells are heated.
  • the battery cell satisfies 0.03 ⁇ D/L ⁇ 0.3 (the unit of L is mm), so that the battery has a higher energy density under the condition of higher safety.
  • 0.03 ⁇ D/L ⁇ 0.17 is satisfied.
  • the battery satisfies 0.03 ⁇ D/L ⁇ 0.17 to further limit the ratio between the exhaust gap of each battery cell and the length of the battery cell (the size L of the battery cell in the second direction), To optimize the battery, the battery has higher safety and higher energy density.
  • 0.08 ⁇ D/L ⁇ 0.15 is satisfied.
  • the battery satisfies 0.08 ⁇ D/L ⁇ 0.15, further limiting the ratio between the exhaust gap D of each battery cell and the length of the battery cell, balancing the safety and energy density of the battery while ensuring Under the condition of battery safety, the battery has higher energy density.
  • the battery further includes a box, the battery cell is arranged in the box, and the exhaust volume in the box is V, satisfying 0.1 ⁇ V/C ⁇ 1.4, V
  • the unit is mm 3 .
  • the battery box usually has good sealing performance to prevent water and dust.
  • the box needs to have enough space to accommodate high-temperature gas, that is, the exhaust volume V (unit: mm 3 ). If the exhaust volume is too small, there is a risk of box rupture or battery explosion. However, if the exhaust space is too large, it indicates that there is a waste of space in the box, which affects the battery energy density. Among them, when V/C>1.4, the exhaust volume V is too large, resulting in a waste of space inside the box and affecting the battery.
  • 0.2 ⁇ V/C ⁇ 0.8 is satisfied.
  • the battery satisfies 0.2 ⁇ V/C ⁇ 0.8, and the ratio between the exhaust volume V in the battery and the capacity C of the battery cell is further limited to optimize the internal space of the battery and make the battery have higher safety. And has higher energy density.
  • the battery satisfies 0.3 ⁇ V/C ⁇ 0.5, and further limits the ratio between the exhaust volume V in the battery and the capacity C of the battery cell to balance the safety and energy density of the battery while ensuring the battery's Under the condition of safety, the battery has higher energy density.
  • the projection of the blocking member on the first wall completely covers the pressure relief mechanism.
  • the blocking member is further limited, that is, the projection of the blocking member on the first wall needs to completely cover the pressure relief mechanism to ensure that D/C, D/X, D/H, D/L, V/C Ranged accuracy.
  • the blocking member has a first surface facing the first wall, and an area of the first surface is greater than an area of the first wall.
  • the blocking member is further limited, that is, the area of the first surface of the blocking member must be larger than the area of the first wall to ensure that D/C, D/X, D/H, D/L, V/ C-limited accuracy.
  • the battery further includes a box, the battery cell is disposed in the box, and the blocking member is a wall of the box.
  • the blocking member is limited to the wall of the box, that is, there is no other component between the pressure relief mechanism and the wall of the box that can block the flow of high-temperature gas, that is, the high-temperature gas discharged from the battery cells will first be blocked by the walls of the box.
  • the battery further includes a box body, and the battery cell and the blocking member are disposed in the box body.
  • the situation where the blocking member is not the wall of the box is limited, that is, there are other components between the pressure relief mechanism and the wall of the box that can block the flow of high-temperature gas, that is, the high-temperature gas discharged from the battery cells will first Blocked by a barrier between the wall of the box and the pressure relief mechanism.
  • the barrier is a thermal management component, and the thermal management component is used to accommodate a medium to adjust the temperature of the battery cell.
  • the blocking member is limited to a thermal management component, that is, there is no other component between the pressure relief mechanism and the thermal management component that can block the flow of high-temperature gas, that is, the high-temperature gas discharged from the battery cell will first be thermally managed. blocked by parts.
  • the blocking member is a structural beam.
  • the structural beam is a structure arranged in the box, which can have the function of improving the structural strength of the box or tightening the battery cells.
  • the blocking member is a structural beam, that is, there is no other component between the pressure relief mechanism and the structural beam that can block the flow of high-temperature gas, that is, the high-temperature gas discharged from the battery cells will first be blocked by the structural beam.
  • this application also provides an electrical device, including the battery described in any embodiment of the first aspect, where the battery is used to provide electrical energy.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • FIG. 2 is a schematic diagram of a battery provided by some embodiments of the present application.
  • Figure 3 is a schematic diagram of a battery cell in some embodiments of the present application.
  • Figure 4 is a schematic diagram of a box and a battery cell in some embodiments of the present application.
  • Figure 5 is a side view of a battery cell in some embodiments of the present application.
  • Figure 6 is a front view of a battery cell in some embodiments of the present application.
  • Figure 7 is a schematic diagram of a battery in other embodiments of the present application.
  • Icon 100-battery; 10-battery cell; 11-casing; 110-first wall; 111-second wall; 112-third wall; 113-fourth wall; 12-pressure relief mechanism; 13-electrode terminal ; 20-blocking member; 30-box; 31-top wall; 32-bottom wall; 33-side wall; 40-thermal management component; x-first direction; y-second direction; z-third direction; 1000-vehicle; 200-controller; 300-motor.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • the orientation or positional relationship indicated by the technical terms “length”, “width”, “thickness”, “upper”, “lower”, etc. are based on the orientation or positional relationship shown in the drawings, and only It is intended to facilitate the description of the embodiments of the present application and simplify the description, but does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as limiting the embodiments of the present application.
  • the battery mentioned refers to a single physical module that includes one or more battery cells to provide higher voltage and capacity.
  • the battery cell includes a casing, a pressure relief mechanism, an electrode assembly and an electrolyte.
  • the electrode assembly and electrolyte are located inside the casing, and the pressure relief mechanism is located on the first wall of the casing.
  • the electrode assembly consists of a positive electrode piece, a negative electrode piece and an isolation film. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector that is not coated with the positive electrode active material layer protrudes from the current collector that is coated with the positive electrode active material layer.
  • the current collector that is not coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector that is not coated with the negative electrode active material layer protrudes from the current collector that is coated with the negative electrode active material layer.
  • the current collector that is not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the pressure relief mechanism refers to an element or component that is activated to relieve the internal pressure or temperature when the internal pressure or temperature of the battery cell reaches a threshold.
  • the pressure relief mechanism can take the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, etc., and can specifically adopt pressure-sensitive or temperature-sensitive components or structures, that is, when the internal pressure or temperature of the battery cell reaches a threshold , the pressure relief mechanism performs an action or the weak structure provided in the pressure relief mechanism is destroyed, thereby forming an opening or channel for the internal pressure or temperature to be released.
  • the "actuation" mentioned in this application means that the pressure relief mechanism acts or is activated to a certain state, so that the internal pressure and temperature of the battery cell can be released.
  • the actions generated by the pressure relief mechanism may include but are not limited to: at least a part of the pressure relief mechanism is broken, broken, torn or opened, etc.
  • the risk of battery safety issues due to thermal runaway is higher.
  • the high-temperature and high-pressure gases emitted by large battery cells due to thermal runaway are not discharged in time, resulting in low safety.
  • the inventor designed a battery after in-depth research, which includes a battery cell and a barrier.
  • the capacity of a battery cell is C (unit Ah).
  • the pressure relief mechanism of the battery cell is arranged on the first wall of the casing.
  • the blocking member is arranged opposite to the pressure relief mechanism of the battery cell.
  • the space above the pressure relief mechanism may be the exhaust gap D formed between the barrier and the first wall. In this battery, 0.01 ⁇ D/C ⁇ 0.14 is satisfied.
  • D/C>0.14 the exhaust gap D is too large, which leads to a waste of space inside the battery and affects the battery energy density.
  • D/C ⁇ 0.01 the exhaust gap D is insufficient and the battery cell thermally loses control. , the high-temperature gas inside cannot be discharged in time, causing the shell to rupture or even the battery to explode. For this reason, in this application, 0.01 ⁇ D/C ⁇ 0.14 can make the battery have higher safety under the condition of higher capacity density.
  • the battery cells disclosed in the embodiments of the present application can be used in, but are not limited to, vehicles, ships, aircraft, and other electrical equipment.
  • the power supply system of the electrical equipment can be composed of battery cells, batteries, etc. disclosed in this application.
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device can be, but is not limited to, a mobile phone, a tablet computer, a laptop, an electric toy, an electric tool, an electric bicycle, an electric motorcycle, an electric car, a ship, Spacecraft and more.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • an electrical device is a vehicle 1000 as an example.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 can be used to power the vehicle 1000 .
  • the battery 100 can be used as an operating power supply for the vehicle 1000 and for the circuit system of the vehicle 1000 , such as for the starting, navigation and operating power requirements of the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • Figure 2 is a schematic diagram of a battery 100 provided in some embodiments of the present application
  • Figure 3 is a schematic diagram of a battery cell 10 in some embodiments of the present application.
  • the battery 100 includes a battery cell 10 and a barrier 20 .
  • the battery cell 10 includes a housing 11 and a pressure relief mechanism 12 .
  • the pressure relief mechanism 12 is provided on the first wall 110 of the housing 11 .
  • the blocking member 20 is arranged opposite to the first wall 110.
  • the projection of the blocking member 20 on the first wall 110 covers at least a part of the pressure relief mechanism 12.
  • the size of the exhaust gap is D
  • the capacity of the battery cell 10 is C
  • the unit of D is mm
  • the unit of C is Ah.
  • each battery cell 10 may be a secondary battery, a primary battery, a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the first wall 110 is one wall of the housing 11 , and the first wall 110 and other walls of the housing 11 define a space for accommodating the electrode assembly and the electrolyte.
  • the pressure relief mechanism 12 refers to an element or component that is activated to relieve the internal pressure or temperature when the internal pressure or temperature of the battery cell 10 reaches a threshold value.
  • the pressure relief mechanism 12 may take the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, etc., and may specifically adopt a pressure-sensitive or temperature-sensitive component or structure.
  • the pressure relief mechanism 12 When the battery cell 10 undergoes thermal runaway and its internal pressure or temperature reaches a threshold, the pressure relief mechanism 12 performs an action or the weak structure provided in the pressure relief mechanism 12 is destroyed, so as to reduce the high temperature and high pressure generated inside the battery cell 10 Gas is discharged.
  • the first wall 110 may be provided with electrode terminals 13 , and the electrode terminals 13 can be connected to the electrode components in the housing 11 to realize charging and discharging of the battery cells 10 .
  • the electrode terminal 13 may be a pole of the battery cell 10 .
  • the barrier 20 is a structure of the battery 100 other than the battery cell 10 , and is disposed relative to the first wall 110 along the thickness direction of the first wall 110 .
  • the high-temperature and high-pressure gas discharged by the pressure relief mechanism 12 will be blocked by the blocking member 20 .
  • the blocking member 20 may be a beam in the battery 100, a heat pipe component (water-cooling plate), or a partial structure of the box 30 of the battery 100, or the like.
  • the thickness direction of the first wall 110 may also refer to the flow direction of the high-temperature and high-pressure gas discharged by the pressure relief mechanism 12 .
  • the exhaust gap D may refer to the shortest path from which high-temperature and high-pressure gas is discharged from the pressure relief mechanism 12 to being blocked by the blocking member 20 , or may refer to the minimum distance between the first wall 110 and the blocking member 20 , or in some embodiments , the exhaust gap D may refer to the minimum distance between the pressure relief mechanism 12 and the blocking member 20 in the thickness direction of the first wall 110 .
  • the capacity C of the battery cell 10 refers to the amount of electricity stored in the battery cell 10, which represents the amount of electricity released by the battery cell 10 under certain conditions (discharge rate, temperature, termination voltage, etc.), usually in units of ampere hours (Ah for short). ).
  • the capacity of the battery cell 10 may be measured by a battery capacity tester. Among them, since measuring the capacity of the battery cell 10 is a conventional technical method in the battery field, those skilled in the art clearly know how to measure the capacity of the battery cell 10, and therefore will not be described in detail in this embodiment.
  • D/C can be any value from 0.01 to 0.14, such as D/C can be 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, or 0.14.
  • the exhaust gap D may be 0.01mm, 0.02mm, 0.03mm, 0.04mm, 0.05mm, 0.06mm, 0.07mm, 0.08 mm, 0.09mm, 0.1mm, 0.11mm, 0.12mm, 0.13mm or 0.14mm.
  • the exhaust gap D may be 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 11 mm, 12mm, 13mm or 14mm.
  • the impact of heat return on the adjacent battery cells 10 will also be smaller.
  • the larger the D the greater the risk of the adjacent battery cells 10 failing and the battery 100 exploding.
  • the exhaust gap D is related to the energy density of the battery 100. When the exhaust gap D is smaller, the energy density of the battery 100 is greater.
  • the exhaust gap D in the battery 100 and the capacity C of the battery cell 10 affect the safety and energy density of the battery 100.
  • D/C>0.14 the exhaust gap D is too large, causing the battery to 100 internal space is wasted, affecting the energy density of the battery 100; when D/C ⁇ 0.01, there is insufficient exhaust gap D.
  • the battery 100 provided by this application satisfies 0.01 ⁇ D/C ⁇ 0.14 (the unit of D is mm and the unit of C is Ah), so that the battery 100 has higher energy under the condition of higher safety. density.
  • 0.02 ⁇ D/C ⁇ 0.08 is satisfied.
  • D/C can be any value from 0.02 to 0.08, such as D/C can be 0.02, 0.03, 0.04, 0.05, 0.06, 0.07 or 0.08.
  • the exhaust gap D may be 0.02mm, 0.03mm, 0.04mm, 0.05mm, 0.06mm, 0.07mm or 0.08mm.
  • the battery 100 satisfies 0.02 ⁇ D/C ⁇ 0.08 to further limit the ratio relationship between the exhaust gap D of each battery cell 10 in the battery 100 and the capacity C of the battery cell 10 to optimize the internal performance of the battery 100. space, so that the battery 100 has higher safety and higher energy density.
  • 0.03 ⁇ D/C ⁇ 0.05 is satisfied.
  • D/C can be any value from 0.03 to 0.05, such as D/C can be 0.03, 0.04, or 0.05.
  • the exhaust gap D may be 0.03 mm, 0.04 mm, or 0.05 mm.
  • the battery 100 satisfies 0.03 ⁇ D/C ⁇ 0.05, further limiting the ratio between the exhaust gap D of each battery cell 10 in the battery 100 and the capacity C of the battery cell 10, and balancing the battery 100.
  • Safety and energy density while ensuring the safety of the battery 100, the battery 100 has a higher energy density.
  • the housing 11 further includes a second wall 111 , two third walls 112 and two fourth walls 113 , the first wall 110 and the second wall 111 are along the first direction x are arranged oppositely, the two third walls 112 are arranged oppositely along the second direction y, the two fourth walls 113 are arranged oppositely along the third direction z, the first direction x, the second direction y and the third direction z are vertical in pairs.
  • the areas of the first wall 110 , the second wall 111 and the third wall 112 are all smaller than the area of the fourth wall 113 .
  • the housing 11 includes six walls, and each two walls are arranged oppositely. That is, the housing 11 can be a square housing 11 , that is, the battery cell 10 can be a square battery cell 10 .
  • the surface with the largest area is called the large surface. Since the area of the fourth wall 113 is larger than the areas of the first wall 110, the second wall 111 and the third wall 112, the surface of the fourth wall 113 is the battery cell. The large surface of the single unit 10.
  • the first direction x may be the thickness direction of the first wall 110 .
  • the second wall 111 can be the bottom wall of the battery cell 10
  • the third wall 112 and the fourth wall 113 are the side walls of the battery cell 10
  • the two third walls 112 and 113 can be the side walls of the battery cell 10.
  • Three walls 112 and two fourth walls 113 are surrounding the first wall 110 and the second wall 111.
  • the first direction x can also be the height direction of the battery cell 10
  • the second direction y can be the direction of the battery.
  • the length direction of the cell 10 and the third direction z may be the thickness direction of the battery cell 10 .
  • FIG. 4 is a schematic diagram of the box 30 and the battery cell 10 in some embodiments of the present application.
  • the battery 100 also includes a box 30.
  • the battery cell 10 is arranged in the box 30.
  • the box 30 includes a top wall 31, a bottom wall 32 and a side wall 33.
  • the top wall 31 and the bottom wall 32 are arranged oppositely along the third direction z.
  • the side walls 33 surround the bottom wall 32 and connect the top wall 31 and the bottom wall 32 .
  • a space capable of accommodating the battery cells 10 is formed inside the box 30 and can protect the battery cells 10 . Since the top wall 31 of the box 30 and the bottom wall 32 of the box 30 are relatively arranged along the third direction z, the height direction of the box 30 can be regarded as the third direction z.
  • the battery cell 10 is placed in the box 30 and is protected by the top wall 31 , the bottom wall 32 and the side wall 33 , which can prevent external objects from affecting the battery cell 10 and ensure the normal operation of the battery 100 .
  • the third direction z is the height direction of the box 30 , that is, the plane where the fourth wall 113 of the battery cell 10 is located is parallel to the plane where the top wall 31 of the box 30 or the bottom wall 32 of the box 30 is located (box The height direction of the battery cell 30 is parallel to the thickness direction of the battery cell 10).
  • the battery cell 10 can be regarded as lying flat in the box 30.
  • the battery cell 10 may not lie flat in the box 30 , but may also lie on its side or stand upright in the box 30 .
  • the relative direction of the top wall 31 of the box 30 and the bottom wall 32 of the box 30 may be the second direction y, that is, the height direction of the box 30 is the second direction y.
  • the height direction of the box 30 is parallel to the length direction of the battery cell 10; when the battery cell 10 is erected on the box 30, the top wall 31 of the box 30 and the bottom wall 32 of the box 30 are opposite to each other.
  • the direction may be the first direction x, that is, the height direction of the box 30 is the first direction x, and the height direction of the box 30 is parallel to the height direction of the battery cell 10 .
  • FIG. 5 is a side view of the battery cell 10 in some embodiments of the present application.
  • the size of the battery cell 10 in the third direction z is X, satisfying 0.1 ⁇ D/X ⁇ 1, and the unit of X is mm.
  • the third direction z may be the thickness direction of the battery cell 10 , that is, the direction in which the two large surfaces face each other.
  • the dimension X of the battery cell 10 in the third direction z may be the thickness dimension of the battery cell 10 .
  • D/X can be any value from 0.1 to 1, such as D/X can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 or 1. For example, in some embodiments, when the size .
  • the third direction z is the direction in which the two large surfaces of the battery cell 10 face each other, and the dimension X of the battery cell 10 in the third direction z can also be regarded as the thickness dimension of the battery cell 10 .
  • the thickness of the battery cell 10 is related to the capacity of the battery cell 10. The larger the capacity of the battery cell 10, the thicker the battery cell 10 can be. Therefore, the thickness of the battery cell 10 affects the energy density and safety of the battery 100.
  • D / After the body 10 is thermally out of control the high-temperature gas inside cannot be discharged in time, causing the casing 11 to rupture or even the battery 100 to explode.
  • the battery cell 10 when the battery cell 10 is placed flat, the battery cell 10 satisfies 0.1 ⁇ D/X ⁇ 1 (the unit of X is mm), so that the battery 100 has high safety. , with higher energy density.
  • 0.1 ⁇ D/X ⁇ 0.5 is satisfied.
  • D/X can be any value from 0.1 to 0.5, such as D/X can be 0.1, 0.2, 0.3, 0.4 or 0.5.
  • the battery 100 satisfies 0.1 ⁇ D/X ⁇ 0.5 to further limit the exhaust gap D of each battery cell 10 and the thickness of the battery cell 10 (the size of the battery cell 10 in the third direction z X) to optimize the battery 100 so that the battery 100 has higher safety and higher energy density.
  • 0.25 ⁇ D/X ⁇ 0.45 is satisfied.
  • the battery 100 satisfies 0.25 ⁇ D/X ⁇ 0.45, and further limits the ratio between the exhaust gap D of each battery cell 10 and the thickness of the battery cell 10 to balance the safety and energy of the battery 100. Density, while ensuring the safety of the battery 100, has a higher energy density.
  • FIG. 6 is a front view of the battery cell 10 in some embodiments of the present application.
  • the size of the battery cell 10 in the first direction x is H, satisfying 0.05 ⁇ D/H ⁇ 0.5, and the unit of H is mm.
  • the first direction x may be the height direction of the battery cell 10 , that is, the direction in which the poles of the battery cell 10 extend.
  • the dimension H of the battery cell 10 in the first direction x may be the height dimension of the battery cell 10 .
  • the height dimension of the battery cell 10 may be the height dimension of the housing 11 of the battery cell 10 .
  • D/H can be any value from 0.05 to 0.5, such as D/H can be 0.05, 0.06, 0.07, 0.08, 0.09, 0.1...0.45, 0.46, 0.47, 0.48, 0.49 or 0.5.
  • the exhaust gap D may be 1 mm, 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm, 2 mm...9 mm, 9.2 mm, 9.4mm, 9.6mm, 9.8mm or 10mm.
  • the first direction x is the direction in which the first wall 110 and the second wall 111 face each other, and the pressure relief mechanism 12 is provided on the first wall 110 .
  • the size H of the battery cell 10 in the first direction x can also be regarded as the height size of the battery 100 .
  • the height of the battery cell 10 is related to the capacity of the battery cell 10. The larger the capacity of the battery cell 10, the higher the battery cell 10 can be. Therefore, the height of the battery cell 10 affects the energy density and safety of the battery 100.
  • 0.05 ⁇ D/H ⁇ 0.25 is satisfied.
  • D/H can be any value from 0.05 to 0.25, such as D/H can be 0.05, 0.06, 0.07, 0.08, 0.09, 0.1...0.19, 0.2, 0.21, 0.21, 0.22, 0.23, 0.24 or 0.25.
  • the battery 100 satisfies 0.05 ⁇ D/H ⁇ 0.25 to further limit the exhaust gap of each battery cell 10 and the height of the battery cell 10 (the size H of the battery cell 10 in the first direction x ) to optimize the battery 100 so that the battery 100 has higher safety and higher energy density.
  • 0.13 ⁇ D/H ⁇ 0.23 is satisfied.
  • D/H can be any value from 0.13 to 0.23, and D/H can be 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, or 0.23.
  • the battery 100 satisfies 0.13 ⁇ D/H ⁇ 0.23, and further limits the ratio between the exhaust gap D of each battery cell 10 and the height of the battery cell 10 to balance the safety and energy of the battery 100. Density enables the battery 100 to have a higher energy density while ensuring the safety of the battery 100 .
  • the size of the battery cell 10 in the second direction y is L, satisfying 0.03 ⁇ D/L ⁇ 0.3, and the unit of L is mm.
  • the second direction y can be the length direction of the battery cell 10 , that is, the third direction z is perpendicular to the height and thickness direction of the battery cell 10 , and the size L of the battery cell 10 in the second direction y can be the battery cell 10 . 10 length dimensions.
  • D/L can be any value from 0.03 to 0.3, such as D/L can be 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1...0.25, 0.26, 0.27, 0.28, 0.29 or 0.3.
  • the exhaust gap D may be 1.2 mm, 1.6 mm, 2 mm, 2.4 mm, 2.8 mm, 3.2 mm, or 3.6 mm. mm, 4mm...10mm, 10.4mm, 10.8mm, 11.2, 11.6 or 12mm.
  • the second direction y is the direction in which the two second walls 111 face each other.
  • the dimension L of the battery cell 10 in the second direction y can also be regarded as the length dimension of the battery 100 .
  • the length of the battery cell 10 is related to the capacity of the battery cell 10 . The larger the capacity of the battery cell 10 , the longer the battery cell 10 can be. Therefore, the length of the battery cell 10 affects the energy density and safety of the battery 100 .
  • 0.03 ⁇ D/L ⁇ 0.17 is satisfied.
  • D/L can be any value from 0.03 to 0.17, such as D/L can be 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16 or 0.17.
  • the battery 100 satisfies 0.03 ⁇ D/L ⁇ 0.17 to further limit the exhaust gap of each battery cell 10 and the length of the battery cell 10 (the size L of the battery cell 10 in the second direction y ) to optimize the battery 100 so that the battery 100 has higher safety and higher energy density.
  • 0.08 ⁇ D/L ⁇ 0.15 is satisfied.
  • D/L can be any value from 0.08 to 0.15, such as D/L can be 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14 or 0.15.
  • the battery 100 satisfies 0.08 ⁇ D/L ⁇ 0.15, and further limits the ratio between the exhaust gap D of each battery cell 10 and the length of the battery cell 10 to balance the safety and energy of the battery 100. Density enables the battery 100 to have a higher energy density while ensuring the safety of the battery 100 .
  • the battery 100 further includes a box 30.
  • the battery cells 10 are arranged in the box 30.
  • the exhaust volume in the box 30 is V, satisfying 0.1 ⁇ V/C ⁇ 1.4, and the unit of V is is mm 3 .
  • the exhaust volume V is the volume within the box 30 that can accommodate the exhaust from a single battery cell 10 .
  • the box 30 needs to have a corresponding exhaust volume V.
  • the total exhaust volume of the box 30 is nV.
  • the total exhaust volume in the box 30 may be the empty gap volume in the box 30 .
  • the exhaust volume V can be obtained by dividing the volume of the box 30 by subtracting the volume of each structure in the box 30 by the number of battery cells 10 .
  • V/C can be any value from 0.1 to 1.4, such as V/C can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3 or 1.4.
  • the exhaust volume V may be 10mm 3 , 20mm 3 , 30mm 3 , 40mm 3 , 50mm 3 , 60mm 3 , 70mm 3 , 80mm 3. 90mm 3. 100mm 3. 110mm 3. 120mm 3. 130mm 3 or 140mm 3 .
  • the box 30 of the battery 100 usually has good sealing performance to prevent water and dust.
  • the box 30 needs to have enough space to accommodate high-temperature gas, that is, the exhaust volume V (unit: mm 3 ). If the exhaust volume is too small, the box 30 may rupture or the battery 100 may There is a risk of explosion, but if the exhaust space is too large, it indicates that there is a waste of space in the box 30, which affects the energy density of the battery 100.
  • the exhaust volume V is too large, resulting in the box
  • the internal space of the body 30 is wasted, which affects the energy density of the battery 100;
  • V/C ⁇ 0.1 there is insufficient exhaust volume V, which cannot accommodate the gas discharged after the thermal runaway of the battery cell 10, resulting in excessive pressure inside the box 30 , causing the box 30 to break or explode.
  • the battery 100 provided by this application satisfies 0.1 ⁇ V/C ⁇ 1.4, so that the battery 100 has a higher energy density under the condition of higher safety.
  • 0.2 ⁇ V/C ⁇ 0.8 is satisfied.
  • V/C can be any value from 0.2 to 0.8, such as V/C can be 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 or 0.8.
  • the battery 100 satisfies 0.2 ⁇ V/C ⁇ 0.8, and the ratio relationship between the exhaust volume V in the battery 100 and the capacity C of the battery cell 10 is further limited to optimize the internal space of the battery 100, so that the battery 100 has a relatively high High safety and high energy density.
  • V/C can be any value from 0.3 to 0.5, such as V/C can be 0.3, 0.35, 0.4, 0.45 or 0.5.
  • the battery 100 satisfies 0.3 ⁇ V/C ⁇ 0.5, and the ratio relationship between the exhaust volume V in the battery 100 and the capacity C of the battery cell 10 is further limited to balance the safety and energy density of the battery 100. Under the condition of ensuring the safety of the battery 100, the battery 100 has a higher energy density.
  • the projection of the blocking member 20 on the first wall 110 completely covers the pressure relief mechanism 12 .
  • the projection of the blocking member 20 on the first wall 110 may refer to the projection of the blocking member 20 on the first wall 110 along the thickness direction of the first wall 110 .
  • “Covering the pressure relief mechanism 12” may mean that the projected area of the blocking member 20 on the first wall 110 is greater than the area of the pressure relief mechanism 12, and the pressure relief mechanism 12 is located within the projection of the blocking member 20; it may also refer to the pressure relief mechanism. The high-temperature and high-pressure gas discharged from the mechanism 12 will be completely blocked by the blocking member 20 .
  • the blocking member 20 is further limited, that is, the projection of the blocking member 20 on the first wall 110 needs to completely cover the pressure relief mechanism 12 to ensure that D/C, D/X, D/H, and D/L , Accuracy of V/C limited range.
  • the barrier 20 has a first surface facing the first wall 110 , and an area of the first surface is greater than an area of the first wall 110 .
  • the first surface can be a surface of the blocking member 20 parallel to the first wall 110 , and its area is larger than the area of the first wall 110 . It can be understood that the projection of the blocking member 20 on a plane perpendicular to the thickness direction of the first wall 110 completely covers it.
  • the first wall 110 may mean that the high-temperature and high-pressure gas discharged by the pressure relief mechanism 12 will be completely blocked by the blocking member 20 .
  • the blocking member 20 is further limited, that is, the area of the first surface of the blocking member 20 is larger than the area of the first wall 110 to ensure D/C, D/X, D/H, and D/L. , Accuracy of V/C limited range.
  • the battery 100 further includes a box 30 , the battery cells 10 are disposed in the box 30 , and the blocking member 20 is a wall of the box 30 .
  • the “wall of the case 30 ” when the battery cell 10 lies flat in the case 30 , the “wall of the case 30 ” may be the side wall 33 of the case 30 ; in other embodiments, When the battery cell 10 is erected in the box 30 , the “wall of the box 30 ” may be the top wall 31 of the box 30 .
  • the blocking member 20 is limited to the wall of the box 30 , that is, there is no other component between the pressure relief mechanism 12 and the wall of the box 30 that can block the flow of high-temperature and high-pressure gas, that is, it is discharged from the battery cell 10 The high temperature and high pressure gas will be blocked by the wall of the box 30 first.
  • FIG. 2 two battery cells 10 disposed in the box 30 are exemplarily drawn to illustrate the battery cells 10 , their corresponding blocking members 20 and the corresponding exhaust gaps D. .
  • the placement position of the battery cell 10 relative to another battery cell 10 is not limited.
  • the battery 100 further includes a case 30 in which the battery cells 10 and the blocking member 20 are disposed.
  • the blocking member 20 is disposed in the box 30 may mean that the blocking member 20 is not the wall of the box 30 , but may be other components in the box 30 that are arranged relative to the pressure relief mechanism 12 .
  • the situation where the blocking member 20 is not the wall of the box 30 is limited, that is, there are other components between the pressure relief mechanism 12 and the wall of the box 30 that can block the flow of high-temperature gas, that is, the gas discharged from the battery cell 10
  • the high-temperature gas will first be blocked by the blocking member 20 between the wall of the box 30 and the pressure relief mechanism 12 .
  • FIG. 7 is a schematic diagram of a battery 100 in other embodiments of the present application.
  • the barrier 20 is a thermal management component 40, and the thermal management component 40 is used to accommodate media to adjust the temperature of the battery cell 10.
  • the thermal management component 40 may be located between the side wall 33 of the case 30 and the first wall 110 of the battery cell 10 .
  • the thermal management component 40 may be disposed at the position of the second wall 111 of the battery cell 10 .
  • the thermal management component 40 is used to accommodate the medium to adjust the temperature of the battery cell 10 so that the battery 100 is within a suitable temperature range to ensure higher safety.
  • the medium here may be a fluid (liquid) or a gas. Adjusting the temperature refers to heating or cooling multiple battery cells 10 .
  • the fluid may be called a heat exchange medium.
  • the fluid can be circulated to achieve better temperature regulation.
  • the fluid may be water, a mixture of water and ethylene glycol, or air.
  • the thermal management component 40 is used to contain cooling fluid to lower the temperature of the multiple battery cells 10. In this case, the thermal management component 40 may also be called a cooling component.
  • the fluid contained in a cooling system or cooling plate may also be called cooling medium or cooling fluid, and more specifically, may be called cooling liquid or cooling gas.
  • the thermal management component 40 can also be called a water-cooling plate.
  • the water-cooling plate contacts the battery cell 10 layer and can be used to reduce the temperature of the battery cell 10 to prevent the battery cell 10 from Thermal runaway.
  • the thermal management component 40 can also be used to heat the battery cell 10 by passing fluid with a higher temperature than the battery cell 10 , which is not limited in the embodiments of the present application.
  • the blocking member 20 is limited to the thermal management component 40 , that is, there is no other component between the pressure relief mechanism 12 and the thermal management component 40 that can block the flow of high-temperature gas, that is, the high-temperature gas discharged from the battery cell 10 It will be blocked by the thermal management component 40 first.
  • the barrier 20 is a structural beam.
  • structural beams may be components disposed within the box 30 to increase the structural strength of the box 30 and enhance protection of the battery cells 10 .
  • the structural beams may also be components disposed within the box 30 for restricting the battery cells 10 and fastening the battery cells 10 within the box 30 .
  • the structural beam is a structure arranged in the box 30 , which can have the function of improving the structural strength of the box 30 or tightening the battery cells 10 .
  • the blocking member 20 is a structural beam, that is, there is no other component between the pressure relief mechanism 12 and the structural beam that can block the flow of high-temperature gas, that is, the high-temperature gas discharged from the battery cell 10 will first be absorbed by the structural beam. block.
  • the present application also provides an electrical device, including the battery 100 of any embodiment of the first aspect, and the battery 100 is used to provide electric energy.
  • the present application also provides a battery 100 .
  • the battery 100 includes a box 30 , a battery 100 and a barrier 20 .
  • the box 30 includes a top wall 31, a bottom wall 32 and a side wall 33.
  • the top wall 31 and the bottom wall 32 are arranged oppositely along the third direction z.
  • the side wall 33 is surrounded by the bottom wall 32.
  • the side wall 33 is connected to the top wall 31. and bottom wall 32.
  • the battery cell 10 includes a housing 11 and a pressure relief mechanism 12 .
  • the housing 11 includes a first wall 110, a second wall 111, two third walls 112 and two fourth walls 113.
  • the first wall 110 and the second wall 111 are arranged oppositely along the first direction x, and the two third walls 112
  • the two fourth walls 113 are arranged oppositely along the second direction y, and the two fourth walls 113 are arranged oppositely along the third direction z.
  • the first direction x, the second direction y and the third direction z are vertical in pairs.
  • the area of the first wall 110 and the second wall 113 are arranged oppositely.
  • the area of 111 and the area of the third wall 112 are both smaller than the area of the fourth wall 113 .
  • the surface where the fourth wall 113 is located is the large surface of the battery cell 10 .
  • the pressure relief mechanism 12 is provided on the first wall 110 of the housing 11 .
  • the battery cell 10 lies flat in the box 30 .
  • the blocking member 20 is a side wall 33 of the box 30 that is close to the first wall 110 of the battery cell 10 .
  • An exhaust gap is formed between the blocking member 20 and the first wall 110 , where the size of the exhaust gap is D (unit is mm), and the capacity of the battery cell 10 is C (unit is Ah).
  • the battery 100 provided in this embodiment can satisfy 0.01 ⁇ D/C ⁇ 0.14; preferably, 0.02 ⁇ D/C ⁇ 0.08 is satisfied; more preferably, 0.03 ⁇ D/C ⁇ 0.05 is satisfied.
  • the size of the battery cell 10 in the third direction z is X, that is, the thickness of the battery cell 10 is X (unit: mm), which can satisfy 0.1 ⁇ D/X ⁇ 1.
  • 0.1 ⁇ D/X ⁇ 0.5 is satisfied; more preferably, 0.25 ⁇ D/X ⁇ 0.45 is satisfied.
  • the size of the battery cell 10 in the first direction x is H, that is, the height size of the battery cell 10 is H (unit: mm), which can satisfy 0.05 ⁇ D/H ⁇ 0.5; preferably, 0.05 ⁇ D/H ⁇ 0.25 is satisfied; more preferably, 0.13 ⁇ D/H ⁇ 0.23 is satisfied.
  • the size of the battery cell 10 in the second direction y is L, that is, the height dimension of the battery cell 10 is L (unit: mm), which can satisfy 0.03 ⁇ D/L ⁇ 0.3; preferably, 0.03 ⁇ D/L ⁇ 0.17 is satisfied; more preferably, 0.08 ⁇ D/L ⁇ 0.15 is satisfied.
  • the exhaust volume corresponding to each battery cell 10 in the box 30 that can accommodate the battery cell 10 is V (unit: mm 3 ), which can satisfy 0.1 ⁇ V/C ⁇ 1.4; Preferably, 0.2 ⁇ V/C ⁇ 0.8 is satisfied; more preferably, 0.3 ⁇ V/C ⁇ 0.5 is satisfied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开一种电池和用电装置。电池,包括:电池单体,电池单体包括外壳和泄压机构,泄压机构设置于外壳的第一壁;阻挡件,沿第一壁的厚度方向,阻挡件与第一壁相对设置,阻挡件在第一壁上的投影覆盖泄压机构的至少一部分,阻挡件与第一壁之间形成排气间隙;其中,排气间隙的大小为D,电池单体的容量为C,满足0.01≤D/C≤0.14,D的单位为mm,C的单位为Ah。本申请提供的技术方案能够在保证电池具有较高的能量密度的同时,使得电池具有较高的安全性。

Description

电池和用电装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电池和用电装置。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的能量密度外,安全性也是一个不可忽视的问题。因此,如何提高电池的安全性,是电池技术一个亟需解决的技术问题。
发明内容
本申请提供了一种电池和用电装置,其能够在保证电池具有较高的能量密度的同时,使得电池具有较高的安全性。
本申请是通过如下技术方案实现的:
第一方面,本申请提供了一种电池,包括:电池单体,所述电池单体包括外壳和泄压机构,所述泄压机构设置于所述外壳的第一壁;阻挡件,沿所述第一壁的厚度方向,所述阻挡件与所述第一壁相对设置,所述阻挡件在所述第一壁上的投影覆盖所述泄压机构的至少一部分,所述阻挡件与所述第一壁之间形成排气间隙;其中,所述排气间隙的大小为D,所述电池单体的容量为C,满足0.01≤D/C≤0.14,D的单位为mm,C的单位为Ah。
上述方案中,在电池单体发生热失控时,电池单体内部因发生化学以及电化学反应产生大量高温气体,高温气体在电池单体内部压力的作用下,从泄压机构沿着第一壁的厚度方向排出于外壳,以降低电池爆炸的风险。
高温气体排出过程中会被阻挡件(阻挡件为电池单体排气后,高温气体所遇到的第一个部位)阻挡,阻挡件使得高温气体的速度下降,甚至造成回流,进而影响电池单体的排气效率,使得电池单体内部的气体排出不及时,其中,阻挡件离泄压机构越近,即排气间隙D越小,则对排气效率影响越大,排气越不及时,同时热量回流对相邻的电池单体的影响也越大,甚至导致相邻的电池单体失效,电池爆炸的风险越大,反之,阻挡件离泄压机构越远,即排气间隙D越大,则对排气效率影响越小,排气越及时,电池爆炸的风险越小。同时,排气间隙D与电池的能量密度相关,当排气间隙D越小时,则电池的能量密度越大,反之,排气间隙D越大,则电池的能量密度越小。
同时,当电池单体的容量C越大时,该电池单体发生热失控产生的高温气体的 量则越多,其所需要更大的排气间隙D,才能降低电池爆炸的风险。为此,电池中的排气间隙D和电池单体的容量C影响着电池的安全性以及能量密度,其中,当D/C>0.14(D的单位为mm,C的单位为Ah)时,存在排气间隙D过大,导致电池内部空间浪费,影响电池能量密度的问题;当D/C<0.01(D的单位为mm,C的单位为Ah)时,存在排气间隙D不足,电池单体热失控后,内部的高温气体无法及时排出,造成外壳破裂甚至电池爆炸的问题。为此,本申请提供的电池可以满足0.01≤D/C≤0.14(D的单位为mm,C的单位为Ah),以使得该电池具有较高安全性的条件下,具有较高的能量密度。
根据本申请的一些实施例,满足0.02≤D/C≤0.08。
上述方案中,电池满足0.02≤D/C≤0.08,以进一步地限制电池中每个电池单体的排气间隙D以及电池单体的容量C的比值关系,以优化电池内部空间,使得该电池具有较高的安全性,且具有较高的能量密度。
根据本申请的一些实施例,满足0.03≤D/C≤0.05。
上述方案中,电池满足0.03≤D/C≤0.05,更进一步地限制电池中每个电池单体的排气间隙D以及电池单体的容量C的比值关系,均衡该电池的安全性和能量密度,在保证电池的安全性的条件下,使得电池具有更高的能量密度。
根据本申请的一些实施例,所述外壳还包括第二壁、两个第三壁和两个第四壁,所述第一壁和所述第二壁沿第一方向相对设置,所述两个第三壁沿第二方向相对设置,所述两个第四壁沿第三方向相对设置,所述第一方向、所述第二方向和所述第三方向两两垂直,所述第一壁的面积、所述第二壁的面积和所述第三壁的面积均小于所述第四壁的面积。
上述方案中,电池单体为方形电池单体,其第一壁的面积、第二壁的面积和第三壁的面积均小于第四壁的面积,故第四壁的表面为电池单体的大面。
根据本申请的一些实施例,所述电池还包括箱体,所述电池单体设置于所述箱体内,所述箱体包括顶壁、底壁和侧壁,所述顶壁和所述底壁沿所述第三方向相对设置,所述侧壁围设于所述底壁的周围,所述侧壁连接所述顶壁和所述底壁。
上述方案中,电池单体设置于箱体中,受顶壁、底壁以及侧壁的保护,能够防止外部物体对电池单体造成影响,保证电池正常工作;
其中,第三方向为箱体的高度方向,即电池单体的第四壁所在的平面平行于顶壁或者底壁所在的平面,此时电池单体可以看作平躺于箱体内。
根据本申请的一些实施例,所述电池单体在所述第三方向上的尺寸为X,满足0.1≤D/X≤1,X的单位为mm。
上述方案中,第三方向为电池单体的两个大面相对的方向,电池单体在所述第三方向上的尺寸X也可以看作电池单体的厚度尺寸。电池单体的厚度与电池单体的容量有关,电池单体容量越大,则电池单体可以越厚,因此电池单体的厚度影响着电池的能量密度和安全性。其中,当D/X>1(X的单位为mm)时,存在排气间隙D过大,导致电池内部空间浪费,影响电池能量密度的问题;当D/X小于0.1(X的单位为mm)时,存在排气间隙D不足,电池单体热失控后,内部的高温气体无法及时排出, 造成外壳破裂甚至电池爆炸的问题。为此,本申请中,在电池单体平躺设置时,电池单体满足0.1≤D/X≤1(X的单位为mm),以使得该电池具有较高安全性的条件下,具有较高的能量密度。
根据本申请的一些实施例,满足0.1≤D/X≤0.5。
上述方案中,电池满足0.1≤D/X≤0.5,以进一步地限制每个电池单体的排气间隙以及电池单体的厚度(电池单体在所述第三方向上的尺寸X)的比值关系,以优化电池,使得该电池具有较高的安全性,且具有较高的能量密度。
根据本申请的一些实施例,满足0.25≤D/X≤0.45。
上述方案中,电池满足0.25≤D/X≤0.45,更进一步地限制每个电池单体的排气间隙D以及电池单体的厚度的比值关系,均衡该电池的安全性和能量密度,在保证电池的安全性的条件下,具有更高的能量密度。
根据本申请的一些实施例,所述电池单体在所述第一方向上的尺寸为H,满足0.05≤D/H≤0.5,H的单位为mm。
上述方案中,第一方向为第一壁和第二壁相对的方向,泄压机构设置在第一壁。电池单体在第一方向上的尺寸H也可以看作电池的高度尺寸。电池单体的高度与电池单体的容量有关,电池单体容量越大,则电池单体可以越高,因此电池单体的高度影响着电池的能量密度和安全性。其中,当D/H>0.5(H的单位为mm)时,存在排气间隙D过大,导致电池内部空间浪费,影响电池能量密度的问题;当D/H小于0.05(H的单位为mm)时,存在排气间隙D不足,电池单体热失控后,内部的高温气体无法及时排出,造成外壳破裂甚至电池爆炸的问题。为此,本申请中,电池单体满足0.05≤D/H≤0.5(H的单位为mm),以使得该电池具有较高安全性的条件下,具有较高的能量密度。
根据本申请的一些实施例,满足0.05≤D/H≤0.25。
上述方案中,电池满足0.05≤D/H≤0.25,以进一步地限制每个电池单体的排气间隙以及电池单体的高度(电池单体在所述第一方向上的尺寸H)的比值关系,以优化电池,使得该电池具有较高的安全性,且具有较高的能量密度。
根据本申请的一些实施例,满足0.13≤D/H≤0.23。
上述方案中,电池满足0.13≤D/H≤0.23,更进一步地限制每个电池单体的排气间隙D以及电池单体的高度的比值关系,均衡该电池的安全性和能量密度,在保证电池的安全性的条件下,使得电池具有更高的能量密度。
根据本申请的一些实施例,所述电池单体在所述第二方向上的尺寸为L,满足0.03≤D/L≤0.3,L的单位为mm。
上述方案中,第二方向为两个第二壁相对的方向。电池单体在第二方向上的尺寸L也可以看作电池的长度尺寸。电池单体的长度与电池单体的容量有关,电池单体容量越大,则电池单体可以越长,因此电池单体的长度影响着电池的能量密度和安全性。其中,当D/L>0.3时,存在排气间隙D过大,导致电池内部空间浪费,影响电池能量密度的问题;当D/L小于0.03时,存在排气间隙D不足,电池单体热失控后,内部的高温气体无法及时排出,造成外壳破裂甚至电池爆炸的问题。为此,本申请中, 电池单体满足0.03≤D/L≤0.3(L的单位为mm),以使得该电池具有较高安全性的条件下,具有较高的能量密度。
根据本申请的一些实施例,满足0.03≤D/L≤0.17。
上述方案中,电池满足0.03≤D/L≤0.17,以进一步地限制每个电池单体的排气间隙以及电池单体的长度(电池单体在第二方向上的尺寸L)的比值关系,以优化电池,使得该电池具有较高的安全性,且具有较高的能量密度。
根据本申请的一些实施例,满足0.08≤D/L≤0.15。
上述方案中,电池满足0.08≤D/L≤0.15,更进一步地限制每个电池单体的排气间隙D以及电池单体的长度的比值关系,均衡该电池的安全性和能量密度,在保证电池的安全性的条件下,使得电池具有更高的能量密度。
根据本申请的一些实施例,所述电池还包括箱体,所述电池单体设置于所述箱体内,所述箱体内的排气容积为V,满足0.1≤V/C≤1.4,V的单位为mm 3
上述方案中,通常电池的箱体具有良好的密封性,以防水防尘。电池单体发生热失控时,箱体需要有足够的容纳高温气体的空间,即排气容积V(单位为mm 3),若排气容积过小,则存在箱体破裂或者电池爆炸的风险,但若排气空间过大,则表明箱体内存在空间浪费的问题,影响电池能量密度,其中,当V/C>1.4时,存在排气容积V过大,导致箱体内部空间浪费,影响电池能量密度的问题;当V/C<0.1时,存在排气容积V不足,无法容纳电池单体热失控后排出的气体,导致箱体内部压力过大,造成箱体破裂或者爆炸的问题。为此本申请提供的电池满足0.1≤V/C≤1.4,以使得该电池具有较高安全性的条件下,具有较高的能量密度。
根据本申请的一些实施例,满足0.2≤V/C≤0.8。
上述方案中,电池满足0.2≤V/C≤0.8,进一步地限制电池中排气容积V和电池单体的容量C的比值关系,以优化电池内部空间,使得该电池具有较高的安全性,且具有较高的能量密度。
根据本申请的一些实施例,满足0.3≤V/C≤0.5。
上述方案中,电池满足0.3≤V/C≤0.5,更进一步地限制电池中排气容积V和电池单体的容量C的比值关系,以均衡该电池的安全性和能量密度,在保证电池的安全性的条件下,使得电池具有更高的能量密度。
根据本申请的一些实施例,阻挡件在所述第一壁上的投影完全覆盖所述泄压机构。
上述方案中,对阻挡件进行进一步地限定,即阻挡件在第一壁上的投影需要完全覆盖泄压机构,以保证D/C、D/X、D/H、D/L、V/C限定范围的准确性。
根据本申请的一些实施例,所述阻挡件具有面向所述第一壁的第一表面,所述第一表面的面积大于所述第一壁的面积。
上述方案中,对阻挡件进行更进一步地限定,即阻挡件的第一表面的面积要大于第一壁的面积,以保证D/C、D/X、D/H、D/L、V/C限定范围的准确性。
根据本申请的一些实施例,所述电池还包括箱体,所述电池单体设置于所述箱体内,所述阻挡件为所述箱体的壁。
上述方案中,限定出了阻挡件为箱体的壁的情况,即泄压机构和箱体的壁之间无其他能够阻挡高温气体流动的部件,即由电池单体排出的高温气体会首先被箱体的壁所阻挡。
根据本申请的一些实施例,所述电池还包括箱体,所述电池单体和所述阻挡件设置于所述箱体内。
上述方案中,限定出了阻挡件不为箱体的壁的情况,即泄压机构和箱体的壁之间存在其他能够阻挡高温气体流动的部件,即由电池单体排出的高温气体会首先被箱体的壁和泄压机构之间的阻挡件所阻挡。
根据本申请的一些实施例,所述阻挡件为热管理部件,所述热管理部件用于容纳介质,以调节所述电池单体的温度。
上述方案中,限定出了阻挡件为热管理部件的情况,即泄压机构和热管理部件之间无其他能够阻挡高温气体流动的部件,即由电池单体排出的高温气体会首先被热管理部件所阻挡。
根据本申请的一些实施例,所述阻挡件为结构梁。
上述方案中,结构梁为设置在箱体内的结构,其可以具有提高箱体结构强度或者紧固电池单体的作用。其中,在该方案中,阻挡件为结构梁,即泄压机构和结构梁之间无其他能够阻挡高温气体流动的部件,即由电池单体排出的高温气体会首先被结构梁所阻挡。
第二方面,本申请还提供一种用电装置,包括第一方面任一实施例所述的电池,所述电池用于提供电能。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的示意图;
图3为本申请一些实施例中电池单体的示意图;
图4为本申请一些实施例中箱体和电池单体的示意图;
图5为本申请一些实施例中电池单体的侧视图;
图6为本申请一些实施例中电池单体的主视图;
图7为本申请另一些实施例中电池的示意图。
图标:100-电池;10-电池单体;11-外壳;110-第一壁;111-第二壁;112-第三 壁;113-第四壁;12-泄压机构;13-电极端子;20-阻挡件;30-箱体;31-顶壁;32-底壁;33-侧壁;40-热管理部件;x-第一方向;y-第二方向;z-第三方向;1000-车辆;200-控制器;300-马达。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“长度”、“宽度”、“厚度”、“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请中,所提及的电池是指包括一个或多个电池单体以提供更高的电压和 容量的单一的物理模块。
电池单体包括外壳、泄压机构、电极组件和电解液,电极组件和电解液设于外壳内部,泄压机构设置于外壳的第一壁上。电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
泄压机构是指电池单体的内部压力或温度达到阈值时致动以泄放内部压力或温度的元件或部件。泄压机构可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体的内部压力或温度达到阈值时,泄压机构执行动作或者泄压机构中设有的薄弱结构被破坏,从而形成可供内部压力或温度泄放的开口或通道。
本申请中所提到的“致动”是指泄压机构产生动作或被激活至一定的状态,从而使得电池单体的内部压力及温度得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、破碎、被撕裂或者打开等等。泄压机构在致动时,电池单体的内部的高温高压气体会从致动的部位向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压及泄温,从而避免潜在的更严重的事故发生。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。为此,如何在保证电池的能量密度的条件下,使得电池具有较高的安全性,是电池技术一个亟需解决的技术问题。
发明人发现,目前电池中,为降低电池因发生热失控而造成的安全风险,一般会牺牲电池能量密度,尽量提高泄压机构上方的空间,以保证由电池单体内部产生的高温高压气体及时地、不受阻挡地排出于电池单体。然而,目前,尽管提高了泄压机构上方的空间,电池因热失控发生安全问题的风险也较高。为此发明人进一步研究发现,造成电池因热失控发生安全问题的原因之一在于未考虑电池单体的容量,即泄压机构上方的空间未因电池单体的容量改变而调整,致使容量较大的电池单体因热失控而排出的高温高压气体未及时排出,导致安全性低。
鉴于此,为了保证电池的能量密度,且使得电池具有较高的安全性,发明人经过深入研究,设计了一种电池,其包括电池单体以及阻挡件。电池单体的容量为C(单 位Ah)。电池单体的泄压机构设置于外壳的第一壁上。阻挡件与电池单体的泄压机构相对设置,由电池单体内部产生的高温高压气体在由泄压机构排出时,会首先被阻挡件阻挡。为此,泄压机构上方的空间可以为阻挡件和第一壁之间形成的排气间隙D。在该电池中,满足0.01≤D/C≤0.14。
排气间隙D越大,则表明泄压机构上方的空间越高,也表明电池内部未利用的空间越大。C越大,则表明电池单体的容量越大,其所需的排气间隙D则越大。当D/C>0.14时,存在排气间隙D过大,导致电池内部空间浪费,影响电池能量密度的问题;当D/C<0.01时,存在排气间隙D不足,电池单体热失控后,内部的高温气体无法及时排出,造成外壳破裂甚至电池爆炸的问题。为此,本申请中0.01≤D/C≤0.14,则能够使得该电池具有较高能力密度的条件下,具有较高的安全性。
本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电设备中。可以使用具备本申请公开的电池单体、电池等组成该用电设备的电源系统。
本申请实施例提供一种使用电池作为电源的用电设备,用电设备可以为但不限于手机、平板电脑、笔记本电脑、电动玩具、电动工具、电动自行车、电动摩托车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电设备为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源,用于车辆1000的电路系统,例如用于车辆1000的启动、导航和运行时的工作用电需求。
车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
根据本申请的一些实施例,请参照图2和图3,图2为本申请一些实施例提供的电池100的示意图,图3为本申请一些实施例中电池单体10的示意图。
电池100包括电池单体10和阻挡件20。电池单体10包括外壳11和泄压机构12,泄压机构12设置于外壳11的第一壁110。沿第一壁110的厚度方向,阻挡件20与第一壁110相对设置,阻挡件20在第一壁110上的投影覆盖泄压机构12的至少一部分,阻挡件20与第一壁110之间形成排气间隙。其中,排气间隙的大小为D,电池单体10的容量为C,满足0.01≤D/C≤0.14,D的单位为mm,C的单位为Ah。
在电池100中,电池单体10可以是多个,多个电池单体10之间可串联或并联 或混联,混联是指多个电池单体10中既有串联又有并联。多个电池单体10之间可直接串联或并联或混联在一起。其中,每个电池单体10可以为二次电池、一次电池、锂硫电池、钠离子电池或镁离子电池,但不局限于此。
第一壁110为外壳11的一个壁,第一壁110和外壳11的其他壁限定用于容纳电极组件和电解液的空间。泄压机构12是指电池单体10的内部压力或温度达到阈值时致动以泄放内部压力或温度的元件或部件。泄压机构12可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造。当电池单体10发生热失控,其内部压力或者温度达到阈值时,泄压机构12执行动作或者泄压机构12中设有的薄弱结构被破坏,以能够将电池单体10内部产生的高温高压气体排出。
在一些实施例,第一壁110可设置电极端子13,电极端子13能够连接外壳11内的电极组件,以实现电池单体10的充放电。电极端子13可以为电池单体10的极柱。
阻挡件20为电池100中非电池单体10的结构,且沿第一壁110的厚度方向,阻挡件20相对于第一壁110设置。由泄压机构12排出的高温高压气体会被阻挡件20阻挡。例如阻挡件20可以为电池100中的梁、热管路部件(水冷板)或电池100的箱体30的部分结构等。
第一壁110的厚度方向,也可以指由泄压机构12排出的高温高压气体的流向。排气间隙D,可以指,高温高压气体由泄压机构12排出至被阻挡件20阻挡的最短行程,也可以指第一壁110和阻挡件20之间的最小距离,或者说在一些实施例,排气间隙D可以指,在第一壁110的厚度方向,泄压机构12与阻挡件20之间的最小距离。
电池单体10的容量C是指电池单体10存储电量的大小,表示在一定条件下(放电率、温度、终止电压等)电池单体10放出的电量通常以安培·小时为单位(简称Ah)。在一些实施例中,可以通过电池容量测试仪测量电池单体10的容量。其中,由于测量电池单体10容量为电池领域常规技术手段,本领域技术人员清楚知晓如何测量电池单体10容量,为此本实施例不赘述。
在一些实施例中,D/C可以为0.01-0.14的任意值,如D/C可以为0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.1、0.11、0.12、0.13或0.14。示例性地,在一些实施例中,当电池单体10的容量C为1Ah时,排气间隙D可以为0.01mm、0.02mm、0.03mm、0.04mm、0.05mm、0.06mm、0.07mm、0.08mm、0.09mm、0.1mm、0.11mm、0.12mm、0.13mm或0.14mm。示例性地,在一些实施例中,当电池单体10的容量C为100Ah时,排气间隙D可以为1mm、2mm、3mm、4mm、5mm、6mm、7mm、8mm、9mm、10mm、11mm、12mm、13mm或14mm。
上述方案中,在电池单体10发生热失控时,电池单体10内部因发生化学以及电化学反应产生大量高温高压气体从泄压机构12沿着第一壁110的厚度方向排出于外壳11。在高温高压气体排出的过程中会被阻挡件20阻挡,使得高温高压气体的速度下降,甚至造成回流,进而影响电池单体10的排气效率,使得电池单体10内部的气体 排出不及时。其中,阻挡件20离泄压机构12越近,即排气间隙D越小,则对排气效率影响越大,排气越不及时,同时热量回流对相邻的电池单体10的影响也越大,甚至导致相邻的电池单体10失效,电池100爆炸的风险越大,反之,阻挡件20离泄压机构12越远,即排气间隙D越大,则对排气效率影响越小,排气越及时,电池100爆炸的风险越小。同时,排气间隙D与电池100的能量密度相关,当排气间隙D越小时,则电池100的能量密度越大,反之,排气间隙D越大,则电池100的能量密度越小。同时,当电池单体10的容量C越大时,该电池单体10发生热失控产生的高温高压气体的量则越多,其所需要更大的排气间隙D,才能降低电池100爆炸的风险。
为此,电池100中的排气间隙D和电池单体10的容量C影响着电池100的安全性以及能量密度,其中,当D/C>0.14时,存在排气间隙D过大,导致电池100内部空间浪费,影响电池100能量密度的问题;当D/C<0.01时,存在排气间隙D不足,电池单体10热失控后,内部的高温气体无法及时排出,造成外壳11破裂甚至电池100爆炸的问题。为此,本申请提供的电池100满足0.01≤D/C≤0.14(D的单位为mm,C的单位为Ah),以使得该电池100具有较高安全性的条件下,具有较高的能量密度。
根据本申请的一些实施例,满足0.02≤D/C≤0.08。
在一些实施例中,D/C可以为0.02-0.08的任意值,如D/C可以为0.02、0.03、0.04、0.05、0.06、0.07或0.08。示例性地,当电池单体10的容量C为1Ah时,排气间隙D可以为0.02mm、0.03mm、0.04mm、0.05mm、0.06mm、0.07mm或0.08mm。
上述方案中,电池100满足0.02≤D/C≤0.08,以进一步地限制电池100中每个电池单体10的排气间隙D以及电池单体10的容量C的比值关系,以优化电池100内部空间,使得该电池100具有较高的安全性,且具有较高的能量密度。
根据本申请的一些实施例,满足0.03≤D/C≤0.05。
在一些实施例中,D/C可以为0.03-0.05的任意值,如D/C可以为0.03、0.04或0.05。示例性地,当电池单体10的容量C为1Ah时,排气间隙D可以为0.03mm、0.04mm、或0.05mm。
上述方案中,电池100满足0.03≤D/C≤0.05,更进一步地限制电池100中每个电池单体10的排气间隙D以及电池单体10的容量C的比值关系,均衡该电池100的安全性和能量密度,在保证电池100的安全性的条件下,使得电池100具有更高的能量密度。
根据本申请的一些实施例,请参见图3,外壳11还包括第二壁111、两个第三壁112和两个第四壁113,第一壁110和第二壁111沿第一方向x相对设置,两个第三壁112沿第二方向y相对设置,两个第四壁113沿第三方向z相对设置,第一方向x、第二方向y和第三方向z两两垂直,第一壁110的面积、第二壁111的面积和第三壁112的面积均小于第四壁113的面积。
外壳11包括六个壁,每两个壁相对设置,即外壳11可以为方形外壳11,即该电池单体10可以为方形电池单体10。
在电池单体10中,面积最大的面称为大面,由于第四壁113的面积大于第一壁110、第二壁111和第三壁112的面积,故第四壁113的面为电池单体10的大面。
第一方向x可以为第一壁110的厚度方向。当第一壁110为电池单体10的顶壁时,第二壁111可以为电池单体10的底壁,第三壁112和第四壁113为电池单体10的侧壁,两个第三壁112和两个第四壁113围设于第一壁110和第二壁111的周围,此时,第一方向x也可以为电池单体10的高度方向,第二方向y可以为电池单体10的长度方向,第三方向z可以为电池单体10的厚度方向。
根据本申请的一些实施例,请结合图4,图4为本申请一些实施例中箱体30和电池单体10的示意图。电池100还包括箱体30,电池单体10设置于箱体30内,箱体30包括顶壁31、底壁32和侧壁33,顶壁31和底壁32沿第三方向z相对设置,侧壁33围设于底壁32的周围,侧壁33连接顶壁31和底壁32。
箱体30内部形成有能够容纳电池单体10的空间,能够对电池单体10起保护作用。由于箱体30的顶壁31和箱体30的底壁32沿第三方向z相对设置,故可看作箱体30的高度方向为第三方向z。
上述方案中,电池单体10设置于箱体30中,受顶壁31、底壁32以及侧壁33的保护,能够防止外部物体对电池单体10造成影响,保证电池100正常工作。其中,第三方向z为箱体30的高度方向,即电池单体10的第四壁113所在的平面平行于箱体30的顶壁31或者箱体30的底壁32所在的平面(箱体30的高度方向平行于电池单体10的厚度方向),此时电池单体10可以看作平躺于箱体30内。
在其他一些实施例中,电池单体10可不平躺于箱体30内,也可以侧躺或者竖立于箱体30内。在电池单体10侧躺于箱体30的方案中,箱体30的顶壁31和箱体30的底壁32相对的方向可以为第二方向y,即箱体30的高度方向为第二方向y,箱体30的高度方向平行于电池单体10的长度方向;当电池单体10竖立于箱体30的方案中,箱体30的顶壁31和箱体30的底壁32相对的方向可以为第一方向x,即箱体30的高度方向为第一方向x,箱体30的高度方向平行于电池单体10的高度方向。
根据本申请的一些实施例,请结合图5,图5为本申请一些实施例中电池单体10的侧视图。电池单体10在第三方向z上的尺寸为X,满足0.1≤D/X≤1,X的单位为mm。
第三方向z可以为电池单体10的厚度方向,即两个大面相对的方向。电池单体10在第三方向z上的尺寸X可以为电池单体10的厚度尺寸。
在一些实施例中,D/X可以为0.1-1的任意值,如D/X可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9或1。示例性,在一些实施例中,电池单体10在第三方向z的尺寸X为10mm时,排气间隙D可以为1mm、2mm、3mm、4mm、5mm、6mm、7mm、8mm、9mm或10mm。
上述方案中,第三方向z为电池单体10的两个大面相对的方向,电池单体10在第三方向z上的尺寸X也可以看作电池单体10的厚度尺寸。电池单体10的厚度与电池单体10的容量有关,电池单体10容量越大,则电池单体10可以越厚,因此电 池单体10的厚度影响着电池100的能量密度和安全性。其中,当D/X>1时,存在排气间隙D过大,导致电池100内部空间浪费,影响电池100能量密度的问题;当D/X小于0.1时,存在排气间隙D不足,电池单体10热失控后,内部的高温气体无法及时排出,造成外壳11破裂甚至电池100爆炸的问题。为此,本申请中,在电池单体10平躺设置时,电池单体10满足0.1≤D/X≤1(X的单位为mm),以使得该电池100具有较高安全性的条件下,具有较高的能量密度。
根据本申请的一些实施例,满足0.1≤D/X≤0.5。
在一些实施例中,D/X可以为0.1-0.5的任意值,如D/X可以为0.1、0.2、0.3、0.4或0.5。
上述方案中,电池100满足0.1≤D/X≤0.5,以进一步地限制每个电池单体10的排气间隙D以及电池单体10的厚度(电池单体10在第三方向z上的尺寸X)的比值关系,以优化电池100,使得该电池100具有较高的安全性,且具有较高的能量密度。
根据本申请的一些实施例,满足0.25≤D/X≤0.45。
在一些实施例中,D/X可以为0.25-0.45的任意值,如D/X可以为0.25、0.26、0.27、0.28、0.29、0.3、0.31…0.4、0.41、0.42、0.43、0.44或0.45。
上述方案中,电池100满足0.25≤D/X≤0.45,更进一步地限制每个电池单体10的排气间隙D以及电池单体10的厚度的比值关系,均衡该电池100的安全性和能量密度,在保证电池100的安全性的条件下,具有更高的能量密度。
根据本申请的一些实施例,参见图6,图6为本申请一些实施例中电池单体10的主视图。电池单体10在第一方向x上的尺寸为H,满足0.05≤D/H≤0.5,H的单位为mm。
第一方向x可以为电池单体10的高度方向,即电池单体10的极柱伸出的方向,电池单体10在第一方向x上的尺寸H可以为电池单体10的高度尺寸。在一些实施例中,电池单体10的高度尺寸可以为电池单体10的外壳11的高度尺寸。
在一些实施例中,D/H可以为0.05-0.5的任意值,如D/H可以为0.05、0.06、0.07、0.08、0.09、0.1…0.45、0.46、0.47、0.48、0.49或0.5。示例性,在一些实施例中,电池单体10在第三方向z的尺寸H为20mm时,排气间隙D可以为1mm、1.2mm、1.4mm、1.6mm、1.8mm、2mm…9mm、9.2mm、9.4mm、9.6mm、9.8mm或10mm。
上述方案中,第一方向x为第一壁110和第二壁111相对的方向,泄压机构12设置在第一壁110。电池单体10在第一方向x上的尺寸H也可以看作电池100的高度尺寸。电池单体10的高度与电池单体10的容量有关,电池单体10容量越大,则电池单体10可以越高,因此电池单体10的高度影响着电池100的能量密度和安全性。其中,当D/H>0.5时,存在排气间隙D过大,导致电池100内部空间浪费,影响电池100能量密度的问题;当D/H小于0.05时,存在排气间隙D不足,电池单体10热失控后,内部的高温气体无法及时排出,造成外壳11破裂甚至电池100爆炸的问题。为此,本申请中,电池单体10满足0.05≤D/H≤0.5(H的单位为mm),以使得该电池 100具有较高安全性的条件下,具有较高的能量密度。
根据本申请的一些实施例,满足0.05≤D/H≤0.25。
在一些实施例中,D/H可以为0.05-0.25的任意值,如D/H可以为0.05、0.06、0.07、0.08、0.09、0.1…0.19、0.2、0.21、0.21、0.22、0.23、0.24或0.25。
上述方案中,电池100满足0.05≤D/H≤0.25,以进一步地限制每个电池单体10的排气间隙以及电池单体10的高度(电池单体10在第一方向x上的尺寸H)的比值关系,以优化电池100,使得该电池100具有较高的安全性,且具有较高的能量密度。
根据本申请的一些实施例,满足0.13≤D/H≤0.23。
在一些实施例中,D/H可以为0.13-0.23的任意值,D/H可以为0.13、0.14、0.15、0.16、0.17、0.18、0.19、0.2、0.21、0.22或0.23。
上述方案中,电池100满足0.13≤D/H≤0.23,更进一步地限制每个电池单体10的排气间隙D以及电池单体10的高度的比值关系,均衡该电池100的安全性和能量密度,在保证电池100的安全性的条件下,使得电池100具有更高的能量密度。
根据本申请的一些实施例,电池单体10在第二方向y上的尺寸为L,满足0.03≤D/L≤0.3,L的单位为mm。
第二方向y可以为电池单体10的长度方向,即第三方向z垂直于电池单体10的高度以及厚度方向,电池单体10在第二方向y上的尺寸为L可以为电池单体10的长度尺寸。
在一些实施例中,D/L可以为0.03-0.3的任意值,如D/L可以为0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.1…0.25、0.26、0.27、0.28、0.29或0.3。示例性,在一些实施例中,电池单体10在第二方向y上的尺寸L为40mm时,排气间隙D可以为1.2mm、1.6mm、2mm、2.4mm、2.8mm、3.2mm、3.6mm、4mm…10mm、10.4mm、10.8mm、11.2、11.6或12mm。
上述方案中,第二方向y为两个第二壁111相对的方向。电池单体10在第二方向y上的尺寸L也可以看作电池100的长度尺寸。电池单体10的长度与电池单体10的容量有关,电池单体10容量越大,则电池单体10可以越长,因此电池单体10的长度影响着电池100的能量密度和安全性。其中,当D/L>0.3时,存在排气间隙D过大,导致电池100内部空间浪费,影响电池100能量密度的问题;当D/L小于0.03时,存在排气间隙D不足,电池单体10热失控后,内部的高温气体无法及时排出,造成外壳11破裂甚至电池100爆炸的问题。为此,本申请中,电池单体10满足0.03≤D/L≤0.3(L的单位为mm),以使得该电池100具有较高安全性的条件下,具有较高的能量密度。
根据本申请的一些实施例,满足0.03≤D/L≤0.17。
在一些实施例中,D/L可以为0.03-0.17的任意值,如D/L可以为0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.1、0.11、0.12、0.13、0.14、0.15、0.16或0.17。
上述方案中,电池100满足0.03≤D/L≤0.17,以进一步地限制每个电池单体10的排气间隙以及电池单体10的长度(电池单体10在第二方向y上的尺寸L)的比值关系,以优化电池100,使得该电池100具有较高的安全性,且具有较高的能量密度。
根据本申请的一些实施例,满足0.08≤D/L≤0.15。
在一些实施例中,D/L可以为0.08-0.15的任意值,如D/L可以为0.08、0.09、0.1、0.11、0.12、0.13、0.14或0.15。
上述方案中,电池100满足0.08≤D/L≤0.15,更进一步地限制每个电池单体10的排气间隙D以及电池单体10的长度的比值关系,均衡该电池100的安全性和能量密度,在保证电池100的安全性的条件下,使得电池100具有更高的能量密度。
根据本申请的一些实施例,电池100还包括箱体30,电池单体10设置于箱体30内,箱体30内的排气容积为V,满足0.1≤V/C≤1.4,V的单位为mm 3
排气容积V为箱体30内,能够容纳由单个电池单体10排出的体积。当箱体30内设置有多个电池单体10时,箱体30需具有对应的排气容积V,例如当电池单体10的数量为n个时,箱体30的总的排气容积为nV。在一些实施例中,箱体30内总的排气容积可以为箱体30中空余的间隙体积。在一些实施例中,排气容积V可以通过箱体30的容积减去箱体30内各个结构的体积后,除以电池单体10的数量获得。
在一些实施例中,V/C可以为0.1-1.4的任意值,如V/C可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.1、1.2、1.3或1.4。示例性地,在一些实施例中,当电池单体10的容量C为100Ah时,排气容积V可以为10mm 3、20mm 3、30mm 3、40mm 3、50mm 3、60mm 3、70mm 3、80mm 3、90mm 3、100mm 3、110mm 3、120mm 3、130mm 3或140mm 3
上述方案中,通常电池100的箱体30具有良好的密封性,以防水防尘。电池单体10发生热失控时,箱体30需要有足够的容纳高温气体的空间,即排气容积V(单位为mm 3),若排气容积过小,则存在箱体30破裂或者电池100爆炸的风险,但若排气空间过大,则表明箱体30内存在空间浪费的问题,影响电池100能量密度,其中,当V/C>1.4时,存在排气容积V过大,导致箱体30内部空间浪费,影响电池100能量密度的问题;当V/C<0.1时,存在排气容积V不足,无法容纳电池单体10热失控后排出的气体,导致箱体30内部压力过大,造成箱体30破裂或者爆炸的问题。为此本申请提供的电池100满足0.1≤V/C≤1.4,以使得该电池100具有较高安全性的条件下,具有较高的能量密度。
根据本申请的一些实施例,满足0.2≤V/C≤0.8。
在一些实施例中,V/C可以为0.2-0.8的任意值,如V/C可以为0.2、0.3、0.4、0.5、0.6、0.7或0.8。
上述方案中,电池100满足0.2≤V/C≤0.8,进一步地限制电池100中排气容积V和电池单体10的容量C的比值关系,以优化电池100内部空间,使得该电池100具有较高的安全性,且具有较高的能量密度。
根据本申请的一些实施例,满足0.3≤V/C≤0.5。
在一些实施例中,V/C可以为0.3-0.5的任意值,如V/C可以为0.3、0.35、0.4、0.45或0.5。
上述方案中,电池100满足0.3≤V/C≤0.5,更进一步地限制电池100中排气容积V和电池单体10的容量C的比值关系,以均衡该电池100的安全性和能量密度,在保证电池100的安全性的条件下,使得电池100具有更高的能量密度。
根据本申请的一些实施例,阻挡件20在第一壁110上的投影完全覆盖泄压机构12。
“阻挡件20在第一壁110上的投影”,可以指沿第一壁110的厚度方向上,阻挡件20在第一壁110上的投影。“覆盖泄压机构12”,可以指阻挡件20在第一壁110上的投影的面积大于泄压机构12的面积,且泄压机构12位于阻挡件20的投影内;也可以指由泄压机构12排出的高温高压气体会完全被阻挡件20阻挡。
上述方案中,对阻挡件20进行进一步地限定,即阻挡件20在第一壁110上的投影需要完全覆盖泄压机构12,以保证D/C、D/X、D/H、D/L、V/C限定范围的准确性。
根据本申请的一些实施例,阻挡件20具有面向第一壁110的第一表面,第一表面的面积大于第一壁110的面积。
第一面可以为阻挡件20平行于第一壁110的面,其面积大于第一壁110的面积,可以理解为阻挡件20在垂直于第一壁110的厚度方向上的平面的投影完全覆盖第一壁110,可以指由泄压机构12排出的高温高压气体会完全被阻挡件20阻挡。
上述方案中,对阻挡件20进行更进一步地限定,即阻挡件20的第一表面的面积要大于第一壁110的面积,以保证D/C、D/X、D/H、D/L、V/C限定范围的准确性。
根据本申请的一些实施例,电池100还包括箱体30,电池单体10设置于箱体30内,阻挡件20为箱体30的壁。
在一些实施例中,如图2和图4,当电池单体10平躺于箱体30内时,“箱体30的壁”可以为箱体30的侧壁33;在另一些实施例,当电池单体10竖立于箱体30内时,“箱体30的壁”可以为箱体30的顶壁31。
上述方案中,限定出了阻挡件20为箱体30的壁的情况,即泄压机构12和箱体30的壁之间无其他能够阻挡高温高压气体流动的部件,即由电池单体10排出的高温高压气体会首先被箱体30的壁所阻挡。
需要说明的是,在图2中,示例性地绘制出设置于箱体30中的两个电池单体10,以便于展示电池单体10、其对应的阻挡件20以及对应的排气间隙D。在本申请实施例中,不对电池单体10较另一个电池单体10的摆放位置进行限定。
根据本申请的一些实施例,电池100还包括箱体30,电池单体10和阻挡件20设置于箱体30内。
“阻挡件20设置于箱体30内”,可以指阻挡件20不为箱体30的壁,其可以为箱体30内其他的相对于泄压机构12设置的部件。
上述方案中,限定出了阻挡件20不为箱体30的壁的情况,即泄压机构12 和箱体30的壁之间存在其他能够阻挡高温气体流动的部件,即由电池单体10排出的高温气体会首先被箱体30的壁和泄压机构12之间的阻挡件20所阻挡。
根据本申请的另一些实施例,如图7,图7为本申请另一些实施例中电池100的示意图。阻挡件20为热管理部件40,热管理部件40用于容纳介质,以调节电池单体10的温度。
在图7中,热管理部件40可以位于箱体30的侧壁33和电池单体10的第一壁110之间。
在其他实施例中,如图2,热管理部件40可以设置于电池单体10的第二壁111的位置。
热管理部件40用于容纳介质以给电池单体10调节温度,以使电池100处于适宜的温度范围内,保证较高的安全性。这里的介质可以是流体(液体)或气体,调节温度是指给多个电池单体10加热或者冷却,流体可被称为换热介质。可选的,流体可以是循环流动的,以达到更好的温度调节的效果。可选的,流体可以为水、水和乙二醇的混合液或者空气等。例如,在给电池单体10冷却或降温的情况下,该热管理部件40用于容纳冷却流体以给多个电池单体10降低温度,此时,热管理部件40也可以称为冷却部件、冷却系统或冷却板等,其容纳的流体也可以称为冷却介质或冷却流体,更具体的,可以称为冷却液或冷却气体。当热管理部件40内容纳的流体为冷却水时,热管理部件40也可以称为水冷板,水冷板接触电池单体10层,能够用于降低电池单体10的温度,以免电池单体10热失控。热管理部件40也可以用于通过温度较电池单体10高的流体以给电池单体10升温,本申请实施例对此并不限定。
上述方案中,限定出了阻挡件20为热管理部件40的情况,即泄压机构12和热管理部件40之间无其他能够阻挡高温气体流动的部件,即由电池单体10排出的高温气体会首先被热管理部件40所阻挡。
根据本申请的另一些实施例,阻挡件20为结构梁。
在一些实施例中,结构梁可以为设置于箱体30内,用于提高箱体30结构强度,以加强对电池单体10保护的部件。在其他实施例中,结构梁也可以为设置于箱体30内,用于限制电池单体10,以将电池单体10紧固于箱体30内的部件。
上述方案中,结构梁为设置在箱体30内的结构,其可以具有提高箱体30结构强度或者紧固电池单体10的作用。其中,在该方案中,阻挡件20为结构梁,即泄压机构12和结构梁之间无其他能够阻挡高温气体流动的部件,即由电池单体10排出的高温气体会首先被结构梁所阻挡。
根据本申请的一些实施例,本申请还提供一种用电装置,包括第一方面任一实施例的电池100,电池100用于提供电能。
根据本申请的一些实施例,请参见图2-图6,本申请还提供一种电池100,电池100包括箱体30、电池100和阻挡件20。
箱体30包括顶壁31、底壁32和侧壁33,顶壁31和底壁32沿第三方向z相对设置,侧壁33围设于底壁32的周围,侧壁33连接顶壁31和底壁32。
电池单体10包括外壳11和泄压机构12。外壳11包括第一壁110、第二壁 111、两个第三壁112和两个第四壁113,第一壁110和第二壁111沿第一方向x相对设置,两个第三壁112沿第二方向y相对设置,两个第四壁113沿第三方向z相对设置,第一方向x、第二方向y和第三方向z两两垂直,第一壁110的面积、第二壁111的面积和第三壁112的面积均小于第四壁113的面积。第四壁113所在的面为电池单体10的大面。泄压机构12设置于外壳11的第一壁110。
电池单体10平躺于箱体30内,阻挡件20为箱体30的接近于电池单体10的第一壁110的侧壁33,阻挡件20与第一壁110之间形成排气间隙,其中,排气间隙的大小为D(单位为mm),电池单体10的容量为C(单位为Ah),本实施例提供的电池100可以满足0.01≤D/C≤0.14;优选地,满足0.02≤D/C≤0.08;更优选地,满足0.03≤D/C≤0.05。
在本实施例中,电池单体10在第三方向z上的尺寸为X,即电池单体10的厚度尺寸为X(单位为mm),可以满足0.1≤D/X≤1,优选地,满足0.1≤D/X≤0.5;更优选地,满足0.25≤D/X≤0.45。
在本实施例中,电池单体10在第一方向x上的尺寸为H,即电池单体10的高度尺寸为H(单位为mm),可以满足0.05≤D/H≤0.5;优选地,满足0.05≤D/H≤0.25;更优选地,满足0.13≤D/H≤0.23。
在本实施例中,电池单体10在第二方向y上的尺寸为L,即电池单体10的高度尺寸为L(单位为mm),可以满足0.03≤D/L≤0.3;优选地,满足0.03≤D/L≤0.17;更优选地,满足0.08≤D/L≤0.15。
本实施例中,箱体30内对应于每一个电池单体10的,能够容纳该一个电池单体10的排气容积为V(单位为mm 3),可以满足0.1≤V/C≤1.4;优选地,满足0.2≤V/C≤0.8;更优选地,满足0.3≤V/C≤0.5。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (24)

  1. 一种电池,其中,包括:
    电池单体,所述电池单体包括外壳和泄压机构,所述泄压机构设置于所述外壳的第一壁;
    阻挡件,沿所述第一壁的厚度方向,所述阻挡件与所述第一壁相对设置,所述阻挡件在所述第一壁上的投影覆盖所述泄压机构的至少一部分,所述阻挡件与所述第一壁之间形成排气间隙;
    其中,所述排气间隙的大小为D,所述电池单体的容量为C,满足0.01≤D/C≤0.14,D的单位为mm,C的单位为Ah。
  2. 根据权利要求1所述的电池,其中,
    满足0.02≤D/C≤0.08。
  3. 根据权利要求2所述的电池,其中,
    满足0.03≤D/C≤0.05。
  4. 根据权利要求1-3任一项所述的电池,其中,
    所述外壳还包括第二壁、两个第三壁和两个第四壁,所述第一壁和所述第二壁沿第一方向相对设置,所述两个第三壁沿第二方向相对设置,所述两个第四壁沿第三方向相对设置,所述第一方向、所述第二方向和所述第三方向两两垂直,所述第一壁的面积、所述第二壁的面积和所述第三壁的面积均小于所述第四壁的面积。
  5. 根据权利要求4所述的电池,其中,
    所述电池还包括箱体,所述电池单体设置于所述箱体内,所述箱体包括顶壁、底壁和侧壁,所述顶壁和所述底壁沿所述第三方向相对设置,所述侧壁围设于所述底壁的周围,所述侧壁连接所述顶壁和所述底壁。
  6. 根据权利要求4所述的电池,其中,
    所述电池单体在所述第三方向上的尺寸为X,满足0.1≤D/X≤1,X的单位为mm。
  7. 根据权利要求6所述的电池,其中,
    满足0.1≤D/X≤0.5。
  8. 根据权利要求7所述的电池,其中,
    满足0.25≤D/X≤0.45。
  9. 根据权利要求4所述的电池,其中,
    所述电池单体在所述第一方向上的尺寸为H,满足0.05≤D/H≤0.5,H的单位为mm。
  10. 根据权利要求9所述的电池,其中,
    满足0.05≤D/H≤0.25。
  11. 根据权利要求10所述的电池,其中,
    满足0.13≤D/H≤0.23。
  12. 根据权利要求4所述的电池,其中,
    所述电池单体在所述第二方向上的尺寸为L,满足0.03≤D/L≤0.3,L的单位为mm。
  13. 根据权利要求12所述的电池,其中,
    满足0.03≤D/L≤0.17。
  14. 根据权利要求13所述的电池,其中,
    满足0.08≤D/L≤0.15。
  15. 根据权利要求1-14任一项所述的电池,其中,
    所述电池还包括箱体,所述电池单体设置于所述箱体内,所述箱体内的排气容积为V,满足0.1≤V/C≤1.4,V的单位为mm 3
  16. 根据权利要求15所述的电池,其中,
    满足0.2≤V/C≤0.8。
  17. 根据权利要求16所述的电池,其中,
    满足0.3≤V/C≤0.5。
  18. 根据权利要求1-17任一项所述的电池,其中,
    所述阻挡件在所述第一壁上的投影完全覆盖所述泄压机构。
  19. 根据权利要求1-18任一项所述的电池,其中,
    所述阻挡件具有面向所述第一壁的第一表面,所述第一表面的面积大于所述第一壁的面积。
  20. 根据权利要求1-19所述的电池,其中,
    所述电池还包括箱体,所述电池单体设置于所述箱体内,所述阻挡件为所述箱体的壁。
  21. 根据权利要求1-19所述的电池,其中,
    所述电池还包括箱体,所述电池单体和所述阻挡件设置于所述箱体内。
  22. 根据权利要求21所述的电池,其中,
    所述阻挡件为热管理部件,所述热管理部件用于容纳介质,以调节所述电池单体的温度。
  23. 根据权利要求21所述的电池,其中,
    所述阻挡件为结构梁。
  24. 一种用电装置,其中,包括权利要求1-23任一项所述的电池,所述电池用于提供电能。
PCT/CN2022/103111 2022-06-30 2022-06-30 电池和用电装置 WO2024000509A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/103111 WO2024000509A1 (zh) 2022-06-30 2022-06-30 电池和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/103111 WO2024000509A1 (zh) 2022-06-30 2022-06-30 电池和用电装置

Publications (1)

Publication Number Publication Date
WO2024000509A1 true WO2024000509A1 (zh) 2024-01-04

Family

ID=89383843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103111 WO2024000509A1 (zh) 2022-06-30 2022-06-30 电池和用电装置

Country Status (1)

Country Link
WO (1) WO2024000509A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035817A (ja) * 2014-08-01 2016-03-17 三菱重工業株式会社 モジュールカバー上部構造体、電池モジュール及び電池モジュールの熱暴走防止方法
CN216720202U (zh) * 2022-02-10 2022-06-10 中创新航科技股份有限公司 电池包
CN216720114U (zh) * 2022-02-10 2022-06-10 中创新航科技股份有限公司 电池包

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035817A (ja) * 2014-08-01 2016-03-17 三菱重工業株式会社 モジュールカバー上部構造体、電池モジュール及び電池モジュールの熱暴走防止方法
CN216720202U (zh) * 2022-02-10 2022-06-10 中创新航科技股份有限公司 电池包
CN216720114U (zh) * 2022-02-10 2022-06-10 中创新航科技股份有限公司 电池包

Similar Documents

Publication Publication Date Title
EP3965213B1 (en) Battery and related apparatus thereof, preparation method and preparation device
US11967725B2 (en) Case of battery, battery, power consumption device, and method and device for preparing battery
US11791518B2 (en) Battery, power consumption device, method and device for preparing a battery
US20220013854A1 (en) Battery, power consumption device, method and device for preparing a battery
US11631919B2 (en) Battery, power consumption device, method and device for preparing a battery
WO2024007411A1 (zh) 端盖组件、电池单体、电池以及用电装置
WO2023179192A1 (zh) 电池和用电设备
WO2023134479A1 (zh) 电池和用电设备
WO2023044634A1 (zh) 电池、用电装置、制备电池的方法和装置
US20220320673A1 (en) Battery, power consumption device, method and device for producing battery
US20230411761A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
WO2024008054A1 (zh) 电池单体、电池及用电装置
WO2023236220A1 (zh) 电池单体、电池及用电设备
US20230223641A1 (en) Box of battery, battery, power consumption apparatus, and method and apparatus for producing battery
WO2024000509A1 (zh) 电池和用电装置
US20220123424A1 (en) Battery, power consumption device, and method and device for producing battery
EP4016713A1 (en) Box body for battery, battery, power consuming device, and method and device for preparing battery
US11888177B2 (en) Battery, power consumption device, and method and device for producing battery
WO2023230880A1 (zh) 电池单体、电池以及用电装置
CN217485679U (zh) 电池包和用电设备
US11973243B2 (en) Battery, power consumption device, and method and device for producing battery
WO2023236219A1 (zh) 电池单体、电池及用电设备
EP4016714B1 (en) Case body for battery, battery and electric device
WO2023133755A1 (zh) 电池、用电装置、制备电池的方法和装置
EP4016708B1 (en) Battery, electrical device, and method and device for preparing battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948611

Country of ref document: EP

Kind code of ref document: A1