WO2023216346A1 - Collecteur de courant composite à faible gonflement et son procédé de préparation - Google Patents

Collecteur de courant composite à faible gonflement et son procédé de préparation Download PDF

Info

Publication number
WO2023216346A1
WO2023216346A1 PCT/CN2022/096820 CN2022096820W WO2023216346A1 WO 2023216346 A1 WO2023216346 A1 WO 2023216346A1 CN 2022096820 W CN2022096820 W CN 2022096820W WO 2023216346 A1 WO2023216346 A1 WO 2023216346A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cross
base material
film base
material layer
Prior art date
Application number
PCT/CN2022/096820
Other languages
English (en)
Chinese (zh)
Inventor
王成豪
李学法
张国平
Original Assignee
扬州纳力新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬州纳力新材料科技有限公司 filed Critical 扬州纳力新材料科技有限公司
Publication of WO2023216346A1 publication Critical patent/WO2023216346A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of secondary batteries, and in particular to a low-swelling composite current collector and a preparation method thereof.
  • the current composite current collectors are mainly copper current collectors and aluminum current collectors.
  • the copper current collectors or aluminum current collectors are composed of two parts, including a thin film substrate layer in the middle and a thin film substrate layer arranged opposite to each other. metal layers on both surfaces.
  • the thickness requirement of the metal layer is generally about 1 ⁇ m.
  • the method of preparing the composite current collector is through an evaporation process.
  • the film base material layer is mostly made of polymer materials such as polyethylene terephthalate (PET), These polymer materials contain a large number of ester groups.
  • the ester group in the polymer material meets the ester group in the electrolyte and dissolves, causing the thin film substrate layer to easily appear during long-term use of the battery.
  • the swelling phenomenon destroys the chemical bond between the metal layer and the film substrate layer, resulting in the continuous deterioration of the peeling force between the metal layer and the film substrate layer of the composite current collector, and the metal layer and the film substrate layer are prone to peeling off. phenomenon, which in turn affects the positive and negative electrode interfaces inside the battery, resulting in poor electrical performance of the battery and also affecting the safety of the battery.
  • the polymer material dissolves and enters the electrolyte, it will also increase the viscosity of the electrolyte, which will increase the obstruction of ion transmission and lead to an increase in the internal resistance of the battery in the later stage of the battery.
  • a low-swelling composite current collector including:
  • the film base material layer includes at least one of an insulating polymer material, an insulating polymer composite material, a conductive polymer material, and a conductive polymer composite material.
  • insulating polymer materials include polyamide (PA), polyterephthalate, polyimide (PI), polyethylene (PE), polypropylene (PP), polystyrene (PPE), polychloride Ethylene (PVC), aramid, acrylonitrile-butadiene-styrene copolymer (ABS), polybutylene terephthalate (PET), polyparaphenylene terephthalamide (PPTA), Polypropylene (PPE), polyoxymethylene (POM), epoxy resin, phenolic resin, polytetrafluoroethylene (PTEE), polyvinylidene fluoride (PVDF), silicone rubber, polycarbonate (PC), polyvinyl alcohol (PVA) ), at least one of polyethylene glycol (PEG), cellulose, starch, protein, their derivatives, their cross-linked products and their copolymers.
  • PA polyamide
  • PEG polyterephthalate
  • PI polyimide
  • PE polyethylene
  • PP polypropylene
  • Insulating polymer composite materials are composite materials formed of insulating polymer materials and inorganic materials.
  • the inorganic material may be at least one of ceramic materials, glass materials, and ceramic composite materials.
  • the conductive polymer material uses at least one of doped polysulfide nitride and doped polyacetylene.
  • Conductive polymer composite materials are composite materials formed of insulating polymer materials and conductive materials.
  • the film base material layer includes at least one of polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), and polyphenylene sulfide (PPS). kind.
  • PE polyethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • PPS polyphenylene sulfide
  • the thickness of the film base material layer ranges from 1 ⁇ m to 25 ⁇ m, and the thickness of the metal layer ranges from 0.5 ⁇ m to 2.5 ⁇ m.
  • the thickness of the cross-linked layer ranges from 0.1 ⁇ m to 0.5 ⁇ m.
  • the thickness of the cross-linked layer ranges from 0.2 ⁇ m to 0.4 ⁇ m.
  • the metal layer is evaporated on the surface of the cross-linked layer.
  • a cross-linked layer and a metal layer are sequentially provided on two opposite surfaces of the film base material layer, and the cross-linked layer is formed by a surface cross-linking agent coated on the film base material layer through chemical bonds with the film base material.
  • the layers are cross-linked with each other to form more chemical bonds on the surface of the film base material layer, which can not only improve the binding force between the metal layer and the film base material layer, but also improve the solubility of the film base material layer in the electrolyte of the battery.
  • Figure 2 is a schematic flow chart of the steps of a method for preparing a composite current collector according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of the steps of a preparation method of a composite current collector shown in a pair of proportions of the present invention.
  • Composite current collector 100. Thin film substrate layer; 200. Cross-linked layer; 300. Metal layer.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In the present invention, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • the composite current collector 10 has a puncture strength of 70 gf, an MD tensile strength of 180 MPa, and a TD tensile strength of 180 MPa.
  • the MD elongation is 20% and the TD elongation is 20%.
  • MD Machine Direction, machine direction
  • TD Transverse Direction, perpendicular to the machine direction
  • the film base material layer 100 includes at least one of an insulating polymer material, an insulating polymer composite material, a conductive polymer material, and a conductive polymer composite material.
  • the puncture strength of the film base material layer 100 is ⁇ 100gf, the MD tensile strength is ⁇ 200MPa, and the TD tensile strength is ⁇ 200MPa.
  • MD elongation ⁇ 30%, TD elongation ⁇ 30%.
  • the film base material layer 100 has a puncture strength of 120 gf, an MD tensile strength of 250 MPa, and a TD tensile strength of 250 MPa.
  • the MD elongation is 40% and the TD elongation is 40%.
  • the above-mentioned insulating polymer materials can be polyamide (PA), polyterephthalate, polyimide (PI), polyethylene (PE), polypropylene (PP), polystyrene (PPE), Polyvinyl chloride (PVC), aramid, acrylonitrile-butadiene-styrene copolymer (ABS), polybutylene terephthalate (PET), polyphenylene terephthalamide (PPTA) ), polypropylene (PPE), polyoxymethylene (POM), epoxy resin, phenolic resin, polytetrafluoroethylene (PTEE), polyvinylidene fluoride (PVDF), silicone rubber (Silicone rubber), polycarbonate (PC) , at least one of polyvinyl alcohol (PVA), polyethylene glycol (PEG), cellulose, starch, protein, their derivatives, their cross-linked products and their copolymers.
  • PA polyamide
  • PEG polyethylene glycol
  • PEG polyethylene glycol
  • the cross-linking agent may be a polyisocyanate (JQ-1, JQ-1E, JQ-2E, JQ-3E, JQ-4, JQ-5, JQ -6.
  • the peeling force between the metal layer 300 and the cross-linked layer 200 is ⁇ 5N/m.
  • the peeling force between the metal layer 300 and the cross-linked layer 200 is 5 N/m.
  • the peeling force between the metal layer 300 and the film substrate layer 100 of the composite current collector 10 is relatively high, which can prevent the metal layer 300 and the film substrate layer 100 from falling off easily, thereby ensuring the electrical performance and safety of the battery.
  • the thickness of the film substrate layer 100 ranges from 1 ⁇ m to 25 ⁇ m, and the thickness of the metal layer 300 ranges from 0.5 ⁇ m to 2.5 ⁇ m.
  • the thickness of the cross-linked layer 200 ranges from 0.1 ⁇ m to 0.5 ⁇ m.
  • the thickness of the cross-linked layer 200 ranges from 0.2 ⁇ m to 0.4 ⁇ m.
  • Embodiment 1 of the present application also provides a method for preparing a low-swelling composite current collector 10, which includes the following steps:
  • Step 1 Coat cross-linking agent on two opposite surfaces of the film base material layer 100 respectively.
  • the thickness of the cross-linking agent coated on the film base material layer 100 is 0.3 ⁇ m, and the thickness of the film base material layer 100 is 6 ⁇ m.
  • the cross-linking agent is ethylene glycol dimethacrylate
  • the film base layer 100 is polybutylene terephthalate (PET).
  • Step 2 catalyze the cross-linking agent and the film base material layer 100 to cross-link the cross-linking agent and the film base material layer 100, and form cross-linked layers 200 on two opposite surfaces of the film base material layer 100.
  • heating is used to catalyze the cross-linking agent and the film base material layer 100 .
  • the temperature at which the cross-linking agent and the film base material layer 100 are cross-linked is 120°C.
  • the cross-linking time of the cross-linking agent and the film base material layer 100 is 35 seconds.
  • Step 3 Evaporate the metal layer 300 on the surface of the cross-linked layer 200 to obtain the required low-swelling composite current collector 10.
  • the thickness of the metal layer 300 is 1 ⁇ m, and the metal layer 300 is a metal aluminum layer.
  • a low-swelling composite current collector 10 of 8 ⁇ m was prepared. After the preparation of the low-swelling composite current collector 10 is completed, the low-swelling composite current collector 10 is cut, rolled, and vacuum packed.
  • the cross-linked layer 200 is formed by cross-linking the cross-linking agent and the material of the film base material layer 100. That is to say, when the cross-linking agent and the film base material layer 100 are cross-linked, the molecules of the cross-linking agent The cross-linking agent can penetrate into the film base material layer 100 , while the cross-linking agent has no thickness outside the film base material layer 100 .
  • ultraviolet light irradiation may be used to catalyze the cross-linking agent and the film base material layer 100 .
  • the temperature at which the cross-linking agent and the film base material layer 100 are cross-linked is any value between 50°C and 200°C.
  • the time for the cross-linking agent and the film base material layer 100 to cross-link is any value from 30 to 50 seconds.
  • the temperature at which the cross-linking agent and the film base material layer 100 are cross-linked is 150°C.
  • the cross-linking time of the cross-linking agent and the film base material layer 100 is 45 seconds.
  • the thickness of the cross-linking agent coated on the film base material layer 100 is 0.2 ⁇ m, and the thickness of the film base material layer 100 is 1 ⁇ m.
  • the thickness of the metal layer 300 is 0.1 ⁇ m, and the metal layer 300 is a metal aluminum layer.
  • the cross-linking agent and the film base material layer 100 are catalyzed by ultraviolet light irradiation.
  • the temperature at which the cross-linking agent and the film base material layer 100 are cross-linked is 50°C.
  • the cross-linking time for the cross-linking agent and the film base material layer 100 is 30 seconds.
  • the preparation method of the composite current collector 10 provided in this comparative example includes the following steps:
  • the difference between this comparative example and Comparative Example 1 is that the thickness of the film base material layer 100 is 25 ⁇ m.
  • the thickness of the metal layer 300 is 2.5 ⁇ m, and the metal layer 300 is a metal copper layer.
  • the solubility of the composite current collector 10 of the present invention is lower than that of the composite current collector of the comparative example. It can be seen that the solubility of the thin film base material layer 100 of the present invention in the electrolyte of the battery is low, causing the thin film base material layer 100 to appear The swelling phenomenon is greatly reduced, so that the chemical bond between the metal layer 300 and the film substrate layer 100 cannot be destroyed, so as to improve the peeling force between the metal layer 300 of the composite current collector 10 and the film substrate layer 100, so that the metal layer 300 The film base material layer 100 is not easy to fall off, thereby ensuring the electrical performance and safety of the battery.
  • the viscosity of the electrolyte will not increase, thereby preventing the electrolyte from increasing. It can effectively ensure the internal resistance stability of the battery.
  • the solubility of the composite current collector 10 in the electrolyte of the battery is also related to the thickness of the film base material layer 100 and the thickness of the cross-linking agent coated on the film base material layer 100.
  • the thickness of the film base material layer 100 The thicker the film base material layer 100 is, the greater the contact area between the film base material layer 100 and the electrolyte solution of the battery.
  • the thicker film base material layer 100 has a greater solubility in the battery electrolyte solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

La présente invention concerne un collecteur de courant composite à faible gonflement, qui comprend une couche de substrat à film mince, dont les deux surfaces opposées sont respectivement pourvues d'une couche de réticulation et d'une couche métallique en séquence, la couche de réticulation étant formée par la réticulation d'un agent de réticulation de surface, qui recouvre la couche de substrat à film mince, avec la couche de substrat à film mince par le biais d'un effet de liaison chimique. La disposition séquentielle de la couche de réticulation et de la couche métallique sur chacune des deux surfaces opposées de la couche de substrat à film mince permet de former davantage de liaisons chimiques sur les surfaces de la couche de substrat à film mince, de sorte que la force de liaison entre les couches métalliques et la couche de substrat à film mince peut être améliorée, la solubilité de la couche de substrat à film mince dans une solution électrolytique d'une batterie est relativement faible, le phénomène de gonflement de la couche de substrat à film mince est atténué et la liaison chimique entre les couches métalliques et la couche de substrat à film mince ne peut donc pas être endommagée ; par conséquent, la force de pelage entre les couches métalliques et la couche de substrat à film mince est améliorée, et les couches métalliques ne risquent pas de se détacher de la couche de substrat à film mince, ce qui permet de garantir les propriétés électriques, la sécurité et la stabilité de la résistance interne de la batterie.
PCT/CN2022/096820 2022-05-13 2022-06-02 Collecteur de courant composite à faible gonflement et son procédé de préparation WO2023216346A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210521208.2 2022-05-13
CN202210521208.2A CN114864953A (zh) 2022-05-13 2022-05-13 低溶胀的复合集流体及其制备方法

Publications (1)

Publication Number Publication Date
WO2023216346A1 true WO2023216346A1 (fr) 2023-11-16

Family

ID=82637013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096820 WO2023216346A1 (fr) 2022-05-13 2022-06-02 Collecteur de courant composite à faible gonflement et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN114864953A (fr)
WO (1) WO2023216346A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115312971A (zh) * 2022-08-18 2022-11-08 江阴纳力新材料科技有限公司 聚合物膜及其制备方法、复合集流体
WO2024044897A1 (fr) * 2022-08-29 2024-03-07 扬州纳力新材料科技有限公司 Film composite de polyester résistant au gonflement, procédé de préparation s'y rapportant et utilisation associée
WO2024044901A1 (fr) * 2022-08-29 2024-03-07 扬州纳力新材料科技有限公司 Film de polyester amélioré résistant aux solvants, procédé de préparation s'y rapportant, collecteur de courant composite et utilisation
CN115579479B (zh) * 2022-12-12 2023-07-04 安徽元琛环保科技股份有限公司 一种用作集流体的复合导电膜及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040126663A1 (en) * 2002-12-27 2004-07-01 Anthony Sudano Current collector for electrochemical cells and electrochemical generators thereof
CN112126373A (zh) * 2020-09-30 2020-12-25 浙江长宇新材料有限公司 一种增强型粘性功能基材及其制备方法
CN112501597A (zh) * 2020-12-01 2021-03-16 华南农业大学 一种镀金属薄膜材料及其制备方法和应用
CN114479146A (zh) * 2022-02-17 2022-05-13 江阴纳力新材料科技有限公司 聚多酚改性的聚合物膜及其制备方法、金属化聚合物膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040126663A1 (en) * 2002-12-27 2004-07-01 Anthony Sudano Current collector for electrochemical cells and electrochemical generators thereof
CN112126373A (zh) * 2020-09-30 2020-12-25 浙江长宇新材料有限公司 一种增强型粘性功能基材及其制备方法
CN112501597A (zh) * 2020-12-01 2021-03-16 华南农业大学 一种镀金属薄膜材料及其制备方法和应用
CN114479146A (zh) * 2022-02-17 2022-05-13 江阴纳力新材料科技有限公司 聚多酚改性的聚合物膜及其制备方法、金属化聚合物膜

Also Published As

Publication number Publication date
CN114864953A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
WO2023216346A1 (fr) Collecteur de courant composite à faible gonflement et son procédé de préparation
KR102330760B1 (ko) 전극 구성체 고정용 양면 테이프 및 이차전지
US8062387B2 (en) Reactive polymer-supporting porous film for battery separator and use thereof
US8911648B2 (en) Reactive polymer-supported porous film for battery separator, method for producing the porous film, method for producing battery using the porous film, and electrode/porous film assembly
WO2024000802A1 (fr) Collecteur de courant composite et son procédé de préparation, plaque d'électrode, batterie et dispositif électronique
WO2023092957A1 (fr) Couche de film composite métallique et procédé de préparation associé
JPWO2012056890A1 (ja) 非水系電池用セパレータ及びそれを用いた非水系電池、ならびに非水系電池用セパレータの製造方法
JP2018163872A (ja) 非水系二次電池用セパレータ及び非水系二次電池
WO2023216348A1 (fr) Collecteur de courant à haute conductivité thermique de batterie secondaire et procédé de préparation associé
WO2009123220A1 (fr) Séparateur de pile et pile utilisant ce séparateur
KR20100088663A (ko) 전지용 세퍼레이터를 위한 반응성 중합체층 담지 다공질 필름과 그 이용
WO2024000804A1 (fr) Collecteur de courant composite à haute soudabilité et son procédé de préparation
CN108470874A (zh) 改善电芯挤压性能的方法、锂离子电池的制备工艺及锂离子电池
WO2023184878A1 (fr) Collecteur de courant de batterie au lithium ternaire à haute sécurité, électrode et batterie au lithium
BR112014015684B1 (pt) Separador para célula eletroquímica, célula eletroquímica compreendendo o separador, e método de produção do separador utilizando um tecido não tecido
CN111384316A (zh) 柔性锂离子电池封装膜、锂离子电池封装方法及电池
WO2023216345A1 (fr) Collecteur de courant à structure multicouche et son procédé de préparation
CN115241465A (zh) 复合膜的制造方法、复合膜及其应用
CN110669452B (zh) 一种带基材双面胶带及其应用
JP5260075B2 (ja) 電池用セパレータ用反応性ポリマー担持多孔質フィルムとそれより得られる電極/セパレータ接合体
JP5422088B2 (ja) 電池用セパレータとこれを用いてなる電池
CN108767284B (zh) 一种提高超薄锂电子一次电池硬度的方法
WO2024011535A1 (fr) Collecteur de courant composite en aluminium, son procédé de préparation et son utilisation
WO2024000803A1 (fr) Procédé de préparation d'un collecteur de courant composite et collecteur de courant composite
JP5680241B2 (ja) 電池用セパレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941294

Country of ref document: EP

Kind code of ref document: A1