WO2024000803A1 - Procédé de préparation d'un collecteur de courant composite et collecteur de courant composite - Google Patents

Procédé de préparation d'un collecteur de courant composite et collecteur de courant composite Download PDF

Info

Publication number
WO2024000803A1
WO2024000803A1 PCT/CN2022/116777 CN2022116777W WO2024000803A1 WO 2024000803 A1 WO2024000803 A1 WO 2024000803A1 CN 2022116777 W CN2022116777 W CN 2022116777W WO 2024000803 A1 WO2024000803 A1 WO 2024000803A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
layer
composite current
metal
base material
Prior art date
Application number
PCT/CN2022/116777
Other languages
English (en)
Chinese (zh)
Inventor
王成豪
李学法
张国平
Original Assignee
扬州纳力新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬州纳力新材料科技有限公司 filed Critical 扬州纳力新材料科技有限公司
Publication of WO2024000803A1 publication Critical patent/WO2024000803A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of lithium ion batteries, and in particular to a preparation method of a composite current collector and a composite current collector.
  • the current composite current collectors are mainly copper current collectors and aluminum current collectors.
  • the copper current collectors or aluminum current collectors are composed of two parts, including a thin film substrate layer in the middle and a thin film substrate layer arranged opposite to each other. Metal coating on both surfaces.
  • the thickness requirement of the metal coating is generally about 0.5 ⁇ m-1.5 ⁇ m.
  • the way to prepare the composite current collector is through evaporation process.
  • the binding force between the metal coating and the negatively charged polar groups on the film substrate layer is relatively poor. , resulting in poor peeling force between the metal coating and the film substrate layer, causing the composite current collector to easily delaminate during the cutting process, resulting in defective products, and also causing the battery pole pieces to fall off during the production process.
  • a preparation method of composite current collector including the following steps:
  • the nickel ions are bombarded at high speed on two opposite surfaces of the thin film base material layer, so as to form metallic nickel layers on the two opposite surfaces of the thin film base material layer;
  • a metal plating layer is evaporated on the surface of the metallic nickel layer.
  • the purity of the metal plating layer and the metal nickel layer is both ⁇ 99.8%.
  • the metal plating layer is a metal aluminum layer or a metal copper layer.
  • the thickness of the film base material layer ranges from 1 ⁇ m to 25 ⁇ m, and the thickness of the metal plating layer ranges from 0.5 ⁇ m to 1.5 ⁇ m.
  • the thickness of the metallic nickel layer ranges from 0.5 ⁇ m to 1 ⁇ m.
  • the puncture strength of the film base material layer is ⁇ 100gf
  • the MD tensile strength is ⁇ 200MPa
  • the TD tensile strength is ⁇ 200MPa
  • the MD elongation is ⁇ 30%
  • the TD elongation is ⁇ 30%.
  • the film base material layer includes at least one of an insulating polymer material, an insulating polymer composite material, a conductive polymer material, and a conductive polymer composite material.
  • the insulating polymer material includes polyamide (PA), polyterephthalate, polyimide (PI), polyethylene (PE), polypropylene (PP), polystyrene Ethylene (PPE), polyvinyl chloride (PVC), aramid, acrylonitrile-butadiene-styrene copolymer (ABS), polybutylene terephthalate (PET), polyterephthalamide Phenylenediamine (PPTA), polypropylene (PPE), polyoxymethylene (POM), epoxy resin, phenolic resin, polytetrafluoroethylene (PTEE), polyvinylidene fluoride (PVDF), silicone rubber, polycarbonate (PC) ), at least one of polyvinyl alcohol (PVA), polyethylene glycol (PEG), cellulose, starch, protein, their derivatives, their cross-linked products and their copolymers.
  • PA polyamide
  • PEG polyethylene glycol
  • PEG polyethylene glycol
  • starch protein
  • protein poly
  • the insulating polymer composite material is a composite material formed of the insulating polymer material and an inorganic material.
  • This application also provides a composite current collector, including:
  • the metal nickel layer and the metal plating layer are respectively provided on two surfaces of the film base material layer that are opposite to each other.
  • metallic nickel is ionized to generate nickel ions, and under the action of a magnetic field, the nickel ions are bombarded at high speed on two opposite surfaces of the film substrate layer, so that the positively charged nickel ions can interact with the film substrate.
  • the negatively charged polar groups on the surface of the material layer are combined to form more chemical bonds on the surface of the film base material layer to improve the bonding force and peeling force between the film base material layer and the metal nickel layer; through the metal plating layer Setting a metal nickel layer between the metal plating layer and the film base material layer can improve the bonding force and peeling force between the metal plating layer and the film base material layer, making the metal plating layer and the film base material layer less likely to fall off, thereby ensuring the electrical performance and safety of the battery. It can also solve the problem of delamination that easily occurs during the cutting process, resulting in defective products and material falling off during the filmmaking process, causing serious product defects, and ensures product quality.
  • Figure 1 is a schematic structural diagram of a composite current collector shown in an embodiment of the present invention
  • Figure 2 is a schematic flow chart of the steps of a method for preparing a composite current collector according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of the steps of a preparation method of a composite current collector shown in a pair of proportions of the present invention.
  • Composite current collector 100. Thin film substrate layer; 200. Metal nickel layer; 300. Metal plating layer.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In the present invention, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • an embodiment of the present application also provides a method for preparing a composite current collector 10, which includes the following steps:
  • Step 1 Ionize metallic nickel to generate nickel ions.
  • Step 2 Under the action of a magnetic field, nickel ions are bombarded with high speed on two opposite surfaces of the thin film base material layer 100 to form metallic nickel layers 200 on the two opposite surfaces of the thin film base material layer 100 respectively. It should be understood that when nickel ions bombard the two opposite surfaces of the film base material layer 100 at high speed, the positively charged nickel ions can combine with the negatively charged polar groups on the surface of the film base material layer 100 to form More chemical bonds are formed on the surface of the film base material layer 100 to improve the bonding force and peeling force between the film base material layer 100 and the metal nickel layer 200 .
  • the speed at which nickel ions bombard the two opposite surfaces of the thin film substrate layer 100 is not limited in this application and can be set according to the usage requirements.
  • the speed at which nickel ions bombard two surfaces of the thin film substrate layer 100 located opposite to each other is 150 m/s.
  • Step 3 evaporate the metal plating layer 300 on the surface of the metal nickel layer 200. After the preparation of the composite current collector 10 is completed, the composite current collector 10 is cut, rolled, and vacuum packed.
  • the purity of the metal plating layer 300 is ⁇ 99.8%. That is to say, the metal plating layer 300 in this application uses high-purity metal. Specifically, the metal plating layer 300 is a metal aluminum layer or a metal copper layer. The purity of the metallic nickel layer 200 is ⁇ 99.8%. That is to say, the metallic nickel layer 200 in this application uses high-purity metallic nickel. High-purity metallic nickel has excellent corrosion resistance, high electric vacuum performance and electromagnetic control performance.
  • the metal coating 300 adopts a metal aluminum layer, and the purity of the metal aluminum layer is ⁇ 99.8%.
  • the high-purity metallic aluminum layer has low deformation resistance, high electrical conductivity and good plasticity.
  • the metal plating layer 300 adopts a metallic copper layer, and the purity of the metallic copper layer is ⁇ 99.8%.
  • the high-purity metallic copper layer has good ductility, heat transfer and electrical conductivity.
  • the peeling force between the metal coating 300 and the polymer film layer is ⁇ 8N/m.
  • the peeling force between the metal plating layer 300 and the film base material layer 100 is 10 N/m.
  • the peeling force between the metal plating layer 300 and the film base material layer 100 is relatively high, which can prevent the metal plating layer 300 from falling off from the film base material layer 100, thus ensuring the electrical performance and safety of the battery.
  • the thickness of the film base material layer 100 ranges from 1 ⁇ m to 25 ⁇ m, and the thickness of the metal plating layer 300 ranges from 0.5 ⁇ m to 1.5 ⁇ m.
  • the thickness of the metallic nickel layer 200 ranges from 0.5 ⁇ m to 1 ⁇ m. It should be understood that the thickness of the composite current collector 10 of the present application ranges from 3 ⁇ m to 30 ⁇ m.
  • the thickness of the film base material layer 100 is 20 ⁇ m
  • the thickness of the metal plating layer 300 is 1.2 ⁇ m.
  • the thickness of the metallic nickel layer 200 is 1 ⁇ m.
  • the puncture strength of the film base material layer 100 is ⁇ 100gf
  • the MD tensile strength is ⁇ 200MPa
  • the TD tensile strength is ⁇ 200MPa
  • the MD elongation is ⁇ 30%, TD. Elongation ⁇ 30%.
  • the puncture strength of the film base material layer 100 is ⁇ 300f
  • the MD tensile strength is ⁇ 400MPa
  • the TD tensile strength is ⁇ 400MPa
  • the MD elongation is ⁇ 50%
  • the TD elongation is ⁇ 50%.
  • MD (Machine Direction, machine direction) refers to the longitudinal direction
  • TD (Transverse Direction, perpendicular to the machine direction) refers to the transverse direction.
  • the upper limit of the puncture strength, MD tensile strength, TD tensile strength, MD elongation, and TD elongation of the film base material layer 100 is not limited in this application and can be set according to the needs of use.
  • the lower limit of the puncture strength of the film base material layer 100 shall not be less than 100gf, the lower limit of the MD tensile strength shall not be less than 200MPa, the lower limit of the TD tensile strength shall not be less than 200MPa, the lower limit of the MD elongation shall not be less than 30%, TD The lower limit of the elongation shall not be less than 30%, otherwise the mechanical properties of the film base material layer 100 will be affected, and ultimately the puncture strength, MD tensile strength, TD tensile strength, MD elongation, and TD elongation of the composite current collector 10 will be affected.
  • the film base material layer 100 includes at least one of an insulating polymer material, an insulating polymer composite material, a conductive polymer material, and a conductive polymer composite material.
  • insulating polymer materials include polyamide (PA), polyterephthalate, polyimide (PI), polyethylene (PE), polypropylene (PP), polystyrene (PPE), polyethylene Vinyl chloride (PVC), aramid, acrylonitrile-butadiene-styrene copolymer (ABS), polybutylene terephthalate (PET), polyphenylene terephthalamide (PPTA) , polypropylene (PPE), polyoxymethylene (POM), epoxy resin, phenolic resin, polytetrafluoroethylene (PTEE), polyvinylidene fluoride (PVDF), silicone rubber (Silicone rubber), polycarbonate (PC), At least one of polyvinyl alcohol (PVA), polyethylene glycol (PEG), cellulose, starch, protein, their derivatives, their cross-linked products and their copolymers.
  • PA polyamide
  • PEG polyethylene glycol
  • PEG polyethylene glycol
  • starch protein
  • protein their derivatives,
  • the above-mentioned insulating polymer composite material is a composite material formed of an insulating polymer material and an inorganic material.
  • the inorganic material may be at least one of ceramic materials, glass materials, and ceramic composite materials.
  • the above-mentioned conductive polymer material may be at least one of doped polysulfide nitride and doped polyacetylene.
  • the above-mentioned conductive polymer composite material may be a composite material formed of an insulating polymer material and a conductive material.
  • the conductive material may be at least one of conductive carbon materials, metal materials, and composite conductive materials. More specifically, the conductive carbon material is selected from at least one of carbon black, carbon nanotubes, graphite, acetylene black, and graphene.
  • the metal material is selected from at least one of metal nickel, metal iron, metal copper, metal aluminum or alloys of the above metals.
  • the composite conductive material is selected from at least one of metal nickel-coated graphite powder and metal nickel-coated carbon fiber.
  • An embodiment of the present application also provides a composite current collector 10, which includes a film base material layer 100. Two surfaces of the film base material layer 100 arranged opposite to each other are respectively provided with a metal nickel layer 200 and a metal nickel layer 200. Metal plating 300.
  • the bonding force and peeling force between the film base material layer 100 and the metal plating layer 300 can be improved, making the metal plating layer 300 and the film base material layer 100 less likely to fall off. , thereby ensuring the electrical performance and safety of the battery and improving the quality of the product.
  • the puncture strength of the composite current collector 10 is ⁇ 50gf, the MD tensile strength is ⁇ 150MPa, the TD tensile strength is ⁇ 150MPa, the MD elongation is ⁇ 10%, and the TD elongation is ⁇ 10%.
  • the composite current collector 10 has a puncture strength of 130 gf, an MD tensile strength of 300 MPa, and a TD tensile strength of 300 MPa.
  • the MD elongation is 60% and the TD elongation is 60%.
  • Step 1 Select a 6 ⁇ m film substrate layer 100, a 99.9% purity metal aluminum layer, and a 99.9% purity metal nickel layer.
  • the film base material layer 100 is made of polybutylene terephthalate (PET).
  • Step 2 Ionize metallic nickel to generate nickel ions. Specifically, nickel ions have a valence of +2.
  • Step 3 Under the action of a magnetic field, nickel ions are bombarded with high speed on two opposite surfaces of the thin film base material layer 100 to form metallic nickel layers 200 on the two opposite surfaces of the thin film base material layer 100 respectively. Specifically, under the action of a magnetic field, nickel ions bombard two opposite surfaces of the film base material layer 100 at a speed of 150 m/s. The thickness of the metallic nickel layer 200 is 0.5 ⁇ m.
  • Step 4 evaporate the metal plating layer 300 on the surface of the metal nickel layer 200.
  • the thickness of the metal plating layer 300 is 0.5 ⁇ m
  • the metal nickel layer 200 is a metal aluminum layer.
  • Step 1 Select a 25 ⁇ m film substrate layer 100, a 99.9% purity metal copper layer, and a 99.9% purity metal nickel layer.
  • the film base material layer 100 is made of polybutylene terephthalate (PET).
  • Step 2 Ionize metallic nickel to generate nickel ions. Specifically, nickel ions have a valence of +2.
  • Step 3 Under the action of a magnetic field, nickel ions are bombarded with high speed on two opposite surfaces of the thin film base material layer 100 to form metallic nickel layers 200 on the two opposite surfaces of the thin film base material layer 100 respectively. Specifically, under the action of a magnetic field, nickel ions bombard two opposite surfaces of the film base material layer 100 at a speed of 150 m/s. The thickness of the metallic nickel layer 200 is 1 ⁇ m.
  • Step 4 evaporate the metal plating layer 300 on the surface of the metal nickel layer 200.
  • the thickness of the metal plating layer 300 is 1.5 ⁇ m
  • the metal nickel layer 200 is a metal copper layer.
  • a 30 ⁇ m composite current collector 10 is produced. After the preparation is completed, the composite current collector 10 is cut, rolled, and vacuum packed.
  • Step 1 Select a 1 ⁇ m thin film substrate layer 100, a 99.9% purity metal aluminum layer, and a 99.8% purity metal nickel layer.
  • the film base material layer 100 is made of polybutylene terephthalate (PET).
  • Step 2 Ionize metallic nickel to generate nickel ions. Specifically, nickel ions have a valence of +2.
  • Step 3 Under the action of a magnetic field, nickel ions are bombarded with high speed on two opposite surfaces of the thin film base material layer 100 to form metallic nickel layers 200 on the two opposite surfaces of the thin film base material layer 100 respectively. Specifically, under the action of a magnetic field, nickel ions bombard two opposite surfaces of the film base material layer 100 at a speed of 150 m/s. The thickness of the metallic nickel layer 200 is 0.5 ⁇ m.
  • Step 4 evaporate the metal plating layer 300 on the surface of the metal nickel layer 200.
  • the thickness of the metal plating layer 300 is 0.5 ⁇ m
  • the metal nickel layer 200 is a metal copper layer.
  • the preparation method of the composite current collector 10 provided in this comparative example includes the following steps:
  • Step 1 Select a 6 ⁇ m film substrate layer 100 and a 99.9% purity metal aluminum layer.
  • the film base material layer 100 is made of polybutylene terephthalate (PET).
  • Step 2 Put the 6 ⁇ m thin film base material layer 100 and the 99.9% purity metal aluminum layer into the vacuum coating equipment respectively, and evaporate the metal aluminum layers on the two opposite surfaces of the thin film base material layer 100 to obtain the result.
  • the thickness of the metallic aluminum layer is 1 ⁇ m.
  • the preparation method of the composite current collector 10 provided in this comparative example includes the following steps:
  • Step 1 Select a 25 ⁇ m film substrate layer 100 and a 99.9% purity metal aluminum layer.
  • the film base material layer 100 is made of polybutylene terephthalate (PET).
  • Step 2 Put the 25 ⁇ m thin film base material layer 100 and the 99.9% purity metal aluminum layer into the vacuum coating equipment respectively, and evaporate the metal aluminum layers on the two opposite surfaces of the thin film base material layer 100 to obtain the result.
  • the thickness of the metallic aluminum layer is 2.5 ⁇ m.
  • the peeling force of the composite current collector 10 of Examples 1-3 and Comparative Examples 1-2 was tested, and the effect data as shown in Table 1 was obtained. It should be understood that the peeling force of the composite current collector 10 refers to the peeling force between the metal plating layer 300 and the film base material layer 100 .
  • Table 1 shows the peeling force test data of composite current collector 10.
  • the peeling force of the composite current collector 10 of the present invention is greater than the peeling force of the composite current collector 10 of the comparative example, and the peeling force of the composite current collector 10 is closely related to the thickness of the film base material layer 100 and the thickness of the metal plating layer 300 It has nothing to do with the material of the metal plating layer 300 and is related to the purity of the metal nickel layer 200 . The higher the purity of the metal nickel layer 200 , the greater the peeling force of the composite current collector 10 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

La présente invention concerne un procédé de préparation d'un collecteur de courant composite, et un collecteur de courant composite. Le procédé de préparation d'un collecteur de courant composite comprend les étapes suivantes consistant à : ioniser du nickel métallique pour générer des ions nickel ; et sous l'action d'un champ magnétique, bombarder les deux surfaces opposées d'une couche de substrat en film mince avec les ions nickel à une vitesse élevée, de façon à former des couches de nickel métallique sur les deux surfaces opposées de la couche de substrat en film mince. Dans la présente invention, les ions nickel sont utilisés pour bombarder les surfaces de la couche de substrat en film mince à une vitesse élevée, de telle sorte que les ions nickel puissent se lier à des groupes polaires chargés négativement sur les surfaces de la couche de substrat en film mince pour générer des liaisons chimiques ; et en agençant les couches de nickel métallique entre un revêtement métallique et la couche de substrat en film mince, la force de liaison et la force d'arrachement entre le revêtement métallique et la couche de substrat en film mince peuvent être améliorées, de telle sorte que le revêtement métallique et la couche de substrat en film mince ne soient pas sujets à se détacher, ce qui permet de garantir les propriétés électriques et la sécurité d'une batterie, et en outre les problèmes de produits défectueux dus à la tendance à la délamination pendant un processus de refendage et de sérieux défauts de produits causés par les phénomènes de chute de matériau pendant un processus de préparation de feuille peuvent être résolus.
PCT/CN2022/116777 2022-06-29 2022-09-02 Procédé de préparation d'un collecteur de courant composite et collecteur de courant composite WO2024000803A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210753320.9A CN115036514A (zh) 2022-06-29 2022-06-29 复合集流体的制备方法及复合集流体
CN202210753320.9 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024000803A1 true WO2024000803A1 (fr) 2024-01-04

Family

ID=83127574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116777 WO2024000803A1 (fr) 2022-06-29 2022-09-02 Procédé de préparation d'un collecteur de courant composite et collecteur de courant composite

Country Status (2)

Country Link
CN (1) CN115036514A (fr)
WO (1) WO2024000803A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218971A (ja) * 2009-03-18 2010-09-30 Toyota Motor Corp 非水電解液二次電池用集電体の製造方法及び集電体
CN106981665A (zh) * 2017-04-14 2017-07-25 深圳鑫智美科技有限公司 一种负极集流体、其制备方法及其应用
CN111748764A (zh) * 2020-07-10 2020-10-09 北京市辐射中心 一种负极集流体的制备方法及其装置
CN113745525A (zh) * 2021-06-16 2021-12-03 浙江柔震科技有限公司 一种柔性复合塑料薄膜及其制备与测试方法
CN114015994A (zh) * 2021-11-03 2022-02-08 合肥国轩高科动力能源有限公司 一种超薄复合集流体的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218971A (ja) * 2009-03-18 2010-09-30 Toyota Motor Corp 非水電解液二次電池用集電体の製造方法及び集電体
CN106981665A (zh) * 2017-04-14 2017-07-25 深圳鑫智美科技有限公司 一种负极集流体、其制备方法及其应用
CN111748764A (zh) * 2020-07-10 2020-10-09 北京市辐射中心 一种负极集流体的制备方法及其装置
CN113745525A (zh) * 2021-06-16 2021-12-03 浙江柔震科技有限公司 一种柔性复合塑料薄膜及其制备与测试方法
CN114015994A (zh) * 2021-11-03 2022-02-08 合肥国轩高科动力能源有限公司 一种超薄复合集流体的制备方法

Also Published As

Publication number Publication date
CN115036514A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
JP6796114B2 (ja) 集電体、その極シート及び電気化学デバイス
JP2020503639A (ja) 集電体、その極シートと電気化学デバイス
WO2024000804A1 (fr) Collecteur de courant composite à haute soudabilité et son procédé de préparation
JP6765461B2 (ja) 集電体、極シート及び電気化学デバイス
CN111883777A (zh) 一种复合集流体及其制备方法、锂电池极片
CN112151806A (zh) 一种超轻多层复合集流体及其制备方法
CN107369810A (zh) 一种负极集流体、其制备方法及其应用
WO2021238629A1 (fr) Collecteur de courant, procédé de préparation pour collecteur de courant, électrode plane et batterie au lithium-ion
WO2023217287A1 (fr) Collecteur de courant ayant de multiples couches de structures et son procédé de préparation
CN114899356A (zh) 一种复合集流体、制备方法、电极极片、电池和电子设备
WO2023216348A1 (fr) Collecteur de courant à haute conductivité thermique de batterie secondaire et procédé de préparation associé
WO2023216346A1 (fr) Collecteur de courant composite à faible gonflement et son procédé de préparation
CN112164538A (zh) 一种轻质、安全的导电薄膜及其制备方法
CN109088070B (zh) 锂离子电池及其制备方法
CN115149000A (zh) 铝复合集流体及其制备方法和应用
WO2024000803A1 (fr) Procédé de préparation d'un collecteur de courant composite et collecteur de courant composite
CN116657209B (zh) 高分子纤维基材复合金属膜、制备方法及应用
WO2023216347A1 (fr) Collecteur de courant composite hautement élastique et son procédé de préparation
CN109301157B (zh) 一种基于石墨烯薄膜的锂离子电池
WO2024092882A1 (fr) Collecteur de courant de cuivre composite et son procédé de préparation, feuille d'électrode, batterie secondaire et dispositif électrique
CN115094384B (zh) 铜复合集流体及其制备方法和应用
CN217544656U (zh) 复合铜箔电极以及锂离子电池
CN114050272A (zh) 石墨烯基底以及具有其的薄膜锂电池
WO2024012564A1 (fr) Collecteur de courant composite en aluminium, son procédé de préparation et son utilisation
WO2024011535A1 (fr) Collecteur de courant composite en aluminium, son procédé de préparation et son utilisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948893

Country of ref document: EP

Kind code of ref document: A1