WO2023214463A1 - 光ファイバセンシング装置及び光ファイバセンシング方法 - Google Patents

光ファイバセンシング装置及び光ファイバセンシング方法 Download PDF

Info

Publication number
WO2023214463A1
WO2023214463A1 PCT/JP2022/019571 JP2022019571W WO2023214463A1 WO 2023214463 A1 WO2023214463 A1 WO 2023214463A1 JP 2022019571 W JP2022019571 W JP 2022019571W WO 2023214463 A1 WO2023214463 A1 WO 2023214463A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
change
spectral shift
rate
fiber sensing
Prior art date
Application number
PCT/JP2022/019571
Other languages
English (en)
French (fr)
Inventor
達也 岡本
大輔 飯田
優介 古敷谷
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/019571 priority Critical patent/WO2023214463A1/ja
Publication of WO2023214463A1 publication Critical patent/WO2023214463A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre

Definitions

  • the present disclosure relates to an optical fiber sensing device using OFDR (Optical Frequency Domain Reflectometry) and a sensing method thereof.
  • OFDR Optical Frequency Domain Reflectometry
  • FIG. 1 is a diagram explaining the sensing principle using OFDR.
  • OFDR employs frequency swept light as probe light. Then, by Fourier transforming the waveform r( ⁇ ) (FIG. 1(A)) of the Rayleigh backscattered light for the probe light of the optical fiber, the spectrum S( ⁇ ) (FIG. 1(B)) can be analyzed ( For example, see Non-Patent Document 1).
  • the spectrum S( ⁇ ) of the backscattered light changes with respect to the strain and temperature of the optical fiber (spectral shift). Therefore, by detecting how much the reference spectrum S ref obtained in the reference measurement has moved at each measurement time (spectral shift ⁇ ), the amount of change in strain and temperature of the optical fiber can be calculated as shown in the following equation. can do.
  • is the spectral shift
  • ⁇ 0 is the center frequency of the probe light
  • is the strain
  • T is the temperature.
  • optical fiber sensing using OFDR has the problem that accurate measurement is difficult when the strain or temperature change in the measurement target is large.
  • SUMMARY OF THE INVENTION Therefore, in order to solve the above-mentioned problems, it is an object of the present invention to provide an optical fiber sensing device and an optical fiber sensing method that enable accurate measurement even when the strain or temperature change of the object to be measured is large. shall be.
  • the optical fiber sensing device and method according to the present invention apply a Kalman filter to discontinuous points of spectral shift to estimate correct temporal changes in spectral shift.
  • the optical fiber sensing device is an optical fiber sensing device using OFDR, differentiating the measured spectral shift with time to obtain a rate of change of the spectral shift; detecting a discontinuity point of the spectral shift from the rate of change; calculating a predicted value of the rate of change for the discontinuity point; estimating an estimated value of the rate of change at the discontinuous point by applying a Kalman filter to the rate of change at the discontinuous point and the predicted value; and
  • the present invention is characterized by comprising an analysis circuit that performs time integration of the estimated value estimated at a point to obtain a corrected spectral shift.
  • the optical fiber sensing method is an optical fiber sensing method using OFDR, differentiating the measured spectral shift with time to obtain a rate of change of the spectral shift; detecting a discontinuity point of the spectral shift from the rate of change; calculating a predicted value of the rate of change for the discontinuity point; estimating an estimated value of the rate of change at the discontinuous point by applying a Kalman filter to the rate of change at the discontinuous point and the predicted value; and
  • the method is characterized in that the estimated value estimated at a point is time-integrated to obtain a corrected spectral shift.
  • the optical fiber sensing device uses a Kalman filter to eliminate discontinuities in the spectral shift that occur when the strain or temperature change in the measurement target is large, and can smooth the time waveform of the spectral shift. Therefore, the present invention can provide an optical fiber sensing device and an optical fiber sensing method that enable accurate measurement even when the strain or temperature change of the measurement target is large.
  • a predicted value of the rate of change of the spectral shift is obtained for the detected discontinuity point under the condition that the rate of change of the spectral shift does not change rapidly. For example, assume that the predicted value is the rate of change at a time immediately before the time indicating the discontinuity point.
  • a Kalman filter is applied to the detected discontinuities to determine the correct rate of change of the spectral shift (estimated value). Specifically, the Kalman filter estimates the estimated value using equation (C1).
  • m ⁇ is the estimated value
  • m is the rate of change at the discontinuity point
  • p is the predicted value
  • ⁇ m is the noise of the optical fiber sensing device
  • ⁇ p is the prediction uncertainty.
  • the noise ⁇ m and the uncertainty ⁇ p are set to values such that ⁇ m > ⁇ p and the standard deviation of the corrected spectral shift with respect to time is smaller than the standard deviation of the spectral shift with respect to time.
  • analysis circuit can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
  • the present invention can provide an optical fiber sensing device and an optical fiber sensing method that enable accurate measurement even when the strain or temperature change of the measurement target is large.
  • FIG. 1 is a diagram illustrating an optical fiber sensing device according to the present invention.
  • FIG. 2 is a diagram illustrating an optical fiber sensing method according to the present invention. It is a figure explaining the effect of the optical fiber sensing method concerning the present invention. It is a figure explaining the effect of the optical fiber sensing method concerning the present invention. It is a figure explaining the effect of the optical fiber sensing method concerning the present invention. It is a figure explaining the effect of the optical fiber sensing method concerning the present invention.
  • FIG. 3 is a diagram illustrating the optical fiber sensing device 301 of this embodiment.
  • the optical fiber sensing device 301 is a sensing system that includes a measuring device 11 and an analysis circuit 12.
  • the measuring device 11 is an OFDR that inputs the probe light whose frequency has been swept once into the optical fiber 13 and obtains the spectrum of the Rayleigh backscattered light in the optical fiber 13.
  • the analysis circuit 12 obtains the spectrum shift S from the temporal variation of the spectrum obtained by the measurement device 11. Then, the analysis circuit 12 differentiates the spectral shift S with respect to time and detects discontinuous points of the spectral shift. Further, the analysis circuit 12 applies a Kalman filter (for example, see Non-Patent Document 4) to the discontinuous points, and estimates a correct temporal change (estimated value) of the spectral shift. Finally, the analysis circuit 12 integrates the temporal change in the spectral shift to obtain a corrected spectral shift. The details of the analysis method of the analysis circuit 12 will be explained below.
  • FIG. 4 is a diagram illustrating an analysis method performed by the analysis circuit 12.
  • the analysis circuit 12 is differentiating the measured spectral shift S with respect to time to obtain a rate of change dS/dt of the spectral shift S (step S01); Detecting a discontinuous point in the spectral shift S from the rate of change dS/dt (step S02); calculating a predicted value p of the rate of change dS/dt for the time tn indicating the discontinuous point (step S03); Applying a Kalman filter to the measured value m and predicted value p of the rate of change at time t n indicating the discontinuous point to estimate an estimated value m ⁇ of the rate of change at time t n indicating the discontinuous point. (Step S04), and obtaining a corrected spectral shift S' by time-integrating the rate of change dS/dt other than the discontinuous point and the estimated value m ⁇ estimated at the discontinuous point (Step S05) I do.
  • Step S01 The acquired spectral shift S is differentiated with respect to time to calculate the rate of change dS/dt.
  • Step S02 A discontinuous point of the spectral shift S is detected from the value of the rate of change dS/dt. For example, a time when the value of the rate of change dS/dt exceeds a predetermined threshold value can be set as a discontinuous point.
  • FIG. 5 is a diagram illustrating the rate of change of the spectral shift S. The vertical axis is the rate of change dS/dt, and the horizontal axis is time. The thin line is the change rate dS/dt obtained by time-differentiating the acquired spectral shift S, and peaks occur at random times. The time at which this peak occurs (for example, time tn ) is the discontinuous point of the spectral shift.
  • Step S03 Usually, the sampling rate of the A/D converter included in the measurement device 11 is sufficiently higher than the frequency of the measurement target (vibration or temperature change that the optical fiber 13 receives), so the rate of change dS/dt does not change suddenly.
  • prediction is performed at the rate of change at time t n-1 with respect to time t n indicating a discontinuous point of spectral shift.
  • the peak value of the thin line in FIG. 5 (the value of the rate of change dS(t n )/dt at time t n ) is replaced with the rate of change (predicted value p) at the immediately preceding time t n-1 .
  • Predicted value p dS(t n-1 )/dt
  • Step S04 Assuming that the noise of the optical fiber sensing device 301 is larger than the prediction uncertainty, the estimated value m ⁇ is estimated using equation (C1) using a Kalman filter.
  • m ⁇ is the estimated value
  • m is the rate of change at the discontinuous point (observed value)
  • p is the predicted value
  • ⁇ m is the noise of the optical fiber sensing device 301
  • ⁇ p is the prediction uncertainty.
  • ⁇ m represents the standard deviation of the spectral shift discontinuity. Since statistical properties regarding the discontinuity of the spectral shift are not available, ⁇ m is not known exactly. Therefore, in this embodiment, it is assumed that ⁇ m is a large value and can take any value.
  • ⁇ p represents the uncertainty of the predicted value p. If the sampling rate of the A/D converter included in the measurement device 11 is sufficiently higher than the frequency of the phenomenon to be measured (vibration or temperature change), the rate of change in the spectral shift between time t n and time t n-1 is It is thought that it will not change significantly. Therefore, ⁇ p is set to a smaller value than ⁇ m .
  • Step S05 The thick line in FIG. 5 is the rate of change in the spectral shift after replacing the rate of change at the discontinuous point of the spectral shift S (observed value m) with the estimated value m ⁇ estimated in step S04 in this step.
  • the rate of change of this spectral shift is integrated over time to obtain a corrected spectral shift S'.
  • FIG. 6 is a diagram comparing the spectral shift S (thin line) and the corrected spectral shift S' (thick line). In contrast to the spectral shift S, the corrected spectral shift S' has a smooth waveform.
  • FIG. 7 shows the results of measuring vibrations with large amplitudes in the optical fiber 13.
  • FIG. 7(A) is a diagram showing a vibration distribution measured by the measuring device 11 without analysis performed by the analysis circuit 12.
  • FIG. 7(B) is a diagram showing a vibration distribution corrected by analysis performed by the analysis circuit 12.
  • the vibration distribution in the large amplitude section (2500-3250 m) is unclear due to measuring instrument noise.
  • the measuring device noise is reduced and the vibration distribution is clear.
  • the optical fiber sensing device 301 can measure the vibration distribution of a vibration phenomenon with a large vibration amplitude while suppressing the noise of the measuring device.
  • Measuring device 12 Analysis circuit 13: Optical fiber 301: Optical fiber sensing device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

本発明は、測定対象の歪や温度変化が大きい場合であっても正確な測定を可能とする光ファイバセンシング装置及び光ファイバセンシング方法を提供することを目的とする。 本発明は、OFDRを用いた光ファイバセンシング装置であって、測定されたスペクトルシフトを時間微分して前記スペクトルシフトの変化率を取得すること、前記変化率から前記スペクトルシフトの不連続点を検出すること、前記不連続点に対して前記変化率の予測値を計算すること、前記不連続点における前記変化率と前記予測値に対してカルマンフィルタを適用して前記不連続点における前記変化率の推定値を推定すること、及び前記不連続点以外の前記変化率と前記不連続点において推定された前記推定値を時間積分して補正スペクトルシフトを取得することを実行する解析回路を備える。

Description

光ファイバセンシング装置及び光ファイバセンシング方法
 本開示は、OFDR(Optical Frequency Domain Reflectometry)を用いた光ファイバセンシング装置及びそのセンシング方法に関する。
 図1は、OFDRを用いたセンシング原理を説明する図である。OFDRは、周波数掃引光をプローブ光として採用する。そして、光ファイバのプローブ光に対するレイリー後方散乱光の波形r(τ)(図1(A))をフーリエ変換することでスペクトルS(ν)(図1(B))を解析することができる(例えば、非特許文献1を参照。)。
 後方散乱光のスペクトルS(ν)は光ファイバの歪みや温度に対して変動する(スペクトルシフト)。このため、参照測定で得られた参照スペクトルSrefが各測定時においてどれだけ移動したか(スペクトルシフトΔν)を検出することで、次式のように光ファイバの歪みや温度の変化量を算出することができる。
Figure JPOXMLDOC01-appb-M000003
ここで、Δνはスペクトルシフト、νはプローブ光の中心周波数、εは歪み、Tは温度である。
M. Froggatt and J. Moore, "High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter," Appl. Opt., vol. 37, no. 10, pp. 1735-1740, 1998. Childers, Brooks A., et al. "Recent developments in the application of optical frequency domain reflectometry to distributed Bragg grating sensing". Fiber Optic Sensor Technology and Applications 2001. Vol. 4578. International Society for Optics and Photonics, 2002. Okamoto, Tatsuya, Daisuke Iida, and Hiroyuki Oshida. "Vibration-induced beat frequency offset compensation in distributed acoustic sensing based on optical frequency domain reflectometry". Journal of Lightwave Technology 37.18 (2019): 4896-4901. Labbe, Roger. "Kalman and bayesian filters in python". (2014): 4. (https://elec3004.uqcloud.net/2015/tutes/Kalman_and_Bayesian_Filters_in_Python.pdf),2022年4月13日検索
 OFDRを行うに際して、光ファイバに加わる振動が大きい場合,プローブ光の偏波状態変化(例えば、非特許文献2を参照。)や光周波数変調(例えば、非特許文献3を参照。)を引き起こし、プローブ光の状態は時刻ごとに変動する。このプローブ光の変動によって、光スペクトルは図2(A)のように一貫したスペクトル構造を持たず、相互相関(図2(B))から得たスペクトルシフトは図2(C)のように不連続的な測定誤差が発生する。
 すなわち、OFDRによる光ファイバセンシングには、測定対象の歪や温度変化が大きい場合、正確な測定が困難という課題があった。そこで、本発明は、前記課題を解決するために、測定対象の歪や温度変化が大きい場合であっても正確な測定を可能とする光ファイバセンシング装置及び光ファイバセンシング方法を提供することを目的とする。
 上記目的を達成するために、本発明に係る光ファイバセンシング装置及びその方法は、スペクトルシフトの不連続点に対してカルマンフィルタを適用し、正しいスペクトルシフトの時間変化を推定することとした。
 具体的には、本発明に係る光ファイバセンシング装置は、OFDRを用いた光ファイバセンシング装置であって、
 測定されたスペクトルシフトを時間微分して前記スペクトルシフトの変化率を取得すること、
 前記変化率から前記スペクトルシフトの不連続点を検出すること、
 前記不連続点に対して前記変化率の予測値を計算すること、
 前記不連続点における前記変化率と前記予測値に対してカルマンフィルタを適用して前記不連続点における前記変化率の推定値を推定すること、及び
 前記不連続点以外の前記変化率と前記不連続点において推定された前記推定値を時間積分して補正スペクトルシフトを取得すること
を実行する解析回路を備えることを特徴とする。
 また、本発明に係る光ファイバセンシング方法は、OFDRを用いた光ファイバセンシング方法であって、
 測定されたスペクトルシフトを時間微分して前記スペクトルシフトの変化率を取得すること、
 前記変化率から前記スペクトルシフトの不連続点を検出すること、
 前記不連続点に対して前記変化率の予測値を計算すること、
 前記不連続点における前記変化率と前記予測値に対してカルマンフィルタを適用して前記不連続点における前記変化率の推定値を推定すること、及び
 前記不連続点以外の前記変化率と前記不連続点において推定された前記推定値を時間積分して補正スペクトルシフトを取得すること
を特徴とする。
 光ファイバセンシング装置は、測定対象の歪や温度変化が大きい場合に発生するスペクトルシフトの不連続点をカルマンフィルタで解消し、スペクトルシフトの時間波形を滑らかにすることができる。このため、本発明は、測定対象の歪や温度変化が大きい場合であっても正確な測定を可能とする光ファイバセンシング装置及び光ファイバセンシング方法を提供することができる。
 カルマンフィルタに適用する前に、まず、スペクトルシフトの変化率は急激には変化しないという条件の下で、検出された不連続点に対してスペクトルシフトの変化率の予測値を求める。
 例えば、前記予測値は、前記不連続点を示す時刻の直前の時刻における前記変化率とするとする。
 次に、スペクトルシフトの変化率の予測値の不確実性は自身の雑音よりも小さいという条件の下で、検出された不連続点に対してカルマンフィルタを適用して正しいスペクトルシフトの変化率(推定値)を推定する。具体的には、前記カルマンフィルタは、式(C1)で前記推定値を推定する。
Figure JPOXMLDOC01-appb-M000004
 ただし、m^は前記推定値、mは前記不連続点における前記変化率、pは前記予測値、σは前記光ファイバセンシング装置の雑音、σは予測の不確実性である。
 ここで、前記雑音σと前記不確実性σを、σ>σ、且つ時刻に対する前記補正スペクトルシフトの標準偏差が時刻に対する前記スペクトルシフトの標準偏差より小さくなる値に設定する。
 なお、前記解析回路は、コンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
 なお、上記各発明は、可能な限り組み合わせることができる。
 本発明は、測定対象の歪や温度変化が大きい場合であっても正確な測定を可能とする光ファイバセンシング装置及び光ファイバセンシング方法を提供することができる。
OFDRを用いたセンシング原理を説明する図である。 本発明の課題を説明する図である。 本発明に係る光ファイバセンシング装置を説明する図である。 本発明に係る光ファイバセンシング方法を説明する図である。 本発明に係る光ファイバセンシング方法の効果を説明する図である。 本発明に係る光ファイバセンシング方法の効果を説明する図である。 本発明に係る光ファイバセンシング方法の効果を説明する図である。
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
 図3は、本実施形態の光ファイバセンシング装置301を説明する図である。光ファイバセンシング装置301は、測定装置11と解析回路12を備えるセンシングシステムである。測定装置11は、周波数を1回掃引したプローブ光を光ファイバ13へ入力し、光ファイバ13におけるレイリー後方散乱光のスペクトルを取得するOFDRである。
 解析回路12は、測定装置11が得た前記スペクトルの時間変動からスペクトルシフトSを取得する。そして、解析回路12は、当該スペクトルシフトSを時間微分し、スペクトルシフトの不連続点を検出する。さらに、解析回路12は、不連続点に対してカルマンフィルタ(例えば、非特許文献4を参照。)を適用し、正しいスペクトルシフトの時間変化(推定値)を推定する。最後に、解析回路12は、スペクトルシフトの時間変化を積分し、補正したスペクトルシフトを得る。以下に、解析回路12の解析手法の詳細を説明する。
 図4は、解析回路12が行う解析手法を説明する図である。
 解析回路12は、
 測定されたスペクトルシフトSを時間微分してスペクトルシフトSの変化率dS/dtを取得すること(ステップS01)、
 変化率dS/dtからペクトルシフトSの不連続点を検出すること(ステップS02)、
 前記不連続点を示す時刻tに対して変化率dS/dtの予測値pを計算すること(ステップS03)、
 前記不連続点を示す時刻tにおける変化率の測定値mと予測値pに対してカルマンフィルタを適用して前記不連続点を示す時刻tにおける前記変化率の推定値m^を推定すること(ステップS04)、及び
 前記不連続点以外の変化率dS/dtと前記不連続点において推定された推定値m^を時間積分して補正スペクトルシフトS’を取得すること(ステップS05)
を行う。
[ステップS01]
 取得したペクトルシフトSを時間微分して変化率dS/dtを計算する。
[ステップS02]
 変化率dS/dtの値からペクトルシフトSの不連続点を検出する。例えば、変化率dS/dtの値が所定の閾値を超えている時刻を不連続点とすることができる。図5は、スペクトルシフトSの変化率を説明する図である。縦軸が変化率dS/dt、横軸が時刻である。細線が取得したペクトルシフトSを時間微分して変化率dS/dtであり、ランダムな時刻にピークが発生している。このピークが発生している時刻(例えば、時刻tとする。)がスペクトルシフトの不連続点である。
[ステップS03]
 通常、測定対象(光ファイバ13が受ける振動や温度変化)の周波数よりも測定装置11が有するA/D変換器のサンプリングレートが十分高いため、変化率dS/dtは急激に変わらない。この特性を利用し、スペクトルシフトの不連続点を示す時刻tに対して、時刻tn-1の変化率で予測を行う。具体的には、図5の細線のピークの値(時刻tの変化率dS(t)/dtの値)を直前の時刻tn-1における変化率(予測値p)に置き換える。
予測値p=dS(tn-1)/dt
[ステップS04]
 光ファイバセンシング装置301の雑音は予測の不確実性よりも大きいとして、カルマンフィルタにおいて、式(C1)で推定値m^を推定する。
Figure JPOXMLDOC01-appb-M000005
 ただし、m^は推定値、mは不連続点における変化率(観測値)、pは予測値、σは光ファイバセンシング装置301の雑音、σは予測の不確実性である。
 カルマンフィルタは測定器雑音σと予測値の不確実性σを把握しなければ、正しく機能しない。σはスペクトルシフトの不連続性の標準偏差を表す。スペクトルシフトの不連続性に関する統計的な性質は得られないため、σは正確には分からない。そこで本実施形態では、σは大きい値とし、どのような値も取り得るとする。
 一方、σは予測値pの不確実性を表す。測定装置11が有するA/D変換器のサンプリングレートが測定対象となる現象(振動や温度変化)の周波数よりも十分高ければ、時刻tと時刻tn-1とでスペクトルシフトの変化率は大きく変化しないと考えられる。このため、σはσより小さい値とする。
[ステップS05]
 図5の太線が、本ステップで、ペクトルシフトSの不連続点の変化率(観測値m)をステップS04で推定した推定値m^に置き換えた後のスペクトルシフトの変化率である。このスペクトルシフトの変化率を時間積分し、補正スペクトルシフトS’を取得する。図6は、ペクトルシフトS(細線)と補正スペクトルシフトS’(太線)を比較した図である。ペクトルシフトSに対し、補正スペクトルシフトS’が滑らかな波形となっている。
 このとき、解析回路12に対し、時刻に対する補正スペクトルシフトS’の標準偏差が時刻に対するスペクトルシフトSの標準偏差より小さくなるように、σとσの値を設定することが好ましい。
[効果]
 光ファイバ13で振幅が大きい振動を測定した結果を図7に示す。図7(A)は、解析回路12で解析を行わず、測定装置11で測定した振動分布を示した図である。図7(B)は、解析回路12で解析を行い、補正された振動分布を示した図である。図7(A)は振幅の大きい区間(2500-3250m)の振動分布が測定器雑音により不明瞭である。一方、図7(B)は測定器雑音が低減され、振動分布が明瞭になっている。
 このように、光ファイバセンシング装置301は、振動の振幅が大きい振動現象の振動分布を測定器雑音を抑えて測定可能である。
11:測定装置
12:解析回路
13:光ファイバ
301:光ファイバセンシング装置

Claims (8)

  1.  OFDRを用いた光ファイバセンシング装置であって、
     測定されたスペクトルシフトを時間微分して前記スペクトルシフトの変化率を取得すること、
     前記変化率から前記スペクトルシフトの不連続点を検出すること、
     前記不連続点に対して前記変化率の予測値を計算すること、
     前記不連続点における前記変化率と前記予測値に対してカルマンフィルタを適用して前記不連続点における前記変化率の推定値を推定すること、及び
     前記不連続点以外の前記変化率と前記不連続点において推定された前記推定値を時間積分して補正スペクトルシフトを取得すること
    を実行する解析回路を備えることを特徴とする光ファイバセンシング装置。
  2.  前記予測値は、前記不連続点を示す時刻の直前の時刻における前記変化率とすることを特徴とする請求項1に記載の光ファイバセンシング装置。
  3.  前記カルマンフィルタは、式(C1)で前記推定値を推定することを特徴とする請求項1に記載の光ファイバセンシング装置。
    Figure JPOXMLDOC01-appb-M000001
     ただし、m^は前記推定値、mは前記不連続点における前記変化率、pは前記予測値、σは前記光ファイバセンシング装置の雑音、σは予測の不確実性である。
  4.  前記雑音σと前記不確実性σは、
    σ>σであって、時刻に対する前記補正スペクトルシフトの標準偏差が時刻に対する前記スペクトルシフトの標準偏差より小さくなる値に設定されていることを特徴とする請求項3に記載の光ファイバセンシング装置。
  5.  OFDRを用いた光ファイバセンシング方法であって、
     測定されたスペクトルシフトを時間微分して前記スペクトルシフトの変化率を取得すること、
     前記変化率から前記スペクトルシフトの不連続点を検出すること、
     前記不連続点に対して前記変化率の予測値を計算すること、
     前記不連続点における前記変化率と前記予測値に対してカルマンフィルタを適用して前記不連続点における前記変化率の推定値を推定すること、及び
     前記不連続点以外の前記変化率と前記不連続点において推定された前記推定値を時間積分して補正スペクトルシフトを取得すること
    を特徴とする光ファイバセンシング方法。
  6.  前記予測値は、前記不連続点を示す時刻の直前の時刻における前記変化率とすることを特徴とする請求項5に記載の光ファイバセンシング方法。
  7.  前記カルマンフィルタは、式(C1)で前記推定値を推定することを特徴とする請求項5に記載の光ファイバセンシング方法。
    Figure JPOXMLDOC01-appb-M000002
     ただし、m^は前記推定値、mは前記不連続点における前記変化率、pは前記予測値、σは光ファイバセンシング装置の雑音、σは予測の不確実性である。
  8.  前記雑音σと前記不確実性σを、
    σ>σ、且つ時刻に対する前記補正スペクトルシフトの標準偏差が時刻に対する前記スペクトルシフトの標準偏差より小さくなる値に設定することを特徴とする請求項7に記載の光ファイバセンシング方法。
PCT/JP2022/019571 2022-05-06 2022-05-06 光ファイバセンシング装置及び光ファイバセンシング方法 WO2023214463A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019571 WO2023214463A1 (ja) 2022-05-06 2022-05-06 光ファイバセンシング装置及び光ファイバセンシング方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019571 WO2023214463A1 (ja) 2022-05-06 2022-05-06 光ファイバセンシング装置及び光ファイバセンシング方法

Publications (1)

Publication Number Publication Date
WO2023214463A1 true WO2023214463A1 (ja) 2023-11-09

Family

ID=88646406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019571 WO2023214463A1 (ja) 2022-05-06 2022-05-06 光ファイバセンシング装置及び光ファイバセンシング方法

Country Status (1)

Country Link
WO (1) WO2023214463A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105909A (ja) * 2013-12-02 2015-06-08 国立研究開発法人宇宙航空研究開発機構 群遅延演算を用いたofdr方式光ファイバ計測方法及びそれを実施する装置
JP2018185278A (ja) * 2017-04-27 2018-11-22 アンリツ株式会社 光周波数領域反射測定装置及び光周波数領域反射測定方法
JP2019060666A (ja) * 2017-09-25 2019-04-18 沖電気工業株式会社 光ファイバセンシングシステム及び光ファイバセンシング方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105909A (ja) * 2013-12-02 2015-06-08 国立研究開発法人宇宙航空研究開発機構 群遅延演算を用いたofdr方式光ファイバ計測方法及びそれを実施する装置
JP2018185278A (ja) * 2017-04-27 2018-11-22 アンリツ株式会社 光周波数領域反射測定装置及び光周波数領域反射測定方法
JP2019060666A (ja) * 2017-09-25 2019-04-18 沖電気工業株式会社 光ファイバセンシングシステム及び光ファイバセンシング方法

Similar Documents

Publication Publication Date Title
JP4917640B2 (ja) 光リフレクトメトリ測定方法および装置
JP6411605B2 (ja) 干渉検知システムの動き補償のための方法及び装置
Zhang et al. Analysis and reduction of large errors in Rayleigh-based distributed sensor
EP2017593B1 (en) Method and system for determining a physical property as a function of position
US11047767B2 (en) Optical fiber characteristic measurement device and optical fiber characteristic measurement method
JP2018146371A (ja) 温度・歪センシング装置及び温度・歪センシング方法
JP6531984B2 (ja) 加速度記録を用いた変位応答算出法
JP2016161512A (ja) 光ファイバ振動測定方法及びシステム
JP7010147B2 (ja) 振動分布測定システム、振動波形解析方法、振動波形解析装置、および解析プログラム
JP2003028753A (ja) ゼロ交差に基づく群遅延を測定するためのシステム及び方法
JP4769668B2 (ja) 光リフレクトメトリ測定方法および装置
JP2003172604A (ja) 干渉計システムにおける位相雑音補償
WO2023214463A1 (ja) 光ファイバセンシング装置及び光ファイバセンシング方法
WO2022044174A1 (ja) 振動分布測定装置及びその方法
GB2441552A (en) Measurement of attenuation in distributed optical fibre sensing
JP5371933B2 (ja) レーザ光測定方法及びその測定装置
Lin et al. Frequency Response Enhanced Quantitative Vibration Detection Using Fading-Free Coherent $\varphi $-OTDR With Randomized Sampling
JP2006023260A (ja) 光ファイバの温度分布測定方法および光ファイバの温度分布測定装置
JP4201995B2 (ja) 光ファイバひずみ計測方法およびその装置
JP5197054B2 (ja) ひずみ計測装置及びその計測方法
JP4990853B2 (ja) 光偏波状態分布測定方法及び装置
EP4212834A1 (en) Vibration detection apparatus and vibration detection method
RU139468U1 (ru) Устройство измерения величины вибрационных или акустических воздействий вдоль протяженного объекта
WO2024029005A1 (ja) 解析装置及び光ファイバセンシング方法
WO2023021557A1 (ja) センシングシステム、センシング方法、及び解析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940824

Country of ref document: EP

Kind code of ref document: A1