WO2022044174A1 - 振動分布測定装置及びその方法 - Google Patents

振動分布測定装置及びその方法 Download PDF

Info

Publication number
WO2022044174A1
WO2022044174A1 PCT/JP2020/032231 JP2020032231W WO2022044174A1 WO 2022044174 A1 WO2022044174 A1 WO 2022044174A1 JP 2020032231 W JP2020032231 W JP 2020032231W WO 2022044174 A1 WO2022044174 A1 WO 2022044174A1
Authority
WO
WIPO (PCT)
Prior art keywords
window section
vibration
measured
optical
optical fiber
Prior art date
Application number
PCT/JP2020/032231
Other languages
English (en)
French (fr)
Inventor
達也 岡本
大輔 飯田
博之 押田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to EP20951428.0A priority Critical patent/EP4206624A4/en
Priority to CN202080104705.1A priority patent/CN116194740A/zh
Priority to JP2022544976A priority patent/JP7464133B2/ja
Priority to PCT/JP2020/032231 priority patent/WO2022044174A1/ja
Priority to US18/020,969 priority patent/US20230288231A1/en
Publication of WO2022044174A1 publication Critical patent/WO2022044174A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35361Sensor working in reflection using backscattering to detect the measured quantity using elastic backscattering to detect the measured quantity, e.g. using Rayleigh backscattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors

Definitions

  • This disclosure relates to a vibration distribution measuring device and its method.
  • DAS Distributed Acoustic Sensing
  • vibration analysis using spectrum shift in order to measure vibration correctly, it is necessary to appropriately set the conditions for the amplitude of the vibration to be measured. Therefore, it is an object of the present disclosure to enable vibration analysis using a spectral shift under appropriate conditions according to a measurement target.
  • the vibration distribution measuring device of the present disclosure is Backscattered light on the optical fiber under test is measured multiple times at different times.
  • the optical spectrum of the specified window section is extracted from multiple backscattered light waveforms obtained by the measurement.
  • a vibration distribution measuring device that measures the vibration distribution in the optical fiber to be measured by using the extracted optical spectra of the plurality of backscattered light waveforms.
  • the optical spectrum of the window section is calculated using the window section in which the vibration amplitude in the window section of the optical fiber to be measured is larger than the threshold value defined in the window section.
  • the vibration distribution measurement method of the present disclosure is described.
  • Backscattered light on the optical fiber under test is measured multiple times at different times.
  • the optical spectrum of the specified window section is extracted from multiple backscattered light waveforms obtained by the measurement. It is a vibration distribution measurement method executed by a vibration distribution measuring device that measures a vibration distribution in the optical fiber to be measured by using the extracted optical spectra of the plurality of backscattered light waveforms.
  • the optical spectrum of the window section is calculated using the window section in which the vibration amplitude in the window section of the optical fiber to be measured is larger than the threshold value defined in the window section.
  • An example of the spectrum measured in DAS is shown.
  • a configuration example of OFDR is shown.
  • An example of the relationship between the vibration analysis length w and the vibration amplitude of the measurement target is shown.
  • An example of the measurement conditions in the present disclosure is shown. This is the measurement system used in the vibration distribution measurement example. This is an example of vibration distribution measurement when the spatial resolution is 0.8 m. This is an example of vibration distribution measurement when the spatial resolution is 1.6 m. This is an example of vibration distribution measurement when the spatial resolution is 9.5 m.
  • An example of the spectrum measured using OFDR is shown.
  • An example of measuring dynamic strain (vibration) using the time change of the spectrum shift is shown.
  • An example of the vibration distribution measurement method according to the present disclosure is shown.
  • FIG. 1 shows an example of a spectrum measured by DAS.
  • DAS measures Rayleigh backscattered light at different times. Specifically, the reference measurement, the first measurement, and the second measurement are performed in order. Then, the spectrum (distortion) of the Rayleigh backscattered light waveform at the distances z 1 to z 2 at each time point is analyzed, and the time waveform of the vibration is measured.
  • Rayleigh backscattered light can be measured using, for example, OFDR (Optical Frequency Domain Reflectometry).
  • FIG. 2 shows an example of the system configuration of the present disclosure.
  • the vibration distribution measuring device of the present disclosure is connected to the optical fiber 4 to be measured.
  • the vibration distribution measuring device of the present disclosure has the same configuration as OFDR.
  • the vibration distribution measuring device includes a frequency sweep light source 1, a coupler 2, a circulator 3, a coupler 5, a balanced light receiver 6, an A / D converter 7, and an analysis unit 8.
  • the analysis unit 8 of the present disclosure can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
  • the coupler 2 branches the light from the frequency sweep light source 1 into a reference optical path for local light and a measurement optical path for probe light.
  • the probe light branched into the measurement optical path is incident on the optical fiber 4 to be measured via the coupler 2 and the circulator 3.
  • the coupler 5 combines the probe light, which is the backscattered light in the optical fiber 4 to be measured, with the local light branched by the coupler 2.
  • the balanced light receiver 6 receives the interference light combined with the coupler 5.
  • the A / D converter 7 converts the output signal of the balanced light receiver 6 into a digital signal.
  • the analysis unit 8 analyzes using the digital signal from the A / D converter 7.
  • the interference light incident on the balanced light receiver 6 has a beat frequency corresponding to the optical path length difference between the reference optical path and the measurement optical path.
  • the backscattered light waveform in the optical fiber 4 to be measured is performed at least three times.
  • the analysis unit 8 obtains an optical spectrum at distances z 1 to z 2 in the optical fiber 4 to be measured by using the time waveform of the interference light, and vibration in the optical fiber 4 to be measured based on the time change of the optical spectrum. Measure the distribution.
  • the vibration distribution in the measured optical fiber 4 is measured by using the optical spectrum of a part of the section defined by the window section in the measured optical fiber 4.
  • the vibration analysis length w (optical spectrum analysis length) obtained by extracting the window section is expressed by the following equation.
  • Non-Patent Document 2 The spectral shift amount ⁇ shift due to distortion is expressed by the following equation (Non-Patent Document 2).
  • optical frequency resolution ⁇ of Rayleigh scattered light is expressed by the following equation.
  • FIG. 3 shows an example of the relationship between the analysis length w and the vibration amplitude of the measurement target.
  • indicates the measured value.
  • is a unit of strain that expresses how much it expands or contracts with respect to its original length. For example, when a 1 m long object expands and contracts by 1 nm, it is expressed as a strain of 1 n ⁇ .
  • the frequency resolution ⁇ of the optical spectrum of Rayleigh scattered light is given by Eq. (3).
  • the spectrum shift with respect to the distortion of the Rayleigh scattered light spectrum is given by the equation (2), and the spectrum shift amount ⁇ shift is proportional to the distortion amount. Therefore, as shown in FIG. 3, the longer the analysis length w is, the finer the strain can be measured (the sensitivity becomes higher and the measuring instrument noise becomes smaller), but the spatial resolution for analyzing the vibration deteriorates, which is a trade-off. There is a relationship.
  • vibration analysis length w that can measure vibration correctly must be smaller than the conventionally known spatial spread of vibration, and it is also necessary to satisfy the condition of sensitivity to vibration amplitude.
  • the applicability of OFDR-DAS is determined from the vibration characteristics of the measurement target.
  • the optimum measurement conditions are set according to the analysis length w, that is, the spatial spread of the vibration of the measurement target and the vibration amplitude.
  • the window section is set so that the vibration amplitude of the measurement target extracted in the window section becomes larger than the threshold value defined in the window section.
  • the window section w has a spatial frequency that is at least twice as high as the wave number of the vibration to be measured, that is, the spatial frequency. That is, the window section w is 1/2 times or more smaller than the wavelength of vibration.
  • the vibration sensitivity is higher than the amplitude of the vibration to be measured.
  • the window section w is related to the above condition (1) and condition (3). Since the window section satisfying the condition (1) having the maximum width has high sensitivity to vibration, the optimum window section is 1/2 times the wavelength of vibration. Further, from the equation (1), the spatial resolution of OFDR determines the minimum value of the window section. Therefore, the spatial resolution of OFDR determines the smallest wavelength that can be measured.
  • FIG. 5 shows a measurement system.
  • the utility pole # 1 is arranged at a position 15 m from the OFDR
  • the utility pole # 2 is arranged at a position 45 m from the OFDR.
  • the vibration distribution of the overhead cable between the two utility poles # 1 and the utility pole # 2 was measured.
  • FIG. 6A shows the case where the spatial resolution ⁇ z is 0.8 m
  • FIG. 6B when the spatial resolution ⁇ z is 1.6 m
  • FIG. 6C when the spatial resolution ⁇ z is 9.5 m.
  • the spatial resolution ⁇ z is 0.8 m
  • the measurement sensitivity is low and the SNR is low, as shown in FIG. 6A.
  • the spatial resolution ⁇ z is 1.6 m
  • both the spatial resolution and the sensitivity satisfy the measurement conditions as shown in FIG. 6B.
  • the spatial resolution ⁇ z is 9.5 m
  • the spatial resolution is large with respect to the spatial spread of the vibration to be measured, and the vibration distribution cannot be clearly measured.
  • the analysis unit 8 of the present disclosure calculates the optical frequency response of the window section using the window section determined according to the vibration amplitude of the measurement target in the optical fiber 4 to be measured. Thereby, the present disclosure makes it possible to accurately measure vibration in DAS.
  • FIG. 7 shows an example of a spectrum measured using OFDR.
  • OFDR measures the optical frequency response of the entire fiber. Therefore, it is possible to analyze the optical spectrum of a section having a loss distribution waveform. For example, a Fourier transform is performed on the optical frequency response r ( ⁇ ) of the entire optical fiber to obtain the loss distribution waveform r ( ⁇ ). Then, the window section is determined using the loss distribution waveform r ( ⁇ ), and the spectrum S ( ⁇ ) of the window section is obtained by performing the Fourier transform of the window section.
  • the optical fiber can be modeled as an FBG having a random refractive index distribution. Therefore, as shown in FIG. 8, the spectrum analysis section can be specified and the dynamic strain (vibration) can be measured as the time change of the spectrum shift.
  • FIG. 9 shows an example of the vibration distribution measuring method according to the present disclosure.
  • steps S11 to S15 are sequentially executed.
  • S11 The optical frequency response to the probe light of the optical fiber to be measured is repeatedly measured, and the optical frequency response r ( ⁇ ) of the entire optical fiber at each time is obtained.
  • S12 Specify the window section to be analyzed for vibration (static strain).
  • S13 The backscattered light waveform at the measurement time n is measured.
  • S14 The optical spectrum of the designated section is analyzed.
  • S15 The time waveform of the frequency shift (distortion) is analyzed from the spectrogram.
  • step S12 the optical frequency response r ( ⁇ ) is Fourier transformed and converted into a loss distribution waveform r ( ⁇ ). Then, the window section is set using the amplitude of the loss distribution waveform r ( ⁇ ). Then, the optical spectrum of the set window section is extracted from the loss distribution waveform r ( ⁇ ) obtained in the reference measurement, the first measurement, and the second measurement, and the extracted plurality of optical spectra are used to cover the light spectrum. The vibration distribution of the measurement target in the measurement optical fiber 4 is measured.
  • Setting the window section determines the spatial frequency and vibration sensitivity. If the vibration characteristics such as the wavelength and amplitude of the measurement target are known, the window section can be specified so as to satisfy the condition (1) and the condition (3) in the setting of the window section. If the vibration characteristics such as the wavelength and amplitude of the vibration to be measured are unknown, the window section is optimized according to the vibration characteristics by investigating while changing the window section as shown in Fig. 6 when setting the window section. I do. Thereby, in the present disclosure, it is possible to determine the applicability of DAS in consideration of the amplitude of the vibration of the measurement target, and it is possible to optimize the measurement conditions according to the measurement target.
  • This disclosure can be applied to the information and communication industry, equipment monitoring, crime prevention, and disaster monitoring.
  • Frequency sweep light source 2 Coupler 3: Circulator 4: Measured optical fiber 5: Coupler 6: Balanced light receiver 7: A / D converter 8: Analysis unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本開示は、測定対象に応じた適切な条件で、スペクトルシフトを利用した振動解析を可能にすることを目的とする。 本開示の振動分布測定装置は、被測定光ファイバでの後方散乱光を異なる時間に複数回測定し、測定で得られた複数の後方散乱光波形から定められた窓区間の光スペクトルを抽出し、抽出された前記複数の後方散乱光波形の光スペクトルを用いて、前記被測定光ファイバでの振動分布を測定する振動分布測定装置であって、前記被測定光ファイバにおける前記窓区間での振動振幅が前記窓区間で定められるしきい値よりも大きくなる窓区間を用いて、当該窓区間の光スペクトルを算出する。

Description

振動分布測定装置及びその方法
 本開示は、振動分布測定装置及びその方法に関する。
 レイリー散乱光スペクトルは振動に応じてスペクトルシフトする。このスペクトルシフトを利用して振動を解析する、DAS(Distributed Acoustic Sensing)が提案されている(例えば非特許文献1参照。)。
 振動を正しく測定するために、繰り返し測定の周期を振動周波数よりも高くするサンプリング定理を用いた手法や、振動解析長さを振動の空間広がりよりも短くする空間分解能を用いた手法が知られているが、振動の振幅に対する条件は不明確である。
Froggatt, Mark, and Jason Moore."High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter." Applied Optics 37.10 (1998): 1735-1740. Koyamada, Yahei, et al."Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR." Journal of Lightwave Technology 27.9 (2009): 1142-1146.
 スペクトルシフトを利用した振動解析において、振動を正しく測定するためには、測定対象の振動の振幅に対する条件を適切に設定する必要がある。そこで、本開示は、測定対象に応じた適切な条件で、スペクトルシフトを利用した振動解析を可能にすることを目的とする。
 本開示の振動分布測定装置は、
 被測定光ファイバでの後方散乱光を異なる時間に複数回測定し、
 測定で得られた複数の後方散乱光波形から定められた窓区間の光スペクトルを抽出し、
 抽出された前記複数の後方散乱光波形の光スペクトルを用いて、前記被測定光ファイバでの振動分布を測定する振動分布測定装置であって、
 前記被測定光ファイバにおける前記窓区間での振動振幅が前記窓区間で定められるしきい値よりも大きくなる窓区間を用いて、当該窓区間の光スペクトルを算出する。
 本開示の振動分布測定方法は、
 被測定光ファイバでの後方散乱光を異なる時間に複数回測定し、
 測定で得られた複数の後方散乱光波形から定められた窓区間の光スペクトルを抽出し、
 抽出された前記複数の後方散乱光波形の光スペクトルを用いて、前記被測定光ファイバでの振動分布を測定する振動分布測定装置が実行する振動分布測定方法であって、
 前記被測定光ファイバにおける前記窓区間での振動振幅が前記窓区間で定められるしきい値よりも大きくなる窓区間を用いて、当該窓区間の光スペクトルを算出する。
 本開示によれば、測定対象の振動の振幅まで考慮してDASの適用可否を判断することができ、測定対象に応じた測定条件の最適化が可能となる。
DASにおいて測定するスペクトルの一例を示す。 OFDRの構成例を示す。 振動解析長さwと測定対象の振動振幅の関係の一例を示す。 本開示における測定条件の一例を示す。 振動分布測定例で用いた測定系である。 空間分解能が0.8mの場合の振動分布測定例である。 空間分解能が1.6mの場合の振動分布測定例である。 空間分解能が9.5mの場合の振動分布測定例である。 OFDRを用いて測定されたスペクトルの一例を示す。 スペクトルシフトの時間変化を用いた動的歪み(振動)の測定例を示す。 本開示に係る振動分布測定方法の一例を示す。
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(OFDRを用いたDAS)
 図1に、DASにおいて測定するスペクトルの一例を示す。DASでは、異なる複数の時間におけるレイリー後方散乱光を測定する。具体的には、参照測定、1回目の測定、2回目の測定を順に行う。そして、各時点での距離z~zにおけるレイリー後方散乱光波形のスペクトル(歪み)を解析し、振動の時間波形を測定する。レイリー後方散乱光は、例えばOFDR(Optical Frequency Domain Reflectometry)を用いて測定することができる。
 図2に、本開示のシステム構成例を示す。本開示の振動分布測定装置は、被測定光ファイバ4に接続される。本開示の振動分布測定装置は、OFDRと同様の構成を備える。具体的には、振動分布測定装置は、周波数掃引光源1、カプラ2、サーキュレータ3、カプラ5、バランス型受光器6、A/D変換器7、解析部8を備える。本開示の解析部8は、コンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
 カプラ2は、周波数掃引光源1からの光をローカル光用の参照光路とプローブ光用の測定光路に分岐する。測定光路に分岐されたプローブ光用は、カプラ2及びサーキュレータ3を介して被測定光ファイバ4に入射される。カプラ5は、被測定光ファイバ4での後方散乱光であるプローブ光と、カプラ2で分岐されたローカル光と、を合波する。バランス型受光器6は、カプラ5で合波された干渉光を受光する。A/D変換器7は、バランス型受光器6の出力信号をデジタル信号に変換する。解析部8は、A/D変換器7からのデジタル信号を用いて解析する。
 バランス型受光器6に入射される干渉光は、参照光路と測定光路の光路長差に応じたビート周波数を有する。本開示では、被測定光ファイバ4での後方散乱光波形を少なくとも3度行う。解析部8は、前記干渉光の時間波形を用いて、被測定光ファイバ4における距離z~zでの光スペクトルを求め、光スペクトルの時間変化に基づいて被測定光ファイバ4での振動分布を測定する。このように、本開示では、被測定光ファイバ4における窓区間で定められる一部区間の光スペクトルを用いて、被測定光ファイバ4での振動分布を測定する。
 窓区間の抽出によって得られる振動解析長さw(光スペクトル解析長さ)は次式で表される。
Figure JPOXMLDOC01-appb-M000001
 歪みによるスペクトルシフト量Δνshiftは次式で表される(非特許文献2)。
Figure JPOXMLDOC01-appb-M000002
 レイリー散乱光の光周波数分解能Δνは次式で表される。
Figure JPOXMLDOC01-appb-M000003
(振動感度の設計方法)
 図3に、解析長さwと測定対象の振動振幅の関係の一例を示す。●は実測値を示す。εは元の長さに対してどれだけ伸縮したかを表す歪みの単位である。例えば、1mの長さのものが1nm伸縮した場合、1nεの歪みと表現する。
 レイリー散乱光の光スペクトルの周波数分解能Δνは(3)式で与えられる。光周波数分解能Δνが高くなるほど、歪みによるスペクトルシフト量Δνshiftの感度が上がる。(3)式によれば、解析長さwが長いほど光周波数分解能Δν(感度)が高くなる。
 一方、レイリー散乱光スペクトルの歪みに対するスペクトルシフトは(2)式で与えられ、スペクトルシフト量Δνshiftは歪み量に比例する。従って、図3に示すように、解析長さwが長いほど微小な歪みを測定できる(感度が高くなる、測定器雑音が小さくなる)が、振動を解析する空間分解能が劣化するというトレードオフの関係にある。
 そのため、
・振動振幅に対する感度と振動解析長さwはトレードオフの関係にある。
・振動を正しく測定できる振動解析長さwについて、従来知られていた振動の空間広がりよりも小さいことに加え、振動振幅に対する感度の条件も満たす必要がある。
 そこで、本開示は、測定対象の振動特性からOFDR-DASの適用可否を判断する。具体的には、図4に示すように、解析長さwすなわち測定対象の振動の空間広がりと振動振幅に応じて最適な測定条件を設定する。具体的には、窓区間で抽出される測定対象の振動振幅が、窓区間で定められるしきい値よりも大きくなるよう、窓区間を設定する。
 振動を測定するためには下記3つの条件を満たす必要がある。
 (1)測定対象となる振動の波数すなわち空間周波数よりも2倍以上高い空間周波数をもつ窓区間wであること。すなわち振動の波長の1/2倍以上小さい窓区間wであること。
 (2)測定対象となる振動の振動数すなわち時間周波数よりも2倍以上高い時間周波数をもつプローブ光の繰返し周波数で測定すること。すなわち振動の周期の1/2倍以上小さい測定周期であること。
 (3)測定対象となる振動の振幅よりも高い振動感度であること。
 窓区間wは上記条件(1)と条件(3)に関わる。条件(1)を満たす窓区間で最大の幅をもつものが振動に対する感度が高いため、最適な窓区間は振動の波長の1/2倍のものになる。また、式(1)より、OFDRの空間分解能は窓区間の最小値を決める。このため、OFDRの空間分解能は測定できる最小の波長を決定する。
 図5及び図6を参照して、架空ケーブルの振動分布測定例を示す。図5は測定系を示す。OFDRから距離15mの位置に電柱#1が配置され、OFDRから距離45mの位置に電柱#2が配置されている。この測定系において、2本の電柱#1及び電柱#2の間の架空ケーブルの振動分布を測定した。
 図6Aは空間分解能Δzが0.8mの場合を図6Aに、空間分解能Δzが1.6mの場合を図6Bに、空間分解能Δzが9.5mの場合を図6Cに示す。空間分解能Δzが0.8mの場合、図6Aに示すように、測定感度が低く、SNRが低い。空間分解能Δzが1.6mの場合、図6Bに示すように、空間分解能と感度とも測定条件を満たしている。空間分解能Δzが9.5mの場合、図6Cに示すように、測定対象の振動の空間広がりに対して空間分解能が大きく、振動分布を明確に測定できない。
 以上より、本開示の解析部8は、被測定光ファイバ4のうちの測定対象の振動振幅に応じて定められた窓区間を用いて、当該窓区間の光周波数応を算出する。これにより、本開示は、DASにおいて振動を正しく測定することを可能にする。
 図7に、OFDRを用いて測定されたスペクトルの一例を示す。OFDRはファイバ全体の光周波数応答を測定する。そのため、損失分布波形のある区間の光スペクトルを解析できる。例えば、光ファイバ全体の光周波数応答r(ν)に対してフーリエ変換を行い、損失分布波形r(τ)を求める。そして、損失分布波形r(τ)を用いて窓区間を決定し、窓区間のフーリエ変換を行うことで窓区間のスペクトルS(ν)を求める。
 一方で、光ファイバはランダムな屈折率分布を持つFBGとモデル化できる。このため図8に示すように、スペクトル解析区間を指定し、動的歪み(振動)をスペクトルシフトの時間変化として測定することができる。
 図9に、本開示に係る振動分布測定方法の一例を示す。本開示に係る振動分布測定方法は、ステップS11~S15を順に実行する。
 S11:被測定光ファイバのプローブ光に対する光周波数応答を繰り返し測定し、各時刻における光ファイバ全体の光周波数応答r(ν)を得る。
 S12:振動(静的歪み)解析する窓区間を指定する。
 S13:測定時刻nにおける後方散乱光波形を測定する。
 S14:指定区間の光スペクトルを解析する。
 S15:スペクトログラムから周波数シフト(歪み)の時間波形を解析する。
 本開示では、ステップS12において、光周波数応答r(ν)をフーリエ変換し、損失分布波形r(τ)に変換する。そして、損失分布波形r(τ)の振幅を用いて窓区間を設定する。そして、参照測定、1回目の測定及び2回目の測定で得られた損失分布波形r(τ)から、設定した窓区間の光スペクトルを抽出し、抽出された複数の光スペクトルを用いて、被測定光ファイバ4における測定対象の振動分布を測定する。
 窓区間を設定は、空間周波数と振動感度を決定する。測定対象の波長や振幅等の振動特性が既知であれば、窓区間の設定において、条件(1)と条件(3)を満たすように窓区間を指定することができる。測定対象となる振動の波長や振幅等の振動特性は未知である場合、窓区間の設定において、図6のように窓区間を変えながら調査することで、振動特性に応じた窓区間の最適化を行う。これにより、本開示は、測定対象の振動の振幅まで考慮してDASの適用可否を判断することができ、測定対象に応じた測定条件の最適化が可能となる。
 本開示は情報通信産業・設備監視・防犯・災害監視に適用することができる。
1:周波数掃引光源
2:カプラ
3:サーキュレータ
4:被測定光ファイバ
5:カプラ
6:バランス型受光器
7:A/D変換器
8:解析部

Claims (4)

  1.  被測定光ファイバでの後方散乱光を異なる時間に複数回測定し、
     測定で得られた複数の後方散乱光波形から定められた窓区間の光スペクトルを抽出し、
     抽出された前記複数の後方散乱光波形の光スペクトルを用いて、前記被測定光ファイバでの振動分布を測定する振動分布測定装置であって、
     前記被測定光ファイバにおける前記窓区間での振動振幅が前記窓区間で定められるしきい値よりも大きくなる窓区間を用いて、当該窓区間の光スペクトルを算出する、
     振動分布測定装置。
  2.  前記後方散乱光は、プローブ光に対する窓区間で抽出した区間の光周波数応答であり、
     プローブ光に対する窓区間で抽出した区間の光周波数応答を用いて、複数回測定した各後方散乱光の損失分布波形を生成し、
     各損失分布波形から同一の窓区間での光スペクトルを生成することで、
     窓区間の光スペクトルを抽出する、
     請求項1に記載の振動分布測定装置。
  3.  同一の窓区間でのスペクトルシフトを用いて、前記被測定光ファイバでの振動を測定する、
     請求項2に記載の振動分布測定装置。
  4.  被測定光ファイバでの後方散乱光を異なる時間に複数回測定し、
     測定で得られた複数の後方散乱光波形から定められた窓区間の光スペクトルを抽出し、
     抽出された前記複数の後方散乱光波形の光スペクトルを用いて、前記被測定光ファイバでの振動分布を測定する振動分布測定装置であって、
     前記被測定光ファイバにおける前記窓区間での振動振幅が前記窓区間で定められるしきい値よりも大きくなる窓区間を用いて、当該窓区間の光スペクトルを算出する、
     振動分布測定方法。
PCT/JP2020/032231 2020-08-26 2020-08-26 振動分布測定装置及びその方法 WO2022044174A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20951428.0A EP4206624A4 (en) 2020-08-26 2020-08-26 VIBRATION DISTRIBUTION MEASURING DEVICE AND CORRESPONDING METHOD
CN202080104705.1A CN116194740A (zh) 2020-08-26 2020-08-26 振动分布测量装置及其方法
JP2022544976A JP7464133B2 (ja) 2020-08-26 2020-08-26 振動分布測定装置及びその方法
PCT/JP2020/032231 WO2022044174A1 (ja) 2020-08-26 2020-08-26 振動分布測定装置及びその方法
US18/020,969 US20230288231A1 (en) 2020-08-26 2020-08-26 Distributed acoustic sensing device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/032231 WO2022044174A1 (ja) 2020-08-26 2020-08-26 振動分布測定装置及びその方法

Publications (1)

Publication Number Publication Date
WO2022044174A1 true WO2022044174A1 (ja) 2022-03-03

Family

ID=80352841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032231 WO2022044174A1 (ja) 2020-08-26 2020-08-26 振動分布測定装置及びその方法

Country Status (5)

Country Link
US (1) US20230288231A1 (ja)
EP (1) EP4206624A4 (ja)
JP (1) JP7464133B2 (ja)
CN (1) CN116194740A (ja)
WO (1) WO2022044174A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024028939A1 (ja) * 2022-08-01 2024-02-08 日本電信電話株式会社 光線路試験装置及び光線路試験方法
WO2024028936A1 (ja) * 2022-08-01 2024-02-08 日本電信電話株式会社 光線路試験装置及び光線路試験方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161512A (ja) * 2015-03-04 2016-09-05 日本電信電話株式会社 光ファイバ振動測定方法及びシステム
JP2017026503A (ja) * 2015-07-24 2017-02-02 日本電信電話株式会社 振動分布測定方法及び振動分布測定装置
US20170108358A1 (en) * 2014-05-05 2017-04-20 Filippo Bastianini Apparatus for interrogating distributed optical fibre sensors using a stimulated brillouin scattering optical frequency-domain interferometer
JP2020041843A (ja) * 2018-09-07 2020-03-19 横河電機株式会社 光ファイバ特性測定装置及び光ファイバ特性測定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170108358A1 (en) * 2014-05-05 2017-04-20 Filippo Bastianini Apparatus for interrogating distributed optical fibre sensors using a stimulated brillouin scattering optical frequency-domain interferometer
JP2016161512A (ja) * 2015-03-04 2016-09-05 日本電信電話株式会社 光ファイバ振動測定方法及びシステム
JP2017026503A (ja) * 2015-07-24 2017-02-02 日本電信電話株式会社 振動分布測定方法及び振動分布測定装置
JP2020041843A (ja) * 2018-09-07 2020-03-19 横河電機株式会社 光ファイバ特性測定装置及び光ファイバ特性測定方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FROGGATT, MARKJASON MOORE: "High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter", APPLIED OPTICS, vol. 37, no. 10, 1998, pages 1735 - 1740, XP000754327, DOI: 10.1364/AO.37.001735
KOYAMADA, YAHEI ET AL.: "Fiber-optic distributed strain and temperature sensing with very high measure and resolution over long range using coherent OTDR", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 27, no. 9, 2009, pages 1142 - 1146, XP011256380
OKAMOTO, TATSUYA ET AL.: "Tolerance to Vibration-Induced Frequency Modulation in Measuring Vibration Distribution Using OFDR", LECTURE PROCEEDINGS 2 OF THE 2019 COMMUNICATION SOCIETY CONFERENCE OF IEICE, no. B-13-30, 10 February 2019 (2019-02-10), pages 228, XP009534927, ISSN: 1349-144X *
See also references of EP4206624A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024028939A1 (ja) * 2022-08-01 2024-02-08 日本電信電話株式会社 光線路試験装置及び光線路試験方法
WO2024028936A1 (ja) * 2022-08-01 2024-02-08 日本電信電話株式会社 光線路試験装置及び光線路試験方法

Also Published As

Publication number Publication date
CN116194740A (zh) 2023-05-30
EP4206624A4 (en) 2024-05-08
EP4206624A1 (en) 2023-07-05
US20230288231A1 (en) 2023-09-14
JP7464133B2 (ja) 2024-04-09
JPWO2022044174A1 (ja) 2022-03-03

Similar Documents

Publication Publication Date Title
US10151626B2 (en) Fibre optic distributed sensing
JP2018146371A (ja) 温度・歪センシング装置及び温度・歪センシング方法
CN105910633B (zh) 光学传感器及使用方法
US7859654B2 (en) Frequency-scanned optical time domain reflectometry
Niklès Fibre optic distributed scattering sensing system: Perspectives and challenges for high performance applications
WO2022044174A1 (ja) 振動分布測定装置及びその方法
Tu et al. Enhancement of signal identification and extraction in a Φ-OTDR vibration sensor
CA2848300C (en) Enhancing functionality of reflectometry based systems using parallel mixing operations
Lu et al. Numerical modeling of Fcy OTDR sensing using a refractive index perturbation approach
CN114543973B (zh) 一种分布式超高频振动信号测量方法及光纤传感器
CN115824378A (zh) 高频响分布式光纤声波传感器的振动检测方法
Rohwetter et al. Random quadrature demodulation for direct detection single-pulse rayleigh C-OTDR
JP2019052938A (ja) 光反射測定装置及びその方法
RU2428682C1 (ru) Способ теплового неразрушающего контроля теплотехнического состояния протяженных, сложнопрофильных и труднодоступных объектов
WO2020054143A1 (ja) 振動検知光ファイバセンサ及び振動検知方法
WO2020158033A1 (ja) 光パルス試験装置、及び光パルス試験方法
JP4201995B2 (ja) 光ファイバひずみ計測方法およびその装置
JP6751371B2 (ja) 空間モード分散測定方法及び空間モード分散測定装置
JP6706192B2 (ja) 空間チャネル間伝搬遅延時間差測定方法及び空間チャネル間伝搬遅延時間差測定装置
JP7459966B2 (ja) 周波数変調量測定装置及び方法
WO2024069867A1 (ja) 光ファイバの歪み又は温度を解析する装置及び方法
JP7367879B2 (ja) 光周波数領域反射計測装置及び方法
Yang et al. Noise reduction for time-domain sensing signal of Brillouin scattering based on time series analysis and Kalman filter algorithm
WO2021033348A1 (ja) 振動分布測定装置および方法
WO2022201473A1 (ja) 解析装置、測定システム、測定方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951428

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544976

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020951428

Country of ref document: EP

Effective date: 20230327