JP2019060666A - 光ファイバセンシングシステム及び光ファイバセンシング方法 - Google Patents

光ファイバセンシングシステム及び光ファイバセンシング方法 Download PDF

Info

Publication number
JP2019060666A
JP2019060666A JP2017184203A JP2017184203A JP2019060666A JP 2019060666 A JP2019060666 A JP 2019060666A JP 2017184203 A JP2017184203 A JP 2017184203A JP 2017184203 A JP2017184203 A JP 2017184203A JP 2019060666 A JP2019060666 A JP 2019060666A
Authority
JP
Japan
Prior art keywords
light
optical
stokes
optical fiber
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017184203A
Other languages
English (en)
Inventor
浩司 稲船
Koji Inafune
浩司 稲船
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2017184203A priority Critical patent/JP2019060666A/ja
Publication of JP2019060666A publication Critical patent/JP2019060666A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】光ファイバセンシングシステム及び光ファイバセンシング方法において、SN比を改善する。【解決手段】プローブ光を生成する光送信部10と、プローブ光により光ファイバ100で発生する後方散乱光に含まれる、ストークス光及び反ストークス光を増幅する位相感応型増幅器を備える光増幅部40と、ストークス光及び反ストークス光から、光ファイバにおける周波数シフト量の変化を位相差として検出する光受信部80を備えて構成される。【選択図】図1

Description

この発明は、ブリルアン散乱光を用いた、光ファイバセンシングシステム及び光ファイバセンシング方法に関する。
光ファイバ通信の発展とともに、光ファイバ自体をセンシング媒体とする分布型光ファイバセンシングが盛んに研究されている。分布型光ファイバセンシングでは、光ファイバの片端から光パルスを入射し、光ファイバ中で後方散乱された光を時間に対して測定する時間領域リフレクトメトリ(OTDR:Optical Time Domain Reflectometry)が代表的である。光ファイバ中の後方散乱には、レイリー散乱、ブリルアン散乱及びラマン散乱がある。この中で自然ブリルアン散乱を測定するものはBOTDR(Brillouin OTDR)と呼ばれる(例えば、特許文献1参照)。
ブリルアン散乱は、光ファイバに入射される光パルスの中心周波数に対して、低周波(ストークス)側及び高周波(アンチストークス)側に約11GHz程度周波数シフトした位置に観測される。以下の説明では、ブリルアン散乱により生じたストークス側の光を単にストークス光と称し、アンチストークス側に生じた光を単に反ストークス光と称する。
この周波数シフトは、光ファイバの歪みや温度に対して線形に変化する性質がある。このため、測定した周波数シフトの値から、歪みや温度を取得することができる。従って、測定対象となる大型の設備や建造物に光ファイバを適切に設置することにより、コンクリートのひび割れの検出システムや、広範囲をカバーする火災報知器としてのBOTDRの利用が期待されている。
図5を参照して、従来の光ファイバセンサシステムを説明する。図5は、従来の光ファイバセンサシステムの構成例を示す概略図である。
光送信部110で生成されたプローブ光は、光サーキュレータ20を経て、光ファイバ100に入射される。光ファイバ100からの後方散乱光は、光サーキュレータ20を経て、光フィルタ130に送られる。後方散乱光には、レイリー散乱光、ストークス光及び反ストークス光が含まれる。光フィルタ130は、後方散乱光からストークス光を抽出して光増幅部140に送る。光増幅部140は、例えば、エルビウム添加光ファイバ増幅器(EDFA:Erbium Doped Fiber Amplifier)で構成される。光増幅部140で増幅されたストークス光は、光受信部80に送られる。
光受信部80は、自己遅延ヘテロダイン干渉計を備えて構成され、ストークス光から干渉光を得た後、干渉光を、電気信号に変換する。この電気信号は、信号処理部90に送られる。
信号処理部90は、光受信部80から受け取る電気信号に基づいて、歪み・温度などの情報を取得する。
特開2016−191659号公報
BOTDRに限らず、ブリルアン散乱光を受信するすべてのファイバセンシングシステムにおいては、受信信号であるブリルアン散乱光の強度は非常に微弱であり、雑音の影響を受けやすい。
雑音の低減のため、多くのファイバセンシングシステムにおいては、複数回の測定データの平均化を行っている。このように、測定時間と、歪み・温度の測定誤差はトレードオフの関係にあり、これが技術上の問題点となっている。
測定誤差を悪化させずに、測定時間を短縮するには、低雑音の光・電子部品でシステムを構築しなければならない。特に、ブリルアン散乱光を増幅する光増幅器の雑音指数は、受信信号のSN(Signal to Noise)比に大きな影響を及ぼす。
上述した従来例では、光増幅部にEDFAが用いられているが、現状、市販されているEDFAの雑音指数は、4.5dB程度であり、理論限界である3dBに近い値が得られている。従って、光増幅部にEDFAが用いられる限り、SN比の改善は困難である。
この発明は、上述の問題点に鑑みてなされたものであり、この発明の目的は、光増幅部に、位相感応型増幅器(PSA:Phase Sensitive Amplifier)を用いることで光ファイバセンシングシステム及び光ファイバセンシング方法でのSN比を改善することにある。
上述した目的を達成するために、この発明の光ファイバセンシングシステムは、プローブ光を生成する光送信部と、プローブ光により光ファイバで発生する後方散乱光に含まれる、ストークス光及び反ストークス光を増幅する位相感応型増幅器を備える光増幅部と、ストークス光及び反ストークス光のいずれか一方又は双方から、光ファイバにおける周波数シフト量の変化を位相差として検出する光受信部を備えて構成される。
また、この発明の光ファイバセンシング方法は、プローブ光を生成する過程と、位相感応型増幅器を用いて、プローブ光により光ファイバで発生する後方散乱光に含まれる、ストークス光及び反ストークス光を増幅する過程と、ストークス光及び反ストークス光のいずれか一方又は双方から、光ファイバにおける周波数シフト量の変化を位相差として検出する過程を備える。
この光ファイバセンシングシステム及び光ファイバセンシング方法の実施に当たり、好ましくは、さらに、ポンプ光生成部を備え、光送信部は、連続(CW:Continuous Wave)光を生成する光源を備え、位相感応型増幅器は、非線形光学素子を備え、ポンプ光生成部は、CW光から分岐されたポンプ光の周波数及び位相を、非線形光学素子において、ポンプ光、ストークス光及び反ストークス光が周波数条件及び位相条件を満たすように制御する。
この発明の、光ファイバセンシングシステム及び光ファイバセンシング方法は、位相感応型増幅器を備える光増幅部でストークス光及び反ストークス光を増幅するので、EDFAを用いる場合に比べて、SN比が改善される。
この発明の光ファイバセンサシステムの概略図である。 第1センシングシステムの概略構成図である。 送信側光バンドパスフィルタ(BPF:Band−Psss Filter)から出力される光パルス波形を示す図である。 第2センシングシステムの概略構成図である。 従来の光ファイバセンサシステムの概略図である。
以下、図を参照して、この発明の実施の形態について説明するが、各構成要素の形状、大きさ及び配置関係については、この発明が理解できる程度に概略的に示したものに過ぎない。また、以下、この発明の好適な構成例につき説明するが、各構成要素の材質及び数値的条件などは、単なる好適例にすぎない。従って、この発明は以下の実施の形態に限定されるものではなく、この発明の構成の範囲を逸脱せずにこの発明の効果を達成できる多くの変更又は変形を行うことができる。
(概略)
図1を参照して、この発明の光ファイバセンシングシステム及び光ファイバセンシング方法の概略を説明する。図1は、この発明の光ファイバセンサシステムの概略図である。
光ファイバセンシングシステムは、光送信部10、光サーキュレータ20、光フィルタ30、光増幅部40、光受信部80、信号処理部90、及び、ポンプ光生成部50を備えて構成される。
光送信部10は、プローブ光を生成する。光送信部10で生成されたプローブ光は、光サーキュレータ20を経て、光ファイバ100に入射される。
光ファイバ100からの後方散乱光は、光サーキュレータ20を経て、光フィルタ30に送られる。後方散乱光には、レイリー散乱光、ストークス光及び反ストークス光が含まれる。光フィルタ30は、後方散乱光からストークス光及び反ストークス光を抽出して光増幅部40に送る。光増幅部40は、PSAを備えて構成される。以下の説明では、PSAを備えて構成される光増幅部をPSA増幅部とも称する。PSA増幅部40で増幅されたストークス光及び反ストークス光のいずれか一方又は双方は、信号光として光受信部80に送られる。
光受信部80は、自己遅延ヘテロダイン干渉計を備えて構成され、信号光から干渉光を得た後、干渉光を、電気信号に変換する。光受信部80は、この電気信号から、周波数シフト量の変化を位相差として検出する。この結果は信号処理部90に送られる。
信号処理部90は、光受信部80から受け取る情報に基づいて、歪み・温度などの情報を取得する。
ポンプ光生成部50は、光送信部10が生成するCW光の一部からポンプ光を生成する。このポンプ光は、PSA増幅部40に送られる。
ここで、PSAは、利得が光の位相に依存する増幅器である。シグナル光、アイドラー光、及び、ポンプ光の3波の間で、周波数条件及び位相条件を満たしたときに、PSAの出力光のSN比は、既存のEDFAに比べて6dB改善できることが知られている。
ここでは、光フィルタ30で抽出されるストークス光及び反ストークス光をそれぞれ、PSAにおけるシグナル光及びアイドラー光として利用する。これにより、従来のEDFAを用いるシステムと比較して、光増幅後のSN比が改善され、測定誤差を悪化させずに、測定時間を短縮することができる。
(第1実施形態)
図2を参照して、この発明の第1実施形態に係る光ファイバセンシングシステム(以下、第1センシングシステムとも称する。)を説明する。図2は、第1センシングシステムの概略構成図である。
光送信部10は、CW光源12、光デバイダ14、光パルス発生器16及びタイミング調整器18を備えて構成される。
CW光源12は、単一の線スペクトルを示すCW光を生成し、光デバイダ14に送る。BOTDRでは、遅延検波やコヒーレント検波による復調器を光受信部内に備える。このため、CW光源12の周波数揺らぎ及び周波数スペクトル線幅(以下、単に線幅とも称する。)は、ブリルアンシフトよりも十分に小さくなければならない。そこで、CW光源12として、例えば、周波数揺らぎ及び線幅が10kHz程度若しくはそれ以下の狭線幅レーザが用いられる。また、CW光源12は、光ファイバ100内でシングルモード伝送できる波長帯で発振する。
光デバイダ14は、CW光を2分岐して、一方を、光パルス発生器16に送り、他方をポンプ光生成部50に送る。この光デバイダ14での分岐比は、PSA増幅部40から出力される信号光のSN比が十分に確保できるように設定されていればよい。
光パルス発生器16は、タイミング調整器18で生成された電気パルスに応じて、CW光から光パルスを生成する。この光パルスの繰返し周期とパルス幅は、既存のOTDRと同様に、それぞれ最大測定距離と位置分解能に応じて決定される。光パルス発生器16が生成した光パルスは、プローブ光として、光サーキュレータ20を経て、光ファイバ100に入射される。
タイミング調整器18は、光パルス発生器16において光パルスを生成するための電気パルスを生成するとともに、信号処理部90で平均化処理を行うためのタイミング制御に用いられる。
送信部10から出力されたプローブ光は、光サーキュレータ20を経て、光ファイバ100に入射される。なお、光サーキュレータ20に換えて、光カプラとアイソレータを組み合わせて用いても良い。
測定対象となる光ファイバ100は、センシング媒体であり、測定対象物に適切に設置される。光ファイバ100の一端は、光サーキュレータ20に接続され、他端は、端面反射を抑制するように終端される。光ファイバ100として、CW光源12の発振周波数帯において、シングルモード伝送が可能であり、低損失であり、及び、非線形散乱現象を観測できる程度の非線形光学定数を有するものが用いられる。この光ファイバとして、例えば、光通信で用いられる標準型シングルモードファイバ(SSMF:Standard Single Mode Fiber)が用いられる。
光ファイバ100からの後方散乱光は、光サーキュレータ20を経て、光フィルタ30に送られる。光フィルタ30は、CW光源12が生成するCW光の波長と同一の波長帯に現れるレイリー散乱光を除去し、ストークス光と反ストークス光を抽出する周波数特性を有する。光フィルタ30が抽出した、ストークス光と反ストークス光は、PSA増幅部40に送られる。
PSA増幅部40は、WDM多重器42、非線形光学素子44、及び、光分岐部46を備えて構成される。WDM多重器42は、ポンプ光生成部50で生成されたポンプ光と、ストークス光及び反ストークス光を合波する。WDM多重器42で合波された合波光は、非線形光学素子44に送られる。
非線形光学素子44として、CW光及びブリルアン散乱光の波長帯域において、非線形光学定数が大きく、位相整合条件を満たすものが用いられる。3次の非線形光学素子としては高非線形ファイバ、2次の非線形光学素子としては、PPLN(Periodically Poled Lithium Niobate)導波路が用いられることが多い。
なお、ここでは、説明を省略するが、偏波変動への対策は、従来公知の方法によりなされているものとする。
非線形光学素子44が、3次の非線形光学素子である場合は、4光波混合により、また、2次の非線形光学素子の場合は、2次高調波発生/差周波発生のカスケード変換により、ストークス光及び反ストークス光の増幅が行われる。
ストークス光及び反ストークス光は、光ファイバ100に入力されたプローブ光が、光ファイバ100中の粗密波(音響フォノン)により散乱されることで発生する。このような非線形散乱現象においては、ストークス光及び反ストークス光の複素振幅は、プローブ光と音響フォノンの複素振幅を乗算した結果に比例することが知られている。
ストークス光、反ストークス光及びプローブ光の周波数、並びに、音響フォノンの固有振動数を、それぞれ、f、f、f、fとすると、以下の式(1)及び(2)が得られる。
=f−f (1)
=f+f (2)
上式(1)及び(2)を加算すると、以下の式(3)が得られる。
+f=2f (3)
これは、ポンプ光の周波数が、プローブ光の周波数fに等しくなるように制御されていれば、ストークス光及び反ストークス光が、それぞれ、PSAにおけるシグナル光及びアイドラー光としての周波数条件を満たすことを示している。
ストークス光、反ストークス光、及び、ポンプ光の間では、位相に関しても同様の関係が成り立つ。異なる経路を伝播したことによる相対位相の揺らぎを補償するように、ポンプ光が制御されていれば、ストークス光及び反ストークス光が、それぞれ、PSAにおけるシグナル光及びアイドラー光としての位相条件を満たすことを示している。
従って、周波数条件及び位相条件を満たす場合には、従来のEDFAでは実現できない3dB未満の雑音指数を達成することができ、低雑音増幅が可能となる。
非線形光学素子44の出力である、ストークス光、反ストークス光及びポンプ光は、光分岐部46に送られる。
光分岐部46は、ポンプ光を除去する。また、光分岐部46は、ストークス光及び反ストークス光の一部を信号光として光受信部80に送り、残りをモニタ光としてポンプ光生成部50に送る。
光受信部80で、ストークス光及び反ストークス光の両者が用いられる場合は、光分岐部46は、例えば、光フィルタと光デバイダを備えて構成される。光フィルタが、ポンプ光を除去し、光デバイダが、ストークス光及び反ストークス光を強度分岐する。光デバイダとして、例えば、分岐比が99:1のパワーデバイダが用いられる。強度分岐された光のうち、高分岐側の光は、信号光として光受信部に送られ、低分岐側の光は、モニタ光としてポンプ光生成部に送られる。
一方、光受信部80で、ストークス光及び反ストークス光の一方のみが用いられる場合は、光分岐部46は、例えば、WDMフィルタを備えて構成される。WDMフィルタは、ポンプ光を除去するとともに、ストークス光と反ストークス光を周波数分離する。ストークス光は信号光として光受信部80に送られ、反ストークス光はモニタ光としてポンプ光生成部50に送られる。
光受信部80は、例えば、自己遅延ヘテロダイン干渉計を備えて構成される。光受信部80は、信号光の周波数シフト量を強度変化に変換した後、電気信号に変換する。光受信部80は、この電気信号から、周波数シフト量の変化を位相差として検出する。この結果は信号処理部90に送られる。
信号処理部90は、タイミング調整器18が生成するトリガー信号に応じて、平均化処理を行い、歪み・温度変化の解析を行う。
なお、光受信部80及び信号処理部90は、特許文献1と同様に構成することができるので、ここでは、詳細な説明を省略する。
ポンプ光生成部50は、PSA増幅部40から入力されたモニタ光から、PSA増幅部40の利得を最大にするために、ポンプ光の周波数・位相のフィードバック制御を行う。ポンプ光生成部50は、第1光周波数シフタ52、第1発振器54、第2光周波数シフタ56、電圧制御発振器58、光位相変調器60、第2発振器62、光増幅器64、光フィルタ66、フォトダイオード68、増幅器70、誤差信号抽出器72、及び、ループフィルタ74を備えて構成される。ポンプ光生成部50は、位相同期ループ(PLL:Phase−Locked Loop)として機能する。
第1発振器54は、正弦波の電気信号を発生させる素子である。この正弦波の電気信号は、第1光周波数シフタ52に入力される。
また、光送信部10から送られるCW光も、第1光周波数シフタ52に入力される。第1光周波数シフタ52は、音響光学素子、又は、振幅変調器や位相変調器などの変調器と、その変調器の出力光の1つの側帯波を抽出する帯域通過フィルタを備えて構成される。第1光周波数シフタ52は、CW光の周波数を、第1発振器54が生成する正弦波の周波数だけシフトさせる。第1光周波数シフタ52で周波数シフトされたCW光は、第2光周波数シフタ56に入力される。
電圧制御発振器58は、正弦波の電気信号を発生させる素子であり、その周波数を電気的に制御できる機能を有する。この正弦波の電気信号は、第2光周波数シフタ56に入力される。
第2光周波数シフタ56は、第1光周波数シフタ52と同様に構成され、入力されるCW光の周波数を、電圧制御発振器58が生成する正弦波の周波数だけシフトさせる。第2光周波数シフタ56で周波数シフトされたCW光は、光位相変調器60に入力される。
ここで、第1光周波数シフタ52と第2光周波数シフタ56は、一方が入力されるCW光を高周波側へ、他方が低周波側に周波数シフトさせる。すなわち、第1光周波数シフタ52と第2光周波数シフタ56では、周波数シフトの符号は逆であり、フィードバック制御がロックした状態では、絶対値が互いに等しくなる。
光位相変調器60は、第2発振器62で発生した正弦波で駆動されて、CW光に位相変調を施す。この位相変調は、誤差信号を抽出するために必要となる微小な位相ディザリングである。第2発振器62で発生する正弦波の振幅は、後述する誤差信号抽出器72で誤差信号が得られる範囲において最小の値にするのが望ましい。例えば、光位相変調器60の半波長電圧の1%程度に設定される。
光位相変調器60で、位相変調を受けたCW光は、光増幅器64に送られる。光増幅器64は、CW光を増幅し、光フィルタ66に送る。光増幅器64として、例えば、数Wの出力強度のEDFAが用いられる。
光フィルタ66は、CW光の波長帯域に透過帯域を有する。光フィルタ66は、ポンプ光の帯域外の、自然放出光によるASE(Amplified Spontaneous Emission)雑音を除去する。このASE雑音が除去されたCW光は、ポンプ光として、PSA増幅部40に送られ、PSA増幅部40のWDM多重器42に入力される。
PSA増幅部40で生成されるモニタ光は、フォトダイオード68に入力される。フォトダイオード68は、モニタ光を光/電気変換して電気信号を生成する。この電気信号は、増幅器70に送られる。
増幅器70は、電気信号を増幅し、誤差信号抽出器72に送る。モニタ信号には、光位相変調器60で付与した位相ディザリングの位相変調が付与されている。
フォトダイオード68及び増幅器70として、PSA増幅部40が生成するモニタ光を受信するのに十分な感度を備えるものが用いられる。
誤差信号抽出器72は、第2発振器62の発振周波数と同一の周波数を検出する素子であり、例えば、ロックインアンプが用いられる。いわゆるマッハツェンダ干渉計の位相制御と同様に、誤差信号抽出器72は、第2発振器62が生成した正弦波を参照信号としてこの周波数成分を検出することで、誤差信号を得ることができる。誤差信号はループフィルタ74に送られる。
ループフィルタ74は、誤差信号に所定の演算を施し、制御信号を生成する。制御信号は、電圧制御発振器74に送られる。
フィードバック制御がロックした状態では、ポンプ光生成部50が生成するポンプ光と、ストークス光及び反ストークス光が、周波数条件及び位相条件を満たし、従来のEDFAでは実現できない3dB未満の雑音指数を達成することができ、低雑音増幅が可能となる。
(第2実施形態)
上述した第1実施形態では、ストークス光と反ストークス光の中間に1つのポンプ光が配置されている。この場合、図3(A)に示すように、ストークス光とポンプ光、ポンプ光と反ストークス光の周波数間隔は、それぞれ11GHz程度である。
ここで、ポンプ光生成部50が備える光増幅器64で生じるASE雑音が光フィルタ66で除去しきれずに残る場合がある。第1センシングシステムでは、ポンプ光と、ストークス光及び反ストークス光との周波数差が小さいため、ストークス光及び反ストークス光がポンプ光周辺に残留する雑音に埋もれてしまう恐れがある。
そこで、第2実施形態のセンシングシステムでは、図3(B)に示すように、ストークス光及び反ストークス光から、十分に離れた周波数帯にポンプ光を配置する。この2つのポンプ光の周波数の和が、式(3)のfの2倍に等しくなるように制御されているなら、PSA動作の周波数条件を満たす。また、第1センシングシステムと同様に、ポンプ光生成部50でのフィードバック制御により、位相条件を満たす。
プローブ光及び2つのポンプ光は、例えば、図3(C)に示すように、周波数間隔が等しく互いに位相同期したN(Nは3以上の整数)の線スペクトルを示すCW光から、中央の周波数の線スペクトルをプローブ光として用い、その両側であり、ASE雑音が、ストークス光及び反ストークス光と分離可能な周波数の線スペクトルをポンプ光とすればよい。
図4を参照して、第2実施形態に係る光センシングシステム(以下、第2センシングシステムとも称する。)を説明する。図4は、第2センシングシステムの模式図である。
第2センシングシステムでは、光送信部11が、コム光源13、WDM分波器15、光パルス発生器16及びタイミング調整器18を備えて構成される。
コム光源13は、周波数軸上に、周波数間隔Δfで等間隔に配置された、N(Nは3以上の整数)本の線スペクトルを生成する。以下の説明では、低周波数側から数えてh(hは0以上N−1以下の整数)番目の線スペクトルをCとする。
WDM分波器15は、j番目の線スペクトルCを光パルス発生器16に送る。線スペクトルCのCW光が、光パルス発生器16で光パルスとなり、この光パルスがプローブ光として光ファイバ100に入力される。
また、WDM分波器15は、j−k番目及びj+k番目の線スペクトルCj−k及びCj+kをポンプ光生成部50に送る。ここで、j及びkは整数であり、j−k≧0、j+k≦N−1を満たす。
線スペクトルCj−k及びCj+kの周波数は、光増幅器64で生じるASE雑音にストークス光及び反ストークス光が埋もれない程度に、Cから離れて設定される。線スペクトルCj−kに対応する第1ポンプ光と、線スペクトルCj+kに対応する第2ポンプ光は、PSA増幅部40に送られる。
2つのポンプ光の周波数の和が、式(3)のfの2倍に等しくなるように制御されているなら、PSA動作の周波数条件を満たす。また、ポンプ光生成部50でのフィードバック制御により、位相条件を満たす。この場合、ストークス光及び反ストークス光がポンプ光周辺に残留する雑音に埋もれなくなるので、SN比がさらに改善されることが期待される。
ここで、2つのポンプ光の周波数間隔を800GHz程度にすると、光フィルタ66として、市販の薄膜フィルタを用いることができる。
10、11、110 光送信部
12 CW光源
13 コム光源
14 光デバイダ
15 WDM分波器
16 光パルス発生器
18 タイミング調整器
20 光サーキュレータ
30、130 光フィルタ
40 PSA増幅部
42 WDM多重器
44 非線形光学素子
46 光分岐部
50 ポンプ光生成部
52 第1光周波数シフタ
54 第1発振器
56 第2光周波数シフタ
58 電圧制御発振器
60 光位相変調器
62 第2発振器
64 光増幅器
66 光フィルタ
68 フォトダイオード
70 増幅器
72 誤差信号抽出器
74 ループフィルタ
80 光受信部
90 信号処理部
100 光ファイバ

Claims (8)

  1. プローブ光を生成する光送信部と、
    前記プローブ光により光ファイバで発生する後方散乱光に含まれる、ストークス光及び反ストークス光を増幅する位相感応型増幅器を備える光増幅部と、
    前記ストークス光及び反ストークス光のいずれか一方又は双方から、前記光ファイバにおける周波数シフト量の変化を位相差として検出する光受信部と、
    を備えることを特徴とする光ファイバセンシングシステム。
  2. さらに、ポンプ光生成部を備え、
    前記光送信部は、連続光を生成する光源を備え、
    前記光増幅部は、非線形光学素子を備え、
    前記ポンプ光生成部は、前記連続光から分岐されたポンプ光の周波数及び位相を、前記非線形光学素子において、前記ポンプ光、前記ストークス光及び反ストークス光が周波数条件及び位相条件を満たすように制御する
    をことを特徴とする請求項1に記載の光ファイバセンシングシステム。
  3. 前記光送信部は、前記連続光源、光デバイダ及び光パルス発生器を備え、
    前記連続光源は、単一の線スペクトルを示す連続光を生成するCW光源であり、
    前記光デバイダは、前記連続光を2分岐して、一方を、前記光パルス発生器に送り、他方を前記ポンプ光生成部に送り、
    前記光パルス発生器は、入力される連続光からプローブ光として光パルスを生成する
    ことを特徴とする請求項2に記載の光ファイバセンシングシステム。
  4. 前記光送信部は、前記連続光源、WDM分波器及び光パルス発生器を備え、
    前記連続光源は、周波数間隔が等しく互いに位相同期したN(Nは3以上の整数)の線スペクトルを示す連続光を生成するコム光源であり、
    前記WDM分波器は、前記連続光を2分岐して、一方を、前記光パルス発生器に送り、他方を前記ポンプ光生成部に送り、
    前記光パルス発生器は、入力される連続光からプローブ光として光パルスを生成する
    ことを特徴とする請求項2に記載の光ファイバセンシングシステム。
  5. プローブ光を生成する過程と、
    位相感応型増幅器を用いて、前記プローブ光により光ファイバで発生する後方散乱光に含まれる、ストークス光及び反ストークス光を増幅する過程と、
    前記ストークス光及び反ストークス光のいずれか一方又は双方から、前記光ファイバにおける周波数シフト量の変化を位相差として検出する過程と
    を備えることを特徴とする光ファイバセンシング方法。
  6. 前記位相感応型増幅器は、非線形光学素子を備えて構成され、
    ポンプ光の周波数及び位相を、前記非線形光学素子において、前記ポンプ光、前記ストークス光及び反ストークス光が周波数条件及び位相条件を満たすように制御する
    をことを特徴とする請求項5に記載の光ファイバセンシング方法。
  7. 前記ポンプ光及び前記プローブ光は、単一の線スペクトルを示す連続光から生成される
    ことを特徴とする請求項6に記載の光ファイバセンシング方法。
  8. 前記ポンプ光及び前記プローブ光は、周波数間隔が等しく互いに位相同期したN(Nは3以上の整数)の線スペクトルを示す連続光から生成される
    ことを特徴とする請求項6に記載の光ファイバセンシング方法。
JP2017184203A 2017-09-25 2017-09-25 光ファイバセンシングシステム及び光ファイバセンシング方法 Pending JP2019060666A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017184203A JP2019060666A (ja) 2017-09-25 2017-09-25 光ファイバセンシングシステム及び光ファイバセンシング方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017184203A JP2019060666A (ja) 2017-09-25 2017-09-25 光ファイバセンシングシステム及び光ファイバセンシング方法

Publications (1)

Publication Number Publication Date
JP2019060666A true JP2019060666A (ja) 2019-04-18

Family

ID=66177279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017184203A Pending JP2019060666A (ja) 2017-09-25 2017-09-25 光ファイバセンシングシステム及び光ファイバセンシング方法

Country Status (1)

Country Link
JP (1) JP2019060666A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021231344A1 (en) * 2020-05-12 2021-11-18 Nec Laboratories America, Inc. Improved distributed acoustic sensing using dynamic range suppression
WO2023214463A1 (ja) * 2022-05-06 2023-11-09 日本電信電話株式会社 光ファイバセンシング装置及び光ファイバセンシング方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021231344A1 (en) * 2020-05-12 2021-11-18 Nec Laboratories America, Inc. Improved distributed acoustic sensing using dynamic range suppression
JP2023525995A (ja) * 2020-05-12 2023-06-20 エヌイーシー ラボラトリーズ アメリカ インク ダイナミックレンジを使用した分散型音響検知の改善
JP7412597B2 (ja) 2020-05-12 2024-01-12 エヌイーシー ラボラトリーズ アメリカ インク ダイナミックレンジを使用した分散型音響検知の改善
WO2023214463A1 (ja) * 2022-05-06 2023-11-09 日本電信電話株式会社 光ファイバセンシング装置及び光ファイバセンシング方法

Similar Documents

Publication Publication Date Title
Ruiz-Lombera et al. Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors
JP6705353B2 (ja) 光ファイバ歪み及び温度測定装置
Zheng et al. High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering
CN111238551B (zh) 分布式相位敏感光时域反射仪传感系统及相位提取方法
JP6866815B2 (ja) 光ファイバ歪み測定装置及び光ファイバ歪み測定方法
NO339298B1 (no) Aktiv koherensreduksjon for interferometeravspørring
Loayssa et al. Applications of optical carrier Brillouin processing to microwave photonics
Yan et al. Forward transmission based ultra-long distributed vibration sensing with wide frequency response
JP6308184B2 (ja) 光ファイバ歪み測定装置及び光ファイバ歪み測定方法
JP7286994B2 (ja) 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法
Liao et al. Phase sensitivity characterization in fiber-optic sensor systems using amplifiers and TDM
Murray et al. Combining Stokes and anti-Stokes interactions to achieve ultra-low noise dynamic Brillouin strain sensing
JP2019060666A (ja) 光ファイバセンシングシステム及び光ファイバセンシング方法
WO2017033491A1 (ja) 光ファイバ歪み測定装置及び光ファイバ歪み測定方法
Lalam et al. Employing wavelength diversity technique to enhance the Brillouin gain response in BOTDA system
JP6969442B2 (ja) 光ファイバセンシング装置及び光ファイバセンシング方法
JP3408789B2 (ja) 後方散乱光の測定方法およびその装置
JP6280445B2 (ja) コヒーレント光周波数領域リフレクトメトリ測定装置
JP3152314B2 (ja) 後方散乱光の測定方法およびその装置
Sharma et al. Precise optical frequency shifting using stimulated Brillouin scattering in optical Fibers
Sagues et al. Broadband swept optical single-sideband modulation generation for spectral characterization of optical components
JP3237684B2 (ja) 光ファイバの波長分散測定装置
JP2019035724A (ja) 光ファイバ歪み測定装置及び光ファイバ歪み測定方法
JP2019174360A (ja) 光ファイバ歪測定装置及びその測定方法
Oh et al. High-resolution microwave phonon spectroscopy of dispersion-shifted fiber