WO2023213114A1 - 一种电化学材料的制备方法及其应用 - Google Patents

一种电化学材料的制备方法及其应用 Download PDF

Info

Publication number
WO2023213114A1
WO2023213114A1 PCT/CN2023/077216 CN2023077216W WO2023213114A1 WO 2023213114 A1 WO2023213114 A1 WO 2023213114A1 CN 2023077216 W CN2023077216 W CN 2023077216W WO 2023213114 A1 WO2023213114 A1 WO 2023213114A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
iron oxide
lithium
sintering
porous iron
Prior art date
Application number
PCT/CN2023/077216
Other languages
English (en)
French (fr)
Inventor
王雀乐
李长东
阮丁山
刘伟健
缪建麟
朱青林
Original Assignee
宜昌邦普循环科技有限公司
宜昌邦普宜化新材料有限公司
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宜昌邦普循环科技有限公司, 宜昌邦普宜化新材料有限公司, 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 宜昌邦普循环科技有限公司
Publication of WO2023213114A1 publication Critical patent/WO2023213114A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0027Mixed oxides or hydroxides containing one alkali metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium-ion battery materials, and specifically relates to a preparation method and application of electrochemical materials.
  • Li 5 FeO 4 has the advantages of low charging voltage platform and high theoretical capacity, and is an excellent electrochemical active material.
  • the traditional method of synthesizing Li 5 FeO 4 still has some problems, such as a certain degree of synthesis difficulty and difficulty in industrialization.
  • the synthesized electrochemically active material has large particles, poor conductivity, low capacity, and difficulty in functioning.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art. To this end, the present invention proposes a preparation method and application of electrochemical materials, which can reduce particle size and improve conductivity and capacity.
  • a preparation method of electrochemical materials including the following steps:
  • the Al content of the electrochemical material obtained by the present invention is 0.5wt%-2wt%, and this content has no impact on the key indicator capacity of the product.
  • the concentration of the ferrous salt solution is 0.1-10 mol/L
  • the concentration of the oxalic acid solution is 0.1-15 mol/L
  • the concentration of the nano-alumina suspension is The concentration is 0.2-6mol/L.
  • step S1 the molar ratio of oxalic acid in the oxalic acid solution to ferrous salt in the ferrous salt solution is 1-1.2:1, and the nanometer alumina suspension is The amount of aluminum oxide added is 0.5%-5% of the mass fraction of the produced ferrous oxalate.
  • step S1 sand grinding is used for grinding, and the rotation speed of the sand grinding is 2000-3000 rpm.
  • the particle size Dv50 of the nano-alumina in the nano-alumina suspension is 100-900 nm.
  • step S1 during the dripping process, the reaction materials need to be continuously ground, and the equipment used is a high-speed sand mill.
  • step S1 after the grinding, the particle size Dv50 of the reaction material is 0.5 ⁇ m-2 ⁇ m.
  • step S1 the solid-liquid separation adopts filtration, and the water content of the material after filtration is less than 8%.
  • the sintering temperature is 600-800°C. Further, the sintering time is 6h-12h.
  • step S2 the specific surface area of the porous iron oxide is 35-60 m 2 /g.
  • the carbon source is one or more of carbon nanotubes, polyethylene oxide, polyethylenimine, glucose, polyvinyl alcohol, polyphenylene oxide or polythiophene. kind.
  • the particle size Dv50 of the carbon nanotubes is 50-500 nm.
  • step S3 the added amount of the carbon source is 2%-20% of the mass of the porous iron oxide.
  • the lithium source is one or more of lithium hydroxide monohydrate, lithium hydroxide anhydrous or lithium oxide.
  • the particle size Dv50 of the lithium oxide is 5-20 ⁇ m.
  • step S3 the molar ratio of the lithium source to the porous iron oxide is 5-5.8:1.
  • the particle size Dv50 of the electrochemical material is 8 ⁇ m-15 ⁇ m.
  • the invention also provides the application of the preparation method in preparing lithium ion batteries.
  • the present invention at least has the following beneficial effects:
  • alumina can form a eutectic with metal substances, lowering the melting point, so that the target product with better electrical properties can be obtained at a lower sintering temperature, and avoiding other side reactions caused by excessively high sintering temperatures, such as carbothermia Reduction reaction, which will affect the electrical properties of the material, and if the sintering temperature is too high, the material particles will become larger, which is not conducive to obtaining small particle products.
  • Small particles of Li 5 FeO 4 can reduce the migration path of lithium ions, which is more conducive to the removal of lithium ions. out, thereby increasing the specific capacity. At the same time, the addition of alumina will not affect product performance.
  • ferrous oxalate when ferrous oxalate is sintered at high temperature in an oxygen atmosphere, its oxalate roots will decompose into carbon dioxide, leaving only the iron oxide component, forming iron oxide with a loose porous structure.
  • This porous iron oxide has Large specific surface area, strong activity, strong adsorption capacity, enhance the binding effect of the material and carbon source, and the addition of carbon source can improve the conductive properties of Li 5 FeO 4 .
  • the invention can convert ferrous salts with low economic added value into electrochemical active substances with high added value. The synthesis process is simple, the processing cost is low, the efficiency is high, and industrialization is easy to be realized.
  • Figure 1 is a schematic diagram of the synthesis process of Embodiment 1 of the present invention.
  • Figure 2 is an SEM image of the porous iron oxide synthesized in Example 1;
  • Figure 3 is an SEM image of Li 5 FeO 4 synthesized in Example 1;
  • Figure 4 is the charge and discharge curve of Li 5 FeO 4 synthesized in Example 1;
  • Figure 5 is an SEM image of Li 5 FeO 4 synthesized in Example 2.
  • Figure 6 is the charge and discharge curve of Li 5 FeO 4 synthesized in Example 2.
  • Figure 7 is an SEM image of Li 5 FeO 4 synthesized in Comparative Example 1;
  • Figure 8 is the charge and discharge curve of Li 5 FeO 4 synthesized in Comparative Example 1;
  • Figure 9 is a comparison of the XRD patterns of Li 5 FeO 4 synthesized in Example 1 and Comparative Example 2;
  • Figure 10 is the charge and discharge curve of Li 5 FeO 4 synthesized in Comparative Example 2.
  • an electrochemical material Li 5 FeO 4 is prepared. See Figure 1. The specific process is:
  • the concentrations of the ferrous sulfate solution, oxalic acid solution and nano-alumina suspension are respectively are 0.6mol/L, 0.8mol/L and 4mol/L; add the prepared ferrous sulfate solution and oxalic acid solution dropwise to the nano-alumina suspension.
  • the dripping acceleration rate is 6L/h.
  • Ferrous oxalate is generated.
  • the sanding speed is 2500rpm. After sanding, the suspension is left to settle. After precipitation, the material is dehydrated by filter press. After filter press The moisture content of the material is less than 8%, and its Dv50 after sanding is 1.1 ⁇ m;
  • the filter cake obtained after press filtration is sintered in an oxygen atmosphere.
  • the sintering temperature is 680°C and the sintering time is 8 hours.
  • the sintered material is pulverized to obtain iron oxide with a porous morphology. See Figure 2 for the morphology.
  • Iron oxide has a larger BET and stronger activity, and its BET can be as high as 48m 2 /g;
  • an electrochemical material Li 5 FeO 4 is prepared.
  • the specific process is:
  • the dripping acceleration rate is 6L/h. During the dripping process, will be generated During the dripping process of ferrous oxalate, the suspension needs to be sanded simultaneously. The sanding speed is 2500rpm. After sanding, the suspension is left to settle. After precipitation, the material is dehydrated by filter press. The material after filter press Moisture content is less than 8%; its Dv50 is 1.6 ⁇ m after sanding
  • the filter cake obtained after press filtration is sintered in an oxygen atmosphere.
  • the sintering temperature is 680°C and the sintering time is 8 hours.
  • the sintered material is pulverized to obtain iron oxide with a porous morphology.
  • the BET of the obtained iron oxide is larger. Strong activity, its BET can be as high as 48m 2 /g;
  • an electrochemical material Li 5 FeO 4 was prepared, using conventional existing iron oxide (Dv50 is 2.5 ⁇ m, BET is 23m 2 /g) as the iron source, and glucose as the carbon source.
  • Dv50 is 2.5 ⁇ m
  • BET is 23m 2 /g
  • glucose as the carbon source.
  • the specific process is:
  • the filter cake obtained after press filtration is sintered in an oxygen atmosphere.
  • the sintering temperature is 680°C and the sintering time is 8 hours.
  • the sintered material is pulverized to obtain porous iron oxide with a BET of 43m 2 /g;
  • Example 1-2 and Comparative Example 1-2 were respectively made into button batteries, which required steps such as slurry preparation, coating, drying, tableting, assembly, and cabinet testing: 1 Preparation For slurry, weigh 4g of material and mix it with conductive agent and binder. The mass ratio of material: conductive agent: binder is 8:1:1.
  • the binder used is PVDF and the conductive agent is conductive carbon; 2 Coating Cloth, use a scraper to coat the aluminum foil; 3 Dry, dry the coated pole piece in a vacuum drying oven, the drying temperature is 120°C, and the drying time is 2 hours; 4 Press into tablets, and use the dried pole piece Carry out sheet pressing on the roller machine; 5 Assemble the positive electrode plate, negative electrode plate, separator, electrolyte and other battery parts into a button battery. The specific capacity was tested under the conditions of charging voltage 4.25V and charging rate 0.1C.
  • Figure 4 is the charge and discharge curve of Li 5 FeO 4 synthesized in Example 1. It can be seen from the figure that its capacity can reach 625mAh/g.
  • Figure 6 is the charge and discharge curve of Li 5 FeO 4 synthesized in Example 2. It can be seen from the figure that its capacity can reach 640mAh/g.
  • Figure 8 is the charge and discharge curve of Li 5 FeO 4 synthesized in Comparative Example 1. It can be seen from the figure that its capacity is only 480mAh/g, which is worse than the performance of the porous iron oxide used in the embodiment.
  • Figure 10 is the charge and discharge curve of Li 5 FeO 4 synthesized in Comparative Example 2. It can be seen from the figure that its capacity is only 585mAh/g, which is worse than the performance of Examples 1 and 2 with nano-alumina added.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种电化学材料的制备方法及其应用,制备方法包括:将亚铁盐溶液和草酸溶液滴加到纳米氧化铝悬浊液中,并在滴加过程同步对反应物料进行研磨,滴液结束后,将反应物料静置沉淀,固液分离得到沉淀物;将沉淀物在氧气气氛下进行烧结,得到多孔氧化铁;将多孔氧化铁、碳源和锂源进行混合,将混合后得到的混合物质在惰性气氛下进行烧结,即得电化学材料。烧结过程中,纳米氧化铝能与金属物质形成共熔物,降低熔点,使得在较低的烧结温度下能得到电性能较好的目标产物,多孔氧化铁与碳源的结合效果更佳,有利于改善目标产物的导电性能。

Description

一种电化学材料的制备方法及其应用 技术领域
本发明属于锂离子电池材料技术领域,具体涉及一种电化学材料的制备方法及其应用。
背景技术
目前,新能源汽车发展迅猛,年销售量不断攀升,锂离子电池销量也随之攀升。对于锂离子电池的关键指标循环容量要求也越来越高,锂离子电池在首次充放电时,由于SEI膜的形成以及充放电效率低,部分锂离子不能返回到正极当中,会导致锂离子电池循环容量偏低,为解决此问题,通常在正极材料中加入活性物质进行优化。
Li5FeO4具有充电电压平台低,理论容量高的优点,是优良的电化学活性物质,但传统合成Li5FeO4的方法仍存在一些问题,例如具有一定的合成难度,难以实现产业化,合成的电化学活性物质颗粒大,导电性差,容量低,难以发挥作用等。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种电化学材料的制备方法及其应用,能够降低颗粒尺寸,提高导电性和容量。
根据本发明的一个方面,提出了一种电化学材料的制备方法,包括以下步骤:
S1:将亚铁盐溶液和草酸溶液滴加到纳米氧化铝悬浊液中,并在滴加过程同步对反应物料进行研磨,滴液结束后,将反应物料静置沉淀,固液分离得到沉淀物;
S2:将所述沉淀物在氧气气氛下进行烧结,得到多孔氧化铁;
S3:将所述多孔氧化铁、碳源和锂源进行混合,所得混合物质在惰性气氛下进行烧结,即得所述电化学材料。
需要说明的是,本发明所得电化学材料的Al含量为0.5wt%-2wt%,此含量对产品关键指标容量未造成影响。
在本发明的一些实施方式中,步骤S1中,所述亚铁盐溶液的浓度为0.1-10mol/L,所述草酸溶液的浓度为0.1-15mol/L,所述纳米氧化铝悬浊液的浓度为0.2-6mol/L。
在本发明的一些实施方式中,步骤S1中,所述草酸溶液中草酸与所述亚铁盐溶液中亚铁盐的摩尔比为1-1.2:1,所述纳米氧化铝悬浊液中纳米氧化铝的添加量为生成的草酸亚铁质量分数的0.5%-5%。
在本发明的一些实施方式中,步骤S1中,所述研磨采用砂磨,所述砂磨的转速为2000-3000rpm。
在本发明的一些实施方式中,步骤S1中,所述纳米氧化铝悬浊液中纳米氧化铝的粒径Dv50为100-900nm。
在本发明的一些实施方式中,步骤S1中,在滴液过程中,需对反应物料不停研磨,所用设备为高速砂磨机。
在本发明的一些实施方式中,步骤S1中,所述研磨后,反应物料的粒度Dv50为0.5μm-2μm。
在本发明的一些实施方式中,步骤S1中,所述固液分离采用压滤,压滤后物料含水量低于8%。
在本发明的一些实施方式中,步骤S2中,所述烧结的温度为600-800℃。进一步地,所述烧结的时间为6h-12h。
在本发明的一些实施方式中,步骤S2中,所述多孔氧化铁的比表面积为35-60m2/g。
在本发明的一些实施方式中,步骤S3中,所述碳源为碳纳米管、聚氧化乙烯、聚乙烯亚胺、葡萄糖、聚乙烯醇、聚苯醚桐或聚噻吩中的一种或几种。其中所述碳纳米管的粒径Dv50为50-500nm。
在本发明的一些实施方式中,步骤S3中,所述碳源的添加量为所述多孔氧化铁质量的2%-20%。
在本发明的一些实施方式中,步骤S3中,所述锂源为单水氢氧化锂、无水氢氧化锂或氧化锂中的一种或几种。其中所述氧化锂的粒径Dv50为5-20μm。
在本发明的一些实施方式中,步骤S3中,所述锂源与所述多孔氧化铁的摩尔比为5-5.8:1。
在本发明的一些实施方式中,步骤S3中,所述电化学材料的粒径Dv50为8μm-15μm。
本发明还提供所述的制备方法在制备锂离子电池中的应用。
根据本发明的一种优选的实施方式,本发明至少具有以下有益效果:
本发明通过将亚铁盐溶液与草酸滴加到纳米氧化铝悬浊液中,期间伴随高速研磨,可有效抑制生成的草酸亚铁的颗粒变大,而添加剂纳米氧化铝的作用则是在后续的烧结中,氧化铝能与金属物质形成共熔物,降低熔点,使得在较低的烧结温度下能得到电性能较好的目标产物,避免过高的烧结温度引发其他副反应,例如碳热还原反应,这会影响材料电性能,并且烧结温度过高会使得材料颗粒变大,不利于获得小颗粒产物,小颗粒Li5FeO4可减小锂离子的迁移路径,更有利于锂离子的脱出,从而提升比容量,同时氧化铝的加入不会影响产品性能。此外,草酸亚铁在后续烧结时,草酸亚铁在氧气气氛下进行高温烧结时,其草酸根会分解成二氧化碳,仅存留氧化铁成分,形成具有疏松多孔结构的氧化铁,该多孔氧化铁具有较大的比表面积,活性较强,具有较强的吸附能力,增强材料与碳源的结合效果,而碳源的加入可改善Li5FeO4的导电性能。本发明能把经济附加值低的亚铁盐转变成高附加价值的电化学活性物质,合成工艺简单,加工成本低,效率高,易于实现产业化。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1的合成工艺示意图;
图2为实施例1合成的多孔氧化铁的SEM图;
图3为实施例1合成的Li5FeO4的SEM图;
图4为实施例1合成的Li5FeO4的充放电曲线;
图5为实施例2合成的Li5FeO4的SEM图;
图6为实施例2合成的Li5FeO4的充放电曲线;
图7为对比例1合成的Li5FeO4的SEM图;
图8为对比例1合成的Li5FeO4的充放电曲线;
图9为实施例1和对比例2合成的Li5FeO4的XRD图对比;
图10为对比例2合成的Li5FeO4的充放电曲线。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种电化学材料Li5FeO4,参见图1,具体过程为:
(1)配置一定浓度的硫酸亚铁溶液,草酸溶液浓度和纳米氧化铝的悬浊液(纳米氧化铝的粒径Dv50为316nm),其中草酸溶液中草酸与亚铁盐溶液中亚铁盐的摩尔比为1.1:1,纳米氧化铝悬浊液中纳米氧化铝的添加量为生成的草酸亚铁质量分数的3.5%,硫酸亚铁溶液、草酸溶液浓度和纳米氧化铝悬浊液的浓度分别为0.6mol/L、0.8mol/L和4mol/L;将配置好的硫酸亚铁溶液和草酸溶液往纳米氧化铝悬浊液滴加,滴加速率均为6L/h,滴加过程中会生成草酸亚铁,在滴加过程中,需要同步对悬浊液进行砂磨处理,砂磨转速为2500rpm,砂磨后悬浊液静置沉淀,沉淀后物料经压滤式脱水,压滤后物料含水量低于8%,经砂磨后其Dv50为1.1μm;
(2)把压滤后所得滤饼在氧气气氛下进行烧结,烧结温度为680℃,烧结时间为8h,把烧结后物料进行粉碎,得到多孔形貌的氧化铁,形貌参见图2,所得氧化铁BET较大,活性较强,其BET能高达48m2/g;
(3)把所得多孔氧化铁与碳纳米管(粒径Dv50为100nm)和Li2O(粒径Dv50为11μm)进行充分混合,其中碳纳米管的添加量为多孔氧化铁质量的5%,氧化锂与多孔氧化铁的摩尔比为5.5:1,所用设备为高速混合机,混料转速为500rpm,混料时间为 20min,将混合好的物料在氮气气氛下进行烧结,烧结温度为750℃,烧结时间为15h,把烧结后的物料在进行气流粉碎,Dv50控制在9.5μm,可得到性能良好的Li5FeO4
表征测试:经过该合成方法得到的Li5FeO4,参见图3,所形成的颗粒表面包覆效果较好。
实施例2
本实施例制备了一种电化学材料Li5FeO4,具体过程为:
(1)配置一定浓度的硫酸亚铁溶液、草酸溶液浓度和纳米氧化铝的悬浊液(纳米氧化铝的粒径Dv50为316nm),其中草酸溶液中草酸与亚铁盐溶液中亚铁盐的摩尔比为1.1:1,纳米氧化铝悬浊液中纳米氧化铝的添加量为生成的草酸亚铁质量分数的3.5%,硫酸亚铁溶液、草酸溶液浓度和纳米氧化铝悬浊液的浓度分别为1.7mol/L、3mol/L和4mol/L,将配置好的硫酸亚铁溶液和草酸溶液往纳米氧化铝悬浊液滴加,滴加速率均为6L/h,滴加过程中会生成草酸亚铁,在滴加过程中,需要同步对悬浊液进行砂磨处理,砂磨转速为2500rpm,砂磨后悬浊液静置沉淀,沉淀后物料经压滤式脱水,压滤后物料含水量低于8%;经砂磨后其Dv50为1.6μm
(2)把压滤后所得滤饼在氧气气氛下进行烧结,烧结温度为680℃,烧结时间为8h,把烧结后物料进行粉碎,得到多孔形貌的氧化铁,所得氧化铁BET较大,活性较强,其BET能高达48m2/g;
(3)把所得多孔氧化铁与葡萄糖,LiOH进行充分混合,其中葡萄糖的添加量为多孔氧化铁质量的10%,氢氧化锂与多孔氧化铁的摩尔比为5.8:1,所用设备为高速混合机,混料转速为500rpm,混料时间为20min,其中碳葡萄糖的作用是能形成碳包覆层,改善材料导电性能;将混合好的物料在氮气气氛下进行烧结,与实施例1的氧化锂工艺不同,因为氢氧化锂较氧化锂活性低,所以烧结温度需要更高,烧结温度为400℃保温烧结3h,然后在780℃下烧结18h,把烧结后的物料在进行气流粉碎,Dv50控制在8μm-15μm,可得到性能良好的Li5FeO4
表征测试:经过该合成方法得到的Li5FeO4,参见图5,所形成的颗粒与氧化锂工艺接近,但成本较低。
对比例1
本对比例制备了一种电化学材料Li5FeO4,采用常规现有氧化铁(Dv50为2.5μm,BET为23m2/g)为铁源,葡萄糖为碳源,具体过程为:
把氢氧化锂与氧化铁按照摩尔比5.5:1进行混合,其中葡萄糖的添加量为氧化铁质量的10%,所用设备为高速混合机,混料转速为500rpm,混料时间为20min,把混合后物料在烧结温度为400℃保温烧结3h,然后在780℃下烧结18h,粉碎后得到Li5FeO4
表征测试:经过该合成方法得到的Li5FeO4,参见图7,所形成的颗粒非常大,主要是其氧化铁颗粒较大导致。
对比例2
本对比例制备了一种电化学材料Li5FeO4,对比例2与实施例1的区别在于,对比例2未加入纳米氧化铝,具体过程为:
(1)配置一定浓度的硫酸亚铁溶液和草酸溶液,硫酸亚铁溶液、草酸溶液浓度分别为0.6mol/L、0.8mol/L,将配置好的硫酸亚铁溶液和草酸溶液往反应釜滴加,滴加速率均为6L/h,草酸与硫酸亚铁添加量摩尔比为1.1:1,滴加过程中会生成草酸亚铁,在滴加过程中,需要同步对悬浊液进行砂磨处理,砂磨转速为2500rpm,砂磨后悬浊液静置沉淀,沉淀后物料经压滤式脱水,压滤后物料含水量低于8%,经砂磨后其Dv50为1.3μm;
(2)把压滤后所得滤饼在氧气气氛下进行烧结,烧结温度为680℃,烧结时间为8h,把烧结后物料进行粉碎,得到多孔形貌的氧化铁其BET为43m2/g;
(3)把所得多孔氧化铁与碳纳米管(粒径Dv50为100nm)和Li2O(粒径Dv50为11μm)充分混合,其中碳纳米管的添加量为多孔氧化铁质量的5%,氧化锂与多孔氧化铁的摩尔比为5.5:1,所用设备为高速混合机,混料转速为500rpm,混料时间为20min,将混合好的物料在氮气气氛下进行烧结,烧结温度为750℃,烧结时间为15h,把烧结后的物料在进行气流粉碎,Dv50为10.2μm,可得到材料Li5FeO4
表征测试:经过该合成方法得到的Li5FeO4,其XRD图参见图9,与实施例1在同 样烧结条件下,对比例2所形成的材料晶度相对较弱,说明没有纳米氧化铝的助熔作用,合成晶度较强的材料需要更高的烧结温度,但烧结温度的升高容易导致材料颗粒的长大,不利于材料容量的发挥。
试验例
将实施例1-2、对比例1-2制备的Li5FeO4分别制成扣式电池,需要经过浆料的制备,涂布,干燥,压片,组装,上柜测试等步骤:①制备浆料,称取4g材料与导电剂,粘结剂混合,其中材料:导电剂:粘结剂的质量比为8:1:1,所用粘结剂为PVDF,导电剂为导电炭;②涂布,使用刮刀在铝箔上进行涂布;③干燥,将涂布好的极片在真空干燥箱中进行干燥,干燥温度为120℃,干燥时间为2h;④压片,将干燥后极片使用对辊机进行压片;⑤将正极极片,负极极片,隔膜,电解液等电池零件组装成扣式电池。在充电电压4.25V,充电倍率0.1C的条件下测试比容量。
图4为实施例1合成的Li5FeO4的充放电曲线,从图中可见其容量能达到625mAh/g。
图6为实施例2合成的Li5FeO4的充放电曲线,从图中可见其容量能达到640mAh/g。
图8为对比例1合成的Li5FeO4的充放电曲线,从图中可见其容量只有480mAh/g,比实施例使用多孔氧化铁的性能差。
图10为对比例2合成的Li5FeO4的充放电曲线,从图中可见其容量只有585mAh/g,较添加了纳米氧化铝的实施例1、2性能差。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种电化学材料的制备方法,其特征在于,包括以下步骤:
    S1:将亚铁盐溶液和草酸溶液滴加到纳米氧化铝悬浊液中,并在滴加过程同步对反应物料进行研磨,滴液结束后,将反应物料静置沉淀,固液分离得到沉淀物;
    S2:将所述沉淀物在氧气气氛下进行烧结,得到多孔氧化铁;
    S3:将所述多孔氧化铁、碳源和锂源进行混合,所得混合物质在惰性气氛下进行烧结,即得所述电化学材料。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述亚铁盐溶液的浓度为0.1-10mol/L,所述草酸溶液的浓度为0.1-15mol/L,所述纳米氧化铝悬浊液的浓度为0.2-6mol/L。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述研磨采用砂磨,所述砂磨的转速为2000-3000rpm。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述研磨后,反应物料的粒度Dv50为0.5μm-2μm。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述烧结的温度为600-800℃。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述多孔氧化铁的比表面积为35-60m2/g。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述碳源为碳纳米管、聚氧化乙烯、聚乙烯亚胺、葡萄糖、聚乙烯醇、聚苯醚桐或聚噻吩中的一种或几种。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述锂源为单水氢氧化锂、无水氢氧化锂或氧化锂中的一种或几种。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述电化学材料的粒径Dv50为8μm-15μm。
  10. 如权利要求1-9中任一项所述的制备方法在制备锂离子电池中的应用。
PCT/CN2023/077216 2022-05-05 2023-02-20 一种电化学材料的制备方法及其应用 WO2023213114A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210479709.9A CN114927656A (zh) 2022-05-05 2022-05-05 一种电化学材料的制备方法及其应用
CN202210479709.9 2022-05-05

Publications (1)

Publication Number Publication Date
WO2023213114A1 true WO2023213114A1 (zh) 2023-11-09

Family

ID=82806314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077216 WO2023213114A1 (zh) 2022-05-05 2023-02-20 一种电化学材料的制备方法及其应用

Country Status (2)

Country Link
CN (1) CN114927656A (zh)
WO (1) WO2023213114A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114927656A (zh) * 2022-05-05 2022-08-19 宜昌邦普循环科技有限公司 一种电化学材料的制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637869A (zh) * 2012-05-02 2012-08-15 中国科学院长春应用化学研究所 一种Fe2O3纳米棒及其制备方法和用途
CN105489885A (zh) * 2016-01-08 2016-04-13 厦门大学 一种多孔微米棒状四氧化三钴及其制备方法与应用
CN110498449A (zh) * 2019-09-06 2019-11-26 湖北融通高科先进材料有限公司 一种铁酸锂材料及其制备方法
JP2020053308A (ja) * 2018-09-27 2020-04-02 株式会社豊田自動織機 複合粒子
CN111725576A (zh) * 2020-07-09 2020-09-29 湖北融通高科先进材料有限公司 一种碳包覆富锂氧化物复合材料及其制备方法
CN112042005A (zh) * 2017-12-22 2020-12-04 新罗纳米技术有限公司 具有含陶瓷的分隔器层的分隔器
CN114927656A (zh) * 2022-05-05 2022-08-19 宜昌邦普循环科技有限公司 一种电化学材料的制备方法及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102649587A (zh) * 2011-02-24 2012-08-29 中国科学院兰州化学物理研究所 一种α相三氧化二铁的制备方法
CN102275997A (zh) * 2011-07-14 2011-12-14 浙江大学 纳米晶构筑的多孔氧化铁及其制备方法
CN105413713B (zh) * 2015-10-31 2017-12-29 中国地质大学(武汉) 一种硫改性的多孔氧化铁催化剂及其制备方法和应用
CN106450189B (zh) * 2016-10-11 2019-04-12 华南师范大学 一种锂离子电池用氮掺杂的碳包覆氧化铁负极材料及制备
CN112028126B (zh) * 2019-06-03 2022-12-06 巴斯夫杉杉电池材料有限公司 一种小粒径补锂添加剂Li5FeO4的制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637869A (zh) * 2012-05-02 2012-08-15 中国科学院长春应用化学研究所 一种Fe2O3纳米棒及其制备方法和用途
CN105489885A (zh) * 2016-01-08 2016-04-13 厦门大学 一种多孔微米棒状四氧化三钴及其制备方法与应用
CN112042005A (zh) * 2017-12-22 2020-12-04 新罗纳米技术有限公司 具有含陶瓷的分隔器层的分隔器
JP2020053308A (ja) * 2018-09-27 2020-04-02 株式会社豊田自動織機 複合粒子
CN110498449A (zh) * 2019-09-06 2019-11-26 湖北融通高科先进材料有限公司 一种铁酸锂材料及其制备方法
CN111725576A (zh) * 2020-07-09 2020-09-29 湖北融通高科先进材料有限公司 一种碳包覆富锂氧化物复合材料及其制备方法
CN114927656A (zh) * 2022-05-05 2022-08-19 宜昌邦普循环科技有限公司 一种电化学材料的制备方法及其应用

Also Published As

Publication number Publication date
CN114927656A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
CN110474044B (zh) 一种高性能水系锌离子电池正极材料及其制备方法与应用
WO2023124357A1 (zh) 钠离子电池的纳米级前驱体、复合正极材料及制备方法
WO2023137859A1 (zh) 一种钠离子电池正极活性物质及其制备方法、应用
CN109167028B (zh) 一种磷酸铁锂/碳复合材料的再生制备方法
CN113651303B (zh) 一种纳米片状磷酸铁的制备方法及应用其制得的LiFePO4/C正极活性材料
CN111146439B (zh) 一种磷酸铁锂正极材料的制备方法
WO2023213114A1 (zh) 一种电化学材料的制备方法及其应用
CN111162271A (zh) 多元正极材料及其制备方法和锂离子电池
CN112086607A (zh) 一种聚合物@二维材料改性层状双金属氢氧化物的复合隔膜材料及其制备方法和应用
CN115763717A (zh) 钠离子电池正极材料、其制备方法、钠离子电池正极极片以及钠离子电池
CN115939336A (zh) 一种钠离子电池正极材料、正极片以及二次电池
JP2024516477A (ja) フェロボロン合金被覆リン酸鉄リチウムの製造方法
CN116986572A (zh) 一种改性磷酸锰铁锂正极材料及其制备方法与锂离子电池
CN115172700A (zh) 一种核壳结构富锂氧化物及制备方法和应用
CN113603156A (zh) 一种用于正极材料的水洗砂磨包覆方法、制备方法、正极材料及电池
WO2024022428A1 (zh) 一种钠电池正极材料及其制备方法以及应用
CN112864391A (zh) 一种铅/还原氧化石墨烯纳米复合材料的制备方法及其应用
WO2024000814A1 (zh) 一种正极活性材料的制备方法及其应用
CN116565180A (zh) 一种高振实密度磷酸铁锂正极材料及其制备方法和应用
WO2023040287A1 (zh) 锂过渡金属氧化物正极材料表面改性的方法
CN116002648A (zh) 一种高压实低温磷酸铁锂正极材料及其制备方法和应用
CN115911381A (zh) 一种电极材料及其制备方法
CN110492089B (zh) 一种碳包覆三氧化二铁与五钒酸钾复合材料及其制备方法
CN112086679A (zh) 高镍三元材料及表面改性方法和锂离子电池
CN113666411A (zh) 一种微波法制备超小氧化物与碳复合的锂电池负极材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799104

Country of ref document: EP

Kind code of ref document: A1