WO2023212999A1 - 复合催化剂及生物基呋喃化学品的合成方法 - Google Patents

复合催化剂及生物基呋喃化学品的合成方法 Download PDF

Info

Publication number
WO2023212999A1
WO2023212999A1 PCT/CN2022/099816 CN2022099816W WO2023212999A1 WO 2023212999 A1 WO2023212999 A1 WO 2023212999A1 CN 2022099816 W CN2022099816 W CN 2022099816W WO 2023212999 A1 WO2023212999 A1 WO 2023212999A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite catalyst
agarose
mass ratio
bio
reaction
Prior art date
Application number
PCT/CN2022/099816
Other languages
English (en)
French (fr)
Inventor
张建
冯苏飞
李明富
陈慧
淮丽媛
杨杰
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Publication of WO2023212999A1 publication Critical patent/WO2023212999A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/135Halogens; Compounds thereof with titanium, zirconium, hafnium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1806Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with alkaline or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom

Definitions

  • This application specifically relates to a composite catalyst and a synthesis method of bio-based furan chemicals, which belongs to the technical field of organic chemistry.
  • biomass carbohydrates are a promising alternative to fossil energy and one of the raw materials for the production of bio-based chemicals.
  • An important source of biomass carbohydrates is marine biomass. Marine biomass has abundant reserves, short growth cycle, simple structure, and is easy to depolymerize. It contains high carbohydrate content and is easy to extract. It is a potential biomass resource.
  • 5-Hydroxymethylfurfural (5-HMF) is one of the key intermediate chemicals derived from carbohydrate dehydration. It is a versatile platform compound that can be used to synthesize a variety of chemicals and fuels.
  • metal salt catalysts are widely used. Currently, the commonly used metal salt catalysts are mainly metal chlorides.
  • the main purpose of this application is to provide a composite catalyst and a synthesis method of bio-based furan chemicals to overcome the shortcomings of the existing technology.
  • One aspect of the present application provides a composite catalyst, including a first component and a second component, the first component includes a tetravalent metal salt, and the second component includes an acid metal salt.
  • Another aspect of the present application provides the use of the composite catalyst in the reaction of preparing bio-based furan chemicals from biomass carbohydrates.
  • Another aspect of the present application provides a method for synthesizing bio-based furan chemicals, which includes: at least mixing biomass carbohydrates, solvents and the composite catalyst to form a mixed reaction system, and allowing the mixed reaction system to operate at 80 ⁇ 110°C reaction to obtain the bio-based furan chemicals.
  • the composite catalyst provided has simple ingredients, is cheap and easy to obtain;
  • the synthesis method of a bio-based furan chemical provided by the composite catalyst can simply and efficiently catalyze the synthesis of 5-hydroxymethylfurfural from biomass carbohydrates under mild conditions, with a high yield of the target product. It has good industrial application prospects.
  • Figure 1 is a process schematic diagram of a synthesis method of bio-based furan chemicals in the embodiment of the present application.
  • Some embodiments of the present application provide a composite catalyst that includes a first component and a second component, the first component includes a tetravalent metal salt, and the second component includes an acid metal salt.
  • the tetravalent metal salt includes tetravalent metal chloride, which may be any one of titanium chloride, zirconium chloride, hafnium chloride, cerium chloride, germanium chloride, and tin chloride. or a combination of multiple, but not limited to this.
  • the acid metal salt includes a monovalent or divalent acid metal salt, such as potassium dihydrogen phosphate, dipotassium hydrogen phosphate, potassium hydrogen sulfate, potassium hydrogen persulfate, or sodium hydrogen sulfate. Any one or a combination of more, but not limited to this.
  • the mass ratio of the first component to the second component is 5:1 to 1:5, for example, it can be 5:1, 5:2, 5:3, 5:4, 1: 1. Any value among 1:5, 2:5, 3:5 and 4:5.
  • Some embodiments of the present application also provide uses of the composite catalyst, including: using the composite catalyst in the reaction of biomass carbohydrates to prepare bio-based furan chemicals.
  • the biomass carbohydrates include seaweed-derived polysaccharides.
  • the biomass carbohydrates may include but are not limited to agar, agarose, and the like.
  • the bio-based furan chemical includes, but is not limited to, 5-hydroxymethylfurfural.
  • Some embodiments of the present application also provide a method for synthesizing bio-based furan chemicals, including: converting biomass carbohydrates into bio-based furan chemicals in the presence of the composite catalyst and under suitable reaction conditions .
  • Some embodiments of the present application also provide a method for synthesizing bio-based furan chemicals, including: at least mixing biomass carbohydrates, solvents and the composite catalyst to form a mixed reaction system, and allowing the mixed reaction system to operate at 80 ⁇ 110°C reaction to obtain the bio-based furan chemicals.
  • the mass ratio of the biomass carbohydrates to the composite catalyst is 5:1 to 1:5, for example, it can be 5:1, 5:2, 5:3, 5:4, 1:1, Any value among 1:5, 2:5, 3:5, and 4:5.
  • the mass-volume ratio of the biomass carbohydrates to the solvent is 1g:5mL to 1g:40mL, for example, it can be 1:5, 1:10, 1:15, 1:20, 1:25, Any value among 1:30 and 1:40 (g:mL).
  • the solvent includes any one or a combination of water, dimethyl sulfoxide, or ionic liquid, but is not limited thereto.
  • the ionic liquid is any one of 1-butyl-3-methylimidazole chloride salt, 1-butyl-3-methylimidazole bromide salt, 1-allyl-3-methylimidazole chloride salt, or Various combinations, but not limited to this.
  • the solvent includes water and dimethyl sulfoxide (DMSO) or ionic liquid
  • the mass ratio of water to dimethyl sulfoxide (DMSO) or ionic liquid is 6:1 to 1:6, such as 1:1, 6 Any value among: 1, 3:1, 1:1, 1:3, and 1:6.
  • the reaction time is 1 to 720 min, and further, preferably 1 to 360 min.
  • the biomass carbohydrates include seaweed-derived polysaccharides, such as any one or a combination of agar, conventional agarose, low melting point agarose, low electroosmotic agarose, and high strength agarose, and is not limited to this.
  • the bio-based furan chemical includes 5-hydroxymethylfurfural.
  • Example 1 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) provided in this embodiment includes: adding agarose and composite catalyst to water, the mass ratio of agarose to composite catalyst is 1:3, and the mass ratio of agarose to solvent is The mass to volume ratio is 1:20 (the following refers to g:mL unless otherwise specified).
  • the reaction temperature is controlled to 100°C and the time is 30 minutes. After the reaction is completed, high performance liquid chromatography is used to analyze the reaction mixture. Among them, 5-HMF The yield is 71%.
  • a synthesis method of 5-hydroxymethylfurfural includes: adding 50 mg agarose and SnCl 4 to a mixed solvent of 200 ⁇ L H 2 O and 800 ⁇ L DMSO, the molar amount of SnCl 4 and the monosaccharide unit in the agarose The ratio is 0.1:1, and the reaction is carried out at 140°C for 60 minutes. After the reaction is completed, the sample is tested using high performance liquid chromatography. The total yield of 5-HMF and levulinic acid (LA) is 32%, and the yield of 5-HMF is 32%. is 24%, and the yield of LA is 8%.
  • the preparation process of the catalyst used in Comparative Example 2 is far more complicated and more expensive than the catalyst of Example 1.
  • the 5-HMF synthesis process of Comparative Example 2 is also far more complicated than the process of Example 1, and the reaction temperature used is also It is significantly higher than that of Example 1, with higher energy consumption and greater solvent consumption, which cannot meet the requirements of green environmental protection.
  • Example 2 This example provides a composite catalyst containing titanium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:3, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 100°C, and the reaction time was 60 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 58%.
  • Example 3 This example provides a composite catalyst containing hafnium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:3, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 100°C, and the reaction time was 150 min. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 57%.
  • Example 4 This example provides a composite catalyst containing cerium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:3, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 100°C, and the reaction time was 120 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 55%.
  • Example 5 This example provides a composite catalyst containing titanium chloride and potassium dihydrogen phosphate with a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:3, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 100°C, and the reaction time was 30 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 50%.
  • Example 6 This example provides a composite catalyst containing germanium chloride and potassium hydrogen persulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:2, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 100°C, and the reaction time was 30 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 51%.
  • Example 7 This example provides a composite catalyst containing germanium chloride and sodium bisulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:2, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 100°C, and the reaction time was 30 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 53%.
  • Example 8 This example provides a composite catalyst containing zirconium chloride and sodium bisulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:3, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 100°C, and the reaction time was 120 min. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 65%.
  • Example 9 This example provides a composite catalyst containing titanium chloride and sodium bisulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:3, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 100°C, and the reaction time was 90 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 62%.
  • Example 10 This example provides a composite catalyst containing tin chloride and sodium bisulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:3, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 100°C, and the reaction time was 90 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 60%.
  • Example 11 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:3, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 95°C, and the reaction time was 60 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 73%.
  • Example 12 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:3, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 110°C, and the reaction time was 60 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 63%.
  • Example 13 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:5.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:3, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 95°C, and the reaction time was 60 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 64%.
  • Example 14 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 2:5.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:3, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 95°C, and the reaction time was 60 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 62%.
  • Example 15 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 3:5.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:3, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 95°C, and the reaction time was 60 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 57%.
  • Example 16 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 4:5.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:3, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 95°C, and the reaction time was 60 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 52%.
  • Example 17 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:1.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:3, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 95°C, and the reaction time was 60 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 70%.
  • Example 18 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 5:4.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) provided in this embodiment includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:3, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 95°C, and the reaction time was 60 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 67%.
  • Example 19 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 5:3.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:3, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 95°C, and the reaction time was 60 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 65%.
  • Example 20 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 5:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:3, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 95°C, and the reaction time was 60 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 61%.
  • Example 21 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 5:1.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:3, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 95°C, and the reaction time was 60 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 56%.
  • Example 22 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, wherein the mass ratio of agarose to composite catalyst is 1:5, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 95°C, and the reaction time was 60 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 70%.
  • Example 23 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 2:5, and the mass ratio of agarose to solvent The mass to volume ratio was 1:20, the reaction temperature was controlled to 95°C, and the reaction time was 60 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 68%.
  • Example 24 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 3:5, and the mass ratio of agarose to solvent The mass to volume ratio was 1:10, the reaction temperature was controlled to 95°C, and the reaction time was 60 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 65%.
  • Example 25 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 4:5, and the mass ratio of agarose to solvent The mass-to-volume ratio was 1:15, and the reaction temperature was controlled to 95°C and the reaction time was 60 minutes. After the reaction was completed, high performance liquid chromatography was used to analyze the reaction mixture, and the yield of 5-HMF was 55%.
  • Example 26 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 1:1, and the mass ratio of agarose to solvent The mass to volume ratio was 1:25, the reaction temperature was controlled to 95°C, and the reaction time was 60 minutes. After the reaction was completed, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 60%.
  • Example 27 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 5:2, and the mass ratio of agarose to solvent The mass to volume ratio was 1:30, the reaction temperature was controlled to 95°C, and the reaction time was 60 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 55%.
  • Example 28 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 5:3, and the mass ratio of agarose to solvent The mass-to-volume ratio was 1:35, and the reaction temperature was controlled to 95°C and the reaction time was 60 minutes. After the reaction was completed, high performance liquid chromatography was used to analyze the reaction mixture, and the yield of 5-HMF was 58%.
  • Example 29 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 5:3, and the mass ratio of agarose to solvent The mass to volume ratio was 1:40, the reaction temperature was controlled to 95°C, and the reaction time was 60 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 59%.
  • Example 30 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and composite catalyst to water, where the mass ratio of agarose to composite catalyst is 5:4, and the mass ratio of agarose to solvent The mass to volume ratio was 1:40, the reaction temperature was controlled to 95°C, and the reaction time was 60 minutes. After the reaction, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 53%.
  • Example 31 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and a composite catalyst into a composite solvent, the mass ratio of water to DMSO in the composite solvent is 1:6, and The mass ratio of agarose to composite catalyst is 1:3, and the mass/volume ratio of agarose to solvent is 1:20.
  • the reaction temperature is controlled to 100°C and the time is 30 minutes. After the reaction is completed, high performance liquid chromatography is used to analyze the reaction mixture.
  • the yield of 5-HMF is 75%.
  • Example 32 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and a composite catalyst into a composite solvent, the mass ratio of water to DMSO in the composite solvent is 1:3, and The mass ratio of agarose to composite catalyst is 1:3, and the mass/volume ratio of agarose to solvent is 1:20.
  • the reaction temperature is controlled to 100°C and the time is 30 minutes. After the reaction is completed, high performance liquid chromatography is used to analyze the reaction mixture. The yield of 5-HMF was 68%.
  • Example 33 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and a composite catalyst into a composite solvent, the mass ratio of water to DMSO in the composite solvent is 1:1, and The mass ratio of agarose to composite catalyst is 1:3, and the mass/volume ratio of agarose to solvent is 1:20.
  • the reaction temperature is controlled to 100°C and the time is 30 minutes. After the reaction is completed, high performance liquid chromatography is used to analyze the reaction mixture. The yield of 5-HMF was 57%.
  • Example 34 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and a composite catalyst into a composite solvent, the mass ratio of water to DMSO in the composite solvent is 6:1, and The mass ratio of agarose to composite catalyst is 1:3, and the mass/volume ratio of agarose to solvent is 1:20.
  • the reaction temperature is controlled to 95°C and the time is 30 minutes. After the reaction is completed, high performance liquid chromatography is used to analyze the reaction mixture. The yield of 5-HMF was 52%.
  • Example 35 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and a composite catalyst into a composite solvent, water and 1-butyl-3-methylimidazole in the composite solvent
  • the mass ratio of chlorine salt is 1:6, the mass ratio of agarose to composite catalyst is 1:3, the mass volume ratio of agarose to solvent is 1:20, the reaction temperature is controlled to 100°C, the time is 30 minutes, and the reaction is completed Afterwards, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 70%.
  • Example 36 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and a composite catalyst into a composite solvent, water and 1-butyl-3-methylimidazole in the composite solvent
  • the mass ratio of chlorine salt is 1:3, the mass ratio of agarose to composite catalyst is 1:3, the mass volume ratio of agarose to solvent is 1:20
  • the reaction temperature is controlled to 100°C
  • the time is 30 minutes
  • the reaction is completed Afterwards, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 50%.
  • Example 37 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and a composite catalyst into a composite solvent, containing water and 1-butyl-3-methylimidazole.
  • the mass ratio of chlorine salt is 6:1
  • the mass ratio of agarose to composite catalyst is 1:3
  • the mass volume ratio of agarose to solvent is 1:20
  • the reaction temperature is controlled to 100°C
  • the time is 30 minutes
  • the reaction is completed.
  • the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 48%.
  • Example 38 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and a composite catalyst into a composite solvent, water and 1-butyl-3-methylimidazole in the composite solvent
  • the mass ratio of bromide salt is 1:6, the mass ratio of agarose to composite catalyst is 1:3, the mass volume ratio of agarose to solvent is 1:20, the reaction temperature is controlled to 100°C, the time is 30min, and the reaction is completed.
  • the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 71%.
  • Example 39 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and a composite catalyst into a composite solvent, and the water in the composite solvent and 1-allyl-3-methyl
  • the mass ratio of imidazole chloride is 1:6, the mass ratio of agarose to composite catalyst is 1:3, the mass volume ratio of agarose to solvent is 1:20, the reaction temperature is controlled to 100°C, and the reaction time is 30 minutes. After completion, the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 65%.
  • Example 40 This example provides a composite catalyst containing zirconium chloride and potassium hydrogen sulfate in a mass ratio of 1:2.
  • the synthesis method of 5-hydroxymethylfurfural (5-HMF) includes: adding agarose and a composite catalyst into a composite solvent, and the water in the composite solvent and 1-allyl-3-methyl
  • the mass ratio of imidazole chloride is 1:4
  • the mass ratio of agarose to composite catalyst is 1:3
  • the mass volume ratio of agarose to solvent is 1:20
  • the reaction temperature is controlled to 100°C
  • the reaction time is 30 minutes.
  • the reaction mixture was analyzed by high performance liquid chromatography, and the yield of 5-HMF was 63%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Furan Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

本申请公开了一种复合催化剂及生物基呋喃化学品的合成方法。所述复合催化剂包括四价金属盐和酸式金属盐。所述生物基呋喃化学品的合成方法包括:使包含生物质碳水化合物、所述复合催化剂和溶剂的反应体系进行反应。本申请通过采用四价金属盐和酸式金属盐形成复合催化剂,可以在温和条件下简单高效的催化生物质碳水化合物合成5-羟甲基糠醛,目标产品产率高,同时催化剂组成简单、原料廉价易得,具有很好的工业化前景。

Description

复合催化剂及生物基呋喃化学品的合成方法
本申请基于并要求于2022年5月5日递交的申请号为202210490575.0、发明名称为“复合催化剂及生物基呋喃化学品的合成方法”的中国专利申请的优先权。
技术领域
本申请具体涉及一种复合催化剂及生物基呋喃化学品的合成方法,属于有机化学技术领域。
背景技术
生物质碳水化合物作为一种可再生的碳源,是一种很有潜力的化石能源替代品,是生产生物基化学品的原料之一。生物质碳水化合物的一个重要来源是海洋生物质。海洋生物质的储量丰富,生长周期短,结构简单,易于解聚,其中的碳水化合物含量高且易于提取,是一种很有潜力的生物质资源。5-羟甲基糠醛(5-HMF)是碳水化合物脱水衍生的关键中间体化学品之一,是一种用途广泛的平台化合物,可用于合成多种化学品和燃料。利用生物质合成5-HMF的过程中,金属盐催化剂应用广泛。目前常用的金属盐催化剂主要以金属氯化物为主。其中,一价金属氯化物由于其活性较低,难以催化生物质转化为呋喃化学品。二价或三价金属盐能与糖形成络合促进糖的异构化,在一定程度上促进了5-HMF的生成,但由于其表面电子密度较低,电子转移活性受限,一般催化温度较高,反应时间较长,限制了从糖类生物质合成5-HMF的效率(例如CN109111414A)。如何开发出一种新型催化剂,以提升生物质转化为呋喃化学品的效率,对于将生物质转化为高附加能源化学中的工业化应用有非常重要的意义,也是本领域一直渴望解决的难题。
发明内容
本申请的主要目的在于提供一种复合催化剂及生物基呋喃化学品的合成方法,以克服现有技术中的不足。
为了实现上述目的,本申请提供了如下技术方案。
本申请的一个方面提供了一种复合催化剂,包括第一组份和第二组分,所述第一组分包 含四价金属盐,所述第二组分包含酸式金属盐。
本申请的另一个方面提供了所述复合催化剂在以生物质碳水化合物制备生物基呋喃化学品的反应中的应用。
本申请的又一个方面提供了一种生物基呋喃化学品的合成方法,其包括:至少使生物质碳水化合物、溶剂及所述复合催化剂混合形成混合反应体系,并使所述混合反应体系在80~110℃反应,从而获得所述生物基呋喃化学品。
与现有技术相比,本申请至少具有如下优点:
(1)提供的复合催化剂成分简单,廉价易得;
(2)提供的一种生物基呋喃化学品的合成方法因采用了所述复合催化剂,可以在温和条件下简单高效的催化生物质碳水化合物合成5-羟甲基糠醛,目标产品产率高,具有很好的工业化应用前景。
附图说明
图1是本申请实施例中一种生物基呋喃化学品合成方法的工艺原理图。
具体实施方式
鉴于现有技术的不足,本申请人经长期研究和实践,得以提出本申请的技术方案,其主要是提供了一种复合金属盐催化剂及利用该催化剂合成生物基呋喃化学品的方法,该方法可以在温和条件下高效催化生物质碳水化合物转化形成5-羟甲基糠醛。如下将对本申请的技术方案予以详细说明。
本申请的一些实施例提供的一种复合催化剂包括第一组份和第二组分,所述第一组分包含四价金属盐,所述第二组分包含酸式金属盐。
在一个实施例中,所述四价金属盐包括四价金属氯化物,例如可以是氯化钛、氯化锆、氯化铪、氯化铈、氯化锗、氯化锡中的任意一种或多种的组合,且不限于此。
在一个实施例中,所述酸式金属盐包括一价或二价酸式金属盐,例如可以是磷酸二氢钾、磷酸氢二钾、硫酸氢钾、过硫酸氢钾、硫酸氢钠中的任意一种或多种的组合,且不限于此。
在一个实施例中,所述第一组分与第二组分的质量比为5∶1~1∶5,例如可以为5∶1、5∶2、5∶3、5∶4、1∶1、1∶5、2∶5、3∶5、4∶5中的任一数值。
本申请的一些实施例还提供了所述复合催化剂的用途,包括:将所述复合催化剂用于生物质碳水化合物制备生物基呋喃化学品的反应中。
在一个实施例中,所述生物质碳水化合物包括海藻衍生多糖,例如,所述生物质碳水化合物可以包括但不限于琼脂或琼脂糖等。
在一个实施例中,所述生物基呋喃化学品包括但不限于5-羟甲基糠醛。
本申请的一些实施例还提供了一种生物基呋喃化学品的合成方法,包括:在有所述复合催化剂存在、且适合反应的条件下,使生物质碳水化合物被转化为生物基呋喃化学品。
本申请的一些实施例还提供了一种生物基呋喃化学品的合成方法,包括:至少使生物质碳水化合物、溶剂及所述复合催化剂混合形成混合反应体系,并使所述混合反应体系在80~110℃反应,从而获得所述生物基呋喃化学品。
在一个实施例中,所述生物质碳水化合物与复合催化剂的质量比为5∶1~1∶5,例如可以为5∶1、5∶2、5∶3、5∶4、1∶1、1∶5、2∶5、3∶5、4∶5中的任一数值。
在一个实施例中,所述生物质碳水化合物与溶剂的质量体积比为1g∶5mL~1g∶40mL,例如可以为1∶5、1∶10、1∶15、1∶20、1∶25、1∶30、1∶40(g∶mL)中的任一数值。
在一个实施例中,所述溶剂包括水、二甲基亚砜或离子液体中的任意一种或多种的组合,且不限于此。
进一步的,所述离子液体为1-丁基-3甲基咪唑氯盐,1-丁基-3甲基咪唑溴盐1-烯丙基-3-甲基咪唑氯盐中的任意一种或多种的组合,且不限于此。
进一步的,所述溶剂包括水与二甲基亚砜或离子液体,且水与二甲基亚砜(DMSO)或离子液体的质量比为6∶1~1∶6,例如1∶1、6∶1、3∶1、1∶1、1∶3、1∶6中的任一数值。
在一个实施例中,所述反应的时间为1~720min,进一步的,可以优选为1~360min。
在一个实施例中,所述生物质碳水化合物包括海藻衍生多糖,例如琼脂、常规琼脂糖、低熔点琼脂糖、低电渗琼脂糖、高强度琼脂糖中的任意一种或多种的组合,且不限于此。
在一个实施例中,所述生物基呋喃化学品包括5-羟甲基糠醛。
下面将以具体的实施例来对本申请作进一步详细的描述,但本申请的保护范围不局限于这些具体实例。若非特别说明,如下实施例中所采用的原料均可以从市场途径获取或者参考文献自制,所采用的生产设备、测试设备及测试方法等也可以是本领域常见的设备或方法。
实施例1本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20(如下若非特别说明,则均指g∶mL),控制反应温度为100℃、时间为30min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为71%。
对比例1一种5-羟甲基糠醛的合成方法包括:将50mg琼脂糖与SnCl 4加入到200μL H 2O和800μL DMSO的混合溶剂中,SnCl 4与琼脂糖中单糖单元的摩尔量之比为0.1∶1,在140℃下反应60min,反应结束后,利用高效液相色谱测试样品,其中5-HMF和乙酰丙酸(LA)的总收率为32%,5-HMF的收率为24%,LA的收率为8%。
对比例2一种5-羟甲基糠醛的合成方法包括:
(1)将常规琼脂糖与合成碳基固体酸按照质量比5∶1混合均匀加入反应釜中;
(2)向反应釜中加入10倍于常规琼脂糖及合成碳基固体酸质量之和的混合溶剂,该混合溶剂中包含质量比为2∶6∶2的二甲基亚砜、γ-戊内酯和水,在190℃条件下反应3h;
(3)反应结束后,冷却至20℃,通过减压过滤分离,得到产物5-HMF,其产率为64%。
该对比例2所采用的催化剂的制备工艺远比实施例1的催化剂复杂,且更为昂贵,同时对比例2的5-HMF合成工艺也远比实施例1的工艺复杂,采用的反应温度也明显高于实施例1,能耗更高,溶剂消耗量更大,无法满足绿色环保的要求。
对比例3一种5-羟甲基糠醛的合成方法与实施例1基本相同,区别在于:采用氯化铝替代了复合催化剂中的氯化锆。最终5-HMF的产率为38%。
对比例4一种5-羟甲基糠醛的合成方法与实施例1基本相同,区别在于:采用相同质量的硫酸氢钾替代了其中的复合催化剂。最终5-HMF的产率为43%。
对比例5一种5-羟甲基糠醛的合成方法与实施例1基本相同,区别在于:采用相同质量的氯化锆替代了其中的复合催化剂。最终5-HMF的产率为45%。
实施例2本实施例提供的一种复合催化剂包含质量比为1∶2的氯化钛和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为100℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为58%。
实施例3本实施例提供的一种复合催化剂包含质量比为1∶2的氯化铪和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为100℃、时间为150min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为57%。
实施例4本实施例提供的一种复合催化剂包含质量比为1∶2的氯化铈和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂 加入水中,其中琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为100℃、时间为120min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为55%。
实施例5本实施例提供的一种复合催化剂包含质量比为1∶2的氯化钛和磷酸二氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为100℃、时间为30min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为50%。
实施例6本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锗和过硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为1∶2,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为100℃、时间为30min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为51%。
实施例7本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锗和硫酸氢钠。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为1∶2,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为100℃、时间为30min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为53%。
实施例8本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钠。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为100℃、时间为120min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为65%。
实施例9本实施例提供的一种复合催化剂包含质量比为1∶2的氯化钛和硫酸氢钠。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为100℃、时间为90min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为62%。
实施例10本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锡和硫酸氢钠。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂 加入水中,其中琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为100℃、时间为90min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为60%。
实施例11本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为95℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为73%。
实施例12本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为110℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为63%。
实施例13本实施例提供的一种复合催化剂包含质量比为1∶5的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为95℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为64%。
实施例14本实施例提供的一种复合催化剂包含质量比为2∶5的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为95℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为62%。
实施例15本实施例提供的一种复合催化剂包含质量比为3∶5的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为95℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为57%。
实施例16本实施例提供的一种复合催化剂包含质量比为4∶5的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂 加入水中,其中琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为95℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为52%。
实施例17本实施例提供的一种复合催化剂包含质量比为1∶1的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为95℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为70%。
实施例18本实施例提供的一种复合催化剂包含质量比为5∶4的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为95℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为67%。
实施例19本实施例提供的一种复合催化剂包含质量比为5∶3的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为95℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为65%。
实施例20本实施例提供的一种复合催化剂包含质量比为5∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为95℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为61%。
实施例21本实施例提供的一种复合催化剂包含质量比为5∶1的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为95℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为56%。
实施例22本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂 加入水中,其中琼脂糖与复合催化剂的质量比为1∶5,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为95℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为70%。
实施例23本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为2∶5,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为95℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为68%。
实施例24本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为3∶5,琼脂糖与溶剂的质量体积比为1∶10,控制反应温度为95℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为65%。
实施例25本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为4∶5,琼脂糖与溶剂的质量体积比为1∶15,控制反应温度为95℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为55%。
实施例26本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为1∶1,琼脂糖与溶剂的质量体积比为1∶25,控制反应温度为95℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为60%。
实施例27本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为5∶2,琼脂糖与溶剂的质量体积比为1∶30,控制反应温度为95℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为55%。
实施例28本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂 加入水中,其中琼脂糖与复合催化剂的质量比为5∶3,琼脂糖与溶剂的质量体积比为1∶35,控制反应温度为95℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为58%。
实施例29本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为5∶3,琼脂糖与溶剂的质量体积比为1∶40,控制反应温度为95℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为59%。
实施例30本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入水中,其中琼脂糖与复合催化剂的质量比为5∶4,琼脂糖与溶剂的质量体积比为1∶40,控制反应温度为95℃、时间为60min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为53%。
实施例31本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入复合溶剂中,该复合溶剂内水与DMSO的质量比为1∶6,且琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为100℃、时间为30min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为75%。
实施例32本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入复合溶剂中,该复合溶剂内水与DMSO的质量比为1∶3,且琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为100℃、时间为30min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为68%。
实施例33本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入复合溶剂中,该复合溶剂内水与DMSO的质量比为1∶1,且琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为100℃、时间为30min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为57%。
实施例34本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂 加入复合溶剂中,该复合溶剂内水与DMSO的质量比为6∶1,且琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为95℃、时间为30min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为52%。
实施例35本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括∶将琼脂糖和复合催化剂加入复合溶剂中,该复合溶剂内水与1-丁基-3-甲基咪唑氯盐的质量比为1∶6,且琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为100℃、时间为30min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为70%。
实施例36本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入复合溶剂中,该复合溶剂内水与1-丁基-3-甲基咪唑氯盐的质量比为1∶3,且琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为100℃、时间为30min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为50%。
实施例37本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入复合溶剂中,该复合溶剂内水和1-丁基-3-甲基咪唑氯盐的质量比为6∶1,且琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为100℃、时间为30min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为48%。
实施例38本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入复合溶剂中,该复合溶剂内水与1-丁基-3-甲基咪唑溴盐的质量比为1∶6,且琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为100℃、时间为30min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为71%。
实施例39本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂加入复合溶剂中,该复合溶剂内水与1-烯丙基-3-甲基咪唑氯盐的质量比为1∶6,且琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为100℃、时间为30min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为65%。
实施例40本实施例提供的一种复合催化剂包含质量比为1∶2的氯化锆和硫酸氢钾。
本实施例提供的一种5-羟甲基糠醛(5-HMF)的合成方法包括:将琼脂糖和复合催化剂 加入复合溶剂中,该复合溶剂内水与1-烯丙基-3-甲基咪唑氯盐的质量比为1∶4,且琼脂糖与复合催化剂的质量比为1∶3,琼脂糖与溶剂的质量体积比为1∶20,控制反应温度为100℃、时间为30min,反应结束后,采用高效液相色谱分析反应混合物,其中5-HMF的收率为63%。
尽管已参考说明性实施例描述了本申请,但所属领域的技术人员将理解,在不背离本申请的精神及范围的情况下可做出各种其它改变、省略及/或添加且可用实质等效物替代所述实施例的物质。另外,可在不背离本申请的范围的情况下做出许多修改以使特定情形或材料适应本申请的教示。因此,本文并不打算将本申请限制于用于执行本申请的所揭示特定实施例,而是打算使本申请将包含归属于所附权利要求书的范围内的所有实施例。

Claims (15)

  1. 一种复合催化剂,其特征在于,包括第一组份和第二组分,所述第一组分包含四价金属盐,所述第二组分包含酸式金属盐。
  2. 根据权利要求1所述的复合催化剂,其特征在于:所述四价金属盐包括四价金属氯化物,所述酸式金属盐包括一价或二价酸式金属盐。
  3. 根据权利要求1或2所述的复合催化剂,其特征在于:所述四价金属氯化物包含氯化钛、氯化锆、氯化铪、氯化铈、氯化锗、氯化锡中的任意一种或多种的组合;和/或,所述酸式金属盐包含磷酸二氢钾、磷酸氢二钾、硫酸氢钾、过硫酸氢钾、硫酸氢钠中的任意一种或多种的组合。
  4. 根据权利要求1所述的复合催化剂,其特征在于:所述第一组分与第二组分的质量比为5∶1~1∶5。
  5. 权利要求1-4中任一项所述复合催化剂的用途,其特征在于,包括:将所述复合催化剂用于生物质碳水化合物制备生物基呋喃化学品的反应中。
  6. 根据权利要求5所述的用途,其特征在于:所述生物质碳水化合物包括海藻衍生多糖,优选为琼脂或琼脂糖;所述生物基呋喃化学品包括5-羟甲基糠醛。
  7. 一种生物基呋喃化学品的合成方法,其特征在于,包括:至少使生物质碳水化合物、溶剂及权利要求1-4中任一项所述复合催化剂混合形成混合反应体系,并使所述混合反应体系在80~110℃反应,从而获得所述生物基呋喃化学品。
  8. 根据权利要求7所述的生物基呋喃化学品的合成方法,其特征在于:所述生物质碳水化合物与复合催化剂的质量比为5∶1~1∶5。
  9. 根据权利要求7所述的生物基呋喃化学品的合成方法,其特征在于:所述生物质碳水化合物与溶剂的质量体积比为1g∶5mL~1g∶40mL。
  10. 根据权利要求7所述的生物基呋喃化学品的合成方法,其特征在于:所述反应的时间为1~720min。
  11. 根据权利要求7所述的生物基呋喃化学品的合成方法,其特征在于:所述生物质碳水化合物包括海藻衍生多糖。
  12. 根据权利要求11所述的生物基呋喃化学品的合成方法,其特征在于:所述生物质碳水化合物包括琼脂糖。
  13. 根据权利要求7所述的生物基呋喃化学品的合成方法,其特征在于:所述生物基呋 喃化学品包括5-羟甲基糠醛。
  14. 根据权利要求7所述的生物基呋喃化学品的合成方法,其特征在于:所述溶剂包括水、二甲基亚砜或离子液体中的任意一种或多种的组合。
  15. 根据权利要求14所述的生物基呋喃化学品的合成方法,其特征在于:所述溶剂包括质量比为6∶1~1∶6的水与二甲基亚砜或离子液体。
PCT/CN2022/099816 2022-05-05 2022-06-20 复合催化剂及生物基呋喃化学品的合成方法 WO2023212999A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210490575.0 2022-05-05
CN202210490575.0A CN114669310B (zh) 2022-05-05 2022-05-05 复合催化剂及生物基呋喃化学品的合成方法

Publications (1)

Publication Number Publication Date
WO2023212999A1 true WO2023212999A1 (zh) 2023-11-09

Family

ID=82079858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099816 WO2023212999A1 (zh) 2022-05-05 2022-06-20 复合催化剂及生物基呋喃化学品的合成方法

Country Status (2)

Country Link
CN (1) CN114669310B (zh)
WO (1) WO2023212999A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117736166A (zh) * 2023-12-16 2024-03-22 合肥利夫生物科技有限公司 一种5-羟甲基糠醛的合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127309A (en) * 1996-09-19 2000-10-03 Nippon Oil Co., Ltd. Catalyst for use in the alkylation of isoalkanes
CN109111414A (zh) 2018-09-06 2019-01-01 沈阳化工大学 一种琼脂糖转化联产5-羟甲基糠醛和乙酰丙酸的方法
CN113292521A (zh) * 2021-05-21 2021-08-24 贵州理工学院 一种利用纤维素类生物质制备5-羟甲基糠醛的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102212046A (zh) * 2011-04-19 2011-10-12 天津理工大学 一种用于蔗糖或多糖脱水合成5-羟甲基糠醛的催化体系

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127309A (en) * 1996-09-19 2000-10-03 Nippon Oil Co., Ltd. Catalyst for use in the alkylation of isoalkanes
CN109111414A (zh) 2018-09-06 2019-01-01 沈阳化工大学 一种琼脂糖转化联产5-羟甲基糠醛和乙酰丙酸的方法
CN113292521A (zh) * 2021-05-21 2021-08-24 贵州理工学院 一种利用纤维素类生物质制备5-羟甲基糠醛的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, MIN: " Phosphate Catalyzed Dehydration of Sugars to 5-Hydroxymethylfurfural in Aqueous Solution", MASTER'S THESIS, 1 December 2014 (2014-12-01), China, pages 1 - 49, XP009550157 *

Also Published As

Publication number Publication date
CN114669310A (zh) 2022-06-28
CN114669310B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
CN103242270B (zh) 一种从生物质制备糠醛类化合物的方法
Lu et al. Saccharification of sugarcane bagasse by magnetic carbon-based solid acid pretreatment and enzymatic hydrolysis
WO2023212999A1 (zh) 复合催化剂及生物基呋喃化学品的合成方法
CN112608289B (zh) 一种有机溶剂-离子液体复合体系催化生物基果糖高效制取5-羟甲基糠醛的方法
CN106966359B (zh) 过渡金属铱催化从生物质和生活垃圾的水解液中制备氢气的方法
CN108976185A (zh) 一种利用生物质同步制备糠醛和5-羟甲基糠醛的方法
CN105498801A (zh) 一种磺酸化炭化玉米芯催化剂的制备及其催化木糖制备糠醛的方法
CN113402485A (zh) 复合熔盐水合物中纤维素转化制备5-羟甲基糠醛的方法
WO2023078361A1 (zh) 一种制备5-羟甲基糠醛的方法
CN110407779B (zh) 以生物质为原料制备5-羟甲基糠醛的方法
CN105523783B (zh) 一种秸秆生产高附加值化学品联产缓释肥的方法
CN104138753A (zh) 一种锡基蒙脱土催化剂与制法及其催化木糖为糠醛的应用
CN107556272B (zh) 一种催化糠醛和乙醇氧化缩合制备2-呋喃丙烯醛的方法
CN105772062A (zh) 利用改性分子筛固载催化剂催化生产甲缩醛的方法
CN108863999B (zh) 一种温和条件下制备羟甲基糠醛的方法
CN109280039B (zh) 一种基于纤维素转化制备5-羟甲基糠醛的方法
Shi et al. Efficient conversion of cellulose into 5-hydroxymethylfurfural by inexpensive SO42-/HfO2 catalyst in a green water-tetrahydrofuran monophasic system
CN113509931B (zh) 一种Cu2O/CuO@CA光催化剂的制备及其在光催化氧化木糖合成乳酸中的应用
CN109111414B (zh) 一种琼脂糖转化联产5-羟甲基糠醛和乙酰丙酸的方法
CN109810080A (zh) 通过添加含氮化合物来实现5-羟甲基糠醛高效合成的方法
CN102675086B (zh) 一种添加阻聚剂的固体酸催化汽爆秸秆短纤维制备乙酰丙酸的方法
CN102212047A (zh) 以菊芋为原料制备5-羟甲基糠醛的方法
CN103710057B (zh) 一种新型生物汽油的制备方法
CN110606835A (zh) 一种五羟甲基糠醛的制备方法
US20220306562A1 (en) Method for producing levulinic acid in molten salt hydrate from cellulose hydrolysis

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022940693

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022940693

Country of ref document: EP

Effective date: 20231116

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940693

Country of ref document: EP

Kind code of ref document: A1