WO2023210440A1 - 電動車制御装置 - Google Patents

電動車制御装置 Download PDF

Info

Publication number
WO2023210440A1
WO2023210440A1 PCT/JP2023/015462 JP2023015462W WO2023210440A1 WO 2023210440 A1 WO2023210440 A1 WO 2023210440A1 JP 2023015462 W JP2023015462 W JP 2023015462W WO 2023210440 A1 WO2023210440 A1 WO 2023210440A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
motor
rate
electric vehicle
accelerator opening
Prior art date
Application number
PCT/JP2023/015462
Other languages
English (en)
French (fr)
Inventor
博久 北風
直樹 上田
Original Assignee
日野自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日野自動車株式会社 filed Critical 日野自動車株式会社
Publication of WO2023210440A1 publication Critical patent/WO2023210440A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to an electric vehicle control device that controls an electric vehicle using a motor as a drive source.
  • the electric vehicle In an electric vehicle that uses a motor as a drive source, the electric vehicle is driven by causing the motor to generate power running torque, and the battery is charged by causing the motor to generate regenerative torque (for example, see Patent Documents 1 and 2). .
  • the driver decreases the accelerator opening when he wants to slowly accelerate the electric vehicle, and increases the accelerator opening when he wants to accelerate the electric vehicle quickly. Conceivable.
  • the torque rate of the command torque for controlling the motor is constant (see, for example, Patent Document 1). Therefore, in the power running state, the driver's intention based on the above-mentioned accelerator operation cannot be sufficiently reflected.
  • the motor in a regenerative state in which the motor generates regenerative torque, if the torque rate is the same as in the powering state, the electric vehicle decelerates too sensitively, making it difficult for the driver to match the target deceleration.
  • the motor has the characteristics of low rotation high torque and high rotation low torque, in which the torque is relatively high at low rotation and the torque is relatively low at high rotation. Therefore, in the regenerative state, if the motor rotates at a low speed, a sudden deceleration that is not intended by the driver may occur, causing the driver to accelerate again or causing the load to collapse.
  • Patent Document 2 changes the torque rate depending on whether the target torque is increasing, but does not change the torque rate based on the accelerator opening, so the above-mentioned problem cannot be solved. It's not something that can be solved.
  • an object of the present disclosure is to provide an electric vehicle control device that can appropriately reflect the driver's intention regarding acceleration and deceleration of the electric vehicle in accordance with the driver's operations.
  • the electric vehicle control device of the present disclosure is as follows.
  • An electric vehicle control device that controls acceleration and deceleration of an electric vehicle using a motor as a drive source, which includes an accelerator opening detection section that detects the accelerator opening of the electric vehicle, and a motor rotation detecting section that detects the motor rotation speed. and a motor control unit that controls the motor, and the motor control unit calculates a target torque based on the accelerator opening degree and the motor rotation speed, and calculates the target torque based on the accelerator opening degree for a unit time.
  • An electric vehicle control device that calculates a torque rate that is an amount of change in torque per hit, and controls the motor so that the torque of the motor reaches the target torque at the torque rate.
  • the torque rate can be changed based on the accelerator opening degree, which is the driver's operation, so the driver's intention regarding acceleration and deceleration of the electric vehicle in accordance with the driver's operation can be appropriately reflected.
  • the torque rate can be changed in consideration of the influence of running resistance, etc., which varies depending on the vehicle speed. Thereby, for example, a good driving feeling can be given to the driver in each vehicle speed range.
  • the motor control unit further includes a current torque detection unit that detects the current torque generated by the motor, and in a power running state where the target torque is larger than the current torque, the motor control unit controls the accelerator opening to a threshold value.
  • a current torque detection unit that detects the current torque generated by the motor, and in a power running state where the target torque is larger than the current torque, the motor control unit controls the accelerator opening to a threshold value.
  • the torque rate when the accelerator opening is less than the threshold opening is made smaller than the torque rate when the accelerator opening is above the threshold opening.
  • the torque rate becomes small, so it is possible to reflect the driver's intention to slowly accelerate the electric vehicle.
  • the accelerator opening is large, the torque rate becomes large, which can reflect the driver's desire to accelerate the electric vehicle immediately.
  • the motor control unit sets the torque rate when the current torque is less than the threshold torque, and the torque rate when the current torque exceeds the threshold torque.
  • the electric vehicle control device according to [3], wherein the torque rate is lower than the torque rate.
  • the torque rate when the current torque is less than the threshold torque is made smaller than the torque rate when the current torque exceeds the threshold torque.
  • FIG. 1 is a block configuration diagram showing an electric vehicle control device according to an embodiment. It is a graph showing an example of the relationship between accelerator opening, motor rotation speed, and motor torque.
  • FIG. 3 is a diagram corresponding to FIG. 2 for explaining torque rates in each state. 3 is a flowchart illustrating an example of processing operations of the electric vehicle control device.
  • FIG. 1 is a block configuration diagram showing an electric vehicle control device 1 according to an embodiment.
  • an electric vehicle control device 1 according to the present embodiment is mounted on an electric vehicle 2 that uses a motor 3 as a drive source, and controls acceleration and deceleration of the electric vehicle 2.
  • Examples of the electric vehicle 2 include a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHEV), a fuel cell vehicle (FCEV), and an electric vehicle (BEV). Battery Electric Vehicle), etc.
  • the electric vehicle control device 1 controls the motor 3 to control acceleration and deceleration of the electric vehicle 2.
  • the motor 3 is a motor generator (motor generator) that functions as an electric motor or a generator.
  • the motor 3 functions as an electric motor to drive the electric vehicle 2 by generating powering torque, which is positive torque.
  • the motor 3 functions as a generator and charges a battery (not shown) by generating regenerative torque that is negative torque.
  • the electric vehicle control device 1 includes an accelerator opening detection section 4, a motor rotation speed detection section 5, a current torque detection section 6, and a motor control section 7.
  • the accelerator opening detection unit 4 detects the accelerator opening of the electric vehicle 2, which is the amount of operation by the driver.
  • the accelerator opening detection section 4 for example, an accelerator opening sensor that detects the accelerator opening of an accelerator pedal can be used.
  • the accelerator opening detection section 4 transmits a detection signal of the detected accelerator opening to the motor control section 7 .
  • the motor rotation speed detection unit 5 detects the motor rotation speed, which is the rotation speed of the motor 3.
  • the motor rotation speed detection section 5 for example, a rotation speed sensor such as a rotary encoder that detects the rotation speed of the motor 3 can be used.
  • the motor rotation speed and the vehicle speed of the electric vehicle 2 are in a proportional relationship. Therefore, the motor rotation speed can be converted into the vehicle speed of the electric vehicle 2.
  • the motor rotation speed detection section 5 transmits a detection signal of the detected motor rotation speed to the motor control section 7.
  • the current torque detection unit 6 detects the current torque that is the torque generated by the motor 3.
  • a torque sensor that detects the torque of the motor 3, etc. can be used.
  • the current torque detection section 6 transmits a detection signal of the detected current torque to the motor control section 7.
  • the motor control unit 7 is, for example, an electronic control unit (ECU) that includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the motor control unit 7 executes various controls by, for example, loading a program stored in a ROM into a RAM and executing it with a CPU.
  • the motor control section 7 may be composed of a single electronic control unit or a plurality of electronic control units.
  • the motor control unit 7 acquires the accelerator opening detected by the accelerator opening detection unit 4, the motor rotation speed detected by the motor rotation speed detection unit 5, and the current torque detected by the current torque detection unit 6. The motor control unit 7 then controls the motor 3 based on the acquired accelerator opening, motor rotation speed, and current torque. Control of the motor 3 includes power running control in which the motor 3 generates a power running torque that is a positive torque, and regeneration control that causes the motor 3 to generate a regenerative torque that is a negative torque.
  • the motor control unit 7 determines the target torque to be generated by the motor 3 based on the accelerator opening degree and the motor rotation speed.
  • FIG. 2 is a graph showing an example of the relationship between accelerator opening, motor rotation speed, and motor torque.
  • the vertical axis shows the torque of the motor
  • the vertical axis shows the motor rotation speed.
  • torque on the positive side of zero indicates torque on the positive side, that is, power running torque
  • torque on the negative side of zero indicates torque on the negative side, that is, regenerative torque.
  • the outputtable torque of the motor 3 is determined according to the motor rotation speed.
  • the motor control unit 7 determines the target torque based on the accelerator opening degree and the motor rotation speed within the outputtable torque range corresponding to the motor rotation speed. For example, the motor control unit 7 determines the target torque based on the accelerator opening degree and the motor rotational speed by referring to a table (governor table) in which the accelerator opening degree, the motor rotational speed, and the target torque are associated with each other. You may also ask for
  • the governor table may be, for example, a table in which target torques corresponding to each motor rotation speed and each accelerator opening are expressed in a two-dimensional matrix, with the motor rotation speed as the horizontal axis and the accelerator opening as the vertical axis. .
  • the target torque is larger than the current torque
  • the target torque is smaller than the current torque
  • the motor control unit 7 determines the torque rate (Nm/sec), which is the amount of change in torque per unit time, based on the accelerator opening. In other words, the motor control unit 7 changes the torque rate based on the accelerator opening degree.
  • the torque rate is not a fixed value but a variable value that is changed based on the accelerator opening.
  • the torque rate increases, the amount of change in torque per unit time increases, so in power running control, the amount of increase in torque per unit time increases, and in regeneration control, the amount of decrease in torque per unit time increases. growing.
  • the torque rate decreases, the amount of change in torque per unit time becomes smaller, so in power running control, the amount of increase in torque per unit time becomes smaller, and in regeneration control, the amount of torque change per unit time decreases. The amount becomes smaller.
  • the torque rate in the power running state is referred to as a torque increase rate.
  • the torque increase rate is the amount of increase in torque per unit time.
  • regeneration control is performed to reduce the torque of the motor 3, so the torque rate in the regeneration state is referred to as a torque reduction rate.
  • the torque reduction rate is the amount of reduction in torque per unit time.
  • the motor control unit 7 determines (changes) the torque increase rate based on the accelerator opening and the motor rotation speed. Specifically, the motor control unit 7 makes the torque increase rate when the accelerator opening is less than the threshold opening smaller than the torque increasing rate when the accelerator opening exceeds the threshold opening. In other words, the motor control unit 7 makes the torque increase rate when the accelerator opening is less than the threshold opening smaller than the torque increasing rate when the accelerator opening exceeds the threshold opening under the same motor rotation speed condition. . The motor control unit 7 also determines (changes) the torque increase rate when the accelerator opening is less than the threshold opening and the torque increase rate when the accelerator opening exceeds the threshold opening, according to the motor rotation speed. .
  • the torque increase rate when the accelerator opening is less than the threshold opening may be smaller than the torque increasing rate when the accelerator opening exceeds the threshold opening.
  • the threshold opening degree is not particularly limited, but may be, for example, half accelerator (50%).
  • the torque increase rate when the accelerator opening is 40% is made smaller than the torque increase rate when the accelerator opening is 60%.
  • the torque increase rate may be set to a plurality of values (variable values) depending on the accelerator opening degree in each of the cases where the accelerator opening degree exceeds the threshold opening degree and when the accelerator opening degree is less than the threshold opening degree.
  • the motor control unit 7 refers to a table (torque increase rate table) in which the accelerator opening degree, the motor rotation speed, and the torque increase rate are associated with each other, and thereby performs the calculation based on the accelerator opening degree and the motor rotation speed. Then, the torque increase rate may be determined.
  • the torque increase rate table is, for example, a table in which the torque increase rate corresponding to each accelerator opening degree and each motor rotation speed is expressed in a two-dimensional matrix, with the horizontal axis representing the motor rotational speed and the vertical axis representing the accelerator opening degree. It's okay.
  • the motor control unit 7 determines (changes) the torque lowering rate based on the current torque of the motor 3 and the motor rotation speed. Specifically, the motor control unit 7 makes the torque decreasing rate when the current torque is less than the threshold torque smaller than the torque decreasing rate when the current torque exceeds the threshold torque. That is, the motor control unit 7 makes the torque decrease rate when the current torque is less than the threshold torque smaller than the torque decrease rate when the current torque exceeds the threshold torque under the same motor rotation speed condition. Further, the motor control unit 7 determines (changes) the torque decreasing rate when the current torque is less than the threshold torque and the torque decreasing rate when the current torque exceeds the threshold torque, depending on the motor rotation speed. Note that if the motor rotation speeds are different from each other, the torque decreasing rate when the current torque is less than the threshold torque need not be made smaller than the torque decreasing rate when the current torque exceeds the threshold torque.
  • the threshold torque is not particularly limited.
  • the motor control unit 7 determines the current torque and motor rotation speed of the motor 3 by, for example, referring to a table (torque fall rate table) in which the current torque, motor rotation speed, and torque reduction rate are associated with each other. Based on this, the torque decreasing rate may be determined.
  • the torque decrease rate table may be, for example, a table in which the torque decrease rate corresponding to each current torque and each motor rotation speed is expressed in a two-dimensional matrix, with the motor rotation speed as the horizontal axis and the current torque as the vertical axis. good.
  • the motor control unit 7 makes the torque decrease rate in the regeneration state smaller than the torque increase rate in the power running state under the same accelerator opening condition. Note that if the accelerator opening is different, the torque decreasing rate in the regenerative state does not have to be smaller than the torque increasing rate in the powering state.
  • FIG. 3 is a diagram corresponding to FIG. 2 for explaining the torque rate in each state.
  • a state in which the accelerator opening exceeds the threshold opening in the powering state is called a high powering opening state A
  • a state in which the accelerator opening is less than the threshold opening in the powering state is called the low powering opening state B. That's what it means.
  • the driver In the power running high opening degree state A, the driver is considered to be stepping on the accelerator based on the intention of accelerating the electric vehicle 2 immediately, so the torque increase rate is increased. In other words, the amount of increase in torque per unit time is increased.
  • a state in which the current torque is less than the threshold torque in the regenerative state is called a regenerative low torque state C
  • a state in which the current torque exceeds the threshold torque in the regenerative state is called the regenerative high torque state D.
  • the torque lowering rate is reduced in order to suppress the occurrence of sudden deceleration that is not intended by the driver. In other words, the amount of decrease in torque per unit time is reduced.
  • the torque lowering rate is set higher than in the regenerative high torque state D in order to suppress a decrease in the amount of regeneration of the motor 3. In other words, the amount of decrease in torque per unit time is made larger than in the regenerative high torque state D.
  • the torque rate (torque decrease rate) in the regenerative low torque state C and the regenerative high torque state D is made smaller than the rate (torque increase rate). More specifically, under conditions where the motor rotation speed is the same, the torque rate is decreased in the order of power running high opening state A, power running low opening state B, regenerative low torque state C, and regenerative high torque state D. Note that since the torque increase rate and the torque decrease rate have opposite signs, reducing the torque rate means reducing the absolute value of the torque rate.
  • the motor control unit 7 controls the motor 3 so that the torque of the motor 3 reaches the target torque at the determined torque rate. Specifically, the motor control unit 7 calculates the torque obtained by adding the torque rate to the current torque as the command torque. Then, if the instructed torque is smaller than the target torque, the motor control section 7 controls the motor 3 using the instructed torque. On the other hand, if the instructed torque is greater than or equal to the target torque, the motor control unit 7 controls the motor 3 using the target torque.
  • FIG. 4 is a flowchart showing an example of the processing operation of the electric vehicle control device.
  • step S1 the electric vehicle control device 1, accelerator opening, motor rotation speed, and current torque are acquired (step S1).
  • the accelerator opening degree is acquired from the accelerator opening degree detection section 4, the motor rotation speed is acquired from the motor rotation speed detection section 5, and the current torque is acquired from the current torque detection section 6.
  • step S2 the electric vehicle control device 1 determines a target torque based on the accelerator opening degree and motor rotation speed obtained in step S1 (step S2).
  • the target torque is obtained, for example, by referring to a governor map.
  • step S3 the electric vehicle control device 1 determines whether the target torque obtained in step S2 is larger than the current torque obtained in step S1 (step S3).
  • step S3 If it is determined that the target torque is larger than the current torque (step S3: YES), the electric vehicle control device 1 determines that the electric vehicle is in a power running state, and based on the accelerator opening degree and motor rotation speed acquired in step S1. A torque increase rate (torque rate) is determined (step S4). In step S4, the electric vehicle control device 1 refers to the torque increase rate table, etc., and determines that the torque increase rate when the accelerator opening is less than the threshold opening is the torque when the accelerator opening exceeds the threshold opening. Find the torque increase rate so that it is smaller than the increase rate.
  • step S3 determines that the regeneration state is in effect, and uses the current torque and motor rotation speed acquired in step S1. Based on this, the torque lowering rate (torque rate) is determined (step S5).
  • the electric vehicle control device 1 refers to the torque decrease rate table, etc., and determines that the torque decrease rate when the current torque is less than the threshold torque is lower than the torque decrease rate when the current torque exceeds the threshold torque. Find the torque drop rate so that it becomes smaller. Further, when the electric vehicle control device 1 determines that the target torque is larger than the current torque by referring to the torque descending rate table (step S3: YES), the torque rate becomes smaller than the desired torque increasing rate. Find the torque drop rate as follows.
  • the electric vehicle control device 1 generates a command torque based on the current torque acquired in step S1 and the torque increase rate (torque rate) determined in step S4 or the torque decrease rate (torque rate) determined in step S5. (Step S6).
  • the electric vehicle control device 1 obtains the command torque by adding the determined torque increase rate or torque decrease rate to the current torque.
  • the electric vehicle control device 1 determines whether the command torque determined in step S6 is smaller than the target torque determined in step S2 (step S7).
  • step S7 If it is determined that the instructed torque is smaller than the target torque (step S7: YES), the electric vehicle control device 1 controls the motor 3 with the instructed torque obtained in step S6 (step S8). Then, the electric vehicle control device 1 once ends the process and repeats it again from step S1.
  • step S7 determines that the instructed torque is not smaller than the target torque.
  • step S9 determines that the instructed torque is not smaller than the target torque.
  • step S9 the electric vehicle control device 1 controls the motor 3 with the target torque determined in step S2 (step S9). Then, the electric vehicle control device 1 once ends the process and repeats it again from step S1.
  • the torque rate can be changed based on the accelerator opening degree, which is the driver's operation.
  • the driver's intention can be appropriately reflected.
  • this electric vehicle control device 1 by determining the torque rate based on the accelerator opening degree and the motor rotation speed, the torque rate can be changed taking into account the effects of running resistance, etc., which vary depending on the vehicle speed. Thereby, for example, a good driving feeling can be given to the driver in each vehicle speed range.
  • the torque rate when the accelerator opening is less than the threshold opening is made smaller than the torque rate when the accelerator opening is above the threshold opening.
  • the torque rate when the current torque is less than the threshold torque is made smaller than the torque rate when the current torque exceeds the threshold torque.
  • the torque increase rate was described as being changed based on the accelerator opening degree and the motor rotation speed, but the torque increase rate is changed based on the accelerator opening degree, but depending on the motor rotation speed. It may be left unchanged.
  • the torque rate is described as changing both the torque increase rate and the torque decrease rate, but it is also possible to change only the torque increase rate.
  • SYMBOLS 1...Electric vehicle control device 2...Electric vehicle, 3...Motor, 4...Accelerator opening detection section, 5...Motor rotation speed detection section, 6...Torque detection section, 7...Motor control section, A...Power running high opening State, B: Power running low opening state, C: Regenerative low torque state, D: Regenerative high torque state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

モータを駆動源とする電動車の加減速を制御する電動車制御装置である。電動車制御装置は、電動車のアクセル開度を検出するアクセル開度検出部と、モータ回転数を検出するモータ回転数検出部と、モータを制御するモータ制御部と、を備え、モータ制御部は、アクセル開度及びモータ回転数に基づいて目標トルクを求め、アクセル開度に基づいて単位時間当たりのトルクの変化量であるトルクレートを求め、モータのトルクがトルクレートで目標トルクとなるようにモータを制御する。

Description

電動車制御装置
 本開示は、モータを駆動源とする電動車を制御する電動車制御装置に関する。
 モータを駆動源とする電動車では、モータに力行トルクを発生させることで電動車を駆動し、モータに回生トルクを発生させることでバッテリを充電している(例えば、特許文献1及び2参照)。
特許第5302749号 特許第6015312号
 ところで、モータに力行トルクを発生させる力行状態においては、ドライバは、ゆっくりと電動車を加速させたいときにアクセル開度を小さくし、すぐに電動車を加速させたいときにアクセル開度を大きくすると考えられる。しかしながら、一般的に、モータを制御するための指示トルクのトルクレートは一定となっている(例えば、特許文献1参照)。このため、力行状態においては、上述したアクセル操作に基づくドライバの意図を十分に反映できない。
 また、モータに回生トルクを発生させる回生状態においては、力行状態と同じトルクレートだと、電動車の減速が過敏になってドライバが目標減速度に合わせづらくなる。しかも、モータは、低回転では相対的にトルクが高くなり、高回転では相対的にトルクが低くなる、低回転高トルク、高回転低トルクの特性を持っている。このため、回生状態においては、モータが低回転であると、ドライバの意図しない急激な減速が発生して、ドライバに再加速を誘発させたり積荷が荷崩れしたりする可能性がある。
 なお、特許文献2に記載された技術は、目標トルクが増大しているか否かによってトルクレートを変更しているが、アクセル開度に基づいてトルクレートを変更していないため、上述した問題を解決できるものではない。
 そこで、本開示は、ドライバの操作に伴う電動車の加減速に関するドライバの意志を適切に反映させることができる電動車制御装置を提供することを課題とする。
 本開示の電動車制御装置は、以下の通りである。
[1] モータを駆動源とする電動車の加減速を制御する電動車制御装置であって、前記電動車のアクセル開度を検出するアクセル開度検出部と、モータ回転数を検出するモータ回転数検出部と、前記モータを制御するモータ制御部と、を備え、前記モータ制御部は、前記アクセル開度及び前記モータ回転数に基づいて目標トルクを求め、前記アクセル開度に基づいて単位時間当たりのトルクの変化量であるトルクレートを求め、前記モータのトルクが前記トルクレートで前記目標トルクとなるように前記モータを制御する、電動車制御装置。
 この電動車制御装置では、ドライバの操作であるアクセル開度に基づいてトルクレートを変えることができるため、ドライバの操作に伴う電動車の加減速に関するドライバの意志を適切に反映させることができる。
[2] 前記モータ制御部は、前記モータ回転数にも基づいて前記トルクレートを求める、[1]に記載の電動車制御装置。
 この電動車制御装置では、アクセル開度及びモータ回転数に基づいてトルクレートを求めることで、車速によって変わる走行抵抗等の影響を考慮してトルクレートを変更することができる。これにより、例えば、車速の速度域ごとに、ドライバに対して良好な運転フィーリングを与えることができる。
[3] 前記モータが発生している現在トルクを検出する現在トルク検出部を更に備え、前記目標トルクが前記現在トルクよりも大きい力行状態では、前記モータ制御部は、前記アクセル開度が閾値開度を下回る場合の前記トルクレートを、前記アクセル開度が前記閾値開度を上回る場合の前記トルクレートよりも小さくする、[1]又は[2]に記載の電動車制御装置。
 この電動車制御装置では、力行状態において、アクセル開度が閾値開度を下回る場合のトルクレートを、アクセル開度が閾値開度を上回る場合のトルクレートよりも小さくする。これにより、アクセル開度が小さい場合は、トルクレートが小さくなるため、ゆっくりと電動車を加速させたいとのドライバの意志を反映することができる。一方、アクセル開度が大きい場合は、トルクレートが大きくなるため、すぐに電動車を加速させたいとのドライバの意志を反映することができる。
[4] 前記目標トルクが前記現在トルクよりも小さい回生状態では、前記モータ制御部は、前記現在トルクが閾値トルクを下回る場合の前記トルクレートを、前記現在トルクが前記閾値トルクを上回る場合の前記トルクレートよりも小さくする、[3]に記載の電動車制御装置。
 この電動車制御装置では、回生状態において、現在トルクが閾値トルクを下回る場合のトルクレートを、現在トルクが閾値トルクを上回る場合のトルクレートよりも小さくする。これにより、モータが低回転である場合のように現在トルクが低回転である場合に、ドライバの意図しない急激な減速が発生するのを抑制することができる。その結果、ドライバに再加速を誘発させたり積荷が荷崩れしたりするのを抑制することができる。一方、現在トルクが小さくなっている場合に、モータの回生量が低下するのを抑制することができる。
[5] 前記モータ制御部は、前記アクセル開度が同じ条件において、前記回生状態の前記トルクレートを、前記力行状態の前記トルクレートよりも小さくする、[4]に記載の電動車制御装置。
 この電動車制御装置では、回生状態のトルクレートを力行状態のトルクレートよりも小さくすることで、電動車の減速が緩やかになってドライバが目標減速度に合わせやすくなる。
 本開示によれば、ドライバの操作に伴う電動車の加減速に関するドライバの意志を適切に反映させることができる。
実施形態の電動車制御装置を示すブロック構成図である。 アクセル開度、モータ回転数、及びモータのトルクの関係の一例を示すグラフである。 各状態のトルクレートを説明するための、図2に対応する図である。 電動車制御装置の処理動作の一例を示すフローチャートである。
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、以下の説明において同一又は相当要素には同一符号を付し、重複する説明を省略する。
 図1は、実施形態の電動車制御装置1を示すブロック構成図である。図1に示すように、本実施形態に係る電動車制御装置1は、モータ3を駆動源とする電動車2に搭載されて、電動車2の加減速を制御する。電動車2としては、例えば、ハイブリッド車(HEV :Hybrid Electric Vehicle)、プラグインハイブリッド車(PHEV :Plug-in Hybrid Electric Vehicle)、燃料電池車(FCEV :Fuel Cell Electric Vehicle)、電気自動車(BEV :Battery Electric Vehicle)等がある。電動車制御装置1は、電動車2の加減速の制御として、モータ3を制御する。
 モータ3は、電動機又は発電機として機能する電動発電機(モータジェネレータ)である。モータ3は、正側のトルクである力行トルクを発生することで、電動機として機能して電動車2を駆動する。一方、モータ3は、負側のトルクである回生トルクを発生することで、発電機として機能してバッテリ(不図示)を充電する。
 電動車制御装置1は、アクセル開度検出部4と、モータ回転数検出部5と、現在トルク検出部6と、モータ制御部7と、を備える。
 アクセル開度検出部4は、ドライバの操作量である電動車2のアクセル開度を検出する。アクセル開度検出部4としては、例えば、アクセルペダルのアクセル開度を検出するアクセル開度センサを用いることができる。アクセル開度検出部4は、検出したアクセル開度の検出信号をモータ制御部7に送信する。
 モータ回転数検出部5は、モータ3の回転数であるモータ回転数を検出する。モータ回転数検出部5としては、例えば、モータ3の回転数を検出するロータリーエンコーダ等の回転数センサを用いることができる。ここで、電動車2では、モータ回転数と電動車2の車速とが比例関係にある。このため、モータ回転数は電動車2の車速に換算することができる。モータ回転数検出部5は、検出したモータ回転数の検出信号をモータ制御部7に送信する。
 現在トルク検出部6は、モータ3が発生しているトルクである現在トルクを検出する。現在トルク検出部6としては、例えば、モータ3のトルクを検出するトルクセンサ等を用いることができる。現在トルク検出部6は、検出した現在トルクの検出信号をモータ制御部7に送信する。
 モータ制御部7は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を有する電子制御ユニット(ECU:Electronic Control Unit)である。モータ制御部7では、例えば、ROMに記憶されているプログラムをRAMにロードし、CPUで実行することで、各種の制御を実行する。モータ制御部7は、単一の電子制御ユニットにより構成されていてもよく、複数の電子制御ユニットにより構成されていてもよい。
 モータ制御部7は、アクセル開度検出部4が検出したアクセル開度、モータ回転数検出部5が検出したモータ回転数、及び現在トルク検出部6が検出した現在トルクを取得する。そして、モータ制御部7は、これらの取得したアクセル開度、モータ回転数、及び現在トルクに基づいて、モータ3を制御する。モータ3の制御としては、モータ3に正側のトルクである力行トルクを発生させる力行制御と、モータ3に負側のトルクである回生トルクを発生させる回生制御と、がある。
 モータ制御部7は、アクセル開度及びータ回転数に基づいて、モータ3に発生させる目標トルクを求める。図2は、アクセル開度、モータ回転数、及びモータのトルクの関係の一例を示すグラフである。図2では、縦軸はモータのトルクを示しており、縦軸はモータ回転数を示している。また、図2において、ゼロよりも+側のトルクが、正側のトルク、つまり力行トルクを示しており、ゼロよりも-側のトルクが、負側のトルク、つまり回生トルクを示している。図2に示すように、モータ3には、モータ回転数に応じた出力可能トルクが決められている。このため、モータ制御部7は、モータ回転数に応じた出力可能トルクの範囲で、アクセル開度及びモータ回転数に基づいて目標トルクを求める。モータ制御部7は、例えば、アクセル開度と、モータ回転数と、目標トルクと、が対応付けられたテーブル(ガバナテーブル)を参照することで、アクセル開度及びモータ回転数に基づいて目標トルクを求めてもよい。ガバナテーブルは、例えば、モータ回転数を横軸、アクセル開度を縦軸として、各モータ回転数及び各アクセル開度に対応した目標トルクを二次元のマトリックス状に表したテーブルであってもよい。
 ここで、目標トルクが現在トルクよりも大きい場合、モータ3に目標トルクを発生させるためには、モータ3のトルクを上昇させる力行制御を行う必要がある。このため、目標トルクが現在トルクよりも大きい状態を、力行状態という。一方、目標トルクが現在トルクよりも小さい場合、モータ3に目標トルクを発生させるためには、モータ3のトルクを下降させる回生制御を行う必要がある。このため、目標トルクが現在トルクよりも小さい状態を、回生状態という。
 モータ制御部7は、目標トルクを求めると、アクセル開度に基づいて、単位時間当たりのトルクの変化量であるトルクレート(Nm/sec)を求める。換言すると、モータ制御部7は、アクセル開度に基づいて、トルクレートを変更する。トルクレートは、固定値ではなく、アクセル開度に基づいて変更される変動値である。トルクレートが大きくなると、単位時間当たりのトルクの変化量が大きくなるため、力行制御においては、単位時間当たりのトルクの増加量が大きくなり、回生制御においては、単位時間当たりのトルクの減少量が大きくなる。一方、トルクレートが小さくなると、単位時間当たりのトルクの変化量が小さくなるため、力行制御においては、単位時間当たりのトルクの増加量が小さくなり、回生制御においては、単位時間当たりのトルクの減少量が小さくなる。
 ここで、力行状態では、モータ3のトルクを上昇させる力行制御を行うため、力行状態におけるトルクレートを、トルク上昇レートという。トルク上昇レートは、単位時間当たりのトルクの増加量である。一方、回生状態では、モータ3のトルクを下降させる回生制御を行うため、回生状態におけるトルクレートを、トルク下降レートという。トルク下降レートは、単位時間当たりのトルクの減少量である。
 力行状態では、モータ制御部7は、アクセル開度及びモータ回転数に基づいて、トルク上昇レートを求める(変更する)。具体的に説明すると、モータ制御部7は、アクセル開度が閾値開度を下回る場合のトルク上昇レートを、アクセル開度が閾値開度を上回る場合のトルク上昇レートよりも小さくする。つまり、モータ制御部7は、モータ回転数が同じ条件において、アクセル開度が閾値開度を下回る場合のトルク上昇レートを、アクセル開度が閾値開度を上回る場合のトルク上昇レートよりも小さくする。また、モータ制御部7は、アクセル開度が閾値開度を下回る場合のトルク上昇レート及びアクセル開度が閾値開度を上回る場合のトルク上昇レートを、モータ回転数に応じて求める(変更する)。なお、モータ回転数が互いに異なれば、アクセル開度が閾値開度を下回る場合のトルク上昇レートが、アクセル開度が閾値開度を上回る場合のトルク上昇レートよりも小さくてもよい。閾値開度は、特に限定されるものではないが、例えば、ハーフアクセル(50%)とすることができる。例えば、モータ回転数が1000rpmであり、閾値開度が50%である場合、アクセル開度が40%のトルク上昇レートを、アクセル開度が60%のトルク上昇レートよりも小さくする。また、トルク上昇レートは、アクセル開度が閾値開度を上回る場合及びアクセル開度が閾値開度を下回る場合のそれぞれにおいて、アクセル開度に応じた複数の値(変動値)としてもよい。
 モータ制御部7は、例えば、アクセル開度と、モータ回転数と、トルク上昇レートと、が対応付けられたテーブル(トルク上昇レートテーブル)を参照することで、アクセル開度及びモータ回転数に基づいて、トルク上昇レートを求めてもよい。トルク上昇レートテーブルは、例えば、モータ回転数を横軸、アクセル開度を縦軸として、各アクセル開度及び各モータ回転数に対応したトルク上昇レートを二次元のマトリックス状に表したテーブルであってもよい。
 回生状態では、モータ制御部7は、モータ3の現在トルク及びモータ回転数に基づいて、トルク下降レートを求める(変更する)。具体的に説明すると、モータ制御部7は、現在トルクが閾値トルクを下回る場合のトルク下降レートを、現在トルクが閾値トルクを上回る場合のトルク下降レートよりも小さくする。つまり、モータ制御部7は、モータ回転数が同じ条件において、現在トルクが閾値トルクを下回る場合のトルク下降レートを、現在トルクが閾値トルクを上回る場合のトルク下降レートよりも小さくする。また、モータ制御部7は、現在トルクが閾値トルクを下回る場合のトルク下降レート及び現在トルクが閾値トルクを上回る場合のトルク下降レートを、モータ回転数に応じて求める(変更する)。なお、モータ回転数が互いに異なれば、現在トルクが閾値トルクを下回る場合のトルク下降レートを、現在トルクが閾値トルクを上回る場合のトルク下降レートよりも小さくしなくてもよい。閾値トルクは、特に限定されるものではない。
 モータ制御部7は、例えば、現在トルクと、モータ回転数と、トルク下降レートと、が対応付けられたテーブル(トルク下降レートテーブル)を参照することで、モータ3の現在トルク及びモータ回転数に基づいて、トルク下降レートを求めてもよい。トルク下降レートテーブルは、例えば、モータ回転数を横軸、現在トルクを縦軸として、各現在トルク及び各モータ回転数に対応したトルク下降レートを二次元のマトリックス状に表したテーブルであってもよい。
 また、モータ制御部7は、アクセル開度が同じ条件において、回生状態のトルク下降レートを、力行状態のトルク上昇レートよりも小さくする。なお、アクセル開度が異なれば、回生状態のトルク下降レートを、力行状態のトルク上昇レートよりも小さくしなくても。
 ここで、図3を参照して、上記の各状態のトルクレートについて説明する。図3は、各状態のトルクレートを説明するための、図2に対応する図である。図3に示すように、力行状態においてアクセル開度が閾値開度を上回る状態を力行高開度状態Aといい、力行状態においてアクセル開度が閾値開度を下回る状態を力行低開度状態Bという。力行高開度状態Aでは、ドライバは、すぐに電動車2を加速させたいとの意思に基づいてアクセルを踏んでいると考えられるため、トルク上昇レートを大きくする。つまり、単位時間当たりのトルクの増加量を大きくする。一方、力行低開度状態Bでは、ドライバは、ゆっくりと電動車2を加速させたいとの意思に基づいてアクセルを踏んでいると考えられるため、力行高開度状態Aよりもトルク上昇レートを小さくする。つまり、力行高開度状態Aよりも単位時間当たりのトルクの増加量を小さくする。
 また、回生状態において現在トルクが閾値トルクを下回る状態を回生低トルク状態Cといい、回生状態において現在トルクが閾値トルクを上回る状態を回生高トルク状態Dという。回生高トルク状態Dでは、ドライバの意図しない急激な減速が発生するのを抑制するために、トルク下降レートを小さくする。つまり、単位時間当たりのトルクの減少量を小さくする。一方、回生低トルク状態Cでは、モータ3の回生量が低下するのを抑制するために、回生高トルク状態Dよりもトルク下降レートを大きくする。つまり、回生高トルク状態Dよりも単位時間当たりのトルクの減少量を大きくする。
 そして、回生状態では、トルクレートが大きいと、力行状態に比べて目標減速度に合わせづらくなるため、アクセル開度が同じ条件においては、力行高開度状態A及び力行低開度状態Bのトルクレート(トルク上昇レート)よりも回生低トルク状態C及び回生高トルク状態Dのトルクレート(トルク下降レート)を小さくする。より具体的には、モータ回転数が同じ条件においては、力行高開度状態A、力行低開度状態B、回生低トルク状態C、及び回生高トルク状態Dの順に、トルクレートを小さくする。なお、トルク上昇レートとトルク下降レートとは正負逆であるため、トルクレートを小さくするとは、トルクレートの絶対値を小さくすることをいう。
 図1に示すように、モータ制御部7は、トルクレートを求めると、モータ3のトルクが求めたトルクレートで目標トルクとなるようにモータ3を制御する。具体的には、モータ制御部7は、現在トルクにトルクレートを加算したトルクを指示トルクとして算出する。そして、モータ制御部7は、指示トルクが目標トルクよりも小さい場合は、指示トルクでモータ3を制御する。一方、モータ制御部7は、指示トルクが目標トルク以上の場合は、目標トルクでモータ3を制御する。
 次に、図4を参照して、電動車制御装置1の処理動作の一例について説明する。図4は、電動車制御装置の処理動作の一例を示すフローチャートである。
 図4に示すように、まず、電動車制御装置1、アクセル開度、モータ回転数、及び現在トルクを取得する(ステップS1)。アクセル開度は、アクセル開度検出部4から取得し、モータ回転数は、モータ回転数検出部5から取得し、現在トルクは、現在トルク検出部6から取得する。次に、電動車制御装置1は、ステップS1で取得したアクセル開度及びモータ回転数に基づいて目標トルクを求める(ステップS2)。目標トルクは、例えば、ガバナマップを参照することにより求める。次に、電動車制御装置1は、ステップS2で求めた目標トルクがステップS1で取得した現在トルクよりも大きいか否かを判定する(ステップS3)。
 目標トルクが現在トルクよりも大きいと判定した場合(ステップS3:YES)、電動車制御装置1は、力行状態であると判断して、ステップS1で取得したアクセル開度及びモータ回転数に基づいてトルク上昇レート(トルクレート)を求める(ステップS4)。ステップS4では、電動車制御装置1は、トルク上昇レートテーブルを参照する等して、アクセル開度が閾値開度を下回る場合のトルク上昇レートが、アクセル開度が閾値開度を上回る場合のトルク上昇レートよりも小さくなるように、トルク上昇レートを求める。
 一方、目標トルクが現在トルクよりも大きくないと判定した場合(ステップS3:NO)、電動車制御装置1は、回生状態であると判断して、ステップS1で取得した現在トルク及びモータ回転数に基づいてトルク下降レート(トルクレート)を求める(ステップS5)。ステップS5では、電動車制御装置1は、トルク下降レートテーブルを参照する等して、現在トルクが閾値トルクを下回る場合のトルク下降レートが、現在トルクが閾値トルクを上回る場合のトルク下降レートよりも小さくなるように、トルク下降レートを求める。また、電動車制御装置1は、トルク下降レートテーブルを参照する等して、目標トルクが現在トルクよりも大きいと判定した場合(ステップS3:YES)に求めるトルク上昇レートよりも小さなトルクレートとなるように、トルク下降レートを求める。
 そして、電動車制御装置1は、ステップS1で取得した現在トルクと、ステップS4で求めたトルク上昇レート(トルクレート)又はステップS5で求めたトルク下降レート(トルクレート)とに基づいて、指示トルクを求める(ステップS6)。ステップS6では、電動車制御装置1は、現在トルクに求めたトルク上昇レート又はトルク下降レートを加算することで、指示トルクを求める。次に、電動車制御装置1は、ステップS6で求めた指示トルクがステップS2で求めた目標トルクよりも小さいか否かを判定する(ステップS7)。
 指示トルクが目標トルクよりも小さいと判定すると(ステップS7:YES)、電動車制御装置1は、ステップS6で求めた指示トルクでモータ3を制御する(ステップS8)。そして、電動車制御装置1は、一旦処理を終了して、再度ステップS1から繰り返す。
 一方、指示トルクが目標トルクよりも小さくないと判定すると(ステップS7:NO)、電動車制御装置1は、ステップS2で求めた目標トルクでモータ3を制御する(ステップS9)。そして、電動車制御装置1は、一旦処理を終了して、再度ステップS1から繰り返す。
 以上説明したように、本実施形態に係る電動車制御装置1では、ドライバの操作であるアクセル開度に基づいてトルクレートを変えることができるため、ドライバの操作に伴う電動車2の加減速に関するドライバの意志を適切に反映させることができる。
 また、この電動車制御装置1では、アクセル開度及びモータ回転数に基づいてトルクレートを求めることで、車速によって変わる走行抵抗等の影響も考慮してトルクレートを変更することができる。これにより、例えば、車速の速度域ごとに、ドライバに対して良好な運転フィーリングを与えることができる。
 また、この電動車制御装置1では、力行状態において、アクセル開度が閾値開度を下回る場合のトルクレートを、アクセル開度が閾値開度を上回る場合のトルクレートよりも小さくする。これにより、アクセル開度が小さい場合は、トルクレートが小さくなるため、ゆっくりと電動車2を加速させたいとのドライバの意志を反映することができる。一方、アクセル開度が大きい場合は、トルクレートが大きくなるため、すぐに電動車を加速させたいとのドライバの意志を反映することができる。
 また、この電動車制御装置1では、回生状態において、現在トルクが閾値トルクを下回る場合のトルクレートを、現在トルクが閾値トルクを上回る場合のトルクレートよりも小さくする。これにより、現在トルクが大きくなっている場合に、ドライバの意図しない急激な減速が発生するのを抑制することができる。その結果、ドライバに再加速を誘発させたり積荷が荷崩れしたりするのを抑制することができる。一方、現在トルクが小さくなっている場合に、モータ3の回生量が低減するのを抑制することができる。
 また、この電動車制御装置1では、回生状態のトルクレートを力行状態のトルクレートよりも小さくすることで、電動車2の減速が緩やかになってドライバが目標減速度に合わせやすくなる。
 以上、本開示の実施形態について説明したが、本開示は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用してもよい。
 例えば、上記実施形態では、トルク上昇レートは、アクセル開度及びモータ回転数に基づいて変更するものとして説明したが、トルク上昇レートは、アクセル開度に基づいて変更するが、モータ回転数によっては変更しないものとしてもよい。
 また、上記実施形態では、トルクレートとして、トルク上昇レート及びトルク下降レートの双方を変更するものとして説明したが、トルク上昇レートのみを変更するものとしてもよい。
 1…電動車制御装置、2…電動車、3…モータ、4…アクセル開度検出部、5…モータ回転数検出部、6…トルク検出部、7…モータ制御部、A…力行高開度状態、B…力行低開度状態、C…回生低トルク状態、D…回生高トルク状態。

 

Claims (5)

  1.  モータを駆動源とする電動車の加減速を制御する電動車制御装置であって、
     前記電動車のアクセル開度を検出するアクセル開度検出部と、
     モータ回転数を検出するモータ回転数検出部と、
     前記モータを制御するモータ制御部と、を備え、
     前記モータ制御部は、
      前記アクセル開度及び前記モータ回転数に基づいて目標トルクを求め、
      前記アクセル開度に基づいて単位時間当たりのトルクの変化量であるトルクレートを求め、
      前記モータのトルクが前記トルクレートで前記目標トルクとなるように前記モータを制御する、
    電動車制御装置。
  2.  前記モータ制御部は、前記モータ回転数にも基づいて前記トルクレートを求める、
    請求項1に記載の電動車制御装置。
  3.  前記モータが発生している現在トルクを検出する現在トルク検出部を更に備え、
     前記目標トルクが前記現在トルクよりも大きい力行状態では、前記モータ制御部は、前記アクセル開度が閾値開度を下回る場合の前記トルクレートを、前記アクセル開度が前記閾値開度を上回る場合の前記トルクレートよりも小さくする、
    請求項1又は2に記載の電動車制御装置。
  4.  前記目標トルクが前記現在トルクよりも小さい回生状態では、前記モータ制御部は、前記現在トルクが閾値トルクを下回る場合の前記トルクレートを、前記現在トルクが前記閾値トルクを上回る場合の前記トルクレートよりも小さくする、
    請求項3に記載の電動車制御装置。
  5.  前記モータ制御部は、前記アクセル開度が同じ条件において、前記回生状態の前記トルクレートを、前記力行状態の前記トルクレートよりも小さくする、
    請求項4に記載の電動車制御装置。
PCT/JP2023/015462 2022-04-27 2023-04-18 電動車制御装置 WO2023210440A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-072923 2022-04-27
JP2022072923A JP2023162546A (ja) 2022-04-27 2022-04-27 電動車制御装置

Publications (1)

Publication Number Publication Date
WO2023210440A1 true WO2023210440A1 (ja) 2023-11-02

Family

ID=88518609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015462 WO2023210440A1 (ja) 2022-04-27 2023-04-18 電動車制御装置

Country Status (2)

Country Link
JP (1) JP2023162546A (ja)
WO (1) WO2023210440A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004112973A (ja) * 2002-09-20 2004-04-08 Toyota Motor Corp 車両のスリップ制御装置及びその制御方法
JP2013121231A (ja) * 2011-12-07 2013-06-17 Hitachi Automotive Systems Ltd 電動車両の制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004112973A (ja) * 2002-09-20 2004-04-08 Toyota Motor Corp 車両のスリップ制御装置及びその制御方法
JP2013121231A (ja) * 2011-12-07 2013-06-17 Hitachi Automotive Systems Ltd 電動車両の制御装置

Also Published As

Publication number Publication date
JP2023162546A (ja) 2023-11-09

Similar Documents

Publication Publication Date Title
JP3167935B2 (ja) ハイブリッド車両の制御装置
JP5944199B2 (ja) 車両及び車両の制御方法
EP3486111B1 (en) Torque control method and torque control device
CN110682798B (zh) 电机扭矩控制方法、装置、系统和计算机存储介质
US20170066434A1 (en) Hybrid vehicle
CN1721218A (zh) 用于车辆的驱动控制装置和方法
US20140309829A1 (en) Electric vehicle
US10793009B2 (en) Vehicle driving force control apparatus
CN107599889A (zh) 一种倒车控制方法、装置及电动汽车
CN109591796B (zh) 用于混合动力车辆的控制装置
JP7176360B2 (ja) 電動車両
JP2000278815A (ja) 電気自動車のクリープ制御装置
WO2023210440A1 (ja) 電動車制御装置
JP6733385B2 (ja) ハイブリッド車両の制御装置
JP2004096824A (ja) 電気自動車およびこれに搭載された電動機の制御方法
JP3951649B2 (ja) 電気自動車のモータ制御装置
JP2001234774A (ja) ハイブリッド車両
JP6355112B2 (ja) 車両用制御装置、および情報提供方法
WO2023058639A1 (ja) 車両制御装置
JP7385464B2 (ja) 車両用制御装置
US20220258754A1 (en) Vehicle control device
KR102558573B1 (ko) 하이브리드 차량의 토크 제어 장치 및 이를 이용한 토크 제어 방법
JP2000032609A (ja) ハイブリッド電気自動車の制御装置
WO2022196205A1 (ja) 車両制御装置および車両制御方法
JP3517356B2 (ja) ハイブリッド駆動システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796183

Country of ref document: EP

Kind code of ref document: A1