WO2023210218A1 - 潤滑油組成物 - Google Patents

潤滑油組成物 Download PDF

Info

Publication number
WO2023210218A1
WO2023210218A1 PCT/JP2023/011484 JP2023011484W WO2023210218A1 WO 2023210218 A1 WO2023210218 A1 WO 2023210218A1 JP 2023011484 W JP2023011484 W JP 2023011484W WO 2023210218 A1 WO2023210218 A1 WO 2023210218A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
lubricating oil
composition
content
oil composition
Prior art date
Application number
PCT/JP2023/011484
Other languages
English (en)
French (fr)
Inventor
仁 小松原
勉 高橋
Original Assignee
Eneos株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos株式会社 filed Critical Eneos株式会社
Publication of WO2023210218A1 publication Critical patent/WO2023210218A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/12Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic compound containing atoms of elements not provided for in groups C10M141/02 - C10M141/10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M167/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound, a non-macromolecular compound and a compound of unknown or incompletely defined constitution, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/04Hydroxy compounds
    • C10M129/10Hydroxy compounds having hydroxy groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/12Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/32Heterocyclic sulfur, selenium or tellurium compounds
    • C10M135/36Heterocyclic sulfur, selenium or tellurium compounds the ring containing sulfur and carbon with nitrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M139/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • C10M159/22Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing phenol radicals

Definitions

  • the present invention relates to a lubricating oil composition, and more particularly, it is suitably used for lubricating a transmission having a wet clutch such as a wet multi-disc clutch, particularly an automatic transmission having a wet clutch or a continuously variable transmission having a wet clutch.
  • the present invention relates to a lubricating oil composition that can be used as a lubricating oil composition.
  • transmissions and final reduction gears have gear bearing mechanisms, and by lowering the viscosity of the lubricating oil used in these, stirring resistance and drag torque caused by the viscous resistance of the lubricating oil can be reduced. It is thought that the power transmission efficiency will be improved, and as a result, it will be possible to improve fuel efficiency.
  • reducing the viscosity of lubricating oil improves fuel efficiency, but as the oil film thickness decreases, lubrication performance such as extreme pressure properties, wear resistance, and fatigue resistance tends to decrease. .
  • extreme pressure agents such as sulfur-based additives, phosphorus-based additives, and phosphorus-sulfur additives and/or anti-wear additives are used. It is conceivable to additionally incorporate an additive that functions as an agent or to increase its content.
  • the present invention has a low viscosity, it improves extreme pressure properties, wear resistance, and fatigue resistance, which tend to deteriorate as the viscosity of lubricating oil decreases, and also suppresses deterioration in oxidation stability. It is an object of the present invention to provide a lubricating oil composition that can also satisfy the wet clutch performance required for machines.
  • a lubricating base oil comprising one or more mineral base oils, one or more synthetic base oils, or a combination thereof; (A) one or more thiadiazole compounds; (B) one or more sulfur-free phosphorus compounds; (C) one or more calcium-based detergents, including one or more calcium phenate detergents; (D) one or more succinimide dispersants, including one or more boron-containing succinimide dispersants; (E) one or more oil-based friction modifiers; Contains The sulfur content in the composition is 0.050% by mass or less based on the total amount of the composition, The boron content in the composition is less than 0.030% by mass based on the total amount of the composition, The kinematic viscosity at 100°C of the composition is 6.2 mm 2 /s or less, The ratio MS/MP of the sulfur content MS (unit: mass %) in the composition to the phosphorus content MP (unit: mass %) in
  • Component (E) comprises (E1) one or more aliphatic hydrocarbyl groups having 8 to 30 carbon atoms and/or one or more aliphatic hydrocarbyl carbonyl groups having 8 to 30 carbon atoms; amide bond and/or one or more imide bond in one molecule, and the aliphatic hydrocarbyl carbonyl group may constitute a part of the amide bond and/or imide bond.
  • the lubricating oil composition according to any one of [1] to [6], which contains 0.10 to 3.00% by mass of the N-acylated nitrogen-containing compound based on the total amount of the composition.
  • (G) Contains 0.10 to 1.00% by mass of one or more amine antioxidants and/or one or more phenolic antioxidants based on the total amount of the composition, [1 ] to [8].
  • the lubricating oil composition according to any one of [8].
  • the viscosity is low, the extreme pressure properties, wear resistance, and fatigue resistance, which tend to deteriorate as the viscosity of lubricating oil decreases, are improved, and the decline in oxidation stability is suppressed. , it is possible to provide a lubricating oil composition that can also satisfy the wet clutch performance required for transmissions.
  • alkaline earth metal includes magnesium.
  • the content of each element of calcium, magnesium, zinc, phosphorus, sulfur, boron, barium, and molybdenum in oil is determined by inductively coupled plasma emission spectroscopy in accordance with JIS K0116. It shall be measured by an analytical method (intensity ratio method (internal standard method)). Further, the content of nitrogen element in the oil shall be measured by chemiluminescence method in accordance with JIS K2609. Moreover, in this specification, "weight average molecular weight” means a weight average molecular weight measured by gel permeation chromatography (GPC) in terms of standard polystyrene. The measurement conditions for GPC are as follows.
  • the lubricating oil composition of the present invention (hereinafter sometimes referred to as “lubricating oil composition” or “composition”) contains a major amount of lubricating base oil and one or more additives other than the base oil. Contains.
  • the lubricating oil base oil used is a lubricating oil base oil comprising one or more mineral base oils, one or more synthetic base oils, or a combination thereof.
  • the lubricating base oil includes Group I base oil of the API base oil classification (hereinafter sometimes referred to as "API Group I base oil”), Group II base oil (hereinafter referred to as “API Group II base oil”), ), Group III base oils (hereinafter sometimes referred to as “API Group III base oils”), Group IV base oils (hereinafter sometimes referred to as “API Group IV base oils”). ), Group V base oil (hereinafter sometimes referred to as "API Group V base oil”), or a mixed base oil thereof can be used.
  • API Group I base oil Group I base oil
  • API Group II base oil Group II base oil
  • API Group III base oils Group III base oils
  • API Group IV base oils hereinafter sometimes referred to as “API Group IV base oils”
  • Group V base oil hereinafter sometimes referred to as "API Group V base oil”
  • a mixed base oil thereof can be used.
  • API Group I base oil is a mineral oil base oil with a sulfur content of more than 0.03% by mass and/or a saturated content of less than 90% by mass, and a viscosity index of 80 or more and less than 120.
  • API Group II base oil is a mineral oil base oil having a sulfur content of 0.03% by mass or less, a saturated content of 90% by mass or more, and a viscosity index of 80 or more and less than 120.
  • API Group III base oil is a mineral oil base oil having a sulfur content of 0.03% by mass or less, a saturated content of 90% by mass or more, and a viscosity index of 120 or more.
  • API Group IV base oils are polyalpha-olefin base oils.
  • API Group V base oils are base oils other than the above Groups I to IV, and preferred examples include ester base oils.
  • component (A) includes one or more API Group II base oils, one or more API Group III base oils, one or more API Group IV base oils, or one or more API Group IV base oils.
  • V base oils or combinations thereof can be preferably used.
  • mineral oil base oils include lubricating oil fractions obtained by atmospheric distillation and/or vacuum distillation of crude oil, which can be subjected to solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, and hydrogen dewaxing.
  • mineral oil base oils include paraffinic base oils refined by one or a combination of two or more selected from chemical refining, sulfuric acid washing, clay treatment, etc., normal paraffinic base oils, isoparaffinic base oils, and mixtures thereof. be able to.
  • API Group II and Group III base oils are typically produced via a hydrocracking process.
  • the % CP of the mineral base oil is preferably 60 or more, more preferably 65 or more from the viewpoint of further improving the viscosity-temperature characteristics and fuel efficiency of the composition, and is also preferably from the viewpoint of improving the solubility of additives. is 99 or less, more preferably 95 or less, even more preferably 94 or less, and in one embodiment may be 60-99, or 60-95, or 65-95, or 65-94.
  • the % CA of the mineral base oil is preferably 2 or less, more preferably 1 or less, still more preferably 0.8 or less, particularly preferably 0. 5 or less.
  • the % CN of the mineral base oil is preferably 1 or more, more preferably 4 or more from the viewpoint of increasing the solubility of additives, and is also preferably from the viewpoint of further improving the viscosity-temperature characteristics and fuel efficiency of the composition. is 40 or less, more preferably 35 or less, and in one embodiment may be 1-40, or 4-35.
  • %C P , %C N and %C A are the percentages of the number of paraffin carbons to the total number of carbons, respectively, determined by a method based on ASTM D 3238-85 (ndM ring analysis). , means the percentage of naphthenic carbon number to total carbon number, and the percentage of aromatic carbon number to total carbon number.
  • the preferred ranges of % CP , % CN and % CA mentioned above are based on the values determined by the above method.For example, even if the lubricant base oil does not contain naphthenes, %C N can have a value greater than zero.
  • the content of saturated components in the mineral base oil is preferably 90% by mass or more, more preferably 95% by mass or more, and even more preferably 99% by mass, based on the total amount of the base oil. % by mass or more.
  • the saturated content means a value measured in accordance with ASTM D 2007-93.
  • the aromatic content in the mineral base oil is preferably 0 to 10% by mass, more preferably 0 to 5% by mass, particularly preferably 0 to 1% by mass, based on the total amount of the base oil. In embodiments, it may be 0.1% by mass or more.
  • Aromatic components usually include alkylbenzenes, alkylnaphthalenes, anthracene, phenanthrene, and their alkylated products, as well as compounds in which four or more benzene rings are condensed, pyridines, quinolines, phenols, naphthols, etc. This includes aromatic compounds having heteroatoms.
  • API Group IV base oils include those having 2 to 32 carbon atoms, preferably 6 carbon atoms, such as ethylene-propylene copolymers, polybutenes, 1-octene oligomers, 1-decene oligomers, and hydrogenated products thereof. Mention may be made of oligomers and cooligomers of ⁇ -olefins of ⁇ 16 and their hydrogenation products.
  • API Group V base oils include monoesters (e.g. butyl stearate, octyl laurate, 2-ethylhexyl oleate, etc.); diesters (e.g. ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditridecyl adipate, di-2-ethylhexyl sebacate, etc.); polyesters (e.g., trimellitic acid ester, etc.); polyol esters (e.g., trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol-2-ethylhexanoate, pentaerythritol) Examples include ester base oils such as pelargonate, etc.).
  • monoesters e.g. butyl stearate, octyl laurate, 2-
  • API Group V base oils include aromatic synthetic base oils such as alkylbenzenes, alkylnaphthalenes, polyoxyalkylene glycols, dialkyl diphenyl ethers, polyphenyl ethers, and the like.
  • the kinematic viscosity at 40° C. of the lubricating base oil is preferably 40 mm 2 /s or less, 30 mm 2 /s or less, or 22 mm from the viewpoint of energy saving and improving the low-temperature viscosity characteristics of the lubricating oil composition. 2 /s or less.
  • "kinematic viscosity at 40°C” refers to a kinematic viscosity measured in accordance with JIS K 2283-2000 using an automatic viscometer (trade name "CAV-2100", manufactured by Cannon Instrument Co., Ltd.) as a measuring device. Means kinematic viscosity at 40°C.
  • the kinematic viscosity at 100° C. of the lubricating base oil is preferably 6.0 mm 2 /s or less, or 5.5 mm 2 /s from the viewpoint of further improving energy saving and low-temperature viscosity characteristics of the lubricating oil composition. or 5.0 mm 2 /s or less, and preferably 3.5 mm 2 /s or more, 4.0 mm 2 /s or more, or 4.2 mm 2 /s from the viewpoint of improving wear resistance and seizure resistance.
  • kinematic viscosity at 100°C refers to a kinematic viscosity measured in accordance with JIS K 2283-2000 using an automatic viscometer (trade name "CAV-2100", manufactured by Cannon Instrument) as a measuring device. Means kinematic viscosity at 100°C.
  • the viscosity index of the lubricating base oil is preferably 100 or more, more preferably 105 or more, from the viewpoint of improving the viscosity-temperature characteristics of the composition and further improving fuel efficiency and wear resistance. More preferably, it is 110 or more, particularly preferably 115 or more, and most preferably 120 or more.
  • the viscosity index refers to the viscosity index measured using an automatic viscometer (trade name "CAV-2100", manufactured by Cannon Instrument Co., Ltd.) as a measuring device in accordance with JIS K 2283-2000. means.
  • the pour point of the lubricating base oil is preferably -10°C or lower, more preferably -12.5°C or lower, and even more preferably -15°C or lower, from the viewpoint of low-temperature fluidity of the entire lubricating oil composition. , particularly preferably -17.5°C or lower, most preferably -20.0°C or lower.
  • pour point means a pour point measured in accordance with JIS K 2269-1987.
  • the sulfur content in the base oil depends on the sulfur content of its raw material.
  • a substantially sulfur-free raw material such as a synthetic wax component obtained by Fischer-Tropsch reaction or the like
  • a substantially sulfur-free base oil can be obtained.
  • the sulfur content in the obtained base oil is usually 100 mass ppm or more.
  • the sulfur content in the lubricating base oil (total base oil) is usually 0.03% by mass or less, and preferably 0.01% by mass or less from the viewpoint of oxidation stability.
  • the sulfur content in the base oil means the amount of sulfur measured in accordance with JIS K 2541-2003.
  • the lubricant base oil is one or more API Group II base oils, one or more API Group III base oils, one or more API Group IV base oils, or one or more API Group V base oils.
  • the base oil, or a combination thereof may comprise 80 to 100% by weight, or 90 to 100% by weight, or 95 to 100% by weight, or 98 to 100% by weight based on the total amount of base oil.
  • the lubricant base oil is based on one or more API Group II base oils, one or more API Group III base oils, or one or more API Group IV base oils, or combinations thereof. It may contain 80 to 100% by mass, or 90 to 100% by mass, or 95 to 100% by mass, or 98 to 100% by mass based on the total amount of oil.
  • the lubricant base oil may or may not contain an API Group V base oil
  • the content of one or more API Group V base oils in the lubricant base oil may, in one embodiment, From the viewpoint of improving oxidation stability, it may preferably be 0 to 50% by mass, or 0 to 20% by mass, or 0 to 10% by mass based on the total amount of base oil.
  • the content of the lubricating base oil (total base oil) in the lubricating oil composition is usually 60% by mass or more based on the total amount of the lubricating oil composition, and in one embodiment, 85 to 98.5% by mass, or 90% by mass. 98.5% by weight, or 93-97% by weight.
  • the lubricating oil composition of the present invention contains (A) one or more thiadiazole compounds (hereinafter sometimes referred to as "component (A)").
  • component (A) one type of thiadiazole compound may be used alone, or two or more types of thiadiazole compounds may be used in combination.
  • component (A) examples include 1,3,4-thiadiazole represented by the following general formula (1), 1,2,4-thiadiazole compound represented by the following general formula (2), and the following general formula Examples include 1,2,3-thiadiazole compounds represented by (3).
  • R 1 and R 2 may be the same or different, and each independently represents a hydrogen atom or a carbon number of 1 to 20 (preferably 6 to 18, or 9 to 12, e.g. 9) represents a hydrocarbyl (preferably alkyl) group; a and b may be the same or different, and each independently represents an integer from 0 to 8.)
  • Component (A) is represented by any of the above general formulas (1) to (3), a and b are 2, and R 1 and R 2 are each independently an alkyl group having 6 to 18 carbon atoms.
  • Certain bis(alkyldithio)thiadiazole compounds can be particularly preferably used. The number of carbon atoms in the alkyl group may be 9 to 12, or 9 in one embodiment. In one embodiment, such bis(alkyldithio)thiadiazole compounds may be used in combination with mono(alkyldithio)thiadiazole compounds.
  • the mono(alkyldithio)thiadiazole compound is represented by any of the general formulas (1) to (3), and one of -S a -R 1 group and -S b -R 2 groups has 6 to 18 carbon atoms.
  • Mono(alkyldithio)thiadiazole compounds in which one is an alkyldithio group and the other is an -SSH group or a -SH group are preferred.
  • the preferred carbon number of the alkyl group is the same as that of the bis(alkyldithio)thiadiazole compound.
  • the content of component (A) in the lubricating oil composition is 0.050 as a sulfur content based on the total amount of the composition, from the viewpoint of increasing the transmission torque capacity and engagement performance of the wet clutch, and from the viewpoint of increasing the wear resistance of the gear. It is not more than 0.045% by mass, or preferably not more than 0.040% by mass.
  • the content of component (A) is determined from the viewpoint of further increasing the wear resistance and fatigue resistance of gears, and the oxidation stability of lubricating oil, and from the viewpoint of further increasing transmission torque capacity and engagement performance of wet clutches.
  • the sulfur content is preferably 0.010% by mass or more based on the total amount. In one embodiment, the content of component (A) is 0.010 to 0.050 mass %, or 0.010 to 0.045 mass %, or 0.010 to 0. .040% by weight.
  • the lubricating oil composition of the present invention contains (B) one or more sulfur-free phosphorus compounds (hereinafter sometimes referred to as "component (B)").
  • component (B) one type of phosphorus compound may be used alone, or two or more types of phosphorus compounds may be used in combination.
  • R 3 represents a hydrocarbon group having 1 to 30 carbon atoms
  • R 4 represents a hydrocarbon group having 1 to 30 carbon atoms or a hydrogen atom
  • R 3 and R 4 may be the same or mutually (The compound of general formula (4) shall include any tautomer thereof.)
  • R 5 represents a hydrocarbon group having 1 to 30 carbon atoms
  • R 6 and R 7 each independently represent a hydrocarbon group having 1 to 30 carbon atoms or a hydrogen atom
  • R 5 , R 6 and R 7 may be the same or different.
  • hydrocarbon groups having 1 to 30 carbon atoms in general formulas (4) and (5) include alkyl groups, cycloalkyl groups, alkenyl groups, alkyl-substituted cycloalkyl groups, aryl groups, alkyl-substituted aryl groups, and aryl groups.
  • alkyl groups include alkyl groups.
  • the hydrocarbon group is preferably an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 24 carbon atoms, and in one embodiment, an alkyl group having 3 to 18 carbon atoms, more preferably an alkyl group having 4 to 12 carbon atoms. It is an aryl group or an alkylaryl group.
  • a preferable example of the hydrocarbon group is a straight or branched alkyl group having 4 to 18 carbon atoms.
  • alkyl groups include butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl.
  • the following groups can be mentioned.
  • hydrocarbon group examples include aryl groups having 6 to 10 carbon atoms such as phenyl and naphthyl; and alkylaryl groups having 7 to 9 carbon atoms such as tolyl, xylyl and mesityl. can be mentioned.
  • metals that form metal salts with the phosphorus compound represented by general formula (4) or (5) include alkali metals such as lithium, sodium, potassium, and cesium, calcium, magnesium, barium, etc.
  • alkali metals such as lithium, sodium, potassium, and cesium, calcium, magnesium, barium, etc.
  • alkaline earth metals zinc, copper, iron, lead, nickel, silver, manganese, and other heavy metals.
  • alkaline earth metals such as calcium and magnesium, zinc, or a combination thereof are preferred.
  • nitrogen-containing compounds that form ammonium salts with the phosphorus compound represented by general formula (4) or (5) include ammonia, monoamines, diamines, polyamines, and alkanolamines. More specifically, nitrogen-containing compounds represented by the following general formula (6); alkylene diamines such as methylene diamine, ethylene diamine, propylene diamine, and butylene diamine; diethylene triamine, triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine; polyamines such as; and combinations thereof.
  • R 8 to R 10 each independently represent a hydrogen atom, a hydrocarbyl group having 1 to 8 carbon atoms, or a hydrocarbyl group having 1 to 8 carbon atoms having a hydroxyl group; R 8 to R 10 At least one of them is a hydrocarbyl group having 1 to 8 carbon atoms, or a hydrocarbyl group having 1 to 8 carbon atoms and having a hydroxyl group.
  • R 3 and R 4 are each independently an alkyl group having 3 to 18 carbon atoms (preferably 4 to 12), an aryl group, groups (e.g. phenyl group, naphthyl group, etc.), or alkylaryl groups (e.g. methylphenyl group, dimethylphenyl group, trimethylphenyl group (e.g. mesityl group, etc.), isopropylphenyl group, isopropylmethylphenyl group (e.g. thymyl group, etc.) , alkylphenyl groups, etc.).
  • aryl group groups
  • groups e.g. phenyl group, naphthyl group, etc.
  • alkylaryl groups e.g. methylphenyl group, dimethylphenyl group, trimethylphenyl group (e.g. mesityl group, etc.), isopropylphenyl group, isopropylmethylphenyl group (e.g. thymyl
  • R 3 and R 4 may be different, it is more preferable that they are the same group.
  • R 5 to R 7 are each independently an alkyl group having 3 to 18 carbon atoms (preferably 4 to 12 carbon atoms), an aryl group, groups (e.g. phenyl group, naphthyl group, etc.), or alkylaryl groups (e.g. methylphenyl group, dimethylphenyl group, trimethylphenyl group (e.g. mesityl group, etc.), isopropylphenyl group, isopropylmethylphenyl group (e.g. thymyl group, etc.) , alkylphenyl groups, etc.).
  • R 5 to R 7 may be different from each other, it is more preferable that they are the same group. These compounds may be used alone or in combination of two or more.
  • the content of component (B) in the lubricating oil composition is preferably 0.010% by mass or more as a phosphorus content based on the total amount of the composition, or 0.025% by mass or more, or 0.030% by mass or more.
  • the content of component (B) is preferably set as a phosphorus content based on the total amount of the composition, from the viewpoint of further increasing seizure resistance, fatigue resistance, and oxidation stability, and from the viewpoint of further increasing the transmission torque capacity of a wet clutch. It is 0.100% by mass or less, or 0.085% by mass or less, or 0.075% by mass or less.
  • the content of component (B) is 0.010 to 0.100% by mass, or 0.025 to 0.085% by mass, or 0.030 to 0. .75% by weight.
  • the lubricating oil composition of the present invention contains (C) one or more calcium-based detergents (hereinafter sometimes referred to as "component (C)”), including one or more calcium phenate detergents. .
  • component (C) contains a calcium phenate detergent, it becomes possible to increase the transmission torque capacity of the wet clutch.
  • component (C) one type of calcium-based detergent may be used alone, or two or more types of calcium-based detergents may be used in combination.
  • component (C) may consist of one or more calcium phenate detergents, and one or more calcium phenate detergents and one or more calcium detergents other than calcium phenate detergents. May contain. Examples of calcium detergents other than calcium phenate detergents include calcium sulfonate detergents, calcium salicylate detergents, and the like.
  • Examples of calcium phenate detergents include overbased salts of calcium salts of compounds having the structure represented by the following general formula (7).
  • R 11 represents a linear or branched, saturated or unsaturated alkyl or alkenyl group having 6 to 21 carbon atoms
  • m represents an integer of 0 to 9
  • A represents sulfide (-S -) group or methylene (-CH 2 -) group
  • x represents an integer of 1 to 3.
  • R 11 may be a combination of two or more different groups, and x may be a combination of a plurality of different integers.
  • x is preferably 1.
  • the substitution position of the -A x - group on each aromatic ring is typically the o-position or the p-position relative to the hydroxy group, typically the o-position.
  • the number of carbon atoms in R 11 in general formula (7) is preferably 9 or more from the viewpoint of increasing solubility in base oil, and preferably 18 or less, more preferably 15 or less from the viewpoint of ease of production. In embodiments of 9-18, or 9-15.
  • n in general formula (2) is preferably 0 to 3.
  • Preferred examples of calcium sulfonate detergents include calcium salts of alkyl aromatic sulfonic acids obtained by sulfonating an alkyl aromatic compound, or basic salts or overbased salts thereof.
  • the weight average molecular weight of the alkyl aromatic compound is preferably 400 to 1,500, more preferably 700 to 1,300.
  • alkyl aromatic sulfonic acids include so-called petroleum sulfonic acids and synthetic sulfonic acids.
  • Examples of petroleum sulfonic acids include those obtained by sulfonating an alkyl aromatic compound of a lubricating oil fraction of mineral oil, and so-called mahogany acid, which is a by-product during the production of white oil.
  • Examples of synthetic sulfonic acids include straight-chain or branched alkyls obtained by recovering by-products in alkylbenzene manufacturing plants, which are raw materials for detergents, or by alkylating benzene with polyolefins. Examples include sulfonated alkylbenzenes having groups. Other examples of synthetic sulfonic acids include sulfonated alkylnaphthalenes such as dinonylnaphthalene. Further, the sulfonating agent for sulfonating these alkyl aromatic compounds is not particularly limited, and for example, fuming sulfuric acid or sulfuric anhydride can be used.
  • calcium salicylate detergents examples include calcium salicylate or its basic or overbased salts.
  • a preferred example of calcium salicylate is calcium salicylate represented by the following general formula (8).
  • the method for producing calcium salicylate is not particularly limited, and known methods for producing monoalkyl salicylate can be used.
  • monoalkyl salicylic acid obtained by using phenol as a starting material, alkylation using an olefin, and then carboxylating with carbon dioxide gas, or alkylating using an equivalent amount of the above olefin using salicylic acid as a starting material,
  • the obtained monoalkyl salicylic acid, etc. is reacted with a metal base such as a calcium oxide or hydroxide, or the monoalkyl salicylic acid, etc. is converted into an alkali metal salt such as a sodium salt or a potassium salt, and then converted into a calcium salt.
  • Calcium salicylate can be obtained by metal exchange with.
  • the method for obtaining overbased calcium phenate, sulfonate, or salicylate is not particularly limited, but for example, calcium phenate, sulfonate, or salicylate is converted to a calcium base such as calcium hydroxide in the presence of carbon dioxide gas.
  • An overbased calcium phenate, sulfonate, or salicylate can be obtained by reacting with.
  • the base number of component (C) is not particularly limited, but is preferably 50 to 500 mgKOH/g, more preferably 100 to 400 mgKOH/g, particularly preferably 200 to 350 mgKOH/g. Note that in this specification, the base number means the base number measured by the perchloric acid method in accordance with ASTM D 2896.
  • the content of component (C) in the lubricating oil composition is determined based on the total amount of the composition, from the viewpoint of further improving wear resistance, seizure resistance, oxidation stability, and the transmission torque capacity and engagement performance of the wet clutch.
  • the calcium content is preferably 0.008% by mass or more, 0.009% by mass or more, or 0.010% by mass or more.
  • the content of component (C) is determined based on the total amount of the composition, from the viewpoint of making it easier to reduce the ratio MB/MCa of boron content (MB) to calcium content (MCa) in the composition to be below the upper limit.
  • the calcium content is preferably 0.040% by mass or less, 0.038% by mass or less, or 0.036% by mass or less on a standard basis.
  • the content of component (C) is 0.008 to 0.040% by mass, or 0.009 to 0.040% by mass, or 0.010 to 0.010% by mass as calcium content based on the total amount of the composition. It can be .040% by weight, or 0.009-0.038% by weight, or 0.010-0.036% by weight.
  • Component (C) may include only one or more calcium phenate detergents, or one or more calcium-based detergents other than calcium phenate detergents (e.g., calcium sulfonate detergents, calcium phenate detergents, etc.). ) may further be included.
  • the ratio of phenate to the total soap base of component (C) that is, the ratio of phenate to the mass of the total soap base of component (C) in terms of organic acid
  • the mass ratio of all soap groups of the agent in terms of organic acid is preferably 65 to 100% by mass, more preferably 80 to 100% by mass, even more preferably 90 to 100% by mass, and in one embodiment, 95 to 100% by mass.
  • the soap group of a metal-based detergent refers to the conjugate base of the organic acid that constitutes the soap component of the metal-based detergent (for example, an alkyl salicylate anion in the case of a salicylate detergent, and an alkyl salicylate anion in the case of a sulfonate detergent).
  • an alkyl salicylate anion in the case of a salicylate detergent
  • an alkyl salicylate anion in the case of a sulfonate detergent for example, it means an alkylbenzene sulfonate anion, and in the case of a phenate detergent, an alkyl phenate anion.
  • metal detergents include organic acid metal salts that can form micelles in the base oil (for example, alkali or alkaline earth metal alkyl salicylates, alkali or alkaline earth metal alkylbenzene sulfonates, and alkali or alkaline earth metal alkyl phenates, etc.), or the organic acid metal salt and basic metal salt (for example, the hydroxide, carbonate, boron of the alkali or alkaline earth metal constituting the organic acid metal salt) (acid acid, etc.) is used.
  • organic acid metal salts that can form micelles in the base oil
  • the organic acid metal salt and basic metal salt for example, the hydroxide, carbonate, boron of the alkali or alkaline earth metal constituting the organic acid metal salt
  • Such organic acids usually contain at least one polar group with Br ⁇ nsted acidity capable of forming salts with metal bases (e.g., carboxy group, sulfo group, phenolic hydroxy group, etc.) and a straight or branched alkyl group. (For example, a linear or branched alkyl group having 6 or more carbon atoms, etc.) in one molecule.
  • metal bases e.g., carboxy group, sulfo group, phenolic hydroxy group, etc.
  • metal bases e.g., carboxy group, sulfo group, phenolic hydroxy group, etc.
  • straight or branched alkyl group e.g., a straight or branched alkyl group having 6 or more carbon atoms, etc.
  • the lubricating oil composition of the present invention includes (D) one or more boron-containing succinimide dispersants (hereinafter sometimes referred to as "component (D)"). Contains. When the component (D) contains a boron-containing succinimide dispersant, it becomes possible to improve wear resistance and seizure resistance, and to increase the transmission torque capacity of a wet clutch. As component (D), one type of succinimide dispersant may be used alone, or two or more types of succinimide dispersants may be used in combination. Component (D) may also consist of one or more boron-containing succinimide dispersants, one or more boron-containing succinimide dispersants, and one or more boron-free succinimide dispersants. May contain.
  • succinimide ashless dispersant examples include succinimide and/or modified succinimide having at least one alkyl group or alkenyl group in the molecule.
  • succinimides having at least one alkyl group or alkenyl group in the molecule include compounds represented by the following general formula (9) or (10).
  • R 13 represents an alkyl group or alkenyl group having 40 to 400 carbon atoms, and d represents an integer of 1 to 5, preferably 2 to 4.
  • the carbon number of R13 is preferably 40 or more, more preferably 60 or more from the viewpoint of solubility in the lubricating oil base oil, and preferably 400 or less, more preferably more preferably from the viewpoint of improving the low temperature fluidity of the lubricating oil composition. 350 or less, and in one embodiment may be from 40 to 400, or from 60 to 350.
  • R 13 is particularly preferably a polybutenyl group.
  • R 14 and R 15 each independently represent an alkyl group or alkenyl group having 40 to 400 carbon atoms, and may be a combination of different groups. Further, e represents an integer of 0 to 4, preferably 1 to 4, more preferably 1 to 3.
  • the number of carbon atoms in R 14 and R 15 is preferably 40 or more, more preferably 60 or more from the viewpoint of solubility in the lubricating oil base oil, and preferably 400 or less from the viewpoint of improving the low-temperature fluidity of the lubricating oil composition. More preferably, it is 350 or less, and in one embodiment, it may be 40 to 400, or 60 to 350.
  • R 14 and R 15 are particularly preferably polybutenyl groups.
  • the alkyl group or alkenyl group (R 13 to R 15 ) in formulas (9) and (10) may be linear or branched, and are preferably oligomers of olefins such as propylene, 1-butene, isobutene, etc. Examples include branched alkyl groups and branched alkenyl groups derived from cooligomers of ethylene and propylene. Among these, branched alkyl or alkenyl groups derived from oligomers of isobutene, commonly called polyisobutylene, and polybutenyl groups are most preferred.
  • the preferred number average molecular weight of the alkyl group or alkenyl group (R 13 to R 15 ) in formulas (9) and (10) is 800 to 3,500, more preferably 1,000 to 3,500.
  • Succinimide having at least one alkyl group or alkenyl group in its molecule is a so-called mono-type succinic acid represented by the general formula (9), in which succinic anhydride is added to only one end of the polyamine chain.
  • the lubricating oil composition may contain either mono-type succinimide or bis-type succinimide, or may contain both as a mixture.
  • the content of bis-type succinimide or its derivative (modified product) in component (C) is preferably 50% by mass or more, more preferably 70% by mass based on the total amount of component (C) (100% by mass). % or more.
  • the method for producing the succinimide having at least one alkyl group or alkenyl group in the molecule is not particularly limited.
  • the above succinimide can be obtained as a condensation reaction product (condensation product) by reacting an alkyl or alkenyl succinic acid or its anhydride having an alkyl group or alkenyl group having 40 to 400 carbon atoms with a polyamine.
  • alkyl or alkenyl succinic acid or its anhydride can be obtained by reacting a compound having an alkyl group or alkenyl group having 40 to 400 carbon atoms with maleic anhydride at 100 to 200°C.
  • the above condensation product may be used as it is, or the above condensation product may be converted into a derivative (modified product) described below.
  • the condensation product of alkyl or alkenyl succinic acid or its anhydride and polyamine may be a bis-type succinimide (see general formula (10)) in which both ends of the polyamine chain are imidized, It may be a monotype succinimide in which only one end of the polyamine chain is imidized (see general formula (9)), or a mixture thereof.
  • examples of polyamines include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, and mixtures thereof, and polyamine raw materials containing one or more selected from these are preferably used.
  • the polyamine raw material may or may not further contain ethylenediamine, but from the viewpoint of improving the performance as a dispersant for the condensation product or its derivative, the content of ethylenediamine in the polyamine raw material It is preferably 0 to 10% by weight, more preferably 0 to 5% by weight based on the total amount.
  • the succinimide obtained as a condensation reaction product of an alkyl or alkenyl succinic acid having an alkyl or alkenyl group having 40 to 400 carbon atoms or an anhydride thereof and a mixture of two or more types of polyamines has the general formula (9). or a mixture of compounds having different d or e in (10).
  • Component (D) contains one or more boron-containing succinimide dispersants.
  • the boron-containing succinimide dispersant is produced by neutralizing or amidating some or all of the remaining amino groups and/or imino groups by allowing boric acid to act on the unmodified succinimide. It can be obtained as acid-modified succinimide (boron-modified succinimide or boronated succinimide).
  • modified succinimides include: (i) The above-mentioned boron-containing succinimide, that is, a boron-modified succinimide in which some or all of the remaining amino groups and/or imino groups are neutralized or amidated by acting boric acid on the succinimide.
  • Succinimide (boronated succinimide);
  • a monocarboxylic acid having 1 to 30 carbon atoms such as a fatty acid, a polycarboxylic acid having 2 to 30 carbon atoms (for example, oxalic acid, phthalic acid, trimellitic acid, pyromellitic acid, etc.)
  • alkylene oxides having 2 to 6 carbon atoms, or hydroxy(poly)oxyalkylene carbonates some or all of the remaining amino groups and/or imino groups are neutralized or amidated oxygen-containing organic compound-modified succinimide;
  • the weight average molecular weight of component (D) is preferably 1,000 to 20,000, more preferably 1,000 to 15,000, particularly preferably 2,000 to 9,000.
  • component (C) contains two or more types of succinimide dispersants, it is preferable that the weight average molecular weight of each succinimide dispersant is within the above range.
  • the boron content of component (D) in the lubricating oil composition is preferably 0.010 based on the total amount of the composition, from the viewpoint of further improving wear resistance, seizure resistance, and transmission torque capacity of a wet clutch. % by mass or more. Further, the boron content of component (D) is less than 0.030% by mass, preferably 0.029% by mass or less, from the viewpoint of improving fatigue resistance. In one embodiment, the boron content of component (D) may be 0.010% by mass or more and less than 0.030% by mass, or 0.010 to 0.029% by mass based on the total amount of the composition. .
  • the nitrogen content of component (D) in the lubricating oil composition is preferably 0.030% by mass or more, or 0.03% by mass or more based on the total amount of the composition, from the viewpoint of further increasing oxidation stability (base number maintenance property). It is .035% by mass or more, or 0.040% by mass or more.
  • the nitrogen content of component (D) is preferably 0.055% by mass or less, or 0.050% by mass based on the total amount of the composition, from the viewpoint of further improving gear lubrication performance (seizure resistance and fatigue resistance). % by mass or less, or 0.045% by mass or less.
  • the nitrogen content of component (D) is 0.030 to 0.055% by mass, 0.035 to 0.050% by mass, or 0.040 to 0.045% by mass. It can be.
  • the lubricating oil composition of the present invention contains one or more oil-based friction modifiers (hereinafter sometimes referred to as "component (E)").
  • component (E) one type of oil-based friction modifier may be used alone, or two or more types of oil-based friction modifiers may be used in combination.
  • oil-based friction modifiers include compounds having 6 to 50 carbon atoms and containing one or more hetero elements selected from oxygen atoms, nitrogen atoms, and sulfur atoms in the molecule.
  • Preferred examples of the oil-based friction modifier include aliphatic amines, fatty acid amides, fatty acid hydrazides, aliphatic imide compounds, and fatty acids having at least one linear or branched alkyl or alkenyl group having 6 to 30 carbon atoms in the molecule. Examples include group ureas, fatty acid esters, fatty acid metal salts, aliphatic alcohols, aliphatic ethers, and the like.
  • An example of an amide friction modifier is a fatty acid having 7 to 30 carbon atoms, preferably 8 to 30 carbon atoms, or 10 to 30 carbon atoms, or 12 to 24 carbon atoms, or 12 to 20 carbon atoms, or 12 to 18 carbon atoms, and an aliphatic primary
  • secondary amine compounds, aliphatic primary or secondary alkanolamine compounds, aliphatic polyamines, or condensation products with ammonia (fatty acid amide friction modifiers) can be mentioned.
  • the aliphatic primary or secondary amine compound preferably has an alkyl or alkenyl group having 1 to 30 carbon atoms, more preferably 1 to 10 carbon atoms, even more preferably 1 to 4 carbon atoms, and has one In embodiments, it has a methyl group or an ethyl group.
  • the aliphatic primary or secondary alkanolamine compound preferably has an alkylene or alkenylene group having 1 to 30 carbon atoms, more preferably 1 to 10 carbon atoms, even more preferably 1 to 4 carbon atoms, and in embodiments with methylene or ethylene groups.
  • aliphatic polyamines include linear or branched aliphatic polyamines having 3 to 11 nitrogen atoms, such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine.
  • Branched polyamines are structural isomers of linear polyamines and have one or more tertiary amino groups.
  • a mixture of two or more types of aliphatic polyamines may be used.
  • the number of nitrogen atoms in the aliphatic polyamine is preferably 3 to 6, particularly preferably 4 to 6.
  • the above fatty acid may be a straight chain fatty acid or a branched chain fatty acid.
  • straight chain fatty acids include enanthic acid, caproic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, myristoleic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, vaccenic acid, and elaidin.
  • Fatty acids derived from natural oils and fats may be used as a mixture containing two or more of the above fatty acids.
  • fatty acids derived from natural oils include coconut oil fatty acids, palm kernel oil fatty acids, palm oil fatty acids, tung oil fatty acids, tall oil fatty acids, corn oil fatty acids, rapeseed oil fatty acids, olive oil fatty acids, sesame oil fatty acids, soybean oil fatty acids, and rice bran oil fatty acids.
  • examples include oil fatty acids, sunflower oil fatty acids, castor oil fatty acids, linseed oil fatty acids, fish oil fatty acids, beef tallow fatty acids, hydrogenated products thereof, and mixtures thereof.
  • branched chain fatty acids include branched chain fatty acids having a tertiary or quaternary carbon atom (ie, branching) at the ⁇ , ⁇ , or ⁇ position of the carbonyl carbon.
  • the branched chain fatty acid has a tertiary or quaternary carbon atom in the alpha or beta position of the carbonyl carbon.
  • the branched chain fatty acid has a tertiary or quaternary carbon atom alpha to the carbonyl carbon.
  • a preferable example of such a branched chain fatty acid is a branched chain fatty acid represented by the following general formula (11).
  • f is an integer of 0 to 2, preferably 0 or 1, more preferably 0;
  • R 16 is a linear or branched chain having 3 to 19 carbon atoms, preferably 4 to 19 carbon atoms
  • R 17 is a straight chain or branched alkyl group having 1 to 10 carbon atoms, preferably 2 to 10 carbon atoms;
  • R 18 is a hydrogen atom or a straight chain or branched chain having 1 to 6 carbon atoms;
  • Alkyl group preferably a hydrogen atom; (number of carbon atoms in R 16 ) ⁇ (number of carbon atoms in R 17 ) ⁇ (number of carbon atoms in R 18 ); (number of carbon atoms in R 16 ) + (number of carbon atoms in R 17 ) ) + (number of carbon atoms in R 18 ) + k + 2 is equal to the total number of carbon atoms in the branched chain fatty acid.)
  • R 18 may be a hydrogen atom.
  • Preferred examples of the branched chain fatty acid represented by the general formula (11) include 2-ethylhexanoic acid, 2-butyloctanoic acid, 2-decyltetradecanoic acid, 5,7,7-trimethyl-2-(1,3 , 3-trimethylbutyl)octanoic acid (also known as isostearic acid).
  • Specific examples of fatty acid amide friction modifiers include lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, oleic acid amide, coconut oil fatty acid amide, synthetic mixed fatty acid amide having 12 to 13 carbon atoms, and the like. be able to.
  • amide friction modifiers include hydrazides and ureides of fatty acids having 7 to 30 carbon atoms; aliphatic semicarbazides, aliphatic ureas, and aliphatic allophanes having alkyl or alkenyl groups having 7 to 30 carbon atoms.
  • Examples include acid amides; and derivatives (modified products) thereof.
  • Examples of derivatives (modified products) of amide friction modifiers include boron-modified products obtained by reacting the above-mentioned amide compounds with boric acid or boric acid salts.
  • fatty acids having 7 to 30 carbon atoms include the fatty acids described above in connection with fatty acid amide friction modifiers, and preferable examples of alkenyl or alkenyl groups having 7 to 30 carbon atoms. may include alkyl or alkenyl groups corresponding to the fatty acids described above in connection with fatty acid amide friction modifiers.
  • alkyl or alkenyl group corresponding to a fatty acid refers to an aliphatic alcohol (R 19 -CH 2 -OH) obtained by reducing the carboxy group of a fatty acid (R 19 -CO 2 H).
  • fatty acid hydrazide friction modifiers include condensation products of fatty acids having 7 to 30 carbon atoms, preferably linear fatty acids, and unsubstituted or aliphatic substituted hydrazines; and acid-modified derivatives thereof (e.g., the condensation products). Examples include boron-modified products obtained by reacting boric acid with boric acid or boric acid salts, etc.). Preferred examples of fatty acids include those described above in connection with fatty acid amide friction modifiers.
  • fatty acid hydrazide friction modifiers include lauric acid hydrazide, tridecanoic acid hydrazide, myristic acid hydrazide, pentadecanoic acid hydrazide, palmitic acid hydrazide, heptadecanoic acid hydrazide, stearic acid hydrazide, oleic acid hydrazide, erucic acid hydrazide, etc. I can do it.
  • Examples of aliphatic urea friction modifiers include linear or branched (preferably linear) carbon atoms having 7 to 30, preferably 10 to 30, or 12 to 24, or 12 to 20, or 12 to 18 carbon atoms.
  • Examples include aliphatic urea compounds having an alkyl or alkenyl group, and acid-modified derivatives thereof (for example, boron-modified products obtained by reacting the urea compound with boric acid or a boric acid salt).
  • Preferred examples of alkenyl or alkenyl groups having 7 to 30 carbon atoms include alkyl or alkenyl groups corresponding to the fatty acids described above in connection with fatty acid amide friction modifiers.
  • aliphatic urea friction modifiers include dodecyl urea, tridecyl urea, tetradecyl urea, pentadecyl urea, hexadecyl urea, heptadecyl urea, octadecyl urea, and oleyl urea.
  • amide friction modifiers include amide compounds of aliphatic hydroxy acids having hydroxy-substituted alkyl or alkenyl groups having 1 to 30 carbon atoms.
  • the amide compound can be obtained, for example, as a condensation product of the aliphatic hydroxy acid and an aliphatic primary or secondary amine compound or an aliphatic primary or secondary alkanolamine compound.
  • the number of carbon atoms in the hydroxy-substituted alkyl or alkenyl group of the aliphatic hydroxy acid is preferably 1 to 10, more preferably 1 to 4, and in one embodiment is 1 or 2.
  • the aliphatic hydroxy acid is preferably a straight chain aliphatic ⁇ -hydroxy acid, and in one embodiment is glycolic acid.
  • the above amine compound and alkanolamine compound preferably have an aliphatic hydrocarbon group having 1 to 30 carbon atoms, more preferably 10 to 30 carbon atoms, or 12 to 24 carbon atoms, or 12 to 20 carbon atoms, or 12 to 18 carbon atoms.
  • the aliphatic hydrocarbon group is preferably a straight chain saturated aliphatic hydrocarbon group.
  • amide friction modifiers include amide compounds of fatty acids having 7 to 30 carbon atoms and amino acids (N-acylated amino acid friction modifiers).
  • Preferred examples of fatty acids include those described above in connection with fatty acid amide friction modifiers.
  • Preferred examples of amino acids include N-methyl amino acids such as N-methylglycine, N-methyl- ⁇ -alanine, N-methylalanine, N-methylvaline, N-methylleucine, and N-methylisoleucine. Among these, N-methylglycine or N-methyl- ⁇ -alanine is particularly preferred.
  • N-acylated amino acid friction modifiers include N-acylated N-methylglycine (for example, N-oleoyl-N-methylglycine, etc.), N-acylated-N-methyl- ⁇ -alanine (for example, N-oleoyl-N-methyl- ⁇ -alanine, etc.) can be mentioned.
  • Examples of aliphatic imide friction modifiers include succinimide having a linear or branched alkyl or alkenyl group having 6 to 30 carbon atoms; and its carboxylic acid, boric acid, phosphoric acid, or sulfuric acid. Modified products can be mentioned.
  • Examples of succinimide-based friction modifiers include bissuccinimide compounds and monosuccinimide compounds having an alkyl or alkenyl group having 8 to 30 carbon atoms, and derivatives (modified products) thereof.
  • Such a succinimide compound is represented by, for example, the following general formula (12) or (13).
  • R 20 and R 21 each independently represent an alkyl or alkenyl group having 8 to 30 carbon atoms, preferably 12 to 22 carbon atoms, or 12 to 18 carbon atoms.
  • R 22 and R 23 each independently represent an alkylene group having 1 to 4 carbon atoms, preferably an alkylene group having 2 to 3 carbon atoms, or an ethylene group.
  • R 24 represents a hydrogen atom or an alkyl or alkenyl group having 1 to 30 carbon atoms, preferably a hydrogen atom.
  • g represents an integer of 1 to 7, preferably 1 to 4, or 1 to 3.
  • h represents an integer of 1 to 7, preferably 1 to 5, or 2 to 5, or 2 to 4.
  • succinimide compound that can be used as a succinimide friction modifier.
  • the above succinimide compound can be obtained as a condensation product by reaction with a 1-30 alkenylated compound or a mixture thereof.
  • the condensation product may be used as it is, or the condensation product may be converted into a derivative (modified product) described below.
  • the condensation product of alkyl or alkenyl succinic acid or its anhydride and a polyamine may be a bis-type succinimide (see general formula (12)) in which both ends of the polyamine chain are imidized, It may be a monotype succinimide in which only one end of the polyamine chain is imidized (see general formula (13)), or a mixture thereof.
  • examples of polyamines include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, and mixtures thereof, and polyamine raw materials containing one or more selected from these are preferably used. be able to.
  • the polyamine raw material may or may not further contain ethylenediamine, but from the viewpoint of improving the performance of the condensation product or its derivative as a friction modifier, the content of ethylenediamine in the polyamine raw material should be It is preferably 0 to 10% by mass, more preferably 0 to 5% by mass based on the total amount of raw materials.
  • the N-mono C 1-30 alkylated polyamine an N-mono C 1-30 alkylated polyamine having a C 1-30 alkyl group on the nitrogen atom at the chain end of the polyamine can be preferably used.
  • N-mono C 1-30 alkenylated polyamine an N-mono C 1-30 alkenylated polyamine having a C 1-30 alkenyl group on the nitrogen atom at the chain end of the polyamine can be preferably used.
  • C ij (i and j are integers) means that the number of carbon atoms is i or more and j or less.
  • Examples of derivatives (modified products) of succinimide compounds that can be used as succinimide-based friction modifiers include boric acid, phosphoric acid, carboxylic acid having 1 to 20 carbon atoms, Examples include modified compounds obtained by reacting with one or more selected from .
  • Component (E) comprises (E1) one or more aliphatic hydrocarbyl groups having 8 to 30 carbon atoms and/or one or more aliphatic hydrocarbyl carbonyl groups having 8 to 30 carbon atoms, one or more amide bonds and and/or one or more imide bonds in one molecule, and the aliphatic hydrocarbyl carbonyl group may constitute a part of the amide bond and/or imide bond. It is preferable to include a nitrogen-containing compound (hereinafter sometimes referred to as "component (E1)").
  • Preferred examples of aliphatic hydrocarbyl groups include alkyl or alkenyl groups corresponding to the fatty acids described above in connection with the fatty acid amide friction modifiers.
  • aliphatic hydrocarbylcarbonyl group examples include aliphatic acyl groups corresponding to the fatty acids described above in connection with the fatty acid amide friction modifier.
  • aliphatic acyl group corresponding to a fatty acid refers to an aliphatic acyl group (R 19 -CO- group) obtained by removing an -OH group from a fatty acid (R 19 -CO 2 H).
  • Component (E) may consist of component (E1), or may contain component (E1) and one or more other oil-based friction modifiers.
  • component (E) preferably contains an amine friction modifier.
  • the amine friction modifier may be used in combination with component (E1), for example.
  • Examples of amine friction modifiers include linear or branched alkyl or alkenyl groups having 7 to 30 carbon atoms, preferably 10 to 30 carbon atoms, or 12 to 24 carbon atoms, more preferably 12 to 20 carbon atoms, preferably straight chain alkyl groups.
  • alkyl or alkenyl group having an alkenyl group; a straight or branched alkyl or alkenyl group having 10 to 30 carbon atoms, preferably 12 to 24 carbon atoms, more preferably 12 to 20 carbon atoms, preferably a straight chain alkyl or alkenyl group , aliphatic polyamines; and alkylene oxide adducts of these aliphatic amines.
  • alkyl or alkenyl groups mentioned above include those corresponding to the fatty acids described above in connection with fatty acid amide friction modifiers.
  • a preferred form of the amine-based friction modifier is an alkyl or alkenyl dialkanolamine represented by the following general formula (14).
  • R 25 represents an alkyl or alkenyl group corresponding to the fatty acid described above in connection with the fatty acid amide friction modifier.
  • i and j each independently represent an integer of 1 to 4, preferably an integer of 2 to 4, or an integer of 2 to 3, and may be 2 in one embodiment.
  • fatty acid ester friction modifiers include linear or branched (preferably linear) carbon atoms having 7 to 30, preferably 10 to 30, or 12 to 24, or 12 to 20, or 12 to 18 carbon atoms.
  • Fatty acid and aliphatic monohydric alcohol e.g. methanol, ethanol, etc.
  • aliphatic polyhydric alcohol e.g.
  • glycerin trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, erythritol, diglycerin, sorbitan, adonitol
  • Preferred examples of fatty acids include those described above in connection with fatty acid amide friction modifiers.
  • fatty acid metal salt-based friction modifiers include linear or branched, preferably linear, carbon atoms having 7 to 30, preferably 10 to 30, or 12 to 24, or 12 to 20, or 12 to 18 carbon atoms.
  • Examples include alkaline earth metal salts (magnesium salts, calcium salts, etc.) and zinc salts of fatty acids.
  • Preferred examples of fatty acids include those described above in connection with fatty acid amide friction modifiers.
  • Examples of aliphatic alcohol friction modifiers include linear or branched, preferably linear, carbon atoms having 7 to 30 carbon atoms, preferably 10 to 30 carbon atoms, or 12 to 24 carbon atoms, or 12 to 20 carbon atoms, or 12 to 18 carbon atoms. Mention may be made of alkyl or alkenyl alcohols. Preferred examples of alkyl or alkenyl groups include those corresponding to the fatty acids described above in connection with fatty acid amide friction modifiers.
  • component (E) in the lubricating oil composition may vary depending on the type of compound, but may be, for example, 0.10 to 3.00% by mass.
  • the content of the component (E1) is preferably 0.000% based on the total amount of the lubricating oil composition, from the viewpoint of improving the stick slip prevention (shudder prevention) property of the wet clutch.
  • component (E) when component (E) includes component (E1) and an oil-based friction modifier other than the component (E1), the content of the oil-based friction modifier other than the component (E1) is From the viewpoint of improving anti-judder properties, it is preferably 0.001% by mass or more, or 0.005% by mass or more, or 0.010% by mass or more based on the total amount of the lubricating oil composition, and also reduces the transmission torque capacity of the wet clutch. From the viewpoint of ensuring a higher level of , or 0.005 to 0.080% by weight, or 0.010 to 0.050% by weight.
  • the lubricating oil composition of the present invention comprises one or more poly(meth)acrylates (hereinafter sometimes referred to as "component (F)”) having a weight average molecular weight of 10,000 to 100,000. ).
  • component (F) poly(meth)acrylates
  • component (F) one type of poly(meth)acrylate may be used alone, or a mixture of two or more types of poly(meth)acrylates may be used.
  • component (F) either a dispersed polyalkyl (meth)acrylate or a non-dispersed polyalkyl (meth)acrylate may be used. From the viewpoint of further increasing the transmission torque capacity and engagement performance of the wet clutch, dispersed polyalkyl (meth)acrylate can be more preferably used.
  • the weight average molecular weight of component (F) is preferably 10,000 or more, or 20,000 or more, or 30,000 or more from the viewpoint of improving the low-temperature fluidity of the lubricating oil composition, and from the viewpoint of improving the shear stability. Preferably, it is 100,000 or less, or 70,000 or less, or 50,000 or less, and in one embodiment, 10,000 to 100,000, or 20,000 to 70,000, or 30,000 to 50, It can be 000.
  • component (F) is a mixture of a plurality of poly(meth)acrylates, it is preferable that the weight average molecular weight of each poly(meth)acrylate is within the above range.
  • Component (F) acts as a viscosity index improver and/or pour point depressant.
  • the content (total content) of component (F) in the lubricating oil composition is preferably 0.5% by mass as a resin content based on the total amount of the lubricating oil composition, from the viewpoint of improving the low-temperature fluidity of the lubricating oil composition. or more, or 1.0 mass% or more, or 2.0 mass% or more, and preferably 6.0 mass% or less, or 5.0 mass% or less, or 4.0 mass%, from the viewpoint of increasing shear stability. or less, and in one embodiment may be from 0.5 to 6.0% by weight, or from 1.0 to 5.0, or from 2.0 to 4.0.
  • the resin component means a polymer component having a molecular weight of 1,000 or more.
  • the lubricating oil composition contains one or more amine antioxidants and/or one or more phenolic antioxidants (hereinafter sometimes referred to as "component (G)").
  • component (G) one type of compound may be used alone, or two or more types of compounds may be used in combination.
  • amine-based antioxidants examples include aromatic amine-based antioxidants and hindered amine-based antioxidants.
  • aromatic amine antioxidants include primary aromatic amine compounds such as alkylated ⁇ -naphthylamine; and diphenylamine, alkylated diphenylamine, phenyl- ⁇ -naphthylamine, alkylated phenyl- ⁇ -naphthylamine, and phenyl.
  • aromatic amine compounds such as ⁇ -naphthylamine and alkylated phenyl- ⁇ -naphthylamine;
  • aromatic amine antioxidant alkylated diphenylamine, alkylated phenyl- ⁇ -naphthylamine, or a combination thereof can be preferably used.
  • phenolic antioxidants examples include 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); -bis(2-methyl-6-tert-butylphenol); 2,2'-methylenebis(4-ethyl-6-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4'-butylidenebis(3-methyl-6-tert-butylphenol); 4,4'-isopropylidenebis(2,6-di-tert-butylphenol); 2,2'-methylenebis(4-methyl-6 -nonylphenol); 2,2'-isobutylidenebis(4,6-dimethylphenol); 2,2'-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4 -Methylphenol; 2,6-di-tert-but
  • 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid esters include octyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate; decyl -3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate; Dodecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate; Tetradecyl-3-(3, 5-di-tert-butyl-4-hydroxyphenyl)propionate; hexadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate; octadecyl-3-(3,5-di-tert- Butyl-4-hydroxyphenyl)propionate; Pentaerythritol-tetrakis[3-(3,5-di-tert-butyl-4-
  • the content is preferably 0.1 to 1.0 based on the total amount of the lubricating oil composition from the viewpoint of thermal oxidative stability.
  • the amount is preferably 0.2 to 1.0% by weight, and even more preferably 0.3 to 0.9% by weight.
  • the content is preferably 0.1 to 1.0 based on the total amount of the lubricating oil composition from the viewpoint of thermal oxidative stability.
  • the amount is preferably 0.2 to 0.9% by weight, and even more preferably 0.3 to 0.8% by weight.
  • the lubricating oil composition includes an anti-wear agent or extreme pressure agent other than the component (A) and the component (B), a polymer other than the component (F), an oil-soluble organic molybdenum compound, and a component other than the component (A). It may further contain one or more selected from corrosion inhibitors, rust preventives, metal deactivators other than component (A), seal swelling agents, antifoaming agents, demulsifiers, and colorants.
  • antiwear agents or extreme pressure agents other than component (A) and component (B) include sulfur-based additives that do not fall under component (A), such as disulfides, polysulfides, sulfurized olefins, and sulfurized oils and fats.
  • sulfur-based extreme pressure agents include sulfur-containing phosphorus compounds (phosphorus-sulfur anti-wear agents).
  • the lubricating oil composition may or may not contain anti-wear agents or extreme pressure agents other than the components (A) and (B).
  • the total content is preferably more than 0% by mass based on the total amount of the lubricating oil composition. It is less than .020% by mass, or more than 0% by mass and less than 0.015% by mass, or more than 0% by mass and less than 0.010% by mass.
  • polymers other than poly(meth)acrylate that are known as additives for lubricating oils can be used.
  • polymers other than component (F) include ethylene- ⁇ -olefin copolymers and their hydrides, copolymers of ⁇ -olefins and ester monomers having polymerizable unsaturated bonds, and polyisobutylene and its hydrides.
  • examples include hydrides, hydrides of styrene-diene copolymers, styrene-maleic anhydride copolymers, ethylene-vinyl acetate copolymers and hydrides thereof, and polyalkylstyrenes.
  • ethylene- ⁇ -olefin copolymers or hydrides thereof can be preferably used.
  • an ethylene-propylene copolymer or a hydride thereof can be preferably used as the ethylene- ⁇ -olefin copolymer or a hydride thereof.
  • the weight average molecular weight of the polymer other than component (F) may be, for example, 2,000 to 30,000, preferably 5,000 to 15,000.
  • the lubricating oil composition may or may not contain polymers other than component (F).
  • the content thereof is preferably more than 0% by mass and less than 5.0% by mass, or more than 4.0% by mass, based on the total amount of the lubricating oil composition. It is less than 0% by mass, or more than 0% by mass and less than 2.0% by mass.
  • oil-soluble organic molybdenum compounds include organic molybdenum compounds containing sulfur and organic molybdenum compounds containing no sulfur as a constituent element.
  • organic molybdenum compounds containing sulfur include molybdenum dithiocarbamates; molybdenum dithiophosphate compounds; molybdenum compounds (e.g., molybdenum oxides such as molybdenum dioxide and molybdenum trioxide, orthomolybdic acid, paramolybdic acid, and (poly)sulfides.
  • Molybdic acid such as molybdic acid, molybdate salts such as metal salts and ammonium salts of molybdic acid, molybdenum sulfide such as molybdenum disulfide, molybdenum trisulfide, molybdenum pentasulfide, and molybdenum polysulfide, molybdic acid sulfide, and molybdic acid sulfide.
  • molybdic acid such as molybdic acid, molybdate salts such as metal salts and ammonium salts of molybdic acid
  • molybdenum sulfide such as molybdenum disulfide, molybdenum trisulfide, molybdenum pentasulfide, and molybdenum polysulfide, molybdic acid sulfide, and molybdic acid sulfide.
  • molybdenum halides such as molybdenum chloride, etc.
  • sulfur-containing organic compounds e.g., alkyl(thio)xanthates, thiadiazole, mercaptothiadiazole, thiocarbonates, tetrahydrocarbylthiuram disulfide, bis(di( thio)hydrocarbyl dithiophosphonate) disulfide, organic (poly)sulfide, sulfurized ester, etc.
  • sulfur-containing molybdenum compounds such as molybdenum sulfide and molybdic acid sulfide, and alkenylsuccinic acid.
  • the organic molybdenum compound may be a mononuclear molybdenum compound or a polynuclear molybdenum compound such as a dinuclear molybdenum compound or a trinuclear molybdenum compound.
  • organic molybdenum compounds that do not contain sulfur as a constituent element include molybdenum-amine complexes, molybdenum-succinimide complexes, molybdenum salts of organic acids, and molybdenum salts of alcohols.
  • the lubricating oil composition may or may not contain an oil-soluble organic molybdenum compound.
  • the content thereof is preferably from more than 0% by mass to less than 0.05% by mass, or from more than 0% by mass to 0% by mass, based on the amount of molybdenum based on the total amount of the composition. Less than .03% by weight, or more than 0% by weight and less than 0.02% by weight.
  • the corrosion inhibitor other than the component (A) for example, known corrosion inhibitors such as benzotriazole-based, tolyltriazole-based, and imidazole-based compounds can be used.
  • the content is usually 0.005 to 5% by mass based on the total amount of the lubricating oil composition.
  • rust preventive agent known rust preventive agents such as petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinate, and polyhydric alcohol ester can be used.
  • rust preventive agents such as petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinate, and polyhydric alcohol ester can be used.
  • the lubricating oil composition contains a rust inhibitor, its content is usually 0.005 to 5% by mass based on the total amount of the lubricating oil composition.
  • metal deactivators other than component (A) examples include imidazoline, pyrimidine derivatives, mercaptobenzothiazole, benzotriazole and its derivatives, 2-(alkyldithio)benzimidazole, and ⁇ -(o-carboxybenzylthio).
  • Known metal deactivators such as propionitrile can be used.
  • the content is usually 0.005 to 1% by mass based on the total amount of the lubricating oil composition.
  • seal swelling agent compounds commonly used as seal swelling agents for lubricating oils can be used without particular limitation, and examples include ester-based, sulfur-based, aromatic-based seal swelling agents, and the like.
  • known seal swelling agents such as alcohols, alkylbenzenes, substituted sulfolanes, mineral oils, etc., which cause swelling of the elastomeric material, can be used.
  • the alcohol-based seal swell agent is a linear alkyl alcohol with low volatility, and preferred examples thereof include decyl alcohol, tridecyl alcohol, and tetradecyl alcohol.
  • the content of the alcohol-based seal swelling agent shall also contribute (count) to the content of component (E). do.
  • alkylbenzenes that can be used as seal swelling agents include dodecylbenzene, tetradecylbenzene, dinonylbenzene, di(2-ethylhexyl)benzene, and the like.
  • An example of a substituted sulfolane that can be used as a seal swelling agent is a substituted sulfolane compound represented by the following general formula (15).
  • R 26 is a hydrocarbon group having 4 or more carbon atoms, preferably an alkyl or alkenyl group having 4 to 25 carbon atoms, more preferably 4 to 10 carbon atoms.
  • R 27 and R 28 are each a hydrogen atom or a (preferably linear) alkyl group having 7 or less carbon atoms, preferably one of R 27 and R 28 is a hydrogen atom, and the other (preferably R 28 ) is a hydrogen atom. or a methyl group, more preferably both R 27 and R 28 are hydrogen atoms.
  • X 1 is an oxygen atom or a sulfur atom, preferably an oxygen atom.
  • Mineral oils that can be used as seal swell agents are typically low viscosity mineral oils with high naphthenic or aromatic content.
  • the lubricating oil composition may or may not contain a seal swelling agent; however, when the lubricating oil composition contains a seal swelling agent, the content thereof is usually 0.0000% based on the total amount of the composition. 01 to 3.0% by mass.
  • the antifoaming agent for example, known antifoaming agents such as silicone, fluorosilicone, and fluoroalkyl ether can be used.
  • the lubricating oil composition contains an antifoaming agent, its content is usually 0.0005 to 1% by mass based on the total amount of the lubricating oil composition.
  • demulsifier known demulsifiers such as polyalkylene glycol nonionic surfactants can be used.
  • the lubricating oil composition contains a demulsifier, its content is usually 0.005 to 5% by mass based on the total amount of the lubricating oil composition.
  • colorant for example, known colorants such as azo compounds can be used.
  • the kinematic viscosity at 100° C. of the lubricating oil composition is 6.2 mm 2 /s or less from the perspective of increasing energy saving, and preferably 4.5 mm from the perspective of further increasing wear resistance, seizure resistance, and fatigue life. 2 /s or more, or 5.0 mm 2 /s or more, or 5.5 mm 2 /s or more, and in one embodiment, 4.5 to 6.2 mm 2 /s, or 5.0 to 6.2 mm 2 /s, or 5.5-6.2 mm 2 /s.
  • the kinematic viscosity at 40° C. of the lubricating oil composition is preferably 35.0 mm 2 /s or less, 32.5 mm 2 /s or less, or 30.0 mm 2 /s or less from the viewpoint of further improving energy saving properties.
  • the viscosity index of the lubricating oil composition is preferably 155 or more, or 156 from the viewpoint of improving the temperature-viscosity characteristics of the composition and further increasing energy saving, wear resistance, seizure resistance, and fatigue life. or 157 or more.
  • the sulfur content in the lubricating oil composition is 0.050% by mass or less, preferably 0.048% by mass based on the total amount of the composition, from the viewpoint of improving wear resistance and the transmission torque capacity and engagement performance of the wet clutch. % by mass or less, or 0.045% by mass or less.
  • the sulfur content in the lubricating oil composition is preferably 0.005% by mass or more, or 0.010% by mass based on the total amount of the composition, from the viewpoint of further improving gear lubrication performance (seizure resistance and fatigue resistance). % by mass or more, or 0.015% by mass or more.
  • the sulfur content in the lubricating oil composition is 0.005% to 0.050% by mass, or 0.010 to 0.048% by mass, or 0.015 to 0.045% by mass. It can be mass %.
  • the phosphorus content in the lubricating oil composition is preferably 0.010% by mass or more, 0.025% by mass or more, or 0. It is .030% by mass or more.
  • the phosphorus content in the lubricating oil composition is preferably based on the total amount of the composition, from the viewpoint of further increasing seizure resistance, fatigue resistance, and oxidation stability, and from the viewpoint of further increasing the transmission torque capacity of a wet clutch. is 0.100% by mass or less, or 0.085% by mass or less, or 0.075% by mass or less.
  • the content of phosphorus in the lubricating oil composition is from 0.010 to 0.100% by mass, or from 0.025 to 0.085% by mass, or from 0.030 to 0.030% by mass based on the total amount of the composition. It can be 0.75% by weight.
  • the ratio MS/MP of the sulfur content MS (unit: mass %) in the lubricating oil composition to the phosphorus content MP (unit: mass %) in the lubricating oil composition is determined from the viewpoint of improving wear resistance and seizure resistance. It is 1.00 or less, preferably 0.95 or less, or 0.90 or less. Further, the ratio MS/MP is preferably 0.30 or more, 0.35 or more, or 0.40 or more from the viewpoint of further improving seizure resistance, fatigue resistance, oxidation stability, and transmission torque capacity of the wet clutch. It is. In one embodiment, the ratio MS/MP can be between 0.30 and 0.100, or between 0.35 and 0.95, or between 0.40 and 0.90.
  • the boron content in the lubricating oil composition is less than 0.030% by mass, preferably 0.029% by mass or less, based on the total amount of the composition, from the viewpoint of improving fatigue resistance.
  • the boron content in the lubricating oil composition is preferably 0.010% by mass or more based on the total amount of the composition, from the viewpoint of further increasing wear resistance, seizure resistance, and transmission torque capacity of a wet clutch.
  • the boron content in the lubricating oil composition may be 0.010% by mass or more and less than 0.030% by mass, or 0.010 to 0.029% by mass based on the total amount of the composition. .
  • the calcium content in the lubricating oil composition is determined based on the total amount of the composition, from the viewpoint of further improving wear resistance, seizure resistance, oxidation stability, and the transmission torque capacity and engagement performance of wet clutches. It is preferably 0.008% by mass or more, or 0.009% by mass or more.
  • the calcium content in the lubricating oil composition is determined from the viewpoint of making it easier to keep the ratio MB/MCa of boron content (MB) to calcium content (MCa) in the composition below the upper limit value, which will be described later. , preferably 0.050% by mass or less, or 0.045% by mass or less, or 0.040% by mass or less, based on the total amount of the composition.
  • the content of component (C) is 0.008 to 0.050% by mass, or 0.008 to 0.045% by mass, or 0.009 to 0.009% by mass as calcium content based on the total amount of the composition. .040% by weight.
  • the ratio MB/MCa of the boron content MB (unit: mass %) in the lubricating oil composition to the calcium content MCa (unit: mass %) in the lubricating oil composition determines wear resistance, seizure resistance, and wet clutch. From the viewpoint of increasing the transmission torque capacity, it is 0.800 or more, preferably 0.805 or more, or 0.810 or more. Further, the ratio MB/MCa is 1.200 or less, preferably 1.170 or less, from the viewpoint of improving wear resistance, seizure resistance, fatigue resistance, oxidation stability, and the transmission torque capacity and engagement performance of the wet clutch. or 1.160 or less. In one embodiment, the ratio MB/MCa can be from 0.800 to 1.200, or from 0.805 to 1.170, or from 0.810 to 1.160.
  • a lubricant shear stability test in accordance with JPI-5S-29-88 revealed that the lubricant composition was
  • the kinematic viscosity of the composition at 100° C. after being irradiated with ultrasonic waves with a swing width of 28 ⁇ m for 10 hours is preferably 5.5 mm 2 /s or more.
  • the lubricating oil composition of the present invention can be preferably used for the lubrication of transmissions equipped with wet clutches (for example, automatic transmissions, continuously variable transmissions, etc.), and can be used, for example, for the lubrication of these transmissions installed in automobiles. It can be preferably used.
  • lubricating oil compositions of the present invention (Examples 1 to 12) and comparative lubricating oil compositions (Comparative Examples 1 to 8) were prepared, respectively.
  • “Base oil composition” “mass%” means mass% based on the total amount of base oil (100 mass%), and in other items, “mass%” refers to the total amount of the lubricating oil composition. It means mass % based on the standard (100 mass %).
  • mass ppm means mass ppm based on the total amount of the lubricating oil composition
  • mass ppm/X means mass ppm based on the total amount of the composition as the amount of element X. do. Details of each component are as follows.
  • A-2 * Sulfurized olefin/sulfurized oil/fat mixture, sulfur content 30.5% by mass
  • B-2 * Dithiophosphate ester, phosphorus content 9.0% by mass, sulfur content 19.4% by mass
  • (C) Calcium-based cleaning agent) C-1 Calcium sulfide phenate detergent, base value 255 mgKOH/g, Ca content 0.25% by mass, sulfur content 3.5% by mass
  • D-1 Boron-containing succinimide ashless dispersant, nitrogen content 1.48% by mass, boron content 1.30% by mass
  • D-2 Non-boron modified succinimide ashless dispersant, nitrogen content 1.44% by mass
  • E-1 Fatty acid amide friction modifier, condensation reaction product of isostearic acid and tetraethylenepentamine, nitrogen content 6.20% by mass, total base number (perchloric acid method) 81.0mgKOH/g
  • seal swelling agent dimethyl silicone, kinematic viscosity (25°C): 160,000mm 2 /s)
  • antifoaming agent dimethyl silicone, kinematic viscosity (25°C): 160,000mm 2 /s
  • FALEX seizure test The seizure resistance of each of the lubricating oil compositions was evaluated by a FALEX seizure test based on ASTM D3233 A method. A steel pin sandwiched between two stationary steel V-blocks was rotated at 290 rpm under an oil temperature of 110° C., and the load at which seizure occurred (seizure load) was measured. The results are shown in Tables 1-4. The higher the value of the seizure load measured in this test, the better the seizure resistance.
  • the lubricating oil compositions of Examples 1 to 12 showed good results in terms of shear stability, seizure resistance, wear resistance, fatigue resistance, and oxidation stability, as well as the transmission torque capacity and engagement performance of wet clutches. showed that.
  • the composition of Comparative Example 2 containing a sulfur-based additive (sulfurized olefin/sulfurized fat mixture) that is not a thiadiazole compound in place of component (A) (thiadiazole compound) has excellent wear resistance, fatigue resistance, and oxidation stability. The result was poor performance, as well as the transmission torque capacity and engagement performance of wet clutches.
  • the composition of Comparative Example 6 in which the ratio MB/MCa of boron content MB to calcium content MCa in the composition was excessive, had poor wear resistance, seizure resistance, oxidation stability, and transmission torque capacity of a wet clutch. and showed poor results in fastening performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

低粘度でありながら、潤滑油の低粘度化に伴って悪化しがちな極圧性、耐摩耗性、及び耐疲労性を改善するとともに、酸化安定性の低下を抑制しながら、変速機に求められる湿式クラッチ性能をも満足することが可能な潤滑油組成物を提供するため、鉱油系基油及び/又は合成系基油を含んでなる潤滑油基油と、(A)チアジアゾール化合物と、(B)硫黄非含有リン化合物と、(C)カルシウムフェネート清浄剤を含むカルシウム系清浄剤と、(D)ホウ素含有コハク酸イミド分散剤を含むコハク酸イミド分散剤と、(E)油性剤系摩擦調整剤とを含有し、硫黄分が0.050質量%以下、ホウ素分が0.030質量%未満、100℃における動粘度が6.2mm2/s以下、硫黄分MSのリン分MPに対する質量比MS/MPが1.00以下、ホウ素分MBのカルシウム分MCaに対する質量比MB/MCaが0.80~1.20とする。

Description

潤滑油組成物
 本発明は潤滑油組成物に関し、より詳しくは、例えば湿式多板クラッチ等の湿式クラッチを有する変速機、特に湿式クラッチを有する自動変速機または湿式クラッチを有する無段変速機の潤滑に好適に用いることのできる潤滑油組成物に関する。
 変速機および終減速機等の歯車装置における省エネルギー化手段のひとつとして、潤滑油の低粘度化が挙げられる。例えば変速機や終減速機等は歯車軸受機構を有しており、これらに使用される潤滑油を低粘度化することにより、潤滑油の粘性抵抗に起因する攪拌抵抗および引きずりトルクが低減されて動力の伝達効率が向上し、その結果省燃費性の向上が可能になると考えられる。
特開2014-196396号公報 国際公開2014/142231号公報 特表2021-515061号公報 特表2020-531618号公報 特開2021-147521号公報 特開2021-147517号公報 特開2020-111736号公報 特開2011-132551号公報 特許第4822684号公報
 一般に、潤滑油の粘度を低減すると、省燃費性が向上する一方で、油膜厚さが減少することに伴い、極圧性、耐摩耗性、及び耐疲労性等の潤滑性能が低下する傾向にある。潤滑油の低粘度化に伴って低下するこれらの性能を補償ないし改善する手段としては、硫黄系添加剤、リン系添加剤、リン-硫黄系添加剤等の、極圧剤および/または耐摩耗剤として機能する添加剤を追加的に配合する、又はその含有量を増やすことが考えられる。しかしながら、これらの添加剤を追加または増量することは、今度は潤滑油の酸化安定性を悪化させる、湿式クラッチの摩擦特性を悪化させるという新たな問題を引き起こす。したがって、潤滑油の低粘度化に伴う諸問題を解決することに対する需要が依然として存在する。
 本発明は、低粘度でありながら、潤滑油の低粘度化に伴って悪化しがちな極圧性、耐摩耗性、及び耐疲労性を改善するとともに、酸化安定性の低下を抑制しながら、変速機に求められる湿式クラッチ性能をも満足することが可能な、潤滑油組成物を提供することを課題とする。
 本発明は、下記[1]~[11]の実施形態を包含する。
[1] 1種以上の鉱油系基油、若しくは1種以上の合成系基油、又はそれらの組み合わせを含んでなる潤滑油基油と、
  (A)1種以上のチアジアゾール化合物と、
  (B)1種以上の硫黄非含有リン化合物と、
  (C)1種以上のカルシウムフェネート清浄剤を含む、1種以上のカルシウム系清浄剤と、
  (D)1種以上のホウ素含有コハク酸イミド分散剤を含む、1種以上のコハク酸イミド分散剤と、
  (E)1種以上の油性剤系摩擦調整剤と、
を含有し、
  組成物中の硫黄分の含有量が、組成物全量基準で0.050質量%以下であり、
  組成物中のホウ素分の含有量が、組成物全量基準で0.030質量%未満であり、
  組成物の100℃における動粘度が6.2mm/s以下であり、
  組成物中の硫黄分の含有量MS(単位:質量%)の、組成物中のリン分の含有量MP(単位:質量%)に対する比MS/MPが、1.00以下であり、
  組成物中のホウ素分の含有量MB(単位:質量%)の、組成物中のカルシウム分の含有量MCa(単位:質量%)に対する比MB/MCaが、0.80~1.20であることを特徴とする、潤滑油組成物。
[2] 前記(A)成分の含有量が、組成物全量基準で硫黄分として0.010~0.050質量%である、[1]に記載の潤滑油組成物。
[3] 前記(B)成分の含有量が、組成物全量基準でリン分として0.010~0.100質量%である、[1]又[2]に記載の潤滑油組成物。
[4] 組成物中のホウ素分の含有量MBが、組成物全量基準で0.010質量%以上0.030質量%未満である、[1]~[3]のいずれかに記載の潤滑油組成物。
[5] 前記(C)成分の含有量が、組成物全量基準でカルシウム分として0.008~0.040質量%である、[1]~[4]のいずれかに記載の潤滑油組成物。
[6] 前記(D)成分の含有量が、組成物全量基準でホウ素分として0.010質量%以上0.030質量%未満である、[1]~[5]のいずれかに記載の潤滑油組成物。
[7] 前記(E)成分が、(E1)1つ以上の炭素数8~30の脂肪族ヒドロカルビル基及び/又は1つ以上の炭素数8~30の脂肪族ヒドロカルビルカルボニル基と、1つ以上のアミド結合及び/又は1つ以上のイミド結合とを1分子中に有し、前記脂肪族ヒドロカルビルカルボニル基は前記アミド結合及び/又はイミド結合の一部を構成していてもよい、1種以上のN-アシル化窒素含有化合物を、組成物全量基準で0.10~3.00質量%含有する、[1]~[6]のいずれかに記載の潤滑油組成物。
[8] (F)重量平均分子量10,000~100,000の1種以上のポリ(メタ)アクリレートをさらに含有する、[1]~[7]のいずれかに記載の潤滑油組成物。
[9] (G)1種以上のアミン系酸化防止剤、及び/又は、1種以上のフェノール系酸化防止剤を、組成物全量基準で0.10~1.00質量%含有する、[1]~[8]のいずれかに記載の潤滑油組成物。
[10] 前記潤滑油基油の、100℃における動粘度が4.2mm/s以上、粘度指数が120以上である、[1]~[9]のいずれかに記載の潤滑油組成物。
[11] 前記潤滑油組成物の粘度指数が155以上である、[1]~[10]のいずれかに記載の潤滑油組成物。
[12] JPI-5S-29-88に準拠した潤滑油せん断安定度試験により、前記潤滑油組成物に周波数10kHz、振動子の振れ幅28μmの超音波を10時間照射した後の組成物の100℃における動粘度が5.5mm/s以上である、[1]~[11]のいずれかに記載の潤滑油組成物。
[13] 湿式クラッチを備える変速機の潤滑に用いられる、[1]~[12]のいずれかに記載の潤滑油組成物。
 本発明によれば、低粘度でありながら、潤滑油の低粘度化に伴って悪化しがちな極圧性、耐摩耗性、及び耐疲労性を改善するとともに、酸化安定性の低下を抑制しながら、変速機に求められる湿式クラッチ性能をも満足することが可能な潤滑油組成物を提供することができる。
 以下、本発明について詳述する。なお本明細書においては、特に断らない限り、数値AおよびBについて「A~B」という表記は「A以上B以下」と等価であるものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。本明細書において、「または」および「もしくは」の語は、特に断りのない限り論理和を意味するものとする。本明細書において、要素EおよびEについて「Eおよび/またはE」という表記は「E、もしくはE、またはそれらの組み合わせ」と等価であり、N個の要素E、…、E、…、E(Nは3以上の整数である。)について「E、…、および/またはE」という表記は「E、…、もしくはE、…、もしくはE、またはそれらの組み合わせ」(iは1<i<Nを満たす全ての整数を値にとる変数である。)と等価である。また本明細書において、「アルカリ土類金属」にはマグネシウムも包含されるものとする。
 なお本明細書において、別途指定のない限り、油中のカルシウム、マグネシウム、亜鉛、リン、硫黄、ホウ素、バリウム、およびモリブデンの各元素の含有量は、JIS K0116に準拠して誘導結合プラズマ発光分光分析法(強度比法(内標準法))により測定されるものとする。また油中の窒素元素の含有量は、JIS K2609に準拠して化学発光法により測定されるものとする。また本明細書において「重量平均分子量」とは、ゲル浸透クロマトグラフィー(GPC)により測定される標準ポリスチレン換算での重量平均分子量を意味する。GPCの測定条件は次の通りである。
[GPC測定条件]
装置:Waters Corporation製 ACQUITY(登録商標) APC UV RIシステム
カラム:上流側から順に、Waters Corporation製 ACQUITY(登録商標) APC XT900A(ゲル粒径2.5μm、カラムサイズ(内径×長さ)4.6mm×150mm)2本、および、Waters Corporation製 ACQUITY(登録商標) APC XT200A(ゲル粒径2.5μm、カラムサイズ(内径×長さ)4.6mm×150mm)1本を直列に接続
カラム温度:40℃
試料溶液:試料濃度1.0質量%のテトラヒドロフラン溶液
溶離液:テトラヒドロフラン
溶液注入量:20.0μL
検出装置:示差屈折率検出器
基準物質:標準ポリスチレン(Agilent Technologies社製Agilent EasiCal(登録商標) PS-1)8点(分子量:2698000、597500、290300、133500、70500、30230、9590、2970)
上記条件に基づき測定した重量平均分子量が10000未満である場合、カラムおよび基準物質を以下条件に変更し再測定を行う。
カラム:上流側から順に、Waters Corporation製 ACQUITY(登録商標) APC XT125A(ゲル粒径2.5μm、カラムサイズ(内径×長さ)4.6mm×150mm)1本、および、Waters Corporation製 ACQUITY(登録商標) APC XT45A(ゲル粒径1.7μm、カラムサイズ(内径×長さ)4.6mm×150mm)2本を直列に接続
基準物質:標準ポリスチレン(Agilent Technologies社製Agilent EasiCal(登録商標) PS-1)10点(分子量:30230、9590、2970、890、786、682、578、474、370、266)
 <潤滑油基油>
  本発明の潤滑油組成物(以下において「潤滑油組成物」または「組成物」ということがある。)は、主要量の潤滑油基油と、基油以外の1種以上の添加剤とを含んでなる。本発明の潤滑油組成物において、潤滑油基油としては、1種以上の鉱油系基油もしくは1種以上の合成系基油またはそれらの組み合わせを含んでなる潤滑油基油が用いられる。
 潤滑油基油としては、1種以上の鉱油系基油、もしくは1種以上の合成系基油、またはそれらの混合基油を用いることができる。一の実施形態において、潤滑油基油としては、API基油分類のグループI基油(以下において「APIグループI基油」ということがある。)、グループII基油(以下において「APIグループII基油」ということがある。)、グループIII基油(以下において「APIグループIII基油」ということがある。)、グループIV基油(以下において「APIグループIV基油」ということがある。)、若しくはグループV基油(以下において「APIグループV基油」ということがある。)、又はそれらの混合基油を用いることができる。APIグループI基油は、硫黄分が0.03質量%超かつ/又は飽和分が90質量%未満であって、且つ粘度指数が80以上120未満の鉱油系基油である。APIグループII基油は、硫黄分が0.03質量%以下、飽和分が90質量%以上、且つ粘度指数が80以上120未満の鉱油系基油である。APIグループIII基油は、硫黄分が0.03質量%以下、飽和分が90質量%以上、且つ粘度指数が120以上の鉱油系基油である。APIグループIV基油はポリα-オレフィン基油である。APIグループV基油は上記グループI~IV以外の基油であって、その好ましい例としてはエステル系基油を挙げることができる。
 一の実施形態において、(A)成分としては、1種以上のAPIグループII基油、1種以上のAPIグループIII基油、1種以上のAPIグループIV基油、もしくは1種以上のAPIグループV基油、またはそれらの組み合わせを好ましく用いることができる。
 鉱油系基油の例としては、原油を常圧蒸留および/または減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、硫酸洗浄、白土処理等の精製処理から選ばれる1種または2種以上の組み合わせにより精製したパラフィン系基油、およびノルマルパラフィン系基油、イソパラフィン系基油、ならびにこれらの混合物などを挙げることができる。APIグループII基油およびグループIII基油は通常、水素化分解プロセスを経て製造される。
 鉱油系基油の%Cは、組成物の粘度-温度特性および省燃費性をさらに高める観点から好ましくは60以上、より好ましくは65以上であり、また添加剤の溶解性を高める観点から好ましくは99以下、より好ましくは95以下、さらに好ましくは94以下であり、一の実施形態において60~99、又は60~95、又は65~95、又は65~94であり得る。
 鉱油系基油の%Cは、組成物の粘度-温度特性および省燃費性をさらに高める観点から好ましくは2以下、より好ましくは1以下、更に好ましくは0.8以下、特に好ましくは0.5以下である。
 鉱油系基油の%Cは、添加剤の溶解性を高める観点から好ましくは1以上、より好ましくは4以上であり、また組成物の粘度-温度特性および省燃費性をさらに高める観点から好ましくは40以下、より好ましくは35以下であり、一の実施形態において1~40、又は4~35であり得る。
 本明細書において%C、%Cおよび%Cとは、それぞれASTM D 3238-85に準拠した方法(n-d-M環分析)により求められる、パラフィン炭素数の全炭素数に対する百分率、ナフテン炭素数の全炭素数に対する百分率、および芳香族炭素数の全炭素数に対する百分率を意味する。つまり、上述した%C、%Cおよび%Cの好ましい範囲は上記方法により求められる値に基づくものであり、例えばナフテン分を含まない潤滑油基油であっても、上記方法により求められる%Cは0を超える値を示し得る。
 鉱油系基油における飽和分の含有量は、組成物の粘度-温度特性を高める観点から、基油全量を基準として、好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは99質量%以上である。なお本明細書において飽和分とは、ASTM D 2007-93に準拠して測定された値を意味する。
 鉱油系基油における芳香族分の含有量は、基油全量を基準として、好ましくは0~10質量%、より好ましくは0~5質量%、特に好ましくは0~1質量%であり、一の実施形態において0.1質量%以上であり得る。芳香族分の含有量が上記上限値以下であることにより、新油状態での低温粘度特性および粘度-温度特性を高めることが可能になるほか、省燃費性をさらに高めることが可能になるとともに、潤滑油の蒸発損失を低減して潤滑油の消費量を低減することが可能になる。また、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目を効果的に発揮させることが可能になる。また、潤滑油基油は芳香族分を含有しないものであってもよいが、芳香族分の含有量が上記下限値以上であることにより、添加剤の溶解性を高めることができる。
 なお、本明細書において芳香族分とは、ASTM D 2007-93に準拠して測定された値を意味する。芳香族分には、通常、アルキルベンゼン、アルキルナフタレンの他、アントラセン、フェナントレンおよびこれらのアルキル化物、更にはベンゼン環が四環以上縮環した化合物、ピリジン類、キノリン類、フェノール類、ナフトール類等のヘテロ原子を有する芳香族化合物などが含まれる。
 APIグループIV基油の例としては、エチレン-プロピレン共重合体、ポリブテン、1-オクテンオリゴマー、1-デセンオリゴマー、およびこれらの水素化生成物等の、炭素数2~32、好ましくは炭素数6~16のα-オレフィンのオリゴマー及びコオリゴマー並びにそれらの水素化生成物を挙げることができる。
 APIグループV基油の好ましい例としては、モノエステル(例えばブチルステアレート、オクチルラウレート、2-エチルヘキシルオレート等);ジエステル(例えばジトリデシルグルタレート、ジ-2-エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジ-2-エチルヘキシルセバケート等);ポリエステル(例えばトリメリット酸エステル等);ポリオールエステル(例えばトリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、ペンタエリスリトール-2-エチルヘキサノエート、ペンタエリスリトールペラルゴネート等)等のエステル系基油を挙げることができる。APIグループV基油の他の例としては、アルキルベンゼン、アルキルナフタレン、ポリオキシアルキレングリコール、ジアルキルジフェニルエーテル、ポリフェニルエーテル、等の芳香族系合成基油を挙げることができる。
 潤滑油基油(全基油)の40℃における動粘度は、省エネルギー性および潤滑油組成物の低温粘度特性を高める観点から、好ましくは40mm/s以下、又は30mm/s以下、又は22mm/s以下である。なお本明細書において「40℃における動粘度」とは、JIS K 2283-2000に準拠し、測定装置として自動粘度計(商品名「CAV-2100」、Cannon Instrument社製)を用いて測定された40℃での動粘度を意味する。
 潤滑油基油(全基油)の100℃における動粘度は、省エネルギー性および潤滑油組成物の低温粘度特性をさらに高める観点から好ましくは6.0mm/s以下、又は5.5mm/s以下、又は5.0mm/s以下であり、また耐摩耗性および耐焼き付き性を高める観点から好ましくは3.5mm/s以上、又は4.0mm/s以上、又は4.2mm/s以上であり、一の実施形態において3.5~6.0mm/s、又は4.0~5.5mm/s、又は4.0~5.0mm/s、又は4.2~5.0mm/sであり得る。なお本明細書において「100℃における動粘度」とは、JIS K 2283-2000に準拠し、測定装置として自動粘度計(商品名「CAV-2100」、Cannon Instrument社製)を用いて測定された100℃での動粘度を意味する。
 潤滑油基油(全基油)の粘度指数は、組成物の粘度-温度特性を高める観点、ならびに、省燃費性および耐摩耗性をさらに高める観点から好ましくは100以上、より好ましくは105以上、さらに好ましくは110以上、特に好ましくは115以上、最も好ましくは120以上である。なお、本明細書において粘度指数とは、JIS K 2283-2000に準拠して、測定装置として自動粘度計(商品名「CAV-2100」、Cannon Instrument社製)を用いて測定された粘度指数を意味する。
 潤滑油基油(全基油)の流動点は、潤滑油組成物全体の低温流動性の観点から好ましくは-10℃以下、より好ましくは-12.5℃以下、更に好ましくは-15℃以下、特に好ましくは-17.5℃以下、最も好ましくは-20.0℃以下である。なお、本明細書において流動点とは、JIS K 2269-1987に準拠して測定された流動点を意味する。
 基油中の硫黄分の含有量は、その原料の硫黄分の含有量に依存する。例えば、フィッシャートロプシュ反応等により得られる合成ワックス成分のように実質的に硫黄を含まない原料を用いる場合には、実質的に硫黄を含まない基油を得ることができる。また、基油の精製過程で得られるスラックワックスや精ろう過程で得られるマイクロワックス等の硫黄を含む原料を用いる場合には、得られる基油中の硫黄分は通常100質量ppm以上となる。潤滑油基油(全基油)中の硫黄分の含有量は、通常0.03質量%以下、酸化安定性の観点から好ましくは0.01質量%以下である。なお、本明細書において基油中の硫黄分の含有量とは、JIS K 2541-2003に準拠して測定される硫黄量を意味する。
 一の実施形態において、潤滑油基油は、1種以上のAPIグループII基油、1種以上のAPIグループIII基油、1種以上のAPIグループIV基油、もしくは1種以上のAPIグループV基油、又はそれらの組み合わせを、基油全量基準で80~100質量%、又は90~100質量%、又は95~100質量%、又は98~100質量%含み得る。一の実施形態において、潤滑油基油は、1種以上のAPIグループII基油、1種以上のAPIグループIII基油、もしくは1種以上のAPIグループIV基油、又はそれらの組み合わせを、基油全量基準で80~100質量%、又は90~100質量%、又は95~100質量%、又は98~100質量%含み得る。潤滑油基油はAPIグループV基油を含有してもよく、含有しなくてもよいが、潤滑油基油中の1種以上のAPIグループV基油の含有量は、一の実施形態において酸化安定性を高める観点から基油全量基準で好ましくは0~50質量%、又は0~20質量%、又は0~10質量%であり得る。
 潤滑油組成物中の潤滑油基油(全基油)の含有量は、潤滑油組成物全量基準で通常60質量%以上であり、一の実施形態において85~98.5質量%、又は90~98.5質量%、又は93~97質量%であり得る。
 <(A)チアジアゾール化合物>
  本発明の潤滑油組成物は、(A)1種以上のチアジアゾール化合物(以下において「(A)成分」ということがある。)を含有する。(A)成分としては1種のチアジアゾール化合物を単独で用いてもよく、2種以上のチアジアゾール化合物を組み合わせて用いてもよい。
 (A)成分の例としては、下記一般式(1)で表される1,3,4-チアジアゾール、下記一般式(2)で表される1,2,4-チアジアゾール化合物、及び下記一般式(3)で表される1,2,3-チアジアゾール化合物を挙げることができる。

(一般式(1)~(3)中、R及びRは同一でも異なっていてもよく、それぞれ独立に水素原子又は炭素数1~20(好ましくは6~18、又は9~12、例えば9)のヒドロカルビル(好ましくはアルキル)基を表し;a及びbは同一でも異なっていてもよく、それぞれ独立に0~8の整数を表す。)
 (A)成分としては、上記一般式(1)~(3)のいずれかで表され、a及びbが2であり、R及びRがそれぞれ独立に炭素数6~18のアルキル基であるビス(アルキルジチオ)チアジアゾール化合物を特に好ましく用いることができる。アルキル基の炭素数は一の実施形態において9~12、又は9であり得る。一の実施形態において、そのようなビス(アルキルジチオ)チアジアゾール化合物は、モノ(アルキルジチオ)チアジアゾール化合物と併用してもよい。モノ(アルキルジチオ)チアジアゾール化合物としては、一般式(1)~(3)のいずれかで表され、-S-R基及び-S-R基の一方が炭素数6~18のアルキルジチオ基であり、他方が-SSH基または-SH基であるモノ(アルキルジチオ)チアジアゾール化合物が好ましい。アルキル基の好ましい炭素数はビス(アルキルジチオ)チアジアゾール化合物と同様である。
 潤滑油組成物中の(A)成分の含有量は、湿式クラッチの伝達トルク容量および締結性能を高める観点、ならびにギヤの耐摩耗性を高める観点から、組成物全量基準で硫黄分として0.050質量%以下であり、好ましくは0.045質量%以下、又は0.040質量%以下である。また(A)成分の含有量は、ギヤの耐摩耗性、耐疲労性、及び潤滑油の酸化安定性をさらに高める観点、ならびに湿式クラッチの伝達トルク容量および締結性能をさらに高める観点から、組成物全量基準で硫黄分として好ましくは0.010質量%以上である。一の実施形態において、(A)成分の含有量は、組成物全量基準で硫黄分として0.010~0.050質量%、又は0.010~0.045質量%、又は0.010~0.040質量%であり得る。
 <(B)硫黄非含有リン化合物>
  本発明の潤滑油組成物は、(B)1種以上の硫黄非含有リン化合物(以下において「(B)成分」ということがある。)を含有する。(B)成分としては1種のリン化合物を単独で用いてもよく、2種以上のリン化合物を組み合わせて用いてもよい。
 (B)成分の好ましい例としては、下記一般式(4)で表される化合物、下記一般式(5)で表される化合物、並びに下記一般式(4)で表される亜リン酸モノエステルおよび下記一般式(5)で表されるリン酸部分エステルの金属塩およびアンモニウム塩を挙げることができる。

(一般式(4)中、Rは炭素数1~30の炭化水素基を表し;Rは炭素数1~30の炭化水素基または水素原子を表し;R及びRは同一でも相互に異なっていてもよい。一般式(4)の化合物はそのいかなるタウトマーも包含するものとする。)

(一般式(5)中、Rは炭素数1~30の炭化水素基を表し;R及びRはそれぞれ独立に炭素数1~30の炭化水素基または水素原子を表し;R、R、及びRは同一でも相互に異なっていてもよい。)
 一般式(4)及び(5)における炭素数1~30の炭化水素基の例としては、アルキル基、シクロアルキル基、アルケニル基、アルキル置換シクロアルキル基、アリール基、アルキル置換アリール基、及びアリールアルキル基等を挙げることができる。炭化水素基は好ましくは、炭素数1~30のアルキル基又は炭素数6~24のアリール基であり、一の実施形態において炭素数3~18、さらに好ましくは炭素数4~12のアルキル基、アリール基、又はアルキルアリール基である。
 一の実施形態において、炭化水素基の好ましい例としては、炭素数4~18の直鎖または分岐鎖アルキル基を挙げることができる。アルキル基の例としては、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基を挙げることができる。
  炭化水素基の他の好ましい例としては、フェニル基、ナフチル基等の炭素数6~10のアリール基;及びトリル基、キシリル基、メシチル基、等の炭素数7~9のアルキルアリール基、を挙げることができる。
 一般式(4)又は(5)で表されるリン化合物と金属塩を形成する金属の例としては、具体的には、リチウム、ナトリウム、カリウム、セシウム等のアルカリ金属、カルシウム、マグネシウム、バリウム等のアルカリ土類金属、亜鉛、銅、鉄、鉛、ニッケル、銀、マンガン等の重金属等が挙げられる。これらの中ではカルシウム、マグネシウム等のアルカリ土類金属、もしくは亜鉛、又はそれらの組み合わせが好ましい。
 一般式(4)又は(5)で表されるリン化合物とアンモニウム塩を形成する含窒素化合物の例としては、アンモニア、モノアミン、ジアミン、ポリアミン、及びアルカノールアミンを挙げることができる。より具体的には、下記一般式(6)で表される含窒素化合物;メチレンジアミン、エチレンジアミン、プロピレンジアミン、及びブチレンジアミン等のアルキレンジアミン;ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等のポリアミン;並びにこれらの組み合わせ、等を挙げることができる。

(一般式(6)中、R~R10はそれぞれ独立に、水素原子、炭素数1~8のヒドロカルビル基、又は水酸基を有する炭素数1~8のヒドロカルビル基を表し;R~R10のうち少なくとも1つは炭素数1~8のヒドロカルビル基、又は水酸基を有する炭素数1~8のヒドロカルビル基である。)
 上記一般式(4)で表される化合物の好ましい例としては、上記一般式(4)においてR及びRがそれぞれ独立に炭素数3~18(好ましくは4~12)のアルキル基、アリール基(例えばフェニル基、ナフチル基等。)、又はアルキルアリール基(例えばメチルフェニル基、ジメチルフェニル基、トリメチルフェニル基(例えばメシチル基等)、イソプロピルフェニル基、イソプロピルメチルフェニル基(例えばチミル基等)、等のアルキルフェニル基等。)である亜リン酸ジエステル化合物を挙げることができる。RとRとは異なっていてもよいが、同一の基であることがより好ましい。
  上記一般式(5)で表される化合物の好ましい例としては、上記一般式(5)においてR~Rがそれぞれ独立に炭素数3~18(好ましくは4~12)のアルキル基、アリール基(例えばフェニル基、ナフチル基等。)、又はアルキルアリール基(例えばメチルフェニル基、ジメチルフェニル基、トリメチルフェニル基(例えばメシチル基等)、イソプロピルフェニル基、イソプロピルメチルフェニル基(例えばチミル基等)、等のアルキルフェニル基等。)である亜リン酸トリエステル化合物を挙げることができる。R~Rは相互に異なっていてもよいが、同一の基であることがより好ましい。
  これらの化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 潤滑油組成物中の(B)成分の含有量は、耐摩耗性、耐焼付き性、及び酸化安定性をさらに高める観点から、組成物全量基準でリン分として好ましくは0.010質量%以上、又は0.025質量%以上、又は0.030質量%以上である。また(B)成分の含有量は、耐焼付き性、耐疲労性、及び酸化安定性をさらに高める観点、並びに湿式クラッチの伝達トルク容量をさらに高める観点から、組成物全量基準でリン分として好ましくは0.100質量%以下、又は0.085質量%以下、又は0.075質量%以下である。一の実施形態において、(B)成分の含有量は、組成物全量基準でリン分として0.010~0.100質量%、又は0.025~0.085質量%、又は0.030~0.75質量%であり得る。
 <(C)カルシウム系清浄剤>
  本発明の潤滑油組成物は、(C)1種以上のカルシウムフェネート清浄剤を含む、1種以上のカルシウム系清浄剤(以下において「(C)成分」ということがある。)を含有する。(C)成分がカルシウムフェネート清浄剤を含むことにより、湿式クラッチの伝達トルク容量を高めることが可能になる。(C)成分としては1種のカルシウム系清浄剤を単独で用いてもよく、2種以上のカルシウム系清浄剤を組み合わせて用いてもよい。また、(C)成分は1種以上のカルシウムフェネート清浄剤からなっていてもよく、1種以上のカルシウムフェネート清浄剤と、カルシウムフェネート清浄剤以外の1種以上のカルシウム清浄剤とを含んでいてもよい。カルシウムフェネート清浄剤以外のカルシウム清浄剤の例としては、カルシウムスルホネート清浄剤、カルシウムサリシレート清浄剤等を挙げることができる。
 カルシウムフェネート清浄剤の例としては、下記一般式(7)で示される構造を有する化合物のカルシウム塩の過塩基性塩を挙げることができる。

一般式(7)中、R11は炭素数6~21の直鎖もしくは分岐鎖、飽和もしくは不飽和のアルキル又はアルケニル基を表し、mは0~9の整数を表し、Aはスルフィド(-S-)基またはメチレン(-CH-)基を表し、xは1~3の整数を表す。なおR11は2種以上の異なる基の組み合わせであってもよく、xは複数の異なる整数の組み合わせであってもよい。Aがメチレン基であるとき、xは好ましくは1である。各芳香環における-A-基の置換位置は典型的にはヒドロキシ基に対して通常o-位またはp-位、典型的にはo-位である。
 一般式(7)におけるR11の炭素数は、基油に対する溶解性を高める観点から好ましくは9以上であり、また製造容易性の観点から好ましくは18以下、より好ましくは15以下であり、一の実施形態において9~18、又は9~15であり得る。
 一般式(2)におけるmは、好ましくは0~3である。
 カルシウムスルホネート系清浄剤の好ましい例としては、アルキル芳香族化合物をスルホン化することによって得られるアルキル芳香族スルホン酸のカルシウム塩またはその塩基性塩もしくは過塩基性塩を挙げることができる。アルキル芳香族化合物の重量平均分子量は好ましくは400~1500であり、より好ましくは700~1300である。
  アルキル芳香族スルホン酸の例としては、いわゆる石油スルホン酸や合成スルホン酸を挙げることができる。石油スルホン酸の例としては、鉱油の潤滑油留分のアルキル芳香族化合物をスルホン化したものや、ホワイトオイル製造時に副生する、いわゆるマホガニー酸等を挙げることができる。また、合成スルホン酸の一例としては、洗剤の原料となるアルキルベンゼン製造プラントにおける副生成物を回収すること、もしくは、ベンゼンをポリオレフィンでアルキル化することにより得られる、直鎖状または分枝状のアルキル基を有するアルキルベンゼンをスルホン化したものを挙げることができる。合成スルホン酸の他の一例としては、ジノニルナフタレン等のアルキルナフタレンをスルホン化したものを挙げることができる。また、これらアルキル芳香族化合物をスルホン化する際のスルホン化剤としては、特に制限はなく、例えば発煙硫酸や無水硫酸を用いることができる。
 カルシウムサリシレート清浄剤の例としては、カルシウムサリシレートまたはその塩基性塩もしくは過塩基性塩を挙げることができる。カルシウムサリシレートの好ましい例としては、下記一般式(8)で表されるカルシウムサリシレートを挙げることができる。

一般式(8)中、R12はそれぞれ独立に炭素数14~30(好ましくは14~24、又は14~20、又は14~18)のアルキルまたはアルケニル基を表し、aは1又は2を表し、好ましくは1である。なおa=2であるとき、R12は異なる基の組み合わせであってもよい。
 カルシウムサリシレート系清浄剤の好ましい一形態としては、上記一般式(8)においてa=1であるカルシウムサリシレートまたはその塩基性塩もしくは過塩基性塩を挙げることができる。
 カルシウムサリシレートの製造方法は特に制限されるものではなく、公知のモノアルキルサリシレートの製造方法等を用いることができる。例えば、フェノールを出発原料として、オレフィンを用いてアルキレーションし、次いで炭酸ガス等でカルボキシレーションして得たモノアルキルサリチル酸、あるいは、サリチル酸を出発原料として、当量の上記オレフィンを用いてアルキレーションして得られたモノアルキルサリチル酸等に、カルシウムの酸化物や水酸化物等の金属塩基を反応させること、又は、これらのモノアルキルサリチル酸等を一旦ナトリウム塩やカリウム塩等のアルカリ金属塩としてからカルシウム塩と金属交換させること等により、カルシウムサリシレートを得ることができる。
 過塩基化されたカルシウムフェネート、スルホネート、又はサリシレートを得る方法は特に限定されるものではないが、例えば、炭酸ガスの存在下でカルシウムフェネート、スルホネート、又はサリシレートを水酸化カルシウム等のカルシウム塩基と反応させることにより、過塩基化カルシウムフェネート、スルホネート、又はサリシレートを得ることができる。
 (C)成分の塩基価は特に制限されるものではないが、好ましくは50~500mgKOH/g、より好ましくは100~400mgKOH/g、特に好ましくは200~350mgKOH/gである。なお本明細書において塩基価とは、ASTM D 2896に準拠して過塩素酸法により測定される塩基価を意味する。
 潤滑油組成物中の(C)成分の含有量は、耐摩耗性、耐焼付き性、及び酸化安定性、並びに、湿式クラッチの伝達トルク容量および締結性能をさらに高める観点から、組成物全量基準でカルシウム分として好ましくは0.008質量%以上、又は0.009質量%以上、又は0.010質量%以上である。また(C)成分の含有量は、後述する組成物中のホウ素分(MB)とカルシウム分(MCa)との比MB/MCaを上限値以下にすることを容易にする観点から、組成物全量基準でカルシウム分として好ましくは0.040質量%以下、又は0.038質量%以下、又は0.036質量%以下である。一の実施形態において、(C)成分の含有量は、組成物全量基準でカルシウム分として0.008~0.040質量%、又は0.009~0.040質量%、又は0.010~0.040質量%、又は0.009~0.038質量%、又は0.010~0.036質量%であり得る。
 (C)成分は、1種以上のカルシウムフェネート清浄剤のみを含んでもよく、カルシウムフェネート清浄剤以外の1種以上のカルシウム系清浄剤(例えばカルシウムスルホネート清浄剤、カルシウムフェネート清浄剤等。)をさらに含んでもよい。ただし、湿式クラッチの伝達トルク容量をさらに高める観点からは、(C)成分の全石けん基にフェネートが占める割合、すなわち、(C)成分の全石けん基の有機酸換算での質量に対する、フェネート清浄剤の全石けん基の有機酸換算での質量の割合は、好ましくは65~100質量%、より好ましくは80~100質量%、さらに好ましくは90~100質量%であり、一の実施形態において95~100質量%であり得る。本明細書において、金属系清浄剤の石けん基とは、金属系清浄剤の石けん分を構成する有機酸の共役塩基(サリシレート清浄剤にあっては例えばアルキルサリシレートアニオン、スルホネート清浄剤にあっては例えばアルキルベンゼンスルホネートアニオン、フェネート清浄剤にあっては例えばアルキルフェネートアニオン。)を意味する。なお一般に潤滑油分野において、金属系清浄剤としては、基油中でミセルを形成することが可能な有機酸金属塩(例えばアルカリ又はアルカリ土類金属アルキルサリシレート、アルカリ又はアルカリ土類金属アルキルベンゼンスルホネート、及びアルカリ又はアルカリ土類金属アルキルフェネート等。)、又は該有機酸金属塩と塩基性金属塩(例えば該有機酸金属塩を構成するアルカリ又はアルカリ土類金属の水酸化物、炭酸塩、ホウ酸塩等。)との混合物が用いられる。そのような有機酸は通常、金属塩基と塩を形成可能なブレンステッド酸性を有する少なくとも1つの極性基(例えばカルボキシ基、スルホ基、フェノール性ヒドロキシ基等。)と、直鎖または分岐鎖アルキル基(例えば炭素数6以上の直鎖または分岐鎖アルキル基等。)等の少なくとも1つの親油性基とを一分子中に有する。
 <(D)コハク酸イミド分散剤>
  本発明の潤滑油組成物は、(D)1種以上のホウ素含有コハク酸イミド分散剤を含む、1種以上のコハク酸イミド分散剤(以下において「(D)成分」ということがある。)を含有する。(D)成分がホウ素含有コハク酸イミド分散剤を含むことにより、耐摩耗性および耐焼付き性を高めるとともに、湿式クラッチの伝達トルク容量を高めることが可能になる。(D)成分としては1種のコハク酸イミド分散剤を単独で用いてもよく、2種以上のコハク酸イミド分散剤を組み合わせて用いてもよい。また(D)成分は1種以上のホウ素含有コハク酸イミド分散剤からなっていてもよく、1種以上のホウ素含有コハク酸イミド分散剤と、1種以上のホウ素非含有コハク酸イミド分散剤とを含んでいてもよい。
 コハク酸イミド無灰分散剤の好ましい例としては、アルキル基もしくはアルケニル基を分子中に少なくとも1個有する、コハク酸イミド及び/又は変性コハク酸イミドを挙げることができる。
 アルキル基もしくはアルケニル基を分子中に少なくとも1個有するコハク酸イミドの例としては、下記一般式(9)又は(10)で表される化合物を挙げることができる。
 一般式(9)中、R13は炭素数40~400のアルキル基またはアルケニル基を示し、dは1~5、好ましくは2~4の整数を示す。R13の炭素数は、潤滑油基油に対する溶解性の観点から好ましくは40以上、より好ましくは60以上であり、潤滑油組成物の低温流動性を高める観点から好ましくは400以下、より好ましくは350以下であり、一の実施形態において40~400、又は60~350であり得る。R13は特に好ましくはポリブテニル基である。
 一般式(10)中、R14及びR15は、それぞれ独立に炭素数40~400のアルキル基又はアルケニル基を示し、異なる基の組み合わせであってもよい。また、eは0~4、好ましくは1~4、より好ましくは1~3の整数を示す。R14及びR15の炭素数は、潤滑油基油に対する溶解性の観点から好ましくは40以上、より好ましくは60以上であり、潤滑油組成物の低温流動性を高める観点から好ましくは400以下、より好ましくは350以下であり、一の実施形態において40~400、又は60~350であり得る。R14及びR15は特に好ましくはポリブテニル基である。
 式(9)及び式(10)におけるアルキル基またはアルケニル基(R13~R15)は直鎖状でも分枝状でもよく、好ましくは、例えば、プロピレン、1-ブテン、イソブテン等のオレフィンのオリゴマーや、エチレンとプロピレンとのコオリゴマーから誘導される分枝状アルキル基や分枝状アルケニル基を挙げることができる。なかでも慣用的にポリイソブチレンと呼ばれるイソブテンのオリゴマーから誘導される分枝状アルキル基またはアルケニル基や、ポリブテニル基が最も好ましい。
  式(9)及び式(10)におけるアルキル基またはアルケニル基(R13~R15)の好適な数平均分子量は800~3500、より好ましくは1000~3500である。
 アルキル基またはアルケニル基を分子中に少なくとも1個有するコハク酸イミドには、ポリアミン鎖の一方の末端のみに無水コハク酸が付加した、一般式(9)で表される、いわゆるモノタイプのコハク酸イミドと、ポリアミン鎖の両末端に無水コハク酸が付加した、一般式(10)で表される、いわゆるビスタイプのコハク酸イミドとが包含される。潤滑油組成物には、モノタイプのコハク酸イミド及びビスタイプのコハク酸イミドのいずれが含まれていてもよく、それらの両方が混合物として含まれていてもよい。(C)成分中のビスタイプのコハク酸イミド又はその誘導体(変性物)の含有量は、(C)成分の全量を基準(100質量%)として好ましくは50質量%以上、より好ましくは70質量%以上である。
 アルキル基またはアルケニル基を分子中に少なくとも1個有するコハク酸イミドの製法は、特に制限されるものではない。例えば、炭素数40~400のアルキル基又はアルケニル基を有するアルキル若しくはアルケニルコハク酸又はその無水物と、ポリアミンとの反応により上記コハク酸イミドを縮合反応生成物(縮合生成物)として得ることができる。なおアルキル若しくはアルケニルコハク酸又はその無水物は、炭素数40~400のアルキル基又はアルケニル基を有する化合物を無水マレイン酸と100~200℃で反応させることにより得ることができる。(C)成分としては、上記縮合生成物をそのまま用いてもよく、上記縮合生成物を後述する誘導体(変性物)に変換して用いてもよい。アルキル若しくはアルケニルコハク酸又はその無水物とポリアミンとの縮合生成物は、ポリアミン鎖の両末端がイミド化された、ビスタイプのコハク酸イミド(一般式(10)参照。)であってもよく、ポリアミン鎖の一方の末端のみがイミド化された、モノタイプのコハク酸イミド(一般式(9)参照。)であってもよく、それらの混合物であってもよい。ここで、ポリアミンの例としては、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、及びペンタエチレンヘキサミン並びにそれらの混合物を挙げることができ、これらの中から選ばれる1種以上を含むポリアミン原料を好ましく用いることができる。ポリアミン原料はエチレンジアミンをさらに含有してもよく、含有しなくてもよいが、縮合生成物またはその誘導体の分散剤としての性能を高める観点からは、ポリアミン原料中のエチレンジアミンの含有量は、ポリアミン原料全量基準で好ましくは0~10質量%、より好ましくは0~5質量%である。炭素数40~400のアルキル若しくはアルケニル基を有するアルキル若しくはアルケニルコハク酸又はそれらの無水物と、2種以上のポリアミンの混合物との縮合反応生成物として得られるコハク酸イミドは、一般式(9)又は(10)において異なるd又はeを有する化合物の混合物である。
 (D)成分は、1種以上のホウ素含有コハク酸イミド分散剤を含有する。ホウ素含有コハク酸イミド分散剤は、上記無変性のコハク酸イミドにホウ酸を作用させることにより、残存するアミノ基および/またはイミノ基の一部又は全部を中和またはアミド化することにより、ホウ酸変性コハク酸イミド(ホウ素変性コハク酸イミド、又はホウ素化コハク酸イミド)として得ることができる。
 変性コハク酸イミドの例としては、
(i)上記ホウ素含有コハク酸イミド、すなわち、コハク酸イミドにホウ酸を作用させることにより、残存するアミノ基および/またはイミノ基の一部又は全部が中和またはアミド化されている、ホウ素変性コハク酸イミド(ホウ素化コハク酸イミド);
(ii)上記コハク酸イミドに、脂肪酸等の炭素数1~30のモノカルボン酸、炭素数2~30のポリカルボン酸(例えばシュウ酸、フタル酸、トリメリット酸、ピロメリット酸等。)、これらの無水物もしくはエステル化合物、炭素数2~6のアルキレンオキサイド、又はヒドロキシ(ポリ)オキシアルキレンカーボネートを作用させたことにより、残存するアミノ基および/またはイミノ基の一部又は全部が中和またはアミド化されている、含酸素有機化合物変性コハク酸イミド;
(iii)上記コハク酸イミドにリン酸を作用させることにより、残存するアミノ基および/またはイミノ基の一部又は全部が中和またはアミド化されている、リン酸変性コハク酸イミド;
(iv)上記コハク酸イミドに硫黄化合物を作用させることにより得られる、硫黄変性コハク酸イミド;及び、
(v)上記コハク酸イミドに、含酸素有機化合物による変性、ホウ素変性、リン酸変性、硫黄変性から選ばれた2種以上の変性を組み合わせて施すことにより得られる変性コハク酸イミド、
を挙げることができる。
 (D)成分の重量平均分子量は、好ましくは1000~20000、より好ましくは1000~15000であり、特に好ましくは2000~9000である。(C)成分が2種以上のコハク酸イミド分散剤を含む場合には、各コハク酸イミド分散剤の重量平均分子量が上記範囲内であることが好ましい。
 潤滑油組成物中の(D)成分のホウ素分としての含有量は、耐摩耗性および耐焼付き性、並びに湿式クラッチの伝達トルク容量をさらに高める観点から、組成物全量基準で好ましくは0.010質量%以上である。また(D)成分のホウ素分としての含有量は、耐疲労性を高める観点から0.030質量%未満、好ましくは0.029質量%以下である。一の実施形態において、(D)成分のホウ素分としての含有量は、組成物全量基準で0.010質量%以上0.030質量%未満、又は0.010~0.029質量%であり得る。
 潤滑油組成物中の(D)成分の窒素分としての含有量は、酸化安定性(塩基価維持性)をさらに高める観点から、組成物全量基準で好ましくは0.030質量%以上、又は0.035質量%以上、又は0.040質量%以上である。また(D)成分の窒素分としての含有量は、ギヤ潤滑性能(耐焼付き性および耐疲労性)をさらに高める観点から、組成物全量基準で好ましくは0.055質量%以下、又は0.050質量%以下、又は0.045質量%以下である。一の実施形態において、(D)成分の窒素分としての含有量は、0.030~0.055質量%、又は0.035~0.050質量%、又は0.040~0.045質量%であり得る。
 <(E)油性剤系摩擦調整剤>
  本発明の潤滑油組成物は、1種以上の油性剤系摩擦調整剤(以下において「(E)成分」ということがある。)を含有する。(E)成分としては1種の油性剤系摩擦調整剤を単独で用いてもよく、2種以上の油性剤系摩擦調整剤を組み合わせて用いてもよい。
 油性剤系摩擦調整剤の例としては、分子中に酸素原子、窒素原子、硫黄原子から選ばれる1種以上のヘテロ元素を含有する、炭素数6~50の化合物を挙げることができる。油性摩擦調整剤の好ましい例としては、炭素数6~30の直鎖または分岐鎖アルキルまたはアルケニル基を分子中に少なくとも1個有する、脂肪族アミン、脂肪酸アミド、脂肪酸ヒドラジド、脂肪族イミド化合物、脂肪族ウレア、脂肪酸エステル、脂肪酸金属塩、脂肪族アルコール、脂肪族エーテル、等を挙げることができる。
 アミド系摩擦調整剤の一例としては、炭素数7~30、好ましくは8~30、又は10~30、又は12~24、又は12~20、又は12~18の脂肪酸と、脂肪族第1級もしくは第2級アミン化合物、脂肪族第1級もしくは第2級アルカノールアミン化合物、脂肪族ポリアミン、又はアンモニアとの縮合生成物(脂肪酸アミド摩擦調整剤)を挙げることができる。
  上記脂肪族第1級もしくは第2級アミン化合物は、好ましくは炭素数1~30、より好ましくは炭素数1~10、さらに好ましくは炭素数1~4のアルキル又はアルケニル基を有し、一の実施形態においてメチル基又はエチル基を有する。
  上記脂肪族第1級もしくは第2級アルカノールアミン化合物は、好ましくは炭素数1~30、より好ましくは炭素数1~10、さらに好ましくは炭素数1~4のアルキレン又はアルケニレン基を有し、一の実施形態においてメチレン又はエチレン基を有する。
  上記脂肪族ポリアミンの好ましい例としては、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等の、窒素原子数3~11の直鎖または分岐鎖の脂肪族ポリアミンを挙げることができる。分岐鎖ポリアミンは、直鎖ポリアミンの構造異性体であって、1つ以上の第3級アミノ基を有する。脂肪族ポリアミンは2種以上の混合物であってもよい。脂肪族ポリアミンの窒素原子数は好ましくは3~6、特に好ましくは4~6である。
  上記脂肪酸は直鎖脂肪酸であってもよく、分岐鎖脂肪酸であってもよい。直鎖脂肪酸の好ましい例としては、エナント酸、カプロン酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ミリストレイン酸、パルミチン酸、パルミトレイン酸、ステアリン酸、オレイン酸、バクセン酸、エライジン酸、リノール酸、リノレン酸、エレオステアリン酸、ステアリドン酸、アラキジン酸、ガドレイン酸、エイコセン酸、エイコサペンタエン酸、ベヘン酸、エルカ酸、イワシ酸、ドコサヘキサエン酸、リグノセリン酸、ニシン酸、及びこれらの混合物等を挙げることができる。上記の脂肪酸のうち2種以上を含有する混合物として、天然油脂由来の脂肪酸を用いてもよい。天然油脂由来の脂肪酸の例としては、ココナッツ油脂肪酸、パーム核油脂肪酸、パーム油脂肪酸、キリ油脂肪酸、トール油脂肪酸、コーン油脂肪酸、ナタネ油脂肪酸、オリーブ油脂肪酸、ごま油脂肪酸、大豆油脂肪酸、米ぬか油脂肪酸、ひまわり油脂肪酸、ひまし油脂肪酸、あまに油脂肪酸、魚油脂肪酸、牛脂脂肪酸、これらの水素添加物、及びこれらの混合物等を挙げることができる。
  分岐鎖脂肪酸の好ましい例としては、カルボニル炭素のα位、β位、又はγ位に第3級または第4級炭素原子(すなわち分岐)を有する分岐鎖脂肪酸を挙げることができる。一の実施形態において、分岐鎖脂肪酸は、カルボニル炭素のα位またはβ位に第3級または第4級炭素原子を有する。一の実施形態において、分岐鎖脂肪酸は、カルボニル炭素のα位に第3級または第4級炭素原子を有する。そのような分岐鎖脂肪酸の好ましい例としては、下記一般式(11)で表される分岐鎖脂肪酸を挙げることができる。

(一般式(11)中、fは0~2の整数、好ましくは0若しくは1、より好ましくは0であり;R16は炭素数3~19、好ましくは炭素数4~19の直鎖または分岐鎖アルキル基であり;R17は炭素数1~10、好ましくは炭素数2~10の直鎖または分岐鎖アルキル基であり;R18は水素原子または炭素数1~6の直鎖もしくは分岐鎖アルキル基、好ましくは水素原子であり;(R16の炭素数)≧(R17の炭素数)≧(R18の炭素数)であり;(R16の炭素数)+(R17の炭素数)+(R18の炭素数)+k+2は分岐鎖脂肪酸の総炭素数に等しい。)
一の好ましい実施形態において、一般式(11)中、fは0、R16は炭素数3~19の直鎖または分岐鎖アルキル基、R17は炭素数1~10の直鎖または分岐鎖アルキル基、R18は水素原子であり得る。一般式(11)で表される分岐鎖脂肪酸の好ましい例としては、2-エチルヘキサン酸、2-ブチルオクタン酸、2-デシルテトラデカン酸、5,7,7-トリメチル-2-(1,3,3-トリメチルブチル)オクタン酸(別名イソステアリン酸)等を挙げることができる。
  脂肪酸アミド摩擦調整剤の具体例としては、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド、オレイン酸アミド、ヤシ油脂肪酸アミド、炭素数12~13の合成混合脂肪酸アミド、等を挙げることができる。
 アミド系摩擦調整剤の他の例としては、炭素数7~30の脂肪酸の、ヒドラジド及びウレイド;炭素数7~30のアルキル又はアルケニル基を有する、脂肪族セミカルバジド、脂肪族ウレア、及び脂肪族アロファン酸アミド;並びにそれらの誘導体(変性物)、等を挙げることができる。アミド系摩擦調整剤の誘導体(変性物)の例としては、上記のアミド化合物とホウ酸またはホウ酸塩とを反応させることにより得られるホウ素変性物を挙げることができる。これらの化合物において、炭素数7~30の脂肪酸の好ましい例としては、脂肪酸アミド摩擦調整剤に関連して上記説明した脂肪酸を挙げることができ、炭素数7~30のアルケニル又はアルケニル基の好ましい例としては、脂肪酸アミド摩擦調整剤に関連して上記説明した脂肪酸に対応するアルキル又はアルケニル基を挙げることができる。なお本明細書において、「脂肪酸に対応するアルキル又はアルケニル基」とは、脂肪酸(R19-COH)のカルボキシ基を還元することにより得られる脂肪族アルコール(R19-CH-OH)からヒドロキシ基を取り除くことにより得られるアルキル又はアルケニル基(R19-CH-基)を意味する。なお上記説明において「カルボキシ基を還元すること」及び「ヒドロキシ基を取り除くこと」は概念的操作を意味するものであって、「脂肪酸に対応するアルキル又はアルケニル基」を必ずしも脂肪酸から上記説明の通りに得なければならないことを意味するものではない。
 脂肪酸ヒドラジド摩擦調整剤の例としては、炭素数7~30の脂肪酸、好ましくは直鎖の脂肪酸と、無置換または脂肪族置換ヒドラジンとの縮合生成物;及びそれらの酸変性誘導体(例えば当該縮合生成物とホウ酸またはホウ酸塩との反応により得られるホウ素変性物等。)を挙げることができる。脂肪酸の好ましい例としては、脂肪酸の好ましい例としては、脂肪酸アミド摩擦調整剤に関連して上記説明した脂肪酸を挙げることができる。
  脂肪酸ヒドラジド摩擦調整剤の具体例としては、ラウリン酸ヒドラジド、トリデカン酸ヒドラジド、ミリスチン酸ヒドラジド、ペンタデカン酸ヒドラジド、パルミチン酸ヒドラジド、ヘプタデカン酸ヒドラジド、ステアリン酸ヒドラジド、オレイン酸ヒドラジド、エルカ酸ヒドラジド等を挙げることができる。
 脂肪族ウレア摩擦調整剤の例としては、炭素数7~30、好ましくは10~30、又は12~24、又は12~20、又は12~18の直鎖又は分岐鎖(好ましくは直鎖)のアルキル又はアルケニル基を有する、脂肪族ウレア化合物、及びそれらの酸変性誘導体(例えば当該ウレア化合物とホウ酸またはホウ酸塩との反応により得られるホウ素変性物等。)を挙げることができる。炭素数7~30のアルケニル又はアルケニル基の好ましい例としては、脂肪酸アミド摩擦調整剤に関連して上記説明した脂肪酸に対応するアルキル又はアルケニル基を挙げることができる。
  脂肪族ウレア摩擦調整剤の具体例としては、ドデシルウレア、トリデシルウレア、テトラデシルウレア、ペンタデシルウレア、ヘキサデシルウレア、ヘプタデシルウレア、オクタデシルウレア、オレイルウレア等を挙げることができる。
 アミド系摩擦調整剤の他の例としては、炭素数1~30のヒドロキシ置換アルキル又はアルケニル基を有する脂肪族ヒドロキシ酸のアミド化合物を挙げることができる。該アミド化合物は、例えば、上記脂肪族ヒドロキシ酸と、脂肪族第1級もしくは第2級アミン化合物、又は脂肪族第1級もしくは第2級アルカノールアミン化合物との縮合生成物として得ることができる。上記脂肪族ヒドロキシ酸が有するヒドロキシ置換アルキル又はアルケニル基の炭素数は好ましくは1~10、より好ましくは1~4であり、一の実施形態において1又は2である。上記脂肪族ヒドロキシ酸は好ましくは直鎖脂肪族α-ヒドロキシ酸であり、一の実施形態においてグリコール酸である。上記アミン化合物およびアルカノールアミン化合物は、好ましくは炭素数1~30、より好ましくは炭素数10~30、又は12~24、又は12~20、又は12~18の脂肪族炭化水素基を有する。該脂肪族炭化水素基は好ましくは直鎖飽和脂肪族炭化水素基である。
 アミド系摩擦調整剤の他の例としては、炭素数7~30の脂肪酸と、アミノ酸とのアミド化合物(N-アシル化アミノ酸摩擦調整剤)を挙げることができる。脂肪酸の好ましい例としては、脂肪酸アミド摩擦調整剤に関連して上記説明した脂肪酸を挙げることができる。アミノ酸の好ましい例としては、N-メチルグリシン、N-メチル-β-アラニン、N-メチルアラニン、N-メチルバリン、N-メチルロイシン、N-メチルイソロイシン等のN-メチルアミノ酸を挙げることができ、これらの中でもN-メチルグリシン又はN-メチル-β-アラニンが特に好ましい。
  N-アシル化アミノ酸摩擦調整剤の具体例としては、N-アシル化N-メチルグリシン(例えばN-オレオイル-N-メチルグリシン等。)、N-アシル化-N-メチル-β-アラニン(例えばN-オレオイル-N-メチル-β-アラニン等。)等を挙げることができる。
 脂肪族イミド系摩擦調整剤の例としては、炭素数6~30の直鎖または分岐鎖のアルキル又はアルケニル基を有する、コハク酸イミド;及び、そのカルボン酸、ホウ酸、リン酸、又は硫酸等による変性物等を挙げることができる。
  コハク酸イミド系摩擦調整剤の例としては、炭素数8~30のアルキル又はアルケニル基を有するビスコハク酸イミド化合物およびモノコハク酸イミド化合物、並びにそれらの誘導体(変性物)を挙げることができる。そのようなコハク酸イミド化合物は、例えば下記一般式(12)又は(13)で表される。

 一般式(12)及び(13)において、R20及びR21は、それぞれ独立に炭素数8~30、好ましくは炭素数12~22、又は12~18のアルキル又はアルケニル基を表す。R22及びR23は、それぞれ独立に炭素数1~4のアルキレン基、好ましくは炭素数2~3のアルキレン基、又はエチレン基を表す。R24は水素原子または炭素数1~30のアルキル又はアルケニル基、好ましくは水素原子を表す。gは1~7、好ましくは1~4、又は1~3の整数を表す。hは1~7、好ましくは1~5、又は2~5、又は2~4の整数を表す。
 コハク酸イミド系摩擦調整剤として用いることが可能なコハク酸イミド化合物の製法は特に制限されるものではない。例えば、炭素数8~30、好ましくは炭素数12~22のアルキル若しくはアルケニル基を有するアルキル若しくはアルケニルコハク酸又はその無水物と、ポリアミン、そのN-モノC1-30アルキル化物若しくはN-モノC1-30アルケニル化物、又はそれらの混合物との反応により、上記コハク酸イミド化合物を縮合生成物として得ることができる。コハク酸イミド系摩擦調整剤としては、該縮合生成物をそのまま用いてもよく、該縮合生成物を後述する誘導体(変性物)に変換して用いてもよい。アルキル若しくはアルケニルコハク酸又はその無水物とポリアミンとの縮合生成物は、ポリアミン鎖の両末端がイミド化された、ビスタイプのコハク酸イミド(一般式(12)参照。)であってもよく、ポリアミン鎖の一方の末端のみがイミド化された、モノタイプのコハク酸イミド(一般式(13)参照。)であってもよく、それらの混合物であってもよい。ここで、ポリアミンの例としては、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、及びそれらの混合物を挙げることができ、これらの中から選ばれる1種以上を含むポリアミン原料を好ましく用いることができる。ポリアミン原料はエチレンジアミンをさらに含有してもよく、含有しなくてもよいが、縮合生成物またはその誘導体の摩擦調整剤としての性能を高める観点からは、ポリアミン原料中のエチレンジアミンの含有量は、ポリアミン原料全量基準で好ましくは0~10質量%、より好ましくは0~5質量%である。ポリアミンのN-モノC1-30アルキル化物としては、上記ポリアミンの鎖末端の窒素原子上にC1-30アルキル基を有するN-モノC1-30アルキル化ポリアミンを好ましく用いることができる。ポリアミンのN-モノC1-30アルケニル化物としては、上記ポリアミンの鎖末端の窒素原子上にC1-30アルケニル基を有するN-モノC1-30アルケニル化ポリアミンを好ましく用いることができる。なお本明細書において「Ci-j」(i及びjは整数)とは、炭素数がi以上j以下であることを意味する。
 コハク酸イミド系摩擦調整剤として用いることが可能なコハク酸イミド化合物の誘導体(変性物)の例としては、上記のコハク酸イミド化合物を、ホウ酸、リン酸、炭素数1~20のカルボン酸、及び硫黄含有化合物から選ばれる1種以上と反応させることにより得られる変性化合物を挙げることができ、これらの中でもホウ酸またはホウ酸塩との反応により得られるホウ素変性物を好ましく用いることができる。
 (E)成分は、(E1)1つ以上の炭素数8~30の脂肪族ヒドロカルビル基及び/又は1つ以上の炭素数8~30の脂肪族ヒドロカルビルカルボニル基と、1つ以上のアミド結合及び/又は1つ以上のイミド結合とを1分子中に有し、前記脂肪族ヒドロカルビルカルボニル基は前記アミド結合及び/又はイミド結合の一部を構成していてもよい、1種以上のN-アシル化窒素含有化合物(以下において「(E1)成分」ということある。)を含むことが好ましい。脂肪族ヒドロカルビル基の好ましい例としては、上記脂肪酸アミド摩擦調整剤に関連して上記説明した脂肪酸に対応するアルキル又はアルケニル基を挙げることができる。また、脂肪族ヒドロカルビルカルボニル基の好ましい例としては、上記脂肪酸アミド摩擦調整剤に関連して上記説明した脂肪酸に対応する脂肪族アシル基を挙げることができる。なお本明細書において、「脂肪酸に対応する脂肪族アシル基」とは、脂肪酸(R19-COH)から-OH基を取り除くことにより得られる脂肪族アシル基(R19-CO-基)を意味する。(E)成分は(E1)成分からなっていてもよく、(E1)成分と1種以上の他の油性剤系摩擦調整剤とを含んでいてもよい。
 一の実施形態において、(E)成分は、アミン系摩擦調整剤を含有することが好ましい。アミン系摩擦調整剤は、例えば(E1)成分と併用されてもよい。アミン系摩擦調整剤の例としては、炭素数7~30、好ましくは10~30、又は12~24、より好ましくは12~20の直鎖または分岐鎖のアルキル又はアルケニル基、好ましくは直鎖アルキル又はアルケニル基を有する、脂肪族モノアミン;炭素数10~30、好ましくは12~24、より好ましくは12~20の直鎖または分岐鎖のアルキル又はアルケニル基、好ましくは直鎖アルキル又はアルケニル基を有する、脂肪族ポリアミン;及び、これら脂肪族アミンのアルキレンオキサイド付加物、等を挙げることができる。上記アルキル又はアルケニル基の好ましい例としては、脂肪酸アミド摩擦調整剤に関連して上記説明した脂肪酸に対応するアルキル又はアルケニル基を挙げることができる。アミン系摩擦調整剤の好ましい一形態として、下記一般式(14)で表されるアルキル又はアルケニルジアルカノールアミンを挙げることができる。

一般式(14)中、R25は脂肪酸アミド摩擦調整剤に関連して上記説明した脂肪酸に対応するアルキル又はアルケニル基を表す。i及びjはそれぞれ独立に1~4の整数、好ましくは2~4の整数、又は2~3の整数を表し、一の実施形態において2であり得る。
 脂肪酸エステル系摩擦調整剤の例としては、炭素数7~30、好ましくは10~30、又は12~24、又は12~20、又は12~18の直鎖または分岐鎖(好ましくは直鎖)の脂肪酸と、脂肪族1価アルコール(例えばメタノール、エタノール等。)又は脂肪族多価アルコール(例えばグリセリン、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、エリスリトール、ジグリセリン、ソルビタン、アドニトール、アラビトール、キシリトール、アロース、タロース、トリグリセリン、ジペンタエリスリトール、ソルビトール、マンニトール、イジトール、イノシトール、ダルシトール、ポリグリセリン等。)とのエステル等を挙げることができ。脂肪酸の好ましい例としては、脂肪酸アミド摩擦調整剤に関連して上記説明した脂肪酸を挙げることができる。
 脂肪酸金属塩系摩擦調整剤の例としては、炭素数7~30、好ましくは10~30、又は12~24、又は12~20、又は12~18の直鎖または分岐鎖、好ましくは直鎖の脂肪酸の、アルカリ土類金属塩(マグネシウム塩、カルシウム塩等。)や亜鉛塩等を挙げることができる。脂肪酸の好ましい例としては、脂肪酸アミド摩擦調整剤に関連して上記説明した脂肪酸を挙げることができる。
 脂肪族アルコール系摩擦調整剤の例としては、炭素数7~30、好ましくは10~30、又は12~24、又は12~20、又は12~18の直鎖または分岐鎖、好ましくは直鎖のアルキル又はアルケニルアルコールを挙げることができる。アルキル又はアルケニル基の好ましい例としては、脂肪酸アミド摩擦調整剤に関連して上記説明した脂肪酸に対応するアルキル又はアルケニル基を挙げることができる。
 潤滑油組成物中の(E)成分の好ましい含有量は、化合物の種類に応じて異なり得るが、例えば0.10~3.00質量%であり得る。
 例えば(E)成分が(E1)成分を含む場合、(E1)成分の含有量は、湿式クラッチのステックスリップ防止(シャダー防止)性を高める観点から、潤滑油組成物全量基準で好ましくは0.10質量%以上、又は0.40質量%以上、又は0.80質量%以上であり、また湿式クラッチの伝達トルク容量をより高い水準で確保する観点から好ましくは3.00質量%以下、又は2.00質量%以下、又は1.50質量%以下であり、一の実施形態において0.10~3.00質量%、又は0.40~2.00質量%、又は0.80~1.50質量%であり得る。
 また、例えば(E)成分が(E1)成分と、(E1)成分以外の油性剤系摩擦調整剤とを含む場合、(E1)成分以外の油性剤系摩擦調整剤の含有量は、湿式クラッチのジャダー防止性を高める観点から、潤滑油組成物全量基準で好ましくは0.001質量%以上、又は0.005質量%以上、又は0.010質量%以上であり、またまた湿式クラッチの伝達トルク容量をより高い水準で確保する観点から好ましくは0.100質量%以下、又は0.080質量%以下、又は0.050質量%以下であり、一の実施形態において0.001~0.100質量%、又は0.005~0.080質量%、又は0.010~0.050質量%であり得る。
 <(F)ポリ(メタ)アクリレート粘度指数向上剤>
  一の好ましい実施形態において、本発明の潤滑油組成物は、重量平均分子量10,000~100,000の1種以上のポリ(メタ)アクリレート(以下において「(F)成分」ということがある。)をさらに含み得る。なお本明細書において、「(メタ)アクリレート」とは、「アクリレート及び/又はメタクリレート」を意味する。(F)成分としては1種のポリ(メタ)アクリレートを単独で用いてもよく、2種以上のポリ(メタ)アクリレートの混合物を用いてもよい。
 (F)成分としては、分散型のポリアルキル(メタ)アクリレート及び非分散型のポリアルキル(メタ)アクリレートのいずれを用いてもよい。湿式クラッチの伝達トルク容量および締結性能をさらに高める観点からは、分散型のポリアルキル(メタ)アクリレートをより好ましく用いることができる。
 (F)成分の重量平均分子量は、潤滑油組成物の低温流動性を高める観点から好ましくは10,000以上、又は20,000以上、又は30,000以上であり、せん断安定性を高める観点から好ましくは100,000以下、又は70,000以下、又は50,000以下であり、一の実施形態において10,000~100,000、又は20,000~70,000、又は30,000~50,000であり得る。(F)成分が複数のポリ(メタ)アクリレートの混合物である場合には、各ポリ(メタ)アクリレートの重量平均分子量が上記範囲内であることが好ましい。
 (F)成分は粘度指数向上剤および/または流動点降下剤として作用する。潤滑油組成物中の(F)成分の含有量(総含有量)は、潤滑油組成物の低温流動性を高める観点から、潤滑油組成物全量基準で樹脂分として好ましくは0.5質量%以上、又は1.0質量%以上、又は2.0質量%以上であり、せん断安定性を高める観点から好ましくは6.0質量%以下、又は5.0質量%以下、又は4.0質量%以下であり、一の実施形態において0.5~6.0質量%、又は1.0~5.0、又は2.0~4.0であり得る。なお本明細書において樹脂分とは、分子量1,000以上のポリマー成分を意味する。
 <(G)酸化防止剤>
  一の好ましい実施形態において、潤滑油組成物は、1種以上のアミン系酸化防止剤、及び/又は、1種以上のフェノール系酸化防止剤(以下において「(G)成分」ということがある。)をさらに含み得る。(G)成分としては1種の化合物を単独で用いてもよく、2種以上の化合物を組み合わせて用いても良い。
 アミン系酸化防止剤の例としては、芳香族アミン系酸化防止剤、及びヒンダードアミン系酸化防止剤が挙げられる。芳香族アミン系酸化防止剤の例としては、アルキル化α-ナフチルアミン等の第1級芳香族アミン化合物;及び、ジフェニルアミン、アルキル化ジフェニルアミン、フェニル-α-ナフチルアミン、アルキル化フェニル-α-ナフチルアミン、フェニル-β-ナフチルアミン、アルキル化フェニル-β-ナフチルアミン等の第2級芳香族アミン化合物;を挙げることができる。芳香族アミン系酸化防止剤としては、アルキル化ジフェニルアミン、若しくはアルキル化フェニル-α-ナフチルアミン、又はそれらの組み合わせを好ましく用いることができる。
 フェノール系酸化防止剤の例としては、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール);4,4’-ビス(2,6-ジ-tert-ブチルフェノール);4,4’-ビス(2-メチル-6-tert-ブチルフェノール);2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール);2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール);4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール);4,4’-イソプロピリデンビス(2,6-ジ-tert-ブチルフェノール);2,2’-メチレンビス(4-メチル-6-ノニルフェノール);2,2’-イソブチリデンビス(4,6-ジメチルフェノール);2,2’-メチレンビス(4-メチル-6-シクロヘキシルフェノール);2,6-ジ-tert-ブチル-4-メチルフェノール;2,6-ジ-tert-ブチル-4-エチルフェノール;2,4-ジメチル-6-tert-ブチルフェノール;2,6-ジ-tert-ブチル-4-(N,N’-ジメチルアミノメチル)フェノール;4,4’-チオビス(2-メチル-6-tert-ブチルフェノール);4,4’-チオビス(3-メチル-6-tert-ブチルフェノール);2,2’-チオビス(4-メチル-6-tert-ブチルフェノール);ビス(3-メチル-4-ヒドロキシ-5-tert-ブチルベンジル)スルフィド;ビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)スルフィド;3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸エステル類;3-メチル-5-tert-ブチル-4-ヒドロキシフェノール脂肪酸エステル類、等を挙げることができる。3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸エステル類の例としては、オクチル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート;デシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート;ドデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート;テトラデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート;ヘキサデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート;オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート;ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート];2,2’-チオ-ジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、等を挙げることができる。
 潤滑油組成物が(G)成分としてアミン系酸化防止剤を含有する場合、その含有量は、熱酸化安定性の観点から、潤滑油組成物全量基準で、好ましくは0.1~1.0質量%、より好ましくは0.2~1.0質量%、さらに好ましくは0.3~0.9質量%である。
  潤滑油組成物が(G)成分としてフェノール系酸化防止剤を含有する場合、その含有量は、熱酸化安定性の観点から、潤滑油組成物全量基準で、好ましくは0.1~1.0質量%、より好ましくは0.2~0.9質量%、さらに好ましくは0.3~0.8質量%である。
 <その他の添加剤>
  一の実施形態において、潤滑油組成物は、(A)成分及び(B)成分以外の摩耗防止剤または極圧剤、(F)成分以外のポリマー、油溶性有機モリブデン化合物、(A)成分以外の腐食防止剤、防錆剤、(A)成分以外の金属不活性化剤、シール膨潤剤、消泡剤、抗乳化剤、および着色剤から選ばれる1種以上をさらに含み得る。
 (A)成分及び(B)成分以外の摩耗防止剤または極圧剤の例としては、ジスルフィド類、ポリサルファイド類、硫化オレフィン類、硫化油脂類等の、(A)成分に該当しない硫黄系添加剤(硫黄系極圧剤);チオ亜リン酸エステル類、ジチオ亜リン酸エステル類、トリチオ亜リン酸エステル類、チオリン酸エステル類、ジチオリン酸エステル類、トリチオリン酸エステル類、テトラチオリン酸エステル類等の、硫黄を含有するリン化合物(リン-硫黄系摩耗防止剤)、等を挙げることができる。潤滑油組成物は(A)成分及び(B)成分以外の摩耗防止剤または極圧剤を含有してもよく、含有しなくてもよい。潤滑油組成物が(A)成分及び(B)成分以外の摩耗防止剤または極圧剤を含有する場合、その合計の含有量は、潤滑油組成物全量基準で、好ましくは0質量%超0.020質量%未満、又は0質量%超0.015質量%未満、又は0質量%超0.010質量%未満である。
 (F)成分以外のポリマーとしては、潤滑油の添加剤として公知のポリマーであってポリ(メタ)アクリレート以外のものを用いることができる。(F)成分以外のポリマーの例としては、エチレン-α-オレフィン共重合体及びその水素化物、α-オレフィンと重合性不飽和結合を有するエステル単量体との共重合体、ポリイソブチレン及びその水素化物、スチレン-ジエン共重合体の水素化物、スチレン-無水マレイン酸エステル共重合体、エチレン-ビニルアセテート共重合体およびその水素化物、並びに、ポリアルキルスチレン等を挙げることができる。これらの中でもエチレン-α-オレフィン共重合体又はその水素化物を好ましく用いることができる。一の実施形態において、エチレン-α-オレフィン共重合体又はその水素化物としては、エチレンプロピレンコポリマー又はその水素化物を好ましく用いることができる。一の実施形態において、(F)成分以外のポリマーの重量平均分子量は例えば2,000~30,000、好ましくは5,000~15,000であり得る。潤滑油組成物は(F)成分以外のポリマーを含有してもよく、含有しなくてもよい。潤滑油組成物が(F)成分以外のポリマーを含有する場合、その含有量は、潤滑油組成物全量基準で、好ましくは0質量%超5.0質量%未満、又は0質量%超4.0質量%未満、又は0質量%超2.0質量%未満である。
 油溶性有機モリブデン化合物の例としては、硫黄を含有する有機モリブデン化合物、及び、構成元素として硫黄を含まない有機モリブデン化合物を挙げることができる。硫黄を含有する有機モリブデン化合物の例としては、ジチオカルバミン酸モリブデン化合物;ジチオリン酸モリブデン化合物;モリブデン化合物(例えば、二酸化モリブデン、三酸化モリブデン等の酸化モリブデン、オルトモリブデン酸、パラモリブデン酸、(ポリ)硫化モリブデン酸等のモリブデン酸、これらモリブデン酸の金属塩、アンモニウム塩等のモリブデン酸塩、二硫化モリブデン、三硫化モリブデン、五硫化モリブデン、ポリ硫化モリブデン等の硫化モリブデン、硫化モリブデン酸、硫化モリブデン酸の金属塩またはアミン塩、塩化モリブデン等のハロゲン化モリブデン等。)と、硫黄含有有機化合物(例えば、アルキル(チオ)キサンテート、チアジアゾール、メルカプトチアジアゾール、チオカーボネート、テトラハイドロカルビルチウラムジスルフィド、ビス(ジ(チオ)ハイドロカルビルジチオホスホネート)ジスルフィド、有機(ポリ)サルファイド、硫化エステル等。)又はその他の有機化合物との錯体等;および、上記硫化モリブデン、硫化モリブデン酸等の硫黄含有モリブデン化合物とアルケニルコハク酸イミドとの錯体等を挙げることができる。なお有機モリブデン化合物は、単核モリブデン化合物であってもよく、二核モリブデン化合物や三核モリブデン化合物等の多核モリブデン化合物であってもよい。構成元素として硫黄を含まない有機モリブデン化合物の例としては、モリブデン-アミン錯体、モリブデン-コハク酸イミド錯体、有機酸のモリブデン塩、アルコールのモリブデン塩などを挙げることができる。
  潤滑油組成物は油溶性有機モリブデン化合物を含有してもよく、含有しなくてもよい。潤滑油組成物が油溶性有機モリブデン化合物を含有する場合、その含有量は、組成物全量基準でモリブデン量として、好ましくは0質量%超~0.05質量%未満、又は0質量%超~0.03質量%未満、又は0質量%超~0.02質量%未満である。
 (A)成分以外の腐食防止剤としては、例えば、ベンゾトリアゾール系、トリルトリアゾール系、及びイミダゾール系化合物等の公知の腐食防止剤を用いることができる。潤滑油組成物が(A)成分以外の腐食防止剤を含有する場合、その含有量は、潤滑油組成物全量基準で、通常0.005~5質量%である。
 防錆剤としては、例えば石油スルホネート、アルキルベンゼンスルホネート、ジノニルナフタレンスルホネート、アルケニルコハク酸エステル、及び多価アルコールエステル等の公知の防錆剤を用いることができる。潤滑油組成物が防錆剤を含有する場合、その含有量は、潤滑油組成物全量基準で、通常0.005~5質量%である。
 (A)成分以外の金属不活性化剤としては、例えば、イミダゾリン、ピリミジン誘導体、メルカプトベンゾチアゾール、ベンゾトリアゾール及びその誘導体、2-(アルキルジチオ)ベンゾイミダゾール、並びにβ-(o-カルボキシベンジルチオ)プロピオンニトリル等の公知の金属不活性化剤を用いることができる。潤滑油組成物が(A)成分以外の金属不活性化剤を含有する場合、その含有量は、潤滑油組成物全量基準で、通常0.005~1質量%である。
 シール膨潤剤としては、潤滑油用のシール膨潤剤として通常用いられる化合物を特に制限なく採用可能であり、例えば、エステル系、硫黄系、芳香族系等のシール膨潤剤が挙げられる。例えば、エラストマー材料の膨潤を生じさせる、アルコール、アルキルベンゼン、置換スルホラン、鉱油等の公知のシール膨潤剤を用いることができる。
  アルコール系シール膨潤剤は、低揮発性の直鎖アルキルアルコールであり、その好ましい例としては、デシルアルコール、トリデシルアルコール、及びテトラデシルアルコールを挙げることができる。なお本明細書において、アルコール系シール膨潤剤が(E)成分にも該当する場合には、当該アルコール系シール膨潤剤の含有量は(E)成分の含有量としても寄与(カウント)するものとする。
  シール膨潤剤として用いることのできるアルキルベンゼンの例としては、ドデシルベンゼン、テトラデシルベンゼン、ジノニルベンゼン、ジ(2-エチルヘキシル)ベンゼン等を挙げることができる。
  シール膨潤剤として用いることのできる置換スルホランの例としては、下記一般式(15)で表される置換スルホラン化合物を挙げることができる。

一般式(15)中、R26は炭素数4以上の炭化水素基であり、好ましくは炭素数4~25、より好ましくは炭素数4~10のアルキル又はアルケニル基である。R27及びR28はそれぞれ水素原子または炭素数7以下の(好ましくは直鎖の)アルキル基であり、好ましくはR27及びR28の一方が水素原子、他方(好ましくはR28)が水素原子またはメチル基であり、より好ましくはR27及びR28の両方が水素原子である。Xは酸素原子または硫黄原子であり、好ましくは酸素原子である。
  シール膨潤剤として用いることのできる鉱油は典型的には、ナフテン分または芳香族分の含有量の高い低粘度鉱油である。
  潤滑油組成物はシール膨潤剤を含有してもよく、含有しなくてもよいが、潤滑油組成物がシール膨潤剤を含有する場合、その含有量は、組成物全量基準で、通常0.01~3.0質量%である。
 消泡剤としては、例えば、シリコーン、フルオロシリコーン、及びフルオロアルキルエーテル等の公知の消泡剤を用いることができる。潤滑油組成物が消泡剤を含有する場合、その含有量は、潤滑油組成物全量基準で、通常0.0005~1質量%である。
 抗乳化剤としては、例えばポリアルキレングリコール系非イオン系界面活性剤等の公知の抗乳化剤を用いることができる。潤滑油組成物が抗乳化剤を含有する場合、その含有量は、潤滑油組成物全量基準で、通常0.005~5質量%である。
 着色剤としては、例えばアゾ化合物等の公知の着色剤を用いることができる。
 <潤滑油組成物>
  潤滑油組成物の100℃における動粘度は、省エネルギー性を高める観点から6.2mm/s以下であり、また耐摩耗性、耐焼付き性、及び疲労寿命をさらに高める観点から好ましくは4.5mm/s以上、又は5.0mm/s以上、又は5.5mm/s以上であり、一の実施形態において4.5~6.2mm/s、又は5.0~6.2mm/s、又は5.5~6.2mm/sであり得る。
 潤滑油組成物の40℃における動粘度は、省エネルギー性をさらに高める観点から好ましくは35.0mm/s以下、又は32.5mm/s以下、又は30.0mm/s以下である。
 潤滑油組成物の粘度指数は、組成物の温度-粘度特性を向上させて、省エネルギー性と、耐摩耗性、耐焼付き性、及び疲労寿命とをさらに高める観点から、好ましくは155以上、又は156以上、又は157以上である。
 潤滑油組成物中の硫黄分の含有量は、耐摩耗性、並びに、湿式クラッチの伝達トルク容量および締結性能を高める観点から、組成物全量基準で0.050質量%以下、好ましくは0.048質量%以下、又は0.045質量%以下である。また潤滑油組成物中の硫黄分の含有量は、ギヤ潤滑性能(耐焼付き性および耐疲労性)をさらに高める観点から、組成物全量基準で好ましくは0.005質量%以上、又は0.010質量%以上、又は0.015質量%以上である。一の実施形態において、潤滑油組成物中の硫黄分の含有量は、0.005質量%~0.050質量%、又は0.010~0.048質量%、又は0.015~0.045質量%であり得る。
 潤滑油組成物中のリン分の含有量は、耐摩耗性および耐焼付き性をさらに高める観点から、組成物全量基準で好ましくは0.010質量%以上、又は0.025質量%以上、又は0.030質量%以上である。また潤滑油組成物中のリン分の含有量は、耐焼付き性、耐疲労性、及び酸化安定性をさらに高める観点、並びに湿式クラッチの伝達トルク容量をさらに高める観点から、組成物全量基準で好ましくは0.100質量%以下、又は0.085質量%以下、又は0.075質量%以下である。一の実施形態において、潤滑油組成物中のリン分の含有量は、組成物全量基準で0.010~0.100質量%、又は0.025~0.085質量%、又は0.030~0.75質量%であり得る。
 潤滑油組成物中の硫黄分MS(単位:質量%)の、潤滑油組成物中のリン分MP(単位:質量%)に対する比MS/MPは、耐摩耗性および耐焼付き性を高める観点から1.00以下、好ましくは0.95以下、又は0.90以下である。また比MS/MPは、耐焼付き性、耐疲労性、酸化安定性、及び湿式クラッチの伝達トルク容量をさらに高める観点から、好ましくは0.30以上、又は0.35以上、又は0.40以上である。一の実施形態において、比MS/MPは、0.30~0.100、又は0.35~0.95、又は0.40~0.90であり得る。
 潤滑油組成物中のホウ素分の含有量は、耐疲労性を高める観点から、組成物全量基準で0.030質量%未満、好ましくは0.029質量%以下である。また潤滑油組成物中のホウ素分の含有量は、耐摩耗性および耐焼付き性、並びに湿式クラッチの伝達トルク容量をさらに高める観点から、組成物全量基準で好ましくは0.010質量%以上である。一の実施形態において、潤滑油組成物中のホウ素分の含有量は、組成物全量基準で0.010質量%以上0.030質量%未満、又は0.010~0.029質量%であり得る。
 潤滑油組成物中のカルシウム分の含有量は、耐摩耗性、耐焼付き性、及び酸化安定性、並びに、湿式クラッチの伝達トルク容量および締結性能をさらに高める観点から、組成物全量基準でカルシウム分として好ましくは0.008質量%以上、又は0.009質量%以上である。また潤滑油組成物中のカルシウム分の含有量は、後述する組成物中のホウ素分(MB)とカルシウム分(MCa)との比MB/MCaを上限値以下にすることを容易にする観点から、組成物全量基準で好ましくは0.050質量%以下、又は0.045質量%以下、又は0.040質量%以下である。一の実施形態において、(C)成分の含有量は、組成物全量基準でカルシウム分として0.008~0.050質量%、又は0.008~0.045質量%、又は0.009~0.040質量%であり得る。
 潤滑油組成物中のホウ素分MB(単位:質量%)の、潤滑油組成物中のカルシウム分MCa(単位:質量%)に対する比MB/MCaは、耐摩耗性および耐焼付き性、並びに湿式クラッチの伝達トルク容量を高める観点から0.800以上、好ましくは0.805以上、又は0.810以上である。また比MB/MCaは、耐摩耗性、耐焼付き性、耐疲労性、及び酸化安定性、並びに湿式クラッチの伝達トルク容量および締結性能を高める観点から1.200以下、好ましくは1.170以下、又は1.160以下である。一の実施形態において、比MB/MCaは、0.800~1.200、又は0.805~1.170、又は0.810~1.160であり得る。
 耐久ステージにおける耐摩耗性、耐焼付き性、及び疲労寿命をさらに高める観点からは、JPI-5S-29-88に準拠した潤滑油せん断安定度試験により、前記潤滑油組成物に周波数10kHz、振動子の振れ幅28μmの超音波を10時間照射した後の組成物の100℃における動粘度は、好ましくは5.5mm/s以上である。
 (用途)
  本発明の潤滑油組成物は、湿式クラッチを備える変速機(例えば自動変速機、無段変速機等。)の潤滑に好ましく用いることができ、例えば自動車に搭載されるこれらの変速機の潤滑に好ましく用いることができる。
 以下、実施例及び比較例に基づき、本発明についてさらに具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。
 <実施例1~12及び比較例1~8>
  表1~4に示されるように、本発明の潤滑油組成物(実施例1~12)、及び比較用の潤滑油組成物(比較例1~8)をそれぞれ調製した。表中、「基油組成」の項目において「質量%」は基油全量を基準(100質量%)とする質量%を意味し、その他の項目において「質量%」は潤滑油組成物の全量を基準(100質量%)とする質量%を意味する。また「質量ppm」は潤滑油組成物の全量を基準とする質量ppmを意味し、元素Xについて「質量ppm/X」という表記は元素Xの量としての組成物全量基準での質量ppmを意味する。各成分の詳細は次の通りである。
 (潤滑油基油)
  O-1:APIグループIII基油、動粘度(100℃):3.883mm/s、動粘度(40℃):15.65mm/s、粘度指数:142、硫黄分:4質量ppm、%C:92.5、%C:7.5、%C:0
  O-2:APIグループIII基油、動粘度(100℃):6.208mm/s、動粘度(40℃):33.97mm/s、粘度指数:133、硫黄分:10質量ppm未満、%C:80.6、%C:19.4、%C:0
  O-3:APIグループII基油、動粘度(100℃):3.12mm/s、動粘度(40℃):12.43mm/s、粘度指数:112、硫黄分:10質量ppm未満、%C:75.1、%C:24.9、%C:0
  O-4:APIグループIV基油(Exxon Mobil Chemical社製SpectraSyn(登録商標)6)、動粘度(100℃):5.8mm/s、動粘度(40℃):31mm/s、粘度指数:138、流動点:-57℃、引火点:246℃
  O-5:APIグループIV基油(Exxon Mobil Chemical社製SpectraSyn(登録商標)4)、動粘度(100℃):4.1mm/s、動粘度(40℃):19mm/s、粘度指数:126、流動点:-66℃、引火点220℃
 ((A)硫黄系化合物)
  A-1:チアジアゾール化合物(一般式(1)においてa=b=2、R=R=ノニル基)、硫黄含有量35.0質量%
  A-2:硫化オレフィン/硫化油脂混合物、硫黄含有量30.5質量%
 ((B)リン系化合物)
  B-1:ジフェニルハイドロジェンホスファイト(一般式(4)においてR=R=フェニル基である亜リン酸ジエステル;タウトマーを包含する)、リン含有量13.2質量%
  B-2:ジチオリン酸エステル、リン含有量9.0質量%、硫黄含有量19.4質量%
 ((C)カルシウム系清浄剤)
  C-1:硫化カルシウムフェネート清浄剤、塩基価255mgKOH/g、Ca含有量0.25質量%、硫黄含有量3.5質量%
 ((D)コハク酸イミド分散剤)
  D-1:ホウ素含有コハク酸イミド無灰分散剤、窒素含有量1.48質量%、ホウ素含有量1.30質量%
  D-2:非ホウ素変性コハク酸イミド無灰分散剤、窒素含有量1.44質量%
 ((E)油性剤系摩擦調整剤)
  E-1:脂肪酸アミド摩擦調整剤、イソステアリン酸とテトラエチレンペンタミンとの縮合反応生成物、窒素含有量6.20質量%、全塩基価(過塩素酸法)81.0mgKOH/g
  E-2:脂肪族アミン摩擦調整剤、オレイルジエタノールアミン(一般式(14)においてR25=オレイル基、i=j=2)
 (F)ポリ(メタ)アクリレート:分散型ポリ(メタ)アクリレート、重量平均分子量:40,000
 (G)酸化防止剤:アミン系酸化防止剤、ジフェニルアミン
 他の性能添加剤:シール膨潤剤、消泡剤(ジメチルシリコーン、動粘度(25℃):160,000mm/s)
 (高速四球試験)
 潤滑油組成物のそれぞれについて、JPI-5S-40-93に準拠した高速四球試験により、回転数1800rpmで最終非焼付荷重(LNSL)を測定した。結果を表1~4に示している。本試験で測定されたLNSLの値が高いほど、耐焼付き性が良好であることを意味する。
  潤滑油組成物のそれぞれについて、JPI-5S-40-93に準拠した高速四球試験により、潤滑油組成物の耐摩耗性を評価した。回転数1200rpm、荷重392N、油温80℃で30分運転した後の摩耗痕径を測定した。結果を表1~4に示している。本試験で測定された摩耗痕径が小さいほど、耐摩耗性が良好であることを意味する。
 (FALEX焼付き試験)
  潤滑油組成物のそれぞれについて、ASTM D3233 A法に準拠したFALEX焼付き試験により、耐焼付き性を評価した。油温110℃の条件下、2個の静止した鋼製のVブロックで挟まれた鋼製のピンを290rpmで回転させ、焼付きが生じた荷重(焼付き荷重)を測定した。結果を表1~4に示している。本試験で測定された焼付き荷重の値が高いほど、耐焼き付き性が良好であることを意味する。
 (ユニスチール試験)
  潤滑油組成物のそれぞれについて、ユニスチール転がり疲労試験機(3連式高温転がり疲れ試験機(TRF-1000/3-01H)、株式会社東京試験機製)を用いて、ユニスチール試験(イギリス石油学会法:IP305/79)によりスラストベアリングの転がり疲労寿命を測定した。スラストニードルベアリング(NSK製FNTA-2542C)の片側の軌道輪を平坦な試験片(材質:SUJ2)で置き換えてなる試験軸受について、荷重7000N、面圧2GPa、回転数1450rpm、油温120℃の条件下で、ころ又は試験片のいずれかが疲労損傷するまでの時間を測定した。なお、ユニスチール転がり疲労試験機に備えられた振動加速度計により測定される試験部の振動加速度が1.5m/sに達したとき、疲労損傷が発生したと判断した。10回の繰り返し試験における疲労損傷までの時間から、ワイブルプロットにより疲労寿命を50%寿命(L50:累積確率が50%になる時間)として算出した。結果を表1~4に示している。本試験で測定された50%寿命が長いほど、耐疲労性が良好であることを意味する。
 (ISOT酸化安定性試験)
  潤滑油組成物のそれぞれについて、JIS K2514に準拠したISOT試験により酸化安定性を評価した。油温165℃で144時間試験を行い、試験後の酸価の増加(mgKOH/g)を測定した。結果を表1~4に示している。試験後の酸価の増加が少ないほど、酸化安定性が良好であることを意味する。
 (SAE No.2摩擦試験:変速ショック指数の評価)
  潤滑油組成物のそれぞれについて、SAE No.2試験機(神鋼造機製)を用い、JASO M348:2002に準拠して動摩擦試験を行った。10000サイクル後のフリクションプレート(NW461E材)とスチールプレートとの間の静摩擦係数μ及び動摩擦係数μを測定した。結果を表1~4に示している。静摩擦係数μが高いほど、湿式クラッチの伝達トルク容量が大きいことを意味する。また動摩擦係数μが高いほど、湿式クラッチの締結性能が高いことを意味する。
 (評価結果)
  実施例1~12の潤滑油組成物は、せん断安定性、耐焼付き性、耐摩耗性、耐疲労性、及び酸化安定性、並びに湿式クラッチの伝達トルク容量および締結性能のいずれにおいても良好な結果を示した。
 組成物中の硫黄分が過大であるとともに、組成物中の硫黄分MSとリン分MPとの比MS/MPが過大であった比較例1の組成物は、耐摩耗性、及び、湿式クラッチの伝達トルク容量および締結性能において劣った結果を示した。
  (A)成分(チアジアゾール化合物)に代えて、チアジアゾール化合物ではない硫黄系添加剤(硫化オレフィン/硫化油脂混合物)を含有する比較例2の組成物は、耐摩耗性、耐疲労性、及び酸化安定性、並びに湿式クラッチの伝達トルク容量および締結性能においいて劣った結果を示した。
  組成物中の硫黄分MSとリン分MPとの比MS/MPが過大であった比較例3の組成物は、耐摩耗性および耐焼付き性において劣った結果を示した。
  (B)成分(硫黄非含有リン化合物)に代えて硫黄含有リン化合物(ジチオリン酸エステル)を含有し、組成物中の硫黄分が過大であり、かつ組成物中の硫黄分MSとリン分MPとの比MS/MPが過大であった比較例4の組成物は、耐摩耗性、耐疲労性、及び酸化安定性、並びに湿式クラッチの伝達トルク容量および締結性能において劣った結果を示した。
  (D)成分がホウ素含有コハク酸イミド分散剤を含有せず、組成物中のホウ素分MBとカルシウム分MCaとの比MB/MCaが過小であった比較例5の組成物は、耐摩耗性および耐焼付き性、並びに湿式クラッチの伝達トルク容量において劣った結果を示した。
  組成物中のホウ素分MBとカルシウム分MCaとの比MB/MCaが過大であった比較例6の組成物は、耐摩耗性、耐焼付き性、及び酸化安定性、並びに湿式クラッチの伝達トルク容量および締結性能において劣った結果を示した。
  組成物中のホウ素分MBとカルシウム分MCaとの比MB/MCaが過大であった比較例7の組成物は、耐疲労性において劣った結果を示した。

Claims (13)

  1.  1種以上の鉱油系基油、若しくは1種以上の合成系基油、又はそれらの組み合わせを含んでなる潤滑油基油と、
     (A)1種以上のチアジアゾール化合物と、
     (B)1種以上の硫黄非含有リン化合物と、
     (C)1種以上のカルシウムフェネート清浄剤を含む、1種以上のカルシウム系清浄剤と、
     (D)1種以上のホウ素含有コハク酸イミド分散剤を含む、1種以上のコハク酸イミド分散剤と、
     (E)1種以上の油性剤系摩擦調整剤と、
    を含有し、
     組成物中の硫黄分の含有量が、組成物全量基準で0.050質量%以下であり、
     組成物中のホウ素分の含有量が、組成物全量基準で0.030質量%未満であり、
     組成物の100℃における動粘度が6.2mm/s以下であり、
     組成物中の硫黄分の含有量MS(単位:質量%)の、組成物中のリン分の含有量MP(単位:質量%)に対する比MS/MPが、1.00以下であり、
     組成物中のホウ素分の含有量MB(単位:質量%)の、組成物中のカルシウム分の含有量MCa(単位:質量%)に対する比MB/MCaが、0.80~1.20であることを特徴とする、潤滑油組成物。
  2.  前記(A)成分の含有量が、組成物全量基準で硫黄分として0.010~0.050質量%である、請求項1に記載の潤滑油組成物。
  3.  前記(B)成分の含有量が、組成物全量基準でリン分として0.010~0.100質量%である、請求項1又2に記載の潤滑油組成物。
  4.  組成物中のホウ素分の含有量MBが、組成物全量基準で0.010質量%以上0.030質量%未満である、請求項1又は2に記載の潤滑油組成物。
  5.  前記(C)成分の含有量が、組成物全量基準でカルシウム分として0.008~0.040質量%である、請求項1又は2に記載の潤滑油組成物。
  6.  前記(D)成分の含有量が、組成物全量基準でホウ素分として0.010質量%以上0.030質量%未満である、請求項1又は2に記載の潤滑油組成物。
  7.  前記(E)成分が、(E1)1つ以上の炭素数8~30の脂肪族ヒドロカルビル基及び/又は1つ以上の炭素数8~30の脂肪族ヒドロカルビルカルボニル基と、1つ以上のアミド結合及び/又は1つ以上のイミド結合とを1分子中に有し、前記脂肪族ヒドロカルビルカルボニル基は前記アミド結合及び/又はイミド結合の一部を構成していてもよい、1種以上のN-アシル化窒素含有化合物を、組成物全量基準で0.10~3.00質量%含有する、請求項1又は2に記載の潤滑油組成物。
  8.  (F)重量平均分子量10,000~100,000の1種以上のポリ(メタ)アクリレートをさらに含有する、請求項1又は2に記載の潤滑油組成物。
  9.  (G)1種以上のアミン系酸化防止剤、及び/又は、1種以上のフェノール系酸化防止剤を、組成物全量基準で0.01~1.00質量%含有する、請求項1又は2に記載の潤滑油組成物。
  10.  前記潤滑油基油の、100℃における動粘度が4.2mm/s以上、粘度指数が120以上である、請求項1又は2に記載の潤滑油組成物。
  11.  前記潤滑油組成物の粘度指数が155以上である、請求項1又は2に記載の潤滑油組成物。
  12.  JPI-5S-29-88に準拠した潤滑油せん断安定度試験により、前記潤滑油組成物に周波数10kHz、振動子の振れ幅28μmの超音波を10時間照射した後の組成物の100℃における動粘度が5.5mm/s以上である、請求項1又は2に記載の潤滑油組成物。
  13.  湿式クラッチを備える変速機の潤滑に用いられる、請求項1又は2に記載の潤滑油組成物。
PCT/JP2023/011484 2022-04-26 2023-03-23 潤滑油組成物 WO2023210218A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-072235 2022-04-26
JP2022072235A JP2023161722A (ja) 2022-04-26 2022-04-26 潤滑油組成物

Publications (1)

Publication Number Publication Date
WO2023210218A1 true WO2023210218A1 (ja) 2023-11-02

Family

ID=88518675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011484 WO2023210218A1 (ja) 2022-04-26 2023-03-23 潤滑油組成物

Country Status (2)

Country Link
JP (1) JP2023161722A (ja)
WO (1) WO2023210218A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105892A (ja) * 1991-10-16 1993-04-27 Tonen Corp 自動変速機用潤滑油組成物
JPH06240275A (ja) * 1993-02-19 1994-08-30 Tonen Corp 自動変速機用潤滑油組成物
JPH1192779A (ja) * 1997-09-22 1999-04-06 Showa Shell Sekiyu Kk 潤滑油組成物
JP2003073683A (ja) * 2001-08-30 2003-03-12 Nippon Oil Corp 自動変速機用潤滑油組成物
WO2014142231A1 (ja) * 2013-03-15 2014-09-18 出光興産株式会社 潤滑油組成物
JP2018070700A (ja) * 2016-10-26 2018-05-10 Jxtgエネルギー株式会社 自動変速機用潤滑油組成物
JP2018177986A (ja) * 2017-04-13 2018-11-15 Jxtgエネルギー株式会社 潤滑油組成物
JP2020164588A (ja) * 2019-03-28 2020-10-08 Eneos株式会社 潤滑油組成物
JP2021006617A (ja) * 2019-06-27 2021-01-21 Eneos株式会社 無段変速機用潤滑油組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105892A (ja) * 1991-10-16 1993-04-27 Tonen Corp 自動変速機用潤滑油組成物
JPH06240275A (ja) * 1993-02-19 1994-08-30 Tonen Corp 自動変速機用潤滑油組成物
JPH1192779A (ja) * 1997-09-22 1999-04-06 Showa Shell Sekiyu Kk 潤滑油組成物
JP2003073683A (ja) * 2001-08-30 2003-03-12 Nippon Oil Corp 自動変速機用潤滑油組成物
WO2014142231A1 (ja) * 2013-03-15 2014-09-18 出光興産株式会社 潤滑油組成物
JP2018070700A (ja) * 2016-10-26 2018-05-10 Jxtgエネルギー株式会社 自動変速機用潤滑油組成物
JP2018177986A (ja) * 2017-04-13 2018-11-15 Jxtgエネルギー株式会社 潤滑油組成物
JP2020164588A (ja) * 2019-03-28 2020-10-08 Eneos株式会社 潤滑油組成物
JP2021006617A (ja) * 2019-06-27 2021-01-21 Eneos株式会社 無段変速機用潤滑油組成物

Also Published As

Publication number Publication date
JP2023161722A (ja) 2023-11-08

Similar Documents

Publication Publication Date Title
JP7324732B2 (ja) 潤滑油組成物
KR101728191B1 (ko) 크로스헤드형 디젤 기관용 실린더 윤활유 조성물
JP4511154B2 (ja) エンジン油用潤滑油組成物
JP5580051B2 (ja) クロスヘッド型ディーゼル機関用シリンダー潤滑油組成物
JP6718349B2 (ja) 無段変速機用潤滑油組成物
EP3746529A1 (en) Lubricant composition
JP2021006617A (ja) 無段変速機用潤滑油組成物
JP5075449B2 (ja) 銀含有材料と接触する潤滑油組成物
JP2005263861A (ja) 潤滑油組成物
JP6807288B2 (ja) 手動変速機用潤滑油組成物
JP2018070700A (ja) 自動変速機用潤滑油組成物
JP7475256B2 (ja) 潤滑油組成物
JPWO2009004893A1 (ja) 潤滑油添加剤および潤滑油組成物
JP7563935B2 (ja) 潤滑油組成物
JP2013199595A (ja) 内燃機関用潤滑油組成物
JP5945488B2 (ja) ギヤ油組成物
JP5294933B2 (ja) 舶用シリンダー潤滑油組成物
WO2023210218A1 (ja) 潤滑油組成物
JP5483330B2 (ja) クロスヘッド型ディーゼル機関用システム潤滑油組成物
WO2020213644A1 (ja) 変速機用潤滑油組成物
JP7085469B2 (ja) トランクピストン型ディーゼル機関用潤滑油組成物
JPWO2013046755A1 (ja) クロスヘッド型ディーゼル機関用シリンダー潤滑油組成物
JP2005281613A (ja) クロスヘッド型ディーゼル機関用シリンダー潤滑油組成物
JP7446807B2 (ja) ギヤ油組成物
JP5373568B2 (ja) ボールねじ用潤滑油組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795965

Country of ref document: EP

Kind code of ref document: A1