WO2023207775A1 - 转子组件、永磁电机和压缩机 - Google Patents

转子组件、永磁电机和压缩机 Download PDF

Info

Publication number
WO2023207775A1
WO2023207775A1 PCT/CN2023/089698 CN2023089698W WO2023207775A1 WO 2023207775 A1 WO2023207775 A1 WO 2023207775A1 CN 2023089698 W CN2023089698 W CN 2023089698W WO 2023207775 A1 WO2023207775 A1 WO 2023207775A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
diffusion part
rotor assembly
heavy metal
diffusion
Prior art date
Application number
PCT/CN2023/089698
Other languages
English (en)
French (fr)
Inventor
李宏涛
邱小华
于岚
Original Assignee
安徽美芝精密制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽美芝精密制造有限公司 filed Critical 安徽美芝精密制造有限公司
Priority to JP2023557803A priority Critical patent/JP2024518238A/ja
Publication of WO2023207775A1 publication Critical patent/WO2023207775A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present application relates to the technical field of compressors, specifically to a rotor assembly, a permanent magnet motor and a compressor.
  • variable frequency motors generally use permanent magnet motors.
  • the excitation method of the permanent magnet motor rotor is excitation by permanent magnets.
  • This application aims to solve at least one of the technical problems existing in the prior art.
  • a first aspect of this application proposes a rotor assembly.
  • the second aspect of this application proposes a permanent magnet motor.
  • a third aspect of this application proposes a compressor.
  • the first aspect of this application proposes a rotor assembly.
  • the rotor assembly includes: a rotor core including a through hole; a permanent magnet located in the through hole; the permanent magnet includes: a non-diffusion part; a diffusion part, a diffusion part and at least part of the non-diffused portion are arranged side by side in a first direction that is perpendicular to the rotation axis of the rotor core; wherein the mass proportion of heavy metal elements in the diffused part is greater than the mass proportion of heavy metal elements in the non-diffused part.
  • the rotor assembly includes multiple groups of permanent magnets; two permanent magnets form one group, and the two permanent magnets in the same group are symmetrically arranged on both sides of the first plane.
  • the diameters are all in the first plane.
  • the two permanent magnets in the same group are distributed in a V-shape.
  • the diffusion part includes: a first diffusion part, which is provided at an end of the non-diffusion part away from the first plane.
  • the mass proportion of the heavy metal elements in the first diffusion part ranges from greater than or equal to 0.6 to less than or equal to 0.8.
  • the permanent magnet is cut through a plane perpendicular to the rotor core; on the cross section, the area of the first diffusion part is S1, and the area of the permanent magnet is S3; the ratio of S1 to S3 is greater than or equal to 0.1, and Less than or equal to 0.4.
  • the diffusion part further includes: a second diffusion part provided at one end of the non-diffusion part adjacent to the first plane.
  • the mass proportion of the heavy metal element in the second diffusion part is greater than the mass proportion of the heavy metal element in the first diffusion part.
  • the mass proportion of the heavy metal elements in the second diffusion part ranges from greater than or equal to 0.4 to less than or equal to 0.75.
  • the permanent magnet is cut through a plane perpendicular to the rotor core; on the cross section, the area of the second diffusion part is S2, and the area of the permanent magnet is S3; the ratio of S2 to S3 is greater than or equal to 0.1, and Less than or equal to 0.4.
  • the permanent magnets are radially magnetized, or the permanent magnets are magnetized in parallel.
  • the heavy metal elements are evenly distributed in the magnetization direction of the permanent magnet.
  • the second aspect of this application proposes a permanent magnet motor.
  • the permanent magnet motor includes: a rotor assembly as in any of the above technical solutions.
  • the third aspect of this application proposes a compressor.
  • the compressor includes: a permanent magnet motor as in the above technical solution.
  • the rotor assembly defined in this application solves the technical problem existing in the related art that the permanent magnet motor has weak resistance to demagnetization and is prone to irreversible demagnetization.
  • this structure can improve the anti-demagnetization ability of the rotor assembly without increasing the volume of the permanent magnet, thus taking into account the high power density and low cost requirements of the permanent magnet motor. This will achieve the technical effects of optimizing the structure of the rotor component, improving the reliability of the rotor component, extending the service life of the rotor component, and reducing the product failure rate.
  • Figure 1 shows one of the structural schematic diagrams of a rotor assembly according to an embodiment of the present application
  • Figure 2 shows the second structural schematic diagram of the rotor assembly according to an embodiment of the present application
  • Figure 3 shows the third structural schematic diagram of the rotor assembly according to an embodiment of the present application.
  • the rotor assembly 100 includes: a rotor core 110 including a through hole; a permanent magnet 120 located in the through hole,
  • the permanent magnet 120 includes: a non-diffusion part 122; a diffusion part 124.
  • the diffusion part 124 and at least part of the non-diffusion part 122 are arranged side by side in a first direction (directions A and B in Figure 3 show the first direction, specifically A is The thickness direction of the permanent magnet (B is the width direction of the permanent magnet), the first direction is perpendicular to the rotation axis of the rotor core 110; wherein, the mass proportion of the heavy metal elements in the diffusion part 124 is greater than that of the heavy metal elements in the non-diffusion part 122 Quality ratio.
  • rotor assembly 100 which is applied to a permanent magnet motor.
  • rotor assembly 100 includes rotor core 110 and permanent magnets 120 .
  • the rotor core 110 is formed by laminating multiple rotor punching sheets. Each rotor punching sheet is provided with an opening at a corresponding position. The openings of the multiple rotor punching sheets are aligned and superimposed to form the rotor core 110 A through hole axially penetrating the rotor core 110 is formed on the rotor core 110 .
  • the permanent magnet 120 is inserted into the through hole, and the shape of the through hole matches the outer contour shape of the permanent magnet 120 , where the permanent magnet 120 is used to provide excitation.
  • the permanent magnet 120 is divided into a non-diffused part 122 and a diffused part 124 by adjusting the heavy metal element content in the local area of the permanent magnet 120 .
  • the diffusion part 124 and at least part of the non-diffusion part 122 are arranged side by side in the first direction.
  • the first direction is perpendicular to the axis direction of the rotor core 110 , that is, by cutting the permanent magnet 120 on a plane perpendicular to the rotor core 110 , the diffused portion 124 and the non-diffused portion 122 arranged side by side can be obtained simultaneously on the cross section.
  • the ratio of the mass of the heavy metal element in the diffusion part 124 to the overall mass of the diffusion part 124 is the mass proportion g1 of the metal element in the diffusion part 124 .
  • the ratio of the mass of the heavy metal element in the non-diffusion part 122 to the entire mass of the non-diffusion part 122 is the mass ratio g2 of the metal element in the non-diffusion part 122, where g2 is greater than g1.
  • the mass proportion of heavy metal elements in the diffused portion 124 By limiting the mass proportion of heavy metal elements in the diffused portion 124 to be greater than the mass proportion of heavy metal elements in the non-diffused portion 122, it can be ensured that the coercive force of the diffused portions 124 arranged side by side in the first direction is greater than the coercive force of the non-diffused portion 122. Therefore, a diffusion area with strong anti-demagnetization capability is formed in a part of the permanent magnet 120 , thereby improving the local anti-demagnetization capability of the permanent magnet 120 through the diffusion area, thereby improving the overall anti-demagnetization capability of the rotor assembly 100 . This is to reduce the possibility of irreversible demagnetization of the rotor assembly 100, ensure that the permanent magnet motor and related products can operate reliably over a long period of time, and extend the service life of the products.
  • the rotor assembly 100 defined in the present application solves the technical problem existing in the related art that the permanent magnet motor has weak resistance to demagnetization and is prone to irreversible demagnetization.
  • this structure can improve the anti-demagnetization capability of the rotor assembly 100 without increasing the volume of the permanent magnet 120, thus taking into account the high power density and low cost requirements of the permanent magnet motor. This achieves the technical effects of optimizing the structure of the rotor assembly 100, improving the reliability of the rotor assembly 100, extending the service life of the rotor assembly 100, and reducing the product failure rate.
  • the rotor assembly 100 includes multiple groups of permanent magnets 120; two permanent magnets 120 are one group, and the two permanent magnets 120 in the same group are in Both sides of the first plane are arranged symmetrically, and the rotation axis of the rotor core 110 and the diameter of the rotor core 110 are both within the first plane.
  • each rotor assembly 100 is provided with multiple sets of permanent magnets 120 , and the multiple sets of permanent magnets 120 are arranged around the axis of the rotor core 110 .
  • Each group of permanent magnets 120 includes two permanent magnets 120 , and the two permanent magnets 120 are symmetrically arranged on both sides of the first plane.
  • the axis of the rotor core 110 and the diameter of the rotor core 110 are both in the first plane.
  • the rotor core 110 and the permanent magnet 120 are cut through a plane perpendicular to the axis of the rotor core 110. In this section, the rotor core 110 is The diameter of 110 is the first plane.
  • the resistance to demagnetization of the rotor assembly 100 can be enhanced, thereby further reducing the possibility of irreversible demagnetization of the rotor assembly 100.
  • multiple areas with strong resistance to demagnetization can also be formed on the circumferential side of the rotating shaft of the rotor core 110 , in order to improve the overall anti-demagnetization capability of the rotor core 110. This achieves the technical effect of improving the reliability of the rotor assembly 100 and extending the service life of the rotor assembly 100 .
  • the two permanent magnets 120 in the same group are distributed in a V-shape.
  • each group of permanent magnets 120 two permanent magnets 120 are distributed in a V-shape on both sides of the first plane.
  • the permanent magnets 120 are cut through a plane perpendicular to the axis of the rotor core 110 .
  • the openings of the two permanent magnets 120 distributed in a V shape can be oriented toward the axis of the rotor core 110 or toward the outside of the rotor core 110 , which is not strictly limited in this embodiment.
  • a hybrid magnetic circuit structure can be formed in the rotor assembly 100 .
  • the hybrid magnetic circuit structure can improve the steady-state performance and dynamic performance of the rotor assembly 100 and help improve the power density and overload capability of the permanent magnet motor, and the hybrid magnetic circuit is conducive to realizing field weakening speed expansion.
  • the diffusion part 124 includes: a first diffusion part 1242, which is provided at an end of the non-diffusion part 122 away from the first plane.
  • diffuser 124 includes first diffuser 1242 .
  • the first diffusion part 1242 is located at an end of the non-diffusion part 122 away from the first plane, and the first diffusion part 1242 and part of the non-diffusion part 122 are arranged side by side in the first direction.
  • two anti-demagnetization areas can be formed at the left and right ends of the two permanent magnets 120 distributed in a V-shape.
  • the mass proportion of heavy metal elements in the first diffusion part 1242 is greater than the mass proportion of heavy metal elements in the non-diffusion part 122 . Therefore, the coercive force of the left and right anti-demagnetization regions is greater than the coercive force of the middle non-diffusion region.
  • the intensity of the coercive magnetic field that the first diffusion part 1242 can withstand is greater than the intensity of the coercive magnetic field that the non-diffusion part 122 can withstand, thereby maintaining its own magnetic induction intensity when the non-diffusion part 122 faces the risk of demagnetization.
  • the non-diffusion portion 122 is prevented from irreversibly demagnetizing.
  • the mass proportion of the heavy metal elements in the first diffusion part 1242 ranges from greater than or equal to 0.6 to less than or equal to 0.8.
  • the range of the mass proportion of heavy metal elements in the first diffusion part 1242 is limited.
  • the mass proportion of heavy metal elements in the first diffusion part 1242 needs to be greater than or equal to 0.6 and less than or equal to 0.8.
  • the mass proportion of heavy metal elements in the first diffusion part 1242 needs to be greater than 0.6, it is ensured that the first diffusion part 1242 has a greater coercive force than the non-diffusion part 122 , thereby ensuring that the first diffusion part 1242 can improve the demagnetization resistance of the entire permanent magnet 120 ability.
  • the production cost of the permanent magnet 120 can be reduced while ensuring that the first diffusion part 1242 has strong resistance to demagnetization, thereby meeting the low cost of the permanent magnet motor. demand, thereby enhancing the market competitiveness of the product.
  • the permanent magnet 120 is cut through a plane perpendicular to the rotor core 110; on the cross section, the area of the first diffusion portion 1242 is S1, and the area of the permanent magnet 120 is S3; the ratio of S1 to S3 is greater than Equal to 0.1 and less than or equal to 0.4.
  • the size relationship between the first diffusion part 1242 and the non-diffusion part 122 is limited.
  • the permanent magnet 120 extends in the through hole parallel to the axis of the rotor core 110.
  • the cross-section area of the first diffusion part 1242 is S1
  • the cross-section area of the permanent magnet 120 is S3.
  • the thickness of the permanent magnet 120 is W
  • the width of the permanent magnet 120 is L
  • the product of W and L is S3
  • the ratio of S1 to S3 needs to be greater than or equal to 0.1 and less than or equal to 0.4.
  • the relationship between the cross-sectional area of the first diffusion part 1242 and the cross-sectional area of the permanent magnet 120 may reflect the first diffusion part
  • the relative size relationship between 1242 and the non-diffused portion 122 By limiting the ratio of S1 to S3 to be greater than or equal to 0.1, it is possible to avoid the situation where the first diffusion part 1242 is too small to provide effective anti-demagnetization support for the non-diffusion part 122 , thereby ensuring the overall anti-demagnetization capability of the permanent magnet 120 .
  • the amount of heavy metal elements can be reduced while ensuring the anti-demagnetization ability of the permanent magnet 120, thereby reducing the cost of the permanent magnet 120 to take into account the anti-demagnetization and low-cost requirements of the permanent magnet motor. .
  • This will achieve the technical effects of optimizing the structural layout of the permanent magnet 120, improving the reliability of the permanent magnet 120, extending the life of the permanent magnet 120, and enhancing the market competitiveness of the product.
  • two permanent magnets 120 in the same group are arranged at intervals.
  • the two permanent magnets 120 in the same group are symmetrically distributed in a V-shape on both sides of the first plane, there is a gap between the two permanent magnets 120 .
  • arranging two permanent magnets 120 in the same group at intervals can form multiple independent magnetic circuits in the permanent magnets 120 to optimize the magnetic circuit distribution in the rotor assembly 100 .
  • the gap between the two permanent magnets 120 can act as a magnetic isolation to prevent adjacent permanent magnets 120 from interfering with each other, thereby improving the stability of the rotor assembly 100 .
  • the diffusion part 124 further includes: a second diffusion part 1244 provided at one end of the non-diffusion part 122 adjacent to the first plane.
  • diffuser 124 includes second diffuser 1244 .
  • the second diffusion part 1244 is located at one end of the non-diffusion part 122 adjacent to the first plane, and the second diffusion part 1244 and part of the non-diffusion part 122 are arranged side by side in the first direction.
  • two anti-demagnetization areas can be formed in the central area of the two permanent magnets 120 distributed in a V shape, so that the non-diffusion part 122 is arranged between the first diffusion part 1242 and the second diffusion part 1244. time, thereby enhancing the anti-demagnetization ability of the permanent magnet 120.
  • the mass proportion of the heavy metal element in the second diffusion part 1244 is greater than the mass proportion of the heavy metal element in the non-diffusion part 122 . Therefore, the coercive force of the two anti-demagnetization areas in the middle is greater than the coercive force of the non-diffusion areas on both sides.
  • the magnetic induction intensity will not return to zero. Only by adding a magnetic field of a certain size in the opposite direction of the original magnetization field can the magnetic induction intensity return to zero. This magnetic field becomes coercive. force.
  • the intensity of the coercive magnetic field that the second diffusion part 1244 can withstand is greater than the intensity of the coercive magnetic field that the non-diffusion part 122 can withstand, thereby maintaining its own magnetic induction intensity when the non-diffusion part 122 faces the risk of demagnetization, and thus maintains its own magnetic induction intensity.
  • the non-diffusion portion 122 is prevented from irreversibly demagnetizing. In order to achieve the technical effects of improving the anti-demagnetization ability of the permanent magnet 120, extending the service life of the rotor assembly 100, and improving the reliability of the rotor assembly 100.
  • the mass proportion of the heavy metal element in the second diffusion part 1244 is greater than the mass proportion of the heavy metal element in the first diffusion part 1242 .
  • the mass proportion of the heavy metal element in the second diffusion part 1244 is greater than the mass proportion of the heavy metal element in the first diffusion part 1242 , that is, the coercive force of the second diffusion part 1244 is greater than that of the first diffusion part 1242 coercive force.
  • the mass proportion of the heavy metal elements in the second diffusion part 1244 ranges from greater than or equal to 0.4 to less than or equal to 0.75.
  • the range of the mass proportion of the heavy metal elements in the second diffusion part 1244 is limited.
  • the mass proportion of heavy metal elements in the second diffusion part 1244 needs to be greater than or equal to 0.4 and less than or equal to 0.75.
  • the production cost of the permanent magnet 120 can be reduced while ensuring that the second diffusion part 1244 has strong resistance to demagnetization, thereby meeting the low cost of the permanent magnet motor. demand, thereby enhancing the market competitiveness of the product.
  • the permanent magnet 120 is cut through a plane perpendicular to the rotor core 110; on the cross section, the area of the second diffusion portion 1244 is S2, and the area of the permanent magnet 120 is S3; the ratio of S2 to S3 is greater than Equal to 0.1 and less than or equal to 0.4.
  • the size relationship between the second diffusion part 1244 and the non-diffusion part 122 is limited.
  • the permanent magnet 120 extends in the through hole parallel to the axis of the rotor core 110.
  • the cross-section area of the second diffusion part 1244 is S2
  • the cross-section area of the permanent magnet 120 is S3, where, as shown in FIG. 2,
  • the thickness of the permanent magnet 120 is W
  • the width of the permanent magnet 120 is L.
  • the product of W and L is S3.
  • the ratio of S2 to S3 needs to be greater than or equal to 0.1 and less than or equal to 0.4.
  • the relationship between the cross-sectional area of the second diffusion part 1244 and the cross-sectional area of the permanent magnet 120 may reflect the second diffusion part 1244 and the relative size relationship between the non-diffusion portion 122 .
  • the amount of heavy metal elements can be reduced while ensuring the anti-demagnetization ability of the permanent magnet 120, thereby reducing the cost of the permanent magnet 120 to take into account the anti-demagnetization and low-cost requirements of the permanent magnet motor. .
  • This will achieve the technical effects of optimizing the structural layout of the permanent magnet 120, improving the reliability of the permanent magnet 120, extending the life of the permanent magnet 120, and enhancing the market competitiveness of the product.
  • the permanent magnet 120 is magnetized radially, or the permanent magnet 120 is magnetized parallel.
  • the magnetization direction of the permanent magnet 120 may be radial magnetization or parallel magnetization. In this regard, it is sufficient to keep the magnetization directions of the plurality of permanent magnets 120 on the rotor assembly 100 consistent, and the magnetization directions of the first diffusion portion 1242 , the second diffusion portion 1244 and the non-diffusion portion 122 in each permanent magnet 120 are consistent.
  • the non-diffusion part 122 demagnetizes due to an external magnetic field
  • the first diffusion part 1242 and the second diffusion part 1244 with strong resistance to demagnetization can also ensure their own magnetism, so that the first diffusion part 1242 and the second diffusion part 1244 can
  • the non-diffusion part 122 is magnetized to avoid irreversible demagnetization of the permanent magnet 120 .
  • the heavy metal elements are evenly distributed in the magnetizing direction of the permanent magnet 120 .
  • the heavy metal elements are evenly distributed in the magnetization direction of the permanent magnet 120 .
  • the uniform distribution of the anti-demagnetization area on the permanent magnet 120 can be improved, thereby further reducing the probability of irreversible demagnetization problems in the permanent magnet 120 .
  • One embodiment of the present application provides a permanent magnet motor, which includes: the rotor assembly 100 in any of the above embodiments.
  • a permanent magnet motor provided with the rotor assembly 100 in any of the above embodiments is proposed. Therefore, the permanent magnet motor has the advantages of the rotor assembly 100 in any of the above embodiments.
  • the technical effects achieved by the rotor assembly 100 in any of the above embodiments can be achieved. To avoid repetition, they will not be repeated here.
  • One embodiment of the present application provides a compressor, which includes: a permanent magnet motor as in the above embodiment.
  • a compressor provided with the permanent magnet motor in the above embodiment is proposed, and the compressor can be applied in an inverter air conditioner. Therefore, the compressor has the advantages of the permanent magnet motor in the above embodiment.
  • the technical effects achieved by the permanent magnet motor in the above embodiments can be achieved. To avoid repetition, they will not be repeated here.
  • connection can be A fixed connection between multiple objects can also be a detachable connection between multiple objects, or an integral connection; it can be a direct connection between multiple objects, or it can be an intermediate connection between multiple objects. indirectly connected.
  • connection can be A fixed connection between multiple objects can also be a detachable connection between multiple objects, or an integral connection; it can be a direct connection between multiple objects, or it can be an intermediate connection between multiple objects. indirectly connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本申请提供了一种转子组件、永磁电机和压缩机。转子组件包括:转子铁芯,包括通孔;永磁体,设于通孔中,永磁体包括:非扩散部;扩散部,扩散部和至少部分非扩散部在第一方向上并排设置,第一方向垂直于转子铁芯的转轴;其中,扩散部中的重金属元素的质量占比大于非扩散部中的重金属元素的质量占比。从而在永磁体的部分区域形成抗退磁能力较强的扩散区,以通过该扩散区提高永磁体的局部抗退磁能力,进而提升转子组件整体的抗退磁能力。以降低转子组件发生不可逆退磁的可能性,确保永磁电机和关联产品能够在长时间内可靠性运行,延长产品的使用寿命。

Description

转子组件、永磁电机和压缩机
本申请要求于2022年04月28日提交中国专利局、申请号为202210460319.7、申请名称为“转子组件、永磁电机和压缩机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及压缩机技术领域,具体而言,涉及一种转子组件、一种永磁电机和一种压缩机。
背景技术
现阶段国内外空调压缩机基本采用变频电机,变频电机一般采用永磁电机,永磁电机转子的励磁方式是由永磁体励磁。
技术问题
由于现在永磁电机高功率密度的特点及降本需求,导致转子永磁体的抗退磁能力减弱。当永磁体发生不可逆退磁,则会影响电机及压缩机的运行性能及可靠性,严重影响产品的使用寿命。
因此,如何设计出一种可有效解决上述技术缺陷的转子组件,成为了亟待解决的技术问题。
技术解决方案
本申请旨在至少解决现有技术中存在的技术问题之一。
为此,本申请第一方面提出了一种转子组件。
本申请第二方面提出了一种永磁电机。
本申请第三方面提出了一种压缩机。
有鉴于此,本申请第一方面提出了一种转子组件,转子组件包括:转子铁芯,包括通孔;永磁体,设于通孔中,永磁体包括:非扩散部;扩散部,扩散部和至少部分非扩散部在第一方向上并排设置,第一方向垂直于转子铁芯的转轴;其中,扩散部中的重金属元素的质量占比大于非扩散部中的重金属元素的质量占比。
另外,本申请提供的上述转子组件还可以具有如下附加技术特征:
在上述技术方案中,转子组件包括多组永磁体;两个永磁体为一组,同组中的两个永磁体在第一平面的两侧对称设置,转子铁芯的转轴和转子铁芯的直径均在第一平面内。
在上述任一技术方案中,同组中的两个永磁体呈V字形分布。
在上述任一技术方案中,扩散部包括:第一扩散部,设于非扩散部远离第一平面的一端。
在上述任一技术方案中,第一扩散部中的重金属元素的质量占比的范围为:大于等于0.6,且小于等于0.8。
在上述任一技术方案中,通过垂直于转子铁芯的面截取永磁体;在截面上,第一扩散部的面积为S1,永磁体的面积为S3;S1与S3的比值大于等于0.1,且小于等于0.4。
在上述任一技术方案中,同组中的两个永磁体间隔设置。
在上述任一技术方案中,扩散部还包括:第二扩散部,设于非扩散部临近第一平面的一端。
在上述任一技术方案中,第二扩散部中的重金属元素的质量占比大于第一扩散部中的重金属元素的质量占比。
在上述任一技术方案中,第二扩散部中的重金属元素的质量占比的范围为:大于等于0.4,且小于等于0.75。
在上述任一技术方案中,通过垂直于转子铁芯的面截取永磁体;在截面上,第二扩散部的面积为S2,永磁体的面积为S3;S2与S3的比值大于等于0.1,且小于等于0.4。
在上述任一技术方案中,永磁体径向充磁,或永磁体平行充磁。
在上述任一技术方案中,扩散部中,重金属元素在永磁体的充磁方向上均匀分布。
本申请第二方面提出了一种永磁电机,永磁电机包括:如上述任一技术方案中的转子组件。
本申请第三方面提出了一种压缩机,压缩机包括:如上述技术方案中的永磁电机。
有益效果
本申请所限定的转子组件解决了相关技术中所存在的,永磁电机抗退磁能力弱、易发生不可逆退磁的技术问题。同时,该结构可以在不增大永磁体体积的基础上提升转子组件的抗退磁能力,从而兼顾永磁电机的高功率密度需求和低成本需求。进而实现优化转子组件结构,提升转子组件可靠性,延长转子组件使用寿命,降低产品故障率的技术效果。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请的一个实施例的转子组件的结构示意图之一;
图2示出了根据本申请的一个实施例的转子组件的结构示意图之二;
图3示出了根据本申请的一个实施例的转子组件的结构示意图之三。
其中,图1至图3中的附图标记与部件名称之间的对应关系为:
100转子组件,110转子铁芯,120永磁体,122非扩散部,124扩散部,1242第一扩散部,1244第二扩散部。
本发明的实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图3描述根据本申请一些实施例的转子组件、永磁电机和压缩机。
如图1、图2和图3所示,本申请的一个实施例提出了一种转子组件100,转子组件100包括:转子铁芯110,包括通孔;永磁体120,设于通孔中,永磁体120包括:非扩散部122;扩散部124,扩散部124和至少部分非扩散部122在第一方向上并排设置(图3中方向A和方向B示出了第一方向,具体A为永磁体的厚度方向,B为永磁体的宽度方向),第一方向垂直于转子铁芯110的转轴;其中,扩散部124中的重金属元素的质量占比大于非扩散部122中的重金属元素的质量占比。
本申请限定了一种转子组件100,该转子组件100应用于永磁电机。示例性地,转子组件100包括转子铁芯110和永磁体120。转子铁芯110通过多个转子冲片叠压而成,其中每个转子冲片的对应位置上均设置有开口,将多个转子冲片的开口对准叠加在一起即可在转子铁芯110上形成轴向贯穿转子铁芯110的通孔。永磁体120插接在通孔中,通孔的形状与永磁体120的外轮廓形状相适配,其中永磁体120用于提供励磁。
相关技术中,各类产品对永磁电机提供了高功率密度和低成本需求,以至于永磁电机的设计受到上述需求的限制,导致永磁电机出现抗退磁能力弱、易发生不可逆退磁的技术问题。若出现不可逆退磁,则会导致永磁电机和关联产品失效,直接影响产品的使用寿命,破坏用户使用体验。
对此,本申请所限定的实施例中,通过调整永磁体120局部区域的重金属元素含量,将永磁体120划分为非扩散部122和扩散部124。示例性地,在永磁体120上,扩散部124与至少部分非扩散部122在第一方向上并排设置。其中,第一方向垂直于转子铁芯110的轴线方向,即通过垂直于转子铁芯110的平面截取永磁体120,可以在切面上同时得到并排设置的扩散部124和非扩散部122。在此基础上,扩散部124中,重金属元素的质量与扩散部124整体质量的比值为扩散部124的金属元素质量占比g1。对应地,非扩散部122中,重金属元素的质量与非扩散部122整体质量的比值为非扩散部122的金属元素质量占比g2,其中,g2大于g1。
通过限定扩散部124的重金属元素质量占比大于非扩散部122的重金属元素质量占比,可以确保在第一方向上并排设置的扩散部124的矫顽力大于非扩散部122的矫顽力,从而在永磁体120的部分区域形成抗退磁能力较强的扩散区,以通过该扩散区提高永磁体120的局部抗退磁能力,进而提升转子组件100整体的抗退磁能力。以降低转子组件100发生不可逆退磁的可能性,确保永磁电机和关联产品能够在长时间内可靠性运行,延长产品的使用寿命。
由此可见,本申请所限定的转子组件100解决了相关技术中所存在的,永磁电机抗退磁能力弱、易发生不可逆退磁的技术问题。同时,该结构可以在不增大永磁体120体积的基础上提升转子组件100的抗退磁能力,从而兼顾永磁电机的高功率密度需求和低成本需求。进而实现优化转子组件100结构,提升转子组件100可靠性,延长转子组件100使用寿命,降低产品故障率的技术效果。
如图1、图2和图3所示,在本申请的一个实施例中,转子组件100包括多组永磁体120;两个永磁体120为一组,同组中的两个永磁体120在第一平面的两侧对称设置,转子铁芯110的转轴和转子铁芯110的直径均在第一平面内。
在该实施例中,对转子组件100上永磁体120的布局作出限定。示例性地,每个转子组件100上设置有多组永磁体120,多组永磁体120环绕转子铁芯110的轴线设置。每组永磁体120包括两个永磁体120,两个永磁体120在第一平面的两侧对称设置。其中,转子铁芯110的轴线和转子铁芯110的直径均在第一平面内,具体通过垂直于转子铁芯110轴线的平面截取转子铁芯110和永磁体120,在该截面上转子铁芯110的直径即为第一平面。
通过在转子组件100上设置多组永磁体120,可以强化转子组件100的抗退磁能力,从而进一步降低转子组件100出现不可逆退磁的可能性。在此基础上,通过将每组永磁体120中的两个永磁体120对称分布在第一平面的两侧,也可以在转子铁芯110的转轴周侧形成多个抗退磁能力较强的区域,以便于提升转子铁芯110整体的抗退磁能力。进而实现提升转子组件100可靠性,延长转子组件100使用寿命的技术效果。
在上述实施例中,同组中的两个永磁体120呈V字形分布。
在该实施例中,每组永磁体120中,两个永磁体120在第一平面的两侧呈V字形分布。示例性地,通过垂直于转子铁芯110的轴线的平面截取永磁体120。在该截面上,位于同一组的两个永磁体120与第一面之间存在夹角,夹角的角度小于90°,以形成呈V字形分布的两个永磁体120。其中,V字形分布的两个永磁体120的开口可以朝向转子铁芯110的轴线,也可以朝向转子铁芯110的外侧,对此该实施例中不做硬性限定。
通过将同组中的两个永磁体120V字形分布,一方面可以在转子组件100中形成混合式磁路结构。混合式磁路结构可以提升转子组件100的稳态性能和动态性能,有助于提升永磁电机的功率密度和过载能力,并且混合式磁路有利于实现弱磁扩速。另一方面有利于提升永磁体120在转子铁芯110周向方向上的覆盖面积,进而实现提升永磁电机性能的技术效果。
如图1、图2和图3所示,在本申请的一个实施例中,扩散部124包括:第一扩散部1242,设于非扩散部122远离第一平面的一端。
在该实施例中,扩散部124包括第一扩散部1242。示例性地,第一扩散部1242位于非扩散部122远离第一平面的一端,且第一扩散部1242与部分非扩散部122在第一方向上并排设置。通过设置第一扩散部1242,可以呈V字形分布的两个永磁体120的左右两端形成两个抗退磁区域。
因为第一扩散部1242的重金属元素质量占比大于非扩散部122的重金属元素质量占比。所以左右两个抗退磁区域的矫顽力大于中间非扩散区域的矫顽力。磁性材料在饱和磁化后,当外磁场退回到零时,其磁感应强度并不会退到零,只有在原磁化场相反方向加上一定大小的磁场才能使磁感应强度退回到零,该磁场成为矫顽力。由此可见,第一扩散部1242所能抵御的矫顽磁场的强度大于非扩散部122所能抵御的矫顽磁场的强度,从而在非扩散部122面临退磁风险时保持自身的磁感应强度,进而阻止非扩散部122发生不可逆退磁。以实现提升永磁体120抗退磁能力,延长转子组件100使用寿命,提升转子组件100可靠性的技术效果。
在上述任一实施例中,第一扩散部1242中的重金属元素的质量占比的范围为:大于等于0.6,且小于等于0.8。
在该实施例中,对第一扩散部1242中的重金属元素的质量占比的范围作出限定。示例性地,第一扩散部1242的重金属元素的质量占比需大于等于0.6且小于等于0.8。通过限定第一扩散部1242的重金属元素质量占比大于0.6,可以保证第一扩散部1242具备大于非扩散部122的矫顽力,从而确保第一扩散部1242可以提升整个永磁体120的抗退磁能力。通过限定第一扩散部1242的重金属元素质量占比小于0.8,可以在保证第一扩散部1242具备较强抗退磁能力的基础上,压缩永磁体120的生产成本,从而满足永磁电机的低成本需求,进而提升产品的市场竞争力。
在上述任一实施例中,通过垂直于转子铁芯110的面截取永磁体120;在截面上,第一扩散部1242的面积为S1,永磁体120的面积为S3;S1与S3的比值大于等于0.1,且小于等于0.4。
在该实施例中,对第一扩散部1242和非扩散部122间的尺寸关系作出限定。示例性地,永磁体120在通孔中沿平行于转子铁芯110轴线的通孔延伸,在此基础上,通过垂直于转子铁芯110轴线的平面截取永磁体120,则可以在截面上得出第一扩散部1242的横截面以及非扩散部122的横截面,第一扩散部1242的横截面的面积为S1,永磁体120的横截面的面积为S3。其中,如图2所示,永磁体120的厚度为W,永磁体120的宽度为L,W与L的乘积即为S3,S1与S3的比值需大于等于0.1,且小于等于0.4。
在第一扩散部1242和非扩散部122沿第一方向并排设置的情况下,第一扩散部1242的横截面的面积与永磁体120的横截面的面积间的关系可以反映出第一扩散部1242和非扩散部122间的相对尺寸关系。通过限定S1与S3的比值大于等于0.1,可以避免出现因第一扩散部1242尺寸过小,无法为非扩散部122提供有效抗退磁支持的情况,从而保证永磁体120整体的抗退磁能力。通过限定S1与S3的比值小于等于0.4,可以在保证永磁体120抗退磁能力的基础上减少重金属元素的用量,从而压缩永磁体120的成本,以兼顾永磁电机的抗退磁需求和低成本需求。进而实现优化永磁体120结构布局,提升永磁体120可靠性,延长永磁体120寿命,提升产品市场竞争力的技术效果。
如图1、图2和图3所示,在本申请的一个实施例中,同组中的两个永磁体120间隔设置。
在该实施例中,在同组中的两个永磁体120呈V字形对称分布在第一平面两侧的基础上,两个永磁体120间留有间隔。将同组中的两个永磁体120间隔设置一方面可以在永磁体120中形成独立的多个磁路,以优化转子组件100中的磁路分布。另一方面,两个永磁体120之间的间隔可以起到隔磁作用,以避免相邻的永磁体120相互干涉,从而提升转子组件100的稳定性。
在上述任一实施例中,扩散部124还包括:第二扩散部1244,设于非扩散部122临近第一平面的一端。
在该实施例中,扩散部124包括第二扩散部1244。示例性地,第二扩散部1244位于非扩散部122临近第一平面的一端,且第二扩散部1244与部分非扩散部122在第一方向上并排设置。通过设置第二扩散部1244,可以在呈V字形分布的两个永磁体120的中心区域形成两个抗退磁区域,以将非扩散部122布置在第一扩散部1242和第二扩散部1244之间,进而强化永磁体120的抗退磁能力。
示例性地,因为第二扩散部1244的重金属元素质量占比大于非扩散部122的重金属元素质量占比。所以中部的两个抗退磁区域的矫顽力大于两侧非扩散区域的矫顽力。磁性材料在饱和磁化后,当外磁场退回到零时,其磁感应强度并不会退到零,只有在原磁化场相反方向加上一定大小的磁场才能使磁感应强度退回到零,该磁场成为矫顽力。由此可见,第二扩散部1244所能抵御的矫顽磁场的强度大于非扩散部122所能抵御的矫顽磁场的强度,从而在非扩散部122面临退磁风险时保持自身的磁感应强度,进而阻止非扩散部122发生不可逆退磁。以实现提升永磁体120抗退磁能力,延长转子组件100使用寿命,提升转子组件100可靠性的技术效果。
在上述任一实施例中,第二扩散部1244中的重金属元素的质量占比大于第一扩散部1242中的重金属元素的质量占比。
在该实施例中,第二扩散部1244中的重金属元素的质量占比大于第一扩散部1242中的重金属元素的质量占比,即第二扩散部1244的矫顽力大于第一扩散部1242的矫顽力。通过设置重金属元素质量占比不同的第一扩散部1242和第二扩散部1244,可以在每个永磁体120上形成抗退磁能力不同的第一扩散区域和第二扩散区域,以通过梯度抗退磁区域强化转子组件100的抗退磁性能,进而降低转子组件100出现不可逆退磁问题的概率。
在上述任一实施例中,第二扩散部1244中的重金属元素的质量占比的范围为:大于等于0.4,且小于等于0.75。
在该实施例中,对第二扩散部1244中的重金属元素的质量占比的范围作出限定。示例性地,第二扩散部1244的重金属元素的质量占比需大于等于0.4且小于等于0.75。通过限定第二扩散部1244的重金属元素质量占比大于0.4,可以保证第二扩散部1244具备大于非扩散部122的矫顽力,从而确保第二扩散部1244可以提升整个永磁体120的抗退磁能力。通过限定第二扩散部1244的重金属元素质量占比小于0.75,可以在保证第二扩散部1244具备较强抗退磁能力的基础上,压缩永磁体120的生产成本,从而满足永磁电机的低成本需求,进而提升产品的市场竞争力。
在上述任一实施例中,通过垂直于转子铁芯110的面截取永磁体120;在截面上,第二扩散部1244的面积为S2,永磁体120的面积为S3;S2与S3的比值大于等于0.1,且小于等于0.4。
在该实施例中,对第二扩散部1244和非扩散部122间的尺寸关系作出限定。示例性地,永磁体120在通孔中沿平行于转子铁芯110轴线的通孔延伸,在此基础上,通过垂直于转子铁芯110轴线的平面截取永磁体120,则可以在截面上得出第二扩散部1244的横截面以及非扩散部122的横截面,第二扩散部1244的横截面的面积为S2,永磁体120的横截面的面积为S3,其中,如图2所示,永磁体120的厚度为W,永磁体120的宽度为L,W与L的乘积即为S3,S2与S3的比值需大于等于0.1,且小于等于0.4。
在第二扩散部1244和非扩散部122沿第一方向并排设置的情况下,第二扩散部1244的横截面面积与永磁体120的横截面的面积间的关系可以反映出第二扩散部1244和非扩散部122间的相对尺寸关系。通过限定S2与S3的比值大于等于0.1,可以避免出现因第二扩散部1244尺寸过小,无法为非扩散部122提供有效抗退磁支持的情况,从而保证永磁体120整体的抗退磁能力。通过限定S2与S3的比值小于等于0.4,可以在保证永磁体120抗退磁能力的基础上减少重金属元素的用量,从而压缩永磁体120的成本,以兼顾永磁电机的抗退磁需求和低成本需求。进而实现优化永磁体120结构布局,提升永磁体120可靠性,延长永磁体120寿命,提升产品市场竞争力的技术效果。
在本申请的一个实施例中,永磁体120径向充磁,或永磁体120平行充磁。
在该实施例中,永磁体120的充磁方向可以为径向充磁还可以是平行充磁。对此,保持转子组件100上多个永磁体120的充磁方向一致,且每个永磁体120中第一扩散部1242、第二扩散部1244和非扩散部122的充磁方向一致即可。在非扩散部122因外部磁场产生退磁现象时,抗退磁能力较强的第一扩散部1242和第二扩散部1244还能够保证自身磁性,从而通过第一扩散部1242和第二扩散部1244对非扩散部122进行充磁,以避免永磁体120出现不可逆退磁问题。
在上述任一实施例中,扩散部124中,重金属元素在永磁体120的充磁方向上均匀分布。
在该实施例中,第一扩散部1242和第二扩散部1244中,重金属元素在永磁体120的充磁方向上均匀分布。通过在充磁方向上均匀分布扩散部124内的重金属元素,可以提升永磁体120上抗退磁区域分布的均匀,从而进一步降低永磁体120出现不可逆退磁问题的概率。
本申请的一个实施例提供了一种永磁电机,永磁电机包括:如上述任一实施例中的转子组件100。
在该实施例中,提出了一种设置有上述任一实施例中的转子组件100的永磁电机。因此,该永磁电机具备上述任一实施例中的转子组件100所具备的优点。能够实现上述任一实施例中的转子组件100所能实现的技术效果。为避免重复,此处不再赘述。
本申请的一个实施例提供了一种压缩机,压缩机包括:如上述实施例中的永磁电机。
该实施例中,提出了一种设置有上述实施例中的永磁电机的压缩机,该压缩机可应用于变频空调器中。因此,压缩机具备上述实施例中的永磁电机所具备的优点。能够实现上述实施例中的永磁电机所能实现的技术效果。为避免重复,此处不再赘述。
需要明确的是,在本申请的权利要求书、说明书和说明书附图中,术语“多个”则指两个或两个以上,除非有额外的明确限定,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了更方便地描述本申请和使得描述过程更加简便,而不是为了指示或暗示所指的装置或元件必须具有所描述的特定方位、以特定方位构造和操作,因此这些描述不能理解为对本申请的限制;术语“连接”、“安装”、“固定”等均应做广义理解,举例来说,“连接”可以是多个对象之间的固定连接,也可以是多个对象之间的可拆卸连接,或一体地连接;可以是多个对象之间的直接相连,也可以是多个对象之间的通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据上述数据地具体情况理解上述术语在本申请中的具体含义。
在本申请的权利要求书、说明书和说明书附图中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本申请的权利要求书、说明书和说明书附图中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种转子组件,其中,包括:
    转子铁芯,包括通孔;
    永磁体,设于所述通孔中,所述永磁体包括:
    非扩散部;
    扩散部,所述扩散部和至少部分所述非扩散部在第一方向上并排设置,所述第一方向垂直于所述转子铁芯的转轴;
    其中,所述扩散部中的重金属元素的质量占比大于所述非扩散部中的重金属元素的质量占比。
  2. 根据权利要求1所述的转子组件,其中,
    所述转子组件包括多组永磁体;
    两个所述永磁体为一组,同组中的两个所述永磁体在第一平面的两侧对称设置,所述转子铁芯的转轴和所述转子铁芯的直径均在所述第一平面内。
  3. 根据权利要求2所述的转子组件,其中,同组中的两个所述永磁体呈V字形分布。
  4.  根据权利要求3所述的转子组件,其中,所述扩散部包括:
    第一扩散部,设于所述非扩散部远离所述第一平面的一端。
  5.  根据权利要求4所述的转子组件,其中,所述第一扩散部中的重金属元素的质量占比的范围为:大于等于0.6,且小于等于0.8。
  6.  根据权利要求4或5所述的转子组件,其中,
    通过垂直于所述转子铁芯的面截取所述永磁体;
    在截面上,所述第一扩散部的面积为S1,所述永磁体的面积为S3;
    S1与S3的比值大于等于0.1,且小于等于0.4。
  7.  根据权利要求4至6中任一项所述的转子组件,其中,同组中的两个所述永磁体间隔设置。
  8.  根据权利要求7所述的转子组件,其中,所述扩散部还包括:
    第二扩散部,设于所述非扩散部临近所述第一平面的一端。
  9.  根据权利要求8所述的转子组件,其中,所述第二扩散部中的重金属元素的质量占比大于所述第一扩散部中的重金属元素的质量占比。
  10.  根据权利要求8或9所述的转子组件,其中,所述第二扩散部中的重金属元素的质量占比的范围为:大于等于0.4,且小于等于0.75。
  11.  根据权利要求8至10中任一项所述的转子组件,其中,
    通过垂直于所述转子铁芯的面截取所述永磁体;
    在截面上,所述第二扩散部的面积为S2,所述永磁体的面积为S3;
    S2与S3的比值大于等于0.1,且小于等于0.4。
  12.  根据权利要求1至11中任一项所述的转子组件,其中,
    所述永磁体径向充磁,或所述永磁体平行充磁。
  13.  根据权利要求12所述的转子组件,其中,所述扩散部中,所述重金属元素在所述永磁体的充磁方向上均匀分布。
  14.  一种永磁电机,其中,包括:
    如权利要求1至13中任一项所述的转子组件。
  15.  一种压缩机,其中,包括:
    如权利要求14所述的永磁电机。
PCT/CN2023/089698 2022-04-28 2023-04-21 转子组件、永磁电机和压缩机 WO2023207775A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023557803A JP2024518238A (ja) 2022-04-28 2023-04-21 ロータアセンブリ、永久磁石モータ及び圧縮機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210460319.7A CN114759703A (zh) 2022-04-28 2022-04-28 转子组件、永磁电机和压缩机
CN202210460319.7 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023207775A1 true WO2023207775A1 (zh) 2023-11-02

Family

ID=82334084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089698 WO2023207775A1 (zh) 2022-04-28 2023-04-21 转子组件、永磁电机和压缩机

Country Status (3)

Country Link
JP (1) JP2024518238A (zh)
CN (1) CN114759703A (zh)
WO (1) WO2023207775A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114709952A (zh) * 2022-04-28 2022-07-05 安徽美芝精密制造有限公司 转子组件、永磁电机和压缩机
CN114759703A (zh) * 2022-04-28 2022-07-15 安徽美芝精密制造有限公司 转子组件、永磁电机和压缩机
CN118017731A (zh) * 2022-11-10 2024-05-10 广东美芝制冷设备有限公司 一种转子结构、永磁电机和应用
CN118054593A (zh) * 2022-11-10 2024-05-17 广东美芝制冷设备有限公司 一种可以提高抗退磁性的电机、压缩机和制冷机
CN118054591A (zh) * 2022-11-10 2024-05-17 广东美芝制冷设备有限公司 电机、压缩机及家用电器
CN118054594A (zh) * 2022-11-10 2024-05-17 广东美芝制冷设备有限公司 一种能提升抗退磁性的转子组件、电机、压缩机和制冷机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009153230A (ja) * 2007-12-18 2009-07-09 Yaskawa Electric Corp ロータコアの製造方法、該製造方法により製造されたロータコア、およびそのロータ、並びに該ロータを有する埋込磁石型回転電機、さらに該回転電機を用いた車両、昇降機、および加工機。
CN101714443A (zh) * 2008-09-29 2010-05-26 株式会社日立制作所 烧结磁铁及使用它的旋转机
CN101887792A (zh) * 2009-05-12 2010-11-17 株式会社日立制作所 稀土类磁体及采用该磁体的马达
CN112531929A (zh) * 2020-12-03 2021-03-19 珠海格力节能环保制冷技术研究中心有限公司 永磁体、转子结构、永磁电机及压缩机
WO2022016437A1 (zh) * 2020-07-23 2022-01-27 华为数字能源技术有限公司 电机转子和电机
CN114709952A (zh) * 2022-04-28 2022-07-05 安徽美芝精密制造有限公司 转子组件、永磁电机和压缩机
CN114759703A (zh) * 2022-04-28 2022-07-15 安徽美芝精密制造有限公司 转子组件、永磁电机和压缩机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009153230A (ja) * 2007-12-18 2009-07-09 Yaskawa Electric Corp ロータコアの製造方法、該製造方法により製造されたロータコア、およびそのロータ、並びに該ロータを有する埋込磁石型回転電機、さらに該回転電機を用いた車両、昇降機、および加工機。
CN101714443A (zh) * 2008-09-29 2010-05-26 株式会社日立制作所 烧结磁铁及使用它的旋转机
CN101887792A (zh) * 2009-05-12 2010-11-17 株式会社日立制作所 稀土类磁体及采用该磁体的马达
WO2022016437A1 (zh) * 2020-07-23 2022-01-27 华为数字能源技术有限公司 电机转子和电机
CN112531929A (zh) * 2020-12-03 2021-03-19 珠海格力节能环保制冷技术研究中心有限公司 永磁体、转子结构、永磁电机及压缩机
CN114709952A (zh) * 2022-04-28 2022-07-05 安徽美芝精密制造有限公司 转子组件、永磁电机和压缩机
CN114759703A (zh) * 2022-04-28 2022-07-15 安徽美芝精密制造有限公司 转子组件、永磁电机和压缩机

Also Published As

Publication number Publication date
CN114759703A (zh) 2022-07-15
JP2024518238A (ja) 2024-05-01

Similar Documents

Publication Publication Date Title
WO2023207775A1 (zh) 转子组件、永磁电机和压缩机
WO2023207777A1 (zh) 转子组件、永磁电机和压缩机
US8937420B2 (en) Rotor of permanent magnet embedded motor, blower, and compressor
WO2020034514A1 (zh) 转子组件及交替极电机
US20190190332A1 (en) Rotor structure, motor and compressor
JP2007104888A (ja) 回転電機
WO2020098339A1 (zh) 电机转子结构及永磁电机
US20210104924A1 (en) Consequent-pole motor
CN213602453U (zh) 基于组合磁极的表贴-内置式无轴承永磁同步电机
CN112366838A (zh) 基于组合磁极的表贴-内置式无轴承永磁同步电机
WO2020093795A1 (zh) 电机转子、电机、压缩机及热泵系统
US20230163647A1 (en) Motor rotor and motor
WO2019037479A1 (zh) 转子、电机和压缩机
WO2022022426A1 (zh) 转子冲片、转子铁芯、转子、电机和车辆
WO2023184972A1 (zh) 一种电机转子、电机、压缩机及空调器
CN112134385B (zh) 电机、压缩机和制冷设备
JP2002136009A (ja) 永久磁石型回転子
CN112701818B (zh) 转子结构、电机和转子加工方法
CN112003399A (zh) 转子、电机、压缩机及空调器、车辆
JP2020014336A (ja) 回転電気機械
WO2024098922A1 (zh) 一种可以加强抗退磁性的转子、电机、压缩机和制冷机
CN220732455U (zh) 转子和电机
CN113964981B (zh) 一种混合永磁转子自漏磁型可变磁通记忆电机
CN220874290U (zh) 转子冲片、电机转子、电机及车辆
CN218997797U (zh) 转子总成、电机以及车辆

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023557803

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795208

Country of ref document: EP

Kind code of ref document: A1