WO2020093795A1 - 电机转子、电机、压缩机及热泵系统 - Google Patents

电机转子、电机、压缩机及热泵系统 Download PDF

Info

Publication number
WO2020093795A1
WO2020093795A1 PCT/CN2019/106761 CN2019106761W WO2020093795A1 WO 2020093795 A1 WO2020093795 A1 WO 2020093795A1 CN 2019106761 W CN2019106761 W CN 2019106761W WO 2020093795 A1 WO2020093795 A1 WO 2020093795A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
motor rotor
magnetic
motor
inverted
Prior art date
Application number
PCT/CN2019/106761
Other languages
English (en)
French (fr)
Inventor
魏会军
高明世
陈华杰
张凯
刘通
马梓净
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Publication of WO2020093795A1 publication Critical patent/WO2020093795A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present application relates to the technical field of driving devices, and in particular, to a motor rotor, motor, compressor, and heat pump system.
  • the permanent magnet synchronous motor with tangential rotor structure has the "magnetism effect", and the torque density is typically larger than that of the general model, especially in the case of many pole pairs.
  • the traditional tangential rotor structure is also used, and the "magnetism effect" of the motor is significantly reduced.
  • the output capacity of the tangential permanent magnet synchronous motor is the same as that of the general structure permanent magnet synchronous motor.
  • the main purpose of the present application is to provide a motor rotor, motor, compressor and heat pump system to solve the problems in the prior art that the tangential permanent magnet synchronous motor is difficult to magnetize and has poor magnetic concentration.
  • a motor rotor including a rotor core and a permanent magnet.
  • a plurality of inverted N-shaped mounting slots are provided in the circumferential direction of the rotor core, and each of the inverted N-shaped mounting slots Multiple permanent magnets are provided in the extending direction.
  • the inverted N-shaped mounting slot includes a first mounting segment, a second mounting segment, and a third mounting segment that are connected in sequence;
  • the plurality of permanent magnets includes a first permanent magnet, a second permanent magnet, and a third permanent magnet, the first permanent magnet The magnet is installed in the first installation section, the second permanent magnet is installed in the second installation section, and the third permanent magnet is installed in the third installation section.
  • the thickness d4 of the first permanent magnet is greater than or equal to the thickness d3 of the second permanent magnet.
  • the thickness d4 of the first permanent magnet is 1.3 to 1.6 times the thickness d3 of the second permanent magnet.
  • the thicknesses of the second permanent magnet and the third permanent magnet are not less than 1 mm.
  • the thicknesses of the second permanent magnet and the third permanent magnet are not less than 3 mm.
  • the length of the second permanent magnet is smaller than the length of the third permanent magnet.
  • first magnetic isolation air gap between the first permanent magnet and the second permanent magnet
  • second magnetic isolation air gap between the second permanent magnet and the third permanent magnet
  • the minimum distance between the first permanent magnet and the second permanent magnet is d2, and the minimum distance before the second permanent magnet and the third permanent magnet is d1, where d1> 2mm, d2> 1mm.
  • the angle between the first permanent magnet and the second permanent magnet is c3, and the angle between the second permanent magnet and the third permanent magnet is c1;
  • the included angle between the first permanent magnet and the third permanent magnet is c2; where c1> 15 °, c2> 15 °, and c3> 15 °.
  • first magnetic shielding bridge between the first mounting section and the outer edge of the rotor core.
  • a fourth magnetic isolation air gap is provided between the end of the third permanent magnet near the center of the motor rotor and the end of the third mounting section near the center of the motor rotor.
  • a second magnetic isolation bridge is provided between the adjacent first mounting section and the third mounting section.
  • the outer edge of the rotor core is provided with a first magnetic adjustment slot, and the first magnetic adjustment slot is provided in communication with or spaced from the first mounting section.
  • the outer edge of the rotor core is provided with a second magnetic adjustment slot and a third magnetic adjustment slot, the second magnetic adjustment slot is vertically connected to the first mounting section, and a third The magnetic adjustment slot, and a predetermined distance between the third magnetic adjustment slot and the second magnetic adjustment slot.
  • both ends of the second magnetic modulation slot have protrusions protruding from the first mounting section, the width of the protrusion is d7, and the length of d7 is 2 to 3 times the thickness of the first permanent magnet;
  • the predetermined distance between the second and third magnetization slots is d6, and the width of d6 is less than the thickness of the first permanent magnet;
  • the widths of the second and third magnetization slots along the radial direction of the rotor core are both D5, d5 is smaller than the thickness of the first permanent magnet.
  • the permanent magnet is ferrite magnetic steel or neodymium iron boron magnetic steel.
  • the number of pole pairs of the motor rotor is 2 to 4.
  • the rotor core is a cylindrical rotor core, and the outer periphery of the rotor core is provided with a plurality of cut edges, and the ratio of the cut edges to the arc edge of the outer circumference of the rotor core is 28% ⁇ 5%.
  • a motor including a motor rotor, and the motor rotor is the above-mentioned motor rotor.
  • a compressor including a motor, and the motor is the above-mentioned motor.
  • a heat pump system including a compressor, and the compressor is the above-mentioned compressor.
  • an inverted N-shaped mounting slot is used in this application to install the permanent magnet
  • the magnet is divided into multiple pieces and installed in the inverted N-shaped installation groove, which can reduce the thickness of the permanent magnet and reduce the difficulty of magnetizing the permanent magnet.
  • the surface area of the permanent magnets in the inverted N-shaped mounting groove of this application has been significantly improved compared to the structure surface area of the conventional trapezoidal magnet, rectangular magnet and inverted trapezoidal magnet, which can significantly improve the magnetic concentrating ability of the motor rotor, and thus improve
  • the torque density of the motor rotor is especially suitable for improving the magnetic concentration of the motor rotor with few pole pairs.
  • FIG. 1 schematically shows a front view of a first embodiment of a motor rotor of the present application
  • FIG. 2 schematically shows a magnetizing direction indicator of the first embodiment of the motor rotor of the present application
  • FIG. 3 schematically shows a front view of the rotor core in the second embodiment of the motor rotor of the present application
  • FIG. 5 schematically shows a front view of a motor rotor of a conventional tangential permanent magnet synchronous motor.
  • Rotor core 11. Inverted N-shaped installation slot; 111, first installation section; 112, second installation section; 113, third installation section; 12, first magnetic adjustment slot; 13, second magnetic adjustment slot ; 14. The third magnetic adjustment slot; 15. Trimming; 16. Arc edge; 17. Rotor mounting hole; 20. Permanent magnet; 21. First permanent magnet; 22. Second permanent magnet; 23. Third permanent magnet Magnet; 30, second magnetic isolation air gap; 40, third magnetic isolation air gap; 50, first magnetic isolation bridge; 60, fourth magnetic isolation air gap; 70, second magnetic isolation bridge; 80, first isolation Magnetic air gap; 1. Inverted trapezoidal magnet; 2. Magnetic isolation bridge; 8. Rotor core.
  • spatial relative terms can be used here, such as “above”, “above”, “above”, “above”, etc., used to describe as shown in the figure
  • the spatial relationship between a device or feature shown and other devices or features It should be understood that spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation of the device described in the figures. For example, if the device in the drawings is turned upside down, a device described as “above another device or configuration” or “above another device or configuration” will then be positioned as “below other device or configuration” or “in Under other devices or structures ". Thus, the exemplary term “above” may include both “above” and “below” orientations.
  • the device can also be positioned in other different ways (rotated 90 degrees or at other orientations), and the relative description of the space used here is explained accordingly.
  • a motor is provided.
  • the motor in this embodiment particularly refers to a tangential rotor permanent magnet synchronous motor.
  • the motor in this embodiment includes a motor rotor.
  • the motor rotor includes a rotor core 10 and a permanent magnet 20.
  • a plurality of permanent magnets 20 are provided in the extending direction of each inverted N-shaped mounting groove 11.
  • the inverted N-shaped mounting groove 11 is used to install the permanent magnet 20 in this embodiment
  • the permanent magnet 20 is divided into a plurality of pieces and installed in the inverted N-shaped mounting groove 11, which can reduce the thickness of the permanent magnet 20 and reduce the difficulty of magnetizing the permanent magnet 20.
  • the surface area of the permanent magnet 20 in the inverted N-shaped mounting groove 11 in this embodiment is significantly improved relative to the structure surface area of the conventional trapezoidal magnet, rectangular magnet and inverted trapezoidal magnet, which can significantly improve the magnetic concentrating ability of the motor rotor In order to improve the torque density of the motor rotor, it is especially suitable for improving the magnetic concentration of the motor rotor with a small number of pole pairs.
  • the number of pole pairs of the motor rotor in this embodiment is 2 to 4.
  • the inverted N-shaped mounting slot 11 in this embodiment includes a first mounting section 111, a second mounting section 112, and a third mounting section 113 connected in sequence; correspondingly, the above-mentioned multiple
  • the magnet 20 includes a first permanent magnet 21, a second permanent magnet 22, and a third permanent magnet 23.
  • the first permanent magnet 21 is installed in the first installation section 111
  • the second permanent magnet 22 is installed in the second installation In the segment 112
  • the third permanent magnet 23 is installed in the third mounting segment 113.
  • the permanent magnet 20 may also be provided as two or more than three, as long as it is within the scope of the protection of the present application, other variants under the concept of the present application.
  • the thickness d4 of the first permanent magnet 21 in this embodiment is greater than the thickness d3 of the second permanent magnet 22, and the permanent magnet 20 at this time is particularly suitable for design using ferrite magnetic steel.
  • the thickness d4 of the first permanent magnet 21 is 1.3 to 1.6 times, such as 1.4 times and 1.5 times, the thickness d3 of the second permanent magnet 22. Both the thickness d3 of the second permanent magnet 22 and the thickness of the third permanent magnet 23 are not less than 3 mm.
  • the thickness of the first permanent magnet 21 in this embodiment is greater than the thickness of the second permanent magnet 22, which is beneficial to improve the air gap magnetic density sine and the resistance to demagnetization.
  • the permanent magnet 20 in this embodiment may also be neodymium iron boron magnetic steel.
  • the thicknesses of the second permanent magnet 22 and the third permanent magnet 23 are not less than 1 mm. In actual installation, due to space limitations, the thickness of the second permanent magnet 22 should not be too large. On the one hand, it is convenient for effective utilization, and on the other hand, it is easy to improve the anti-demagnetization ability.
  • the length of the second permanent magnet 22 in this embodiment is smaller than the length of the third permanent magnet 23. It should be noted that this design requirement is related to the rotation direction of the motor rotor. When the length of the second permanent magnet 22 is less than the length of the third permanent magnet 23, the rotation direction of the motor rotor is counterclockwise. At this time, the left side will When demagnetization occurs, magnetization will appear on the right, which will help to improve the positive back EMF rotation of the load.
  • first magnetic isolation air gap 80 between the first permanent magnet 21 and the second permanent magnet 22, and between the second permanent magnet 22 and the third permanent magnet 23
  • the second magnetic isolation air gap 30 reduces the magnetic flux leakage of the permanent magnets while ensuring the structural strength, and improves the utilization rate of the permanent magnets.
  • the minimum distance between the first permanent magnet 21 and the second permanent magnet 22 is d2, and the minimum distance between the second permanent magnet 22 and the third permanent magnet 23 is d1, where d1> 2 mm and d2> 1 mm.
  • the angle between the first permanent magnet 21 and the second permanent magnet 22 is c3, and the angle between the second permanent magnet 22 and the third permanent magnet 23 is c1, in two adjacent N-shaped mounting grooves 11
  • the angle between the first permanent magnet 21 and the third permanent magnet 23 is c2, where c1> 15 °, c3> 15 °, and c2> 15 °.
  • the angle between the first permanent magnet 21 and the second permanent magnet 22 and the third permanent magnet 23 should not be too small. If it is small, the three permanent magnets represent a decrease in magnetic performance, which is not conducive to the demagnetization ability. Improve the demagnetization ability at the same time.
  • the third magnetic isolation air gap 40 between the end of the first permanent magnet 21 away from the motor rotor center and the end of the first mounting section 111 away from the motor rotor center.
  • a fourth magnetic isolation air gap 60 is provided between the end of the third permanent magnet 23 near the center of the motor rotor and the end of the third mounting section 113 near the center of the motor rotor.
  • a second is provided between the first mounting segment 111 of the first inverted N-shaped mounting slot 11 and the third mounting segment 113 of the second inverted N-shaped mounting slot 11
  • the magnetic isolation bridge 70 can further improve the demagnetization resistance of the motor rotor.
  • the rotor core 10 in this embodiment is a cylindrical rotor core, and the outer periphery of the rotor core 10 is provided with a plurality of cut edges 15, wherein the ratio of the cut edges 15 to the circular arc edge 16 of the outer circumference of the rotor core 10 is 28% ⁇ 5%, which is conducive to the best torque output.
  • the rotor core 10 is also provided with a rotor mounting hole 17 to facilitate assembly of the motor.
  • a motor rotor is provided.
  • the structure of the motor rotor in this embodiment is basically the same as the structure of the motor rotor in the first embodiment. The difference is that
  • the outer edge of the rotor core 10 is provided with a first magnetic adjustment slot 12, which is provided in communication with or spaced from the first mounting section 111.
  • This design is especially suitable for the case where the permanent magnet 20 is a neodymium iron boron magnetic steel, which is convenient for improving the air gap magnetic density sine.
  • the thicknesses of the first permanent magnet 21 and the second permanent magnet 22 may be the same, and the demagnetization resistance of the permanent magnet 20 does not significantly decrease.
  • a motor rotor is provided.
  • the structure of the motor rotor in this embodiment is basically the same as the structure of the motor rotor in the first embodiment. The difference is that
  • the outer edge of the rotor core 10 is provided with a second magnetic adjustment slot 13 and a third magnetic adjustment slot 14, the second magnetic adjustment slot 13 is vertically communicated with the first mounting section 111, the second magnetic adjustment slot 13
  • a third magneto-tuning slot 14 is provided at both ends, and there is a predetermined distance between the third magneto-tuning slot 14 and the second magneto-tuning slot 13, this design is especially suitable for the case where the permanent magnet 20 is a NdFeB permanent magnet , To facilitate the improvement of the air gap magnetic density sine.
  • the thicknesses of the first permanent magnet 21 and the second permanent magnet 22 may be the same, and the demagnetization resistance of the permanent magnet 20 does not significantly decrease.
  • both ends of the second magnetic adjustment slot 13 have protrusions protruding from the first mounting section 111, and the width of the protrusion is d7, and the length of d7 is 2 of the thickness of the first permanent magnet 21 To 3 times.
  • the width between the second magnetic adjustment slot 13 and the third magnetic adjustment slot 14 is d6, and the width of d6 is smaller than the thickness of the first permanent magnet 21.
  • the widths of the second and third magnetization slots 13 and 14 in the radial direction of the rotor core 10 are both d5, and d5 is smaller than the thickness of the first permanent magnet 21.
  • the second magnetic modulation slot 13 and the third magnetic modulation slot 14 help to improve the sinusoidalization of the air gap back EMF and increase the torque density.
  • the solution of the motor rotor of this application can increase the torque density by more than 30%.
  • This structure is equally applicable to permanent magnets of different materials, the difference is that the angle and minimum spacing will be different. This gap is mainly for better use of permanent magnets and better utilization of permanent magnets.
  • the design of the structure of the present application, the rotor shaft hole and the shaft make the wall thickness more sufficient, and the structural strength can be better guaranteed.
  • the traditional solution shown in FIG. 5 has magnetic isolation on the rotor core 8 due to its magnetic isolation requirements.
  • the bridge 2, magnetic isolation air gap 3, 3 ' is relatively weak, which is not conducive to the design of rotor structural strength and shaft clamping force.
  • a compressor including a motor, and the motor is the above-mentioned motor.
  • a heat pump system including a compressor, and the compressor is the aforementioned compressor.
  • the surface area of the permanent magnets in the inverted N-shaped mounting groove of this application has been significantly improved compared to the structure surface area of the conventional trapezoidal magnet, rectangular magnet and inverted trapezoidal magnet, which can significantly improve the magnetic concentrating ability of the motor rotor, and thus improve
  • the torque density of the motor rotor is especially suitable for improving the magnetic concentration of the motor rotor with few pole pairs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

一种电机转子、电机、压缩机及热泵系统。电机转子包括转子铁芯(10)和永磁体(20),转子铁芯(10)的周向上设置有多个倒N形安装槽(11),各个倒N形安装槽(11)的延伸方向上设置有多块永磁体(20)。相对于传统切向式永磁同步电机中采用梯形磁石、矩形磁石以及倒梯形磁石的结构而言,该电机中采用倒N形安装槽来安装永磁体(20),并将永磁体(20)分成多块安装在倒N形安装槽(11)内,能够减小永磁体(20)的厚度,降低永磁体(20)的充磁难度。此外,该倒N形安装槽(11)内的永磁体(20)的表面积相对于以往的梯形磁石、矩形磁石以及倒梯形磁石的结构表面积明显得到了提升,能够显著提升电机转子的聚磁能力,进而提升电机转子的转矩密度,尤其适用于提升极对数少的电机转子的聚磁能力。

Description

电机转子、电机、压缩机及热泵系统
本申请要求于2018年11月7日提交至中国国家知识产权局、申请号为201811320639.2、发明名称为“电机转子、电机、压缩机及热泵系统”的专利申请的优先权。
技术领域
本申请涉及驱动装置技术领域,具体而言,涉及一种电机转子、电机、压缩机及热泵系统。
背景技术
切向式转子结构的永磁同步电机具备“聚磁效应”,转矩密度典型的大于一般机型,尤其是在极对数较多的场合。而在电机极数较少的情况时,还采用传统的切向式转子结构,电机的“聚磁效应”显著下降。
铁氧体材质的切向式电机极对数低于四对极时,切向式永磁同步电机的出力能力就与一般结构的永磁同步电机无异了。
而钕铁硼材质的切向式电机,极对数低于三对极时,“聚磁效应”就很差了。
传统的切向式永磁同步电机,例如梯形磁石、矩形磁石、倒梯形磁石结构,在极对数较低的场合应用时,存在磁石厚度很大,充磁难度大,磁石利用率低,聚磁能力差,且转子的结构强度受到很大的限制。
发明内容
本申请的主要目的在于提供一种电机转子、电机、压缩机及热泵系统,以解决现有技术中的切向式永磁同步电机的充磁难度大,聚磁能力差的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种电机转子,包括转子铁芯和永磁体,转子铁芯的周向上设置有多个倒N形安装槽,各个倒N形安装槽的延伸方向上设置有多块永磁体。
进一步地,倒N形安装槽包括依次连接的第一安装段、第二安装段以及第三安装段;多块永磁体包括第一永磁体、第二永磁体以及第三永磁体,第一永磁体安装在第一安装段内,第二永磁体安装在第二安装段内,第三永磁体安装在第三安装段内。
进一步地,第一永磁体的厚度d4大于或等于第二永磁体的厚度d3。
进一步地,第一永磁体的厚度d4是第二永磁体的厚度d3的1.3至1.6倍。
进一步地,第二永磁体和第三永磁体的厚度均不小于1mm。
进一步地,第二永磁体和第三永磁体的厚度均不小于3mm。
进一步地,第二永磁体的长度小于第三永磁体的长度。
进一步地,在同一个倒N形安装槽内,第一永磁体和第二永磁体之间具有第一隔磁气隙,第二永磁体和第三永磁体之间具有第二隔磁气隙。
进一步地,在同一个倒N形安装槽内,第一永磁体和第二永磁体之间的最小距离为d2,第二永磁体和第三永磁体之前的最小距离为d1,其中,d1>2mm,d2>1mm。
进一步地,在同一个倒N形安装槽内,第一永磁体和第二永磁体之间的夹角为c3,第二永磁体和第三永磁体之间的夹角为c1;在相邻两个倒N形安装槽内,相靠近的第一永磁体和第三永磁体之前的夹角为c2;其中,c1>15°,c2>15°,c3>15°。
进一步地,在同一个倒N形安装槽内,第一永磁体远离电机转子的中心的一端与第一安装段远离电机转子的中心的端部之间具有第三隔磁气隙。
进一步地,第一安装段与转子铁芯的外边缘之间具有第一隔磁桥。
进一步地,在同一个倒N形安装槽内,第三永磁体靠近电机转子的中心的一端与第三安装段靠近电机转子的中心的端部之间具有第四隔磁气隙。
进一步地,在相邻两个倒N形安装槽中,相靠近的第一安装段与第三安装段之间设置有第二隔磁桥。
进一步地,转子铁芯的外边缘设置有第一调磁槽,第一调磁槽与第一安装段连通设置或者间隔设置。
进一步地,转子铁芯的外边缘设置有第二调磁槽和第三调磁槽,第二调磁槽与第一安装段垂直连通,第二调磁槽的两端均设置有一个第三调磁槽,且第三调磁槽与第二调磁槽之间具有预定距离。
进一步地,第二调磁槽的两端均具有凸出于第一安装段的凸出部,凸出部的宽度为d7,d7的长度是第一永磁体的厚度的2至3倍;第二调磁槽和第三调磁槽之间的预定距离为d6,d6的宽度小于第一永磁体的厚度;第二调磁槽和第三调磁槽沿转子铁芯的径向上的宽度均为d5,d5小于第一永磁体的厚度。
进一步地,永磁体为铁氧体磁钢或者钕铁硼磁钢。
进一步地,电机转子的极对数为2至4。
进一步地,相邻两块永磁体的充磁方向相反。
进一步地,转子铁芯为圆柱形转子铁芯,转子铁芯的外周设置有多个切边,切边占转子铁芯的外周的圆弧边的比例为28%±5%。
根据本申请的另一方面,提供了一种电机,包括电机转子,电机转子为上述的电机转子。
根据本申请的第三方面,提供了一种压缩机,包括电机,电机为上述的电机。
根据本申请的第四方面,提供了一种热泵系统,包括压缩机,压缩机为上述的压缩机。
应用本申请的技术方案,相对于传统切向式永磁同步电机中采用梯形磁石、矩形磁石以及倒梯形磁石的结构而言,本申请中采用倒N形安装槽来安装永磁体,并将永磁体分成多块安装在倒N形安装槽内,能够减小永磁体的厚度,降低永磁体的充磁难度。此外,本申请中的倒N形安装槽内的永磁体的表面积相对于以往的梯形磁石、矩形磁石以及倒梯形磁石的结构表面积明显得到了提升,能够显著提升电机转子的聚磁能力,进而提升电机转子的转矩密度,尤其适用于提升极对数少的电机转子的聚磁能力。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示意性示出了本申请的电机转子的第一实施例的主视图;
图2示意性示出了本申请的电机转子的第一实施例的充磁方向标示图;
图3示意性示出了本申请的电机转子的第二实施例中的转子铁芯的主视图;
图4示意性示出了本申请的电机转子的第三实施例中的转子铁芯的主视图;
图5示意性示出了传统的切向式永磁同步电机的电机转子的主视图。
其中,上述附图包括以下附图标记:
10、转子铁芯;11、倒N形安装槽;111、第一安装段;112、第二安装段;113、第三安装段;12、第一调磁槽;13、第二调磁槽;14、第三调磁槽;15、切边;16、圆弧边;17、转子安装孔;20、永磁体;21、第一永磁体;22、第二永磁体;23、第三永磁体;30、第二隔磁气隙;40、第三隔磁气隙;50、第一隔磁桥;60、第四隔磁气隙;70、第二隔磁桥;80、第一隔磁气隙;1、倒梯形磁石;2、隔磁桥;8、转子铁芯。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
参见图1至图4所示,根据本申请的实施例,提供了一种电机,本实施例中的电机尤其指切向式转子永磁同步电机。
本实施例中的电机包括电机转子,参见图1所示,在本申请的第一实施例中,电机转子包括转子铁芯10和永磁体20,转子铁芯10的周向上设置有多个倒N形安装槽11,各个倒N形安装槽11的延伸方向上设置有多块永磁体20。
相对于传统切向式永磁同步电机中采用梯形磁石、矩形磁石以及倒梯形磁石(图5中的标号1)的结构而言,本实施例中采用倒N形安装槽11来安装永磁体20,并将永磁体20分成多块安装在倒N形安装槽11内,能够减小永磁体20的厚度,降低永磁体20的充磁难度。此外,本实施例中的倒N形安装槽11内的永磁体20的表面积相对于以往的梯形磁石、矩形磁石以及倒梯形磁石的结构表面积明显得到了提升,能够显著提升电机转子的聚磁能力,进而提升电机转子的转矩密度,尤其适用于提升极对数少的电机转子的聚磁能力。
优选地,本实施例中的电机转子的极对数为2至4。
参见图1和图2所示,本实施例中的倒N形安装槽11包括依次连接的第一安装段111、第二安装段112以及第三安装段113;对应地,上述的多块永磁体20包括第一永磁体21、第二永磁体22以及第三永磁体23,安装时,将第一永磁体21安装在第一安装段111内,将第二永磁体22安装在第二安装段112内,将第三永磁体23安装在第三安装段113内。
当然,在本申请的其他实施例中,还可以将永磁体20设置为两块或至三块以上,只要是在本申请的构思下的其他变形方式,均在本申请的保护范围之内。
具体设计时,本实施例中的第一永磁体21的厚度d4大于第二永磁体22的厚度d3,这时的永磁体20尤其适用于利用铁氧体磁钢来设计。
优选地,第一永磁体21的厚度d4是第二永磁体22的厚度d3的1.3至1.6倍,例如1.4倍、1.5倍。第二永磁体22的厚度d3和第三永磁体23的厚度均不小于3mm。
本实施例中的第一永磁体21的厚度大于第二永磁体22的厚度,有利于改善气隙磁密正弦和抗退磁能力。
本实施例中的永磁体20还可以是钕铁硼磁钢,此时,第二永磁体22和第三永磁体23的厚度均不小于1mm。实际设置时,由于空间的限制,第二永磁体22厚度不宜过大,一方面是便于有效利用率,一方面是便于提升抗退磁能力。
再次参见图1和图2所示,本实施例中的第二永磁体22的长度小于第三永磁体23的长度。需要说明的是,这种设计要求与电机转子的旋转方向相关,当第二永磁体22的长度小于第三永磁体23的长度时,电机转子的旋转方向为逆时针旋转,此时,左边会出现去磁,右边会出现增磁,有利于改善负载的反电势正旋度。
优选地,在同一个倒N形安装槽11内,第一永磁体21和第二永磁体22之间具有第一隔磁气隙80,第二永磁体22和第三永磁体23之间具有第二隔磁气隙30,在保证结构强度的同时,降低永磁体漏磁,提升永磁体的利用率。
第一永磁体21和第二永磁体22之间的最小距离为d2,第二永磁体22和第三永磁体23之前的最小距离为d1,其中,d1>2mm,d2>1mm。第一永磁体21和第二永磁体22之间的夹角为c3,第二永磁体22和第三永磁体23之间的夹角为c1,在相邻两个倒N形安装槽11内,第一永磁体21和第三永磁体23之间的夹角为c2,其中,c1>15°,c3>15°,c2>15°。通过上述的设计,能够提升第二永磁体22的表征磁特性,提升抗退磁能力。第一永磁体21与第二永磁体22和第三永磁体23之间的夹角也不宜过小,如果较小,三个永磁体表征磁性能下降,不利于退磁能力,可见,本申请能够保证退磁能力的同时提升。
优选地,在同一个倒N形安装槽11内,第一永磁体21远离电机转子中心的一端与第一安装段111远离电机转子中心的端部之间具有第三隔磁气隙40。第一安装段111与转子铁芯10外边缘之间具有第一隔磁桥50。这种设计特别适用于逆时针旋转的电机转子,便于改善气隙磁密正弦。
优选地,在同一个倒N形安装槽11内,第三永磁体23靠近电机转子中心的一端与第三安装段113靠近电机转子中心的端部之间具有第四隔磁气隙60。在相邻两个倒N形安装槽11中,第一个倒N形安装槽11的第一安装段111与第二个倒N形安装槽11的第三安装段113之间设置有第二隔磁桥70,能够进一步改善电机转子的抗退磁能力。
本实施例中的转子铁芯10为圆柱形转子铁芯,该转子铁芯10的外周设置有多个切边15,其中,切边15占转子铁芯10外周的圆弧边16的比例为28%±5%,有利于转矩输出最佳。
转子铁芯10上还设置有转子安装孔17,便于进行电机的组装。
参见图3所示,根据本申请的第二实施例,提供了一种电机转子,本实施例中的电机转子的结构与第一实施例的电机转子的结构基本一致,所不同的是,本实施例中的转子铁芯10的外边缘设置有第一调磁槽12,第一调磁槽12与第一安装段111连通设置或者间隔设置。这种设计尤其适用于永磁体20为钕铁硼磁钢的情况,便于改善气隙磁密正弦。在本实施例中,第一永磁体21和第二永磁体22的厚度可以一致,永磁体20的抗退磁能力不会明显下降。
参见图4所示,根据本申请的第三实施例,提供了一种电机转子,本实施例中的电机转子的结构与第一实施例中的电机转子的结构基本一致,所不同的是,本实施例中的转子铁芯10的外边缘设置有第二调磁槽13和第三调磁槽14,第二调磁槽13与第一安装段111垂直连通,第二调磁槽13的两端均设置有一个第三调磁槽14,且第三调磁槽14与第二调磁槽13之间具有预定距离,这种设计尤其适用于永磁体20为钕铁硼永磁体的情况,便于改善气隙磁密正弦。在本实施例中,第一永磁体21和第二永磁体22的厚度可以一致,永磁体20的抗退磁能力不会明显下降。
实际设置时,第二调磁槽13的两端均具有凸出于第一安装段111的凸出部,该凸出部的宽度为d7,d7的长度是第一永磁体21的厚度的2至3倍。第二调磁槽13和第三调磁槽14之间的宽度为d6,d6的宽度小于第一永磁体21的厚度。第二调磁槽13和第三调磁槽14沿转子铁芯10的径向上的宽度均为d5,d5小于第一永磁体21的厚度。第二调磁槽13和第三调磁槽14有助于改善气隙反电势正弦化,增大转矩密度。
通过软件仿真对比,本申请的电机转子的方案相比图5中的传统结构而言,转矩密度提升能够超过30%。
该结构同等的适用于不同材质的永磁体场合,不同的是角度、最小间距会有差距。该差距主要是为了更好的利用永磁体,更好的发挥永磁体利用率。
本申请的结构的设计,转子轴孔与轴配合使得壁厚较为充足,结构强度能较好的保证,而图5所示传统方案,由于其隔磁的要求,转子铁芯8上的隔磁桥2、隔磁气隙3、3’较为薄弱,不利于转子结构强度和轴抱紧力设计。
根据本申请的另一方面,提供了一种压缩机,包括电机,电机为上述的电机。
根据本申请的再一方面,提供了一种热泵系统,包括压缩机,压缩机为上述的压缩机。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:相对于传统切向式永磁同步电机中采用梯形磁石、矩形磁石以及倒梯形磁石的结构而言,本申请中采用倒N形安装槽来安装永磁体,并将永磁体分成多块安装在倒N形安装槽内,能够减小永磁体的厚度,降低永磁体的充磁难度。此外,本申请中的倒N形安装槽内的永磁体的表面积相对于以往的梯形磁石、矩形磁石以及倒梯形磁石的结构表面积明显得到了提升,能够显著提升电机转子的聚磁能力,进而提升电机转子的转矩密度,尤其适用于提升极对数少的电机转子的聚磁能力。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、 产品或设备固有的其它步骤或单元。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (23)

  1. 一种电机转子,其特征在于,包括转子铁芯(10)和永磁体(20),所述转子铁芯(10)的周向上设置有多个倒N形安装槽(11),各个所述倒N形安装槽(11)的延伸方向上设置有多块所述永磁体(20)。
  2. 根据权利要求1所述的电机转子,其特征在于,所述倒N形安装槽(11)包括依次连接的第一安装段(111)、第二安装段(112)以及第三安装段(113);
    多块所述永磁体(20)包括第一永磁体(21)、第二永磁体(22)以及第三永磁体(23),所述第一永磁体(21)安装在所述第一安装段(111)内,所述第二永磁体(22)安装在所述第二安装段(112)内,所述第三永磁体(23)安装在所述第三安装段(113)内。
  3. 根据权利要求2所述的电机转子,其特征在于,所述第一永磁体(21)的厚度d4大于或等于所述第二永磁体(22)的厚度d3。
  4. 根据权利要求3所述的电机转子,其特征在于,所述第一永磁体(21)的厚度d4是所述第二永磁体(22)的厚度d3的1.3至1.6倍。
  5. 根据权利要求3所述的电机转子,其特征在于,所述第二永磁体(22)和所述第三永磁体(23)的厚度均不小于1mm。
  6. 根据权利要求5所述的电机转子,其特征在于,所述第二永磁体(22)和所述第三永磁体(23)的厚度均不小于3mm。
  7. 根据权利要求2所述的电机转子,其特征在于,所述第二永磁体(22)的长度小于所述第三永磁体(23)的长度。
  8. 根据权利要求2所述的电机转子,其特征在于,在同一个所述倒N形安装槽(11)内,所述第一永磁体(21)和所述第二永磁体(22)之间具有第一隔磁气隙(80),所述第二永磁体(22)和所述第三永磁体(23)之间具有第二隔磁气隙(30)。
  9. 根据权利要求2所述的电机转子,其特征在于,在同一个所述倒N形安装槽(11)内,所述第一永磁体(21)和所述第二永磁体(22)之间的最小距离为d2,所述第二永磁体(22)和所述第三永磁体(23)之前的最小距离为d1,其中,d1>2mm,d2>1mm。
  10. 根据权利要求2所述的电机转子,其特征在于,在同一个所述倒N形安装槽(11)内,所述第一永磁体(21)和所述第二永磁体(22)之间的夹角为c3,所述第二永磁体(22)和所述第三永磁体(23)之间的夹角为c1;
    在相邻两个所述倒N形安装槽(11)内,相靠近的所述第一永磁体(21)和所述第三永磁体(23)之前的夹角为c2;
    其中,c1>15°,c2>15°,c3>15°。
  11. 根据权利要求2所述的电机转子,其特征在于,在同一个所述倒N形安装槽(11)内,所述第一永磁体(21)远离所述电机转子的中心的一端与所述第一安装段(111)远离所述电机转子的中心的端部之间具有第三隔磁气隙(40)。
  12. 根据权利要求2所述的电机转子,其特征在于,所述第一安装段(111)与所述转子铁芯(10)的外边缘之间具有第一隔磁桥(50)。
  13. 根据权利要求2所述的电机转子,其特征在于,在同一个所述倒N形安装槽(11)内,所述第三永磁体(23)靠近所述电机转子的中心的一端与所述第三安装段(113)靠近所述电机转子的中心的端部之间具有第四隔磁气隙(60)。
  14. 根据权利要求2所述的电机转子,其特征在于,在相邻两个所述倒N形安装槽(11)中,相靠近的所述第一安装段(111)与所述第三安装段(113)之间设置有第二隔磁桥(70)。
  15. 根据权利要求2所述的电机转子,其特征在于,所述转子铁芯(10)的外边缘设置有第一调磁槽(12),所述第一调磁槽(12)与所述第一安装段(111)连通设置或者间隔设置。
  16. 根据权利要求2所述的电机转子,其特征在于,所述转子铁芯(10)的外边缘设置有第二调磁槽(13)和第三调磁槽(14),所述第二调磁槽(13)与所述第一安装段(111)垂直连通,所述第二调磁槽(13)的两端均设置有一个所述第三调磁槽(14),且所述第三调磁槽(14)与所述第二调磁槽(13)之间具有预定距离。
  17. 根据权利要求16所述的电机转子,其特征在于,所述第二调磁槽(13)的两端均具有凸出于所述第一安装段(111)的凸出部,所述凸出部的宽度为d7,d7的长度是所述第一永磁体(21)的厚度的2至3倍;
    所述第二调磁槽(13)和所述第三调磁槽(14)之间的预定距离为d6,d6的宽度小于所述第一永磁体(21)的厚度;
    所述第二调磁槽(13)和第三调磁槽(14)沿所述转子铁芯(10)的径向上的宽度均为d5,d5小于所述第一永磁体(21)的厚度。
  18. 根据权利要求1至17中任一项所述的电机转子,其特征在于,所述永磁体(20)为铁氧体磁钢或者钕铁硼磁钢。
  19. 根据权利要求1至17中任一项所述的电机转子,其特征在于,相邻两块所述永磁体(20)的充磁方向相反。
  20. 根据权利要求1至17中任一项所述的电机转子,其特征在于,所述转子铁芯(10)为圆柱形转子铁芯,所述转子铁芯(10)的外周设置有多个切边(15),所述切边(15)占所述转子铁芯(10)的外周的圆弧边(16)的比例为28%±5%。
  21. 一种电机,包括电机转子,其特征在于,所述电机转子为权利要求1至20中任一项所述的电机转子。
  22. 一种压缩机,包括电机,其特征在于,所述电机为权利要求21中的电机。
  23. 一种热泵系统,包括压缩机,其特征在于,所述压缩机为权利要求22中的压缩机。
PCT/CN2019/106761 2018-11-07 2019-09-19 电机转子、电机、压缩机及热泵系统 WO2020093795A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811320639.2A CN109217513B (zh) 2018-11-07 2018-11-07 电机转子、电机、压缩机及热泵系统
CN201811320639.2 2018-11-07

Publications (1)

Publication Number Publication Date
WO2020093795A1 true WO2020093795A1 (zh) 2020-05-14

Family

ID=64994737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106761 WO2020093795A1 (zh) 2018-11-07 2019-09-19 电机转子、电机、压缩机及热泵系统

Country Status (2)

Country Link
CN (1) CN109217513B (zh)
WO (1) WO2020093795A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2609865A (en) * 2021-12-31 2023-02-15 Univ Jiangsu High-performance permanent magnet motor with controllable magnetic field in variable operating conditions, and flux orientation design method and leakage flux

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217513B (zh) * 2018-11-07 2023-10-27 珠海格力节能环保制冷技术研究中心有限公司 电机转子、电机、压缩机及热泵系统
CN110912304B (zh) * 2019-10-25 2021-11-30 珠海格力节能环保制冷技术研究中心有限公司 电机转子、电机、压缩机和空调器
CN112531938B (zh) * 2020-11-26 2022-04-15 珠海格力电器股份有限公司 转子铁芯、转子、电机、压缩机及空调器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090115280A1 (en) * 2007-02-13 2009-05-07 Asmo Co., Ltd. Embedded magnet type motor
CN201294443Y (zh) * 2008-12-01 2009-08-19 东元总合科技(杭州)有限公司 永磁自启动同步电机转子
CN101699714A (zh) * 2009-10-30 2010-04-28 无锡新大力电机有限公司 内置式w型安装和鼠笼型相结合永磁电机结构
JP2014103741A (ja) * 2012-11-19 2014-06-05 Jtekt Corp 磁石埋込型ロータ
CN109217513A (zh) * 2018-11-07 2019-01-15 珠海格力节能环保制冷技术研究中心有限公司 电机转子、电机、压缩机及热泵系统
CN208923938U (zh) * 2018-11-07 2019-05-31 珠海格力节能环保制冷技术研究中心有限公司 电机转子、电机、压缩机及热泵系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008391A (ja) * 1999-06-15 2001-01-12 Toyota Motor Corp 回転電機
CN102420475A (zh) * 2010-09-27 2012-04-18 天津市松正电动科技有限公司 一种永磁同步电机
CN102664474B (zh) * 2012-04-26 2014-05-07 张学义 双径向永磁复合磁路发电机
WO2016115722A1 (zh) * 2015-01-23 2016-07-28 浙江迈雷科技有限公司 一种永磁同步电机
CN106300730B (zh) * 2015-06-08 2019-01-01 珠海格力节能环保制冷技术研究中心有限公司 电机转子及具有其的电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090115280A1 (en) * 2007-02-13 2009-05-07 Asmo Co., Ltd. Embedded magnet type motor
CN201294443Y (zh) * 2008-12-01 2009-08-19 东元总合科技(杭州)有限公司 永磁自启动同步电机转子
CN101699714A (zh) * 2009-10-30 2010-04-28 无锡新大力电机有限公司 内置式w型安装和鼠笼型相结合永磁电机结构
JP2014103741A (ja) * 2012-11-19 2014-06-05 Jtekt Corp 磁石埋込型ロータ
CN109217513A (zh) * 2018-11-07 2019-01-15 珠海格力节能环保制冷技术研究中心有限公司 电机转子、电机、压缩机及热泵系统
CN208923938U (zh) * 2018-11-07 2019-05-31 珠海格力节能环保制冷技术研究中心有限公司 电机转子、电机、压缩机及热泵系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2609865A (en) * 2021-12-31 2023-02-15 Univ Jiangsu High-performance permanent magnet motor with controllable magnetic field in variable operating conditions, and flux orientation design method and leakage flux

Also Published As

Publication number Publication date
CN109217513B (zh) 2023-10-27
CN109217513A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
WO2020093795A1 (zh) 电机转子、电机、压缩机及热泵系统
WO2017118090A1 (zh) 永磁转子及永磁电机
WO2016192581A1 (zh) 永磁电机转子及永磁同步电机
WO2013020313A1 (zh) 电动机转子及具有其的电动机
WO2020034514A1 (zh) 转子组件及交替极电机
WO2019119971A1 (zh) 电机转子和永磁电机
WO2013020312A1 (zh) 电动机转子及具有其的电动机
CN203911704U (zh) 电机及具有其的压缩机
WO2013013435A1 (zh) 永磁同步电机
WO2020253191A1 (zh) 自起动同步磁阻电机转子结构、电机及压缩机
WO2020015302A1 (zh) 交替极电机
WO2020125066A1 (zh) 切向电机、电机转子及转子铁芯
WO2023138051A1 (zh) 转子盘、轴向磁场电机转子及制作方法
WO2016179841A1 (zh) 旋转电机的转子、永磁电动机、压缩机、空调系统
CN110601481A (zh) 一种双转子永磁同步磁阻电机及配置方法
WO2014192683A1 (ja) 永久磁石を用いた回転電機
WO2019119972A1 (zh) 电机转子和永磁电机
CN204992838U (zh) 单相永磁电机
EP4009494B1 (en) Rotor assembly and consequent-pole motor
WO2021036460A1 (zh) 永磁同步电机转子及具有其的压缩机
CN210350986U (zh) 一种双转子永磁同步磁阻电机
WO2020253196A1 (zh) 直接起动同步磁阻电机转子结构、电机及压缩机
CN111030402B (zh) 方向性硅钢片轴向磁场电动机
US20030020355A1 (en) Pole plate structure for a motor stator
WO2020029506A1 (zh) 电机转子和永磁电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882212

Country of ref document: EP

Kind code of ref document: A1