WO2021036460A1 - 永磁同步电机转子及具有其的压缩机 - Google Patents
永磁同步电机转子及具有其的压缩机 Download PDFInfo
- Publication number
- WO2021036460A1 WO2021036460A1 PCT/CN2020/098422 CN2020098422W WO2021036460A1 WO 2021036460 A1 WO2021036460 A1 WO 2021036460A1 CN 2020098422 W CN2020098422 W CN 2020098422W WO 2021036460 A1 WO2021036460 A1 WO 2021036460A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- permanent magnet
- component section
- thickness
- side wall
- shaft hole
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
- H02K1/2766—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/28—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/14—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
Definitions
- This application relates to the technical field of compressor equipment, and in particular to a permanent magnet synchronous motor rotor and a compressor having the same.
- the tangential permanent magnet synchronous motor has a "magnetization" effect.
- the use of permanent magnets with low remanence can also obtain a larger air gap magnetic density, so that the motor has a larger torque-to-current ratio and torque-to-volume ratio. It has been used more and more in servo systems, electric traction, office automation, household appliances and other occasions.
- the magnetic circuit is in a parallel structure, which makes the operating point of the rotor permanent magnet lower than that of the radial permanent magnet synchronous motor, which is easy to cause tangency.
- the efficiency of the tangential permanent magnet synchronous motor decreases, and there is a risk of demagnetization in the tangential permanent magnet synchronous motor under harsh environments, making the tangential permanent magnet synchronous motor unable to operate.
- the tangential permanent magnet motor used in the current technology can improve the anti-demagnetization ability of the motor, the motor efficiency and demagnetization ability are still low.
- the main purpose of this application is to provide a permanent magnet synchronous motor rotor and a compressor with the same, so as to solve the problem of low efficiency of the motor in the prior art.
- a permanent magnet synchronous motor rotor comprising: a rotor body, a plurality of permanent magnet slots are provided in the circumferential direction of the rotor body, and magnetic poles are arranged between adjacent permanent magnet slots.
- the permanent magnet is set in the permanent magnet slot, the first end of the permanent magnet is set toward the side of the shaft hole of the rotor body, the second end of the permanent magnet extends toward the outer edge of the rotor body, and the first end of the permanent magnet
- H1 The thickness of one end in the circumferential direction of the rotor body
- L1 the length at the midpoint of the end of the first end of the permanent magnet extending in the circumferential direction of the rotor body to the center line of the adjacent magnetic pole
- the thickness of the second end of the permanent magnet along the circumferential direction of the rotor body is H2, and the midpoint of the end of the second end of the permanent magnet extends along the circumference of the rotor body to the length of the adjacent magnetic pole centerline. Is L2, where
- the radius of the rotor body is Rr
- the length of the permanent magnet in the radial direction of the rotor body is L3, where 0.45*Rr ⁇ L3 ⁇ 0.7*Rr.
- the thickness from the first end of the permanent magnet to the second end of the permanent magnet is gradually increased.
- the permanent magnet includes a plurality of constituent sections, the plurality of constituent sections are sequentially arranged along the radial direction of the rotor body, and the thickness of at least one constituent section of the plurality of constituent sections is different from the thickness of the remaining constituent sections.
- the multiple component sections include: a first component section, the first component section is arranged near the side of the shaft hole; a second component section, the second component section is located outside the first component section.
- the thickness of the end of the first component section facing the shaft hole is greater than the thickness of the end of the first component section away from the shaft hole, and the thickness of the end of the second component section facing the shaft hole is smaller than the thickness of the end of the second component section away from the shaft hole .
- the thickness of the end of the first component section away from the shaft hole is C
- the thickness of the end of the first component section facing the shaft hole is H1
- the first component section along the rotor The length of the body in the radial direction is D
- the total length of the first component section and the second component section in the radial direction of the rotor body is L3, where 0.2*L3 ⁇ D ⁇ 0.6*L3.
- the thickness of the end of the first component section away from the shaft hole is C
- the thickness of the end of the first component section facing the shaft hole is H1 where 0.7*H1 ⁇ C ⁇ 0.95*H1, or the edge of the first component section
- the length of the rotor body in the radial direction is D
- the total length of the first component section and the second component section in the radial direction of the rotor body is L3, where 0.2*L3 ⁇ D ⁇ 0.6*L3.
- the thickness of the end of the second component section facing the shaft hole is greater than or equal to the thickness of the end of the first component section away from the shaft hole.
- the thickness of the end of the first component section facing the shaft hole is less than the thickness of the end of the first component section away from the shaft hole, and the thickness of the end of the second component section facing the shaft hole is less than or equal to the end of the second component section away from the shaft hole thickness of.
- the thickness of the end of the first component section away from the shaft hole is E
- the thickness of the end of the second component section facing the shaft hole is F, where 1.35 ⁇ E/F ⁇ 1.2.
- the multiple component sections further include: a third component section, the third component section is located outside the second component section, and the thickness of the first component section toward the shaft hole is smaller than the thickness of the first component section away from the shaft hole.
- the thickness of the end of the second component section facing the shaft hole is the same as the thickness of the end of the second component section away from the shaft hole, and the thickness of the end of the third component section facing the shaft hole is smaller than the thickness of the end of the third component section away from the shaft hole.
- the thickness of the end of the first component section facing the shaft hole is H1
- the thickness of the second component section is G, where 1.2 ⁇ G/H1 ⁇ 1.
- the long side direction of the first component section has a first side wall and a second side wall disposed opposite to the first side wall
- the long side direction of the second component section has a third side wall and is opposite to the third side wall.
- a fourth side wall is provided, the third side wall is located on the same side as the first component section, the second side wall is located on the same side as the fourth side wall, and the extension line of the third side wall is connected to the first side wall and the first component section
- the extension line of the first end of and the first end of the first component section encloses two triangles with the same area.
- the long side direction of the first component section has a first side wall and a second side wall disposed opposite to the first side wall
- the long side direction of the third component section has a fifth side wall and a fifth side wall opposite to the fifth side wall.
- the fifth side wall is located on the same side as the first side wall
- the sixth side wall is located on the same side as the second side wall
- the extension line of the fifth side wall is on the same side as the first end of the first component section.
- the ends are connected, the extension line of the fifth side wall and the first side wall, and the extension line of the end of the second end of the first component section are enclosed to form a first triangle
- the extension line of the fifth side wall is connected with the second component section.
- a second triangle is enclosed between the side wall of the side wall and the end of the first end of the third component section, and the area of the first triangle is the same as the area of the second triangle.
- a compressor including a permanent magnet synchronous motor rotor, and the permanent magnet synchronous motor rotor is the above-mentioned permanent magnet synchronous motor rotor.
- this arrangement can reasonably arrange the positional relationship between the permanent magnet and the magnetic pole center line of the rotor core.
- the permanent magnet synchronous motor rotor structure adopting this structure can effectively improve the rotation of the motor with the rotor structure. Torque, improve the efficiency of the motor, increase the price of the motor, and improve the ability of the motor to resist demagnetization.
- Fig. 1 shows a schematic structural diagram of a first embodiment of a rotor of a permanent magnet synchronous motor according to the present application
- Fig. 2 shows a schematic structural diagram of a second embodiment of a permanent magnet synchronous motor rotor according to the present application
- Fig. 3 shows a schematic structural diagram of a third embodiment of a permanent magnet synchronous motor rotor according to the present application
- Fig. 4 shows a schematic structural diagram of a fourth embodiment of a permanent magnet synchronous motor rotor according to the present application
- Fig. 5 shows a schematic structural diagram of a fifth embodiment of a permanent magnet synchronous motor rotor according to the present application
- Fig. 6 shows a schematic structural diagram of a sixth embodiment of a permanent magnet synchronous motor rotor according to the present application
- Fig. 7 shows a schematic structural diagram of a seventh embodiment of a permanent magnet synchronous motor rotor according to the present application
- FIG. 8 shows a schematic diagram of the relationship between the motor efficiency and (H1/2)/L1 of the motor according to the present application
- Figure 9 shows a schematic diagram of the relationship between the motor torque and L3/Rr according to the present application.
- FIG. 10 shows a schematic diagram of the relationship between the motor efficiency and (H2/2)/L2 of the motor according to the present application
- Figure 11 shows a schematic diagram of the demagnetization current improvement effect according to the present application.
- Fig. 12 shows a schematic structural diagram of an embodiment of a motor according to the present application.
- the first component section 311, the first side wall; 312, the second side wall;
- Non-magnetic ferrule 50. Stator.
- a permanent magnet synchronous motor rotor is provided.
- the permanent magnet synchronous motor rotor includes a rotor body 10 and a permanent magnet 20.
- a plurality of permanent magnet slots 11 are opened in the circumferential direction of the rotor body 10.
- the adjacent permanent magnet slots 11 have magnetic pole center lines between them.
- the permanent magnet 20 is arranged in the permanent magnet slot 11, the first end of the permanent magnet 20 is set toward the side of the shaft hole 12 of the rotor body 10, the second end of the permanent magnet 20 is extended toward the outer edge of the rotor body 10, and the permanent magnet 20
- the thickness of the first end of the permanent magnet 20 along the circumferential direction of the rotor body 10 is H1
- the length at the midpoint of the end of the first end of the permanent magnet 20 along the circumferential direction of the rotor body 10 to the centerline of the adjacent magnetic pole is L1, where
- this arrangement can reasonably arrange the positional relationship between the first end of the permanent magnet and the magnetic pole center line Q of the rotor core.
- the permanent magnet synchronous motor rotor structure adopting this structure can effectively improve the structure of the rotor.
- the structure of the motor torque improves the efficiency of the motor, improves the price of the motor, and improves the ability of the motor to resist demagnetization.
- the thickness of the second end of the permanent magnet 20 in the circumferential direction of the rotor body 10 is H2, and the midpoint of the end of the second end of the permanent magnet 20 extends to the center of the adjacent magnetic pole along the circumferential direction of the rotor body 10
- the length of the line is L2, where, This arrangement can reasonably arrange the positional relationship between the second end of the permanent magnet and the magnetic pole center line Q of the rotor core.
- the permanent magnet synchronous motor rotor structure adopting this structure can effectively improve the torque of the motor with the rotor structure. Improve the efficiency of the motor, improve the cost performance of the motor, and improve the ability of the motor to resist demagnetization.
- the first end of the permanent magnet 20 and the magnetic pole centerline intersect at point A
- the second end of the permanent magnet 20 and the magnetic pole centerline intersect at point B, where point B is located at the edge of the rotor body 10.
- the multiple permanent magnets 20 have the same structure and are evenly arranged in the permanent magnet slot 11 of the rotor body
- the first end of each permanent magnet 20 is connected to the permanent magnet 20.
- the distances between the adjacent magnetic pole center lines Q of the magnets 20 are equal, and the distance from the second end of each permanent magnet 20 to the magnetic pole center line Q adjacent to the permanent magnet 20 is also equal.
- the permanent magnet 20 in the present application adopts tangential magnetization, that is, the motor having the rotor structure of the permanent magnet synchronous motor is a tangential permanent magnet synchronous motor.
- the radius of the rotor body 10 is set to Rr, and the length of the permanent magnet 20 in the radial direction of the rotor body 10 is L3, where 0.45*Rr ⁇ L3 ⁇ 0.7*Rr.
- the thickness from the first end of the permanent magnet 20 to the second end of the permanent magnet 20 is gradually increased.
- the permanent magnet 20 includes a plurality of constituent sections, which are arranged in sequence along the radial direction of the rotor body 10, and the thickness of at least one of the plurality of constituent sections is the same as that of the remaining constituent sections. The thickness is different. This setting can also improve the anti-demagnetization ability of the motor.
- the multiple component segments include a first component segment 31 and a second component segment 32.
- the first component section 31 is arranged near the side of the shaft hole 12.
- the second component section 32 is located outside the first component section 31.
- the thickness of the end of the first component section 31 facing the shaft hole 12 is greater than the thickness of the end of the first component section 31 away from the shaft hole 12, and the thickness of the end of the second component section 32 facing the shaft hole 12 is smaller than that of the second component section 32 away from the shaft.
- the thickness of the hole 12 at one end.
- the thickness of the end of the first component section 31 away from the shaft hole 12 is C
- the thickness of the end of the first component section 31 facing the shaft hole 12 is H1
- the length of the component section 31 in the radial direction of the rotor body 10 is D
- the total length of the first component section 31 and the second component section 32 in the radial direction of the rotor body 10 is L3, where 0.2*L3 ⁇ D ⁇ 0.6*L3.
- the thickness of the end of the second component section 32 facing the shaft hole 12 is greater than or equal to the thickness of the end of the first component section 31 away from the shaft hole 12.
- FIG. 4 shows an embodiment in which the thickness of the end of the second component section 32 facing the shaft hole 12 is equal to the thickness of the end of the first component section 31 away from the shaft hole 12.
- the thickness of the end of the first component section 31 facing the shaft hole 12 is smaller than the thickness of the end of the first component section 31 away from the shaft hole 12, and the thickness of the second component section 32 facing the shaft hole 12
- the thickness of one end is smaller than the thickness of the end of the second component section 32 away from the shaft hole 12.
- the thickness of the end of the first component section 31 away from the shaft hole 12 is E
- the thickness of the end of the second component section 32 facing the shaft hole 12 is F, where 1.35 ⁇ E/F ⁇ 1.2.
- This setting can effectively improve the performance of the motor.
- the second component section 32 can also be set in a manner of equal width, that is, the embodiment shown in FIG. 6.
- the plurality of component segments further includes a third component segment 33.
- the third component section 33 is located outside the second component section 32.
- the thickness of the first component section 31 facing the shaft hole 12 is smaller than the thickness of the first component section 31 far away from the shaft hole 12, and the second component section 32 faces the shaft.
- the thickness of one end of the hole 12 is the same as the thickness of the end of the second component section 32 away from the shaft hole 12, and the thickness of the end of the third component section 33 facing the shaft hole 12 is smaller than the thickness of the end of the third component section 33 away from the shaft hole 12.
- the thickness of the end of the first component section 31 facing the shaft hole 12 is H1, and the thickness of the second component section 32 is G, where 1.2 ⁇ G/H1 ⁇ 1.
- the longitudinal direction of the first component section 31 has a first side wall 311 and a second side wall 312 opposite to the first side wall 311.
- the second component section 32 has a third side wall 321 and a fourth side wall 322 opposite to the third side wall 321 in the longitudinal direction, and the third side wall 321 and the first component section 31 are located on the same side.
- the second side wall 312 and the fourth side wall 322 are located on the same side, the extension of the third side wall 321 and the first side wall 311, the first end of the first component section 31 and the first end of the first component section 31
- the extension line encloses two triangles with the same area, as shown by S1 and S2 in the figure.
- the long side direction of the first component section 31 has a first side wall 311 and a second side wall 312 disposed opposite to the first side wall 311, and the long side direction of the third component section 33 has The fifth side wall 331 and the sixth side wall 332 opposite to the fifth side wall 331 are located on the same side as the first side wall 311.
- the sixth side wall 332 and the second side wall 312 are located on the same side, the extension line of the fifth side wall 331 is connected with the end of the first end of the first component section 31, and the extension line of the fifth side wall 331 is connected to the first end
- the extension line of the side wall 311 and the end of the second end of the first component section 31 is surrounded by a first triangle S3, and the extension line of the fifth side wall 331 is connected with the side wall of the second component section 32 and the extension line of the third component section 33.
- a second triangle S4 is enclosed between the ends of the first end, and the area of the first triangle S3 is the same as the area of the second triangle S4.
- the permanent magnet synchronous motor rotor in the above-mentioned embodiment can also be used in the technical field of electrical equipment, that is, according to another aspect of the present application, a compressor is provided, which includes a permanent magnet synchronous motor rotor, and the permanent magnet synchronous motor rotor is implemented as described above.
- the rotor of the permanent magnet synchronous motor in the example is provided.
- the present application provides a permanent magnet synchronous motor rotor, permanent magnets are evenly distributed on the rotor, including N permanent magnets placed along the radial direction of the rotor, the permanent magnets are tangentially magnetized, and N is an even number greater than or equal to 4.
- Two adjacent permanent magnets have the same polarity and are arranged opposite to each other. Since the two faces of a single permanent magnet provide air-gap magnetic flux at the same time in the tangential permanent magnet synchronous motor, the magnetic circuit is in a parallel structure, which makes the operating point of the rotor permanent magnet lower than that of the radial permanent magnet synchronous motor, which is easy to cause tangency.
- the efficiency of the tangential permanent magnet synchronous motor decreases, and there is a risk of demagnetization in the tangential permanent magnet synchronous motor under harsh environments, making the tangential permanent magnet synchronous motor unable to operate.
- the increase in cost will reduce the cost performance of the motor.
- the position close to the shaft is the inner side of the permanent magnet, and the position close to the outer diameter of the rotor is the inner side of the permanent magnet.
- the permanent magnet has a certain thickness in the circumferential direction of the rotor, and the thickness of the inner side of the permanent magnet is set to H , Make the inner edge line of the permanent magnet extend to the center line of the magnetic pole, the intersection point is A, and the distance between the midpoint of the inner edge line and A is set to L1, when H1 and L1 should satisfy the following relationship: At the same time, it can increase the motor torque, improve the efficiency of the motor, and improve the price of the motor. At the same time, the thickness of the inner side is increased, and the demagnetization ability of the motor is improved.
- the length of the permanent magnet in the radial direction of the rotor is set to L3, and the radius of the rotor is set to Rr.
- the relationship between L3 and Rr should satisfy the following relationship: 0.45*Rr ⁇ L3 ⁇ 0.7*Rr.
- the length of the magnet in the radial direction increases toward the inner side of the rotor, the cross-section that provides effective magnetic flux increases, and the motor flux linkage increases, but the increase in the length of the permanent magnet to the inner side will reduce the layout space of the magnetic isolation structure on the inner side and isolate the magnetic field.
- the structure can be a magnetic isolation bridge or a non-magnetic ferrule, which makes the magnetic isolation bridge shorter, or the radial length of the non-magnetic ferrule decreases.
- the outer side of the permanent magnet has a certain thickness in the circumferential direction of the rotor.
- the thickness of the outer side of the permanent magnet is set to H2, so that the outer edge line of the permanent magnet extends to the center line of the magnetic pole, the intersection point is B, and the distance between the midpoint of the outer edge line and B is set as L2, H2 and L2 should satisfy the following relationship:
- the outer thickness of the permanent magnet increases, the motor flux increases, the motor torque increases, and the motor's anti-demagnetization ability improves.
- H2/2>0.5*L2 the magnetic area of the rotor pole decreases, and the motor flux decreases.
- the torque is reduced and the motor efficiency is reduced, so when At this time, the motor efficiency is the best and the motor cost performance is the best.
- the thickness of the permanent magnets is set at different thicknesses in the radial direction of the rotor, and the thickness of each magnet steel is different in the radial direction.
- the permanent magnets are set to two sections in the radial direction of the rotor, the first section
- the outer thickness is thin and the inner thickness is thin.
- the outer thickness of the first section is smaller than the inner thickness of the second section.
- the outer thickness of the first section is set to C, and the inner thickness of the permanent magnet is set to H1.
- the length of the first segment in the radial direction is set to D
- the length of the permanent magnet in the radial direction of the rotor is set to L3
- the relationship between D and L3 should satisfy the following relationship: 0.2*L3 ⁇ D ⁇ 0.6*L3, when D
- D the length of the first section is too short, the working point of the permanent magnet is improved little, and the improvement of the anti-demagnetization ability of the motor is small.
- D>0.6*L3 although the anti-demagnetization ability of the first section of the permanent magnet is improved, However, if the length of the second section is too short, the operating point of the second section will be reduced, and the overall anti-demagnetization ability of the motor will decrease. Therefore, when 0.2*L3 ⁇ D ⁇ 0.6*L3, the motor should be ensured that the amount of permanent magnets is equivalent. The anti-demagnetization ability is improved.
- the permanent magnet is arranged in two sections in the radial direction of the rotor.
- the first section is thin on the outside and thick on the inside, and the second section is thick on the outside and thin on the inside.
- the outer thickness of the first section is equal to (or greater than) the inner thickness of the second section.
- the thickness of a section of permanent magnets in the radial direction is increased, and the inner side increases more, the outer side increases less, the working point of the inner permanent magnet is further improved, the anti-demagnetization ability of the motor is further improved, and the motor's resistance is further improved.
- the flux linkage improves the motor torque.
- the permanent magnet is set in two sections in the radial direction of the rotor.
- the first section is thick and thin inside
- the second section is thick and thin inside
- the outer thickness of the first section is greater than the inner thickness of the second section
- the outer thickness of the first section is set as E
- the inner thickness of the second section is set to F
- the relationship between E and F should satisfy the following relationship: 1.35 ⁇ E/F ⁇ 1.2, which can increase the thickness of the permanent magnet in the first section in the radial direction.
- the increase is more, the inside is less, the working point of the inner permanent magnet is further improved, the anti-demagnetization ability of the motor is further improved, and the flux linkage of the motor is increased, and the motor torque is increased.
- E/F should be set in the range: 1.35 ⁇ E/F ⁇ 1.2.
- the permanent magnet is set to 3 sections in the radial direction of the rotor, the first section is thin and thick outside, the second section is equal thickness, the third section is thin and thick outside, the thickness of the second section is set to G, and the inner thickness of the first section is set to H1 , G and H1 should meet the following relationship: 1.2 ⁇ G/H1 ⁇ 1, the permanent magnets and rotors are arranged with different thicknesses in the radial direction.
- the permanent magnets of tangential motors are mainly inside and outside of the permanent magnets, so the middle position is easy to demagnetize.
- the thickness of the motor is thinned and both sides are thickened, which improves the working point of the inner and outer permanent magnets, and improves the anti-demagnetization ability of the motor.
- G/H1 ⁇ 1 the middle thickness is too thin, the motor flux is reduced, and the motor torque is reduced.
- G/H1>1.2 the amount of permanent magnets will increase, the cost of the motor will increase, and the cost of the motor will decrease.
- 1.2 ⁇ G/H1 ⁇ 1 the anti-demagnetization ability of the motor is better, and the cost of the motor is better.
- the motor also includes a non-magnetic collar 40 and a stator 50.
- spatially relative terms can be used here, such as “above”, “above”, “above the surface”, “above”, etc., to describe as shown in the figure Shows the spatial positional relationship between one device or feature and other devices or features. It should be understood that the spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation of the device described in the figure. For example, if the device in the drawing is turned upside down, then a device described as “above other devices or structures” or “above other devices or structures” will then be positioned as “below the other devices or structures” or “on Under other devices or structures”. Thus, the exemplary term “above” can include both orientations “above” and “below”. The device can also be positioned in other different ways (rotated by 90 degrees or in other orientations), and the relative description of the space used here will be explained accordingly.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
一种永磁同步电机转子及具有其的压缩机。永磁同步电机转子包括:转子本体(10),转子本体(10)的周向开设有多个永磁体槽(11),相邻的永磁体槽(11)之间具有磁极中心线;永磁体(20)设置于永磁体槽(11)内,永磁体(20)的第一端朝向转子本体(10)的轴孔(12)一侧设置,永磁体(20)的第二端朝向转子本体(10)的外边缘延伸设置,永磁体(20)的第一端沿转子本体(10)的周向的厚度为H1,永磁体(20)的第一端的端部的中点处,沿转子本体(10)的周向延伸至相邻的磁极中心线处的长度为L1,其中,(I) 这样设置能够合理的布置永磁体(20)与转子铁芯的磁极中心线的位置关系,采用该结构的永磁同步电机转子结构,能够有效地提高了具有该转子结构的电机转矩,提高电机效率,提高电机性价比,提高电机抗退磁能力。
Description
相关申请
本申请要求2019年08月30日申请的,申请号为201910818999.3,名称为“永磁同步电机转子及具有其的压缩机”的中国专利申请的优先权,在此将其全文引入作为参考。
本申请涉及压缩机设备技术领域,具体而言,涉及一种永磁同步电机转子及具有其的压缩机。
切向永磁同步电机具有“聚磁”效果,采用剩磁低的永磁体也可以获得较大的气隙磁密,使得电机具有较大的转矩与电流比和转矩与体积比,越来越多地被应用于伺服系统、电力牵引、办公自动化、家用电器等场合。
切向永磁同步电机由于是单个永磁体的两个面同时提供气隙磁通,磁路为并联结构,使得转子永磁体的工作点较径向永磁同步电机的工作点低,容易引起切向永磁同步电机的效率下降,并且在恶劣环境下切向永磁同步电机存在退磁的风险,使得切向永磁同步电机无法运转。目前技术中采用的切向永磁体电机,虽能提高电机的抗退磁能力,但电机效率及退磁能力仍较低。
发明内容
本申请的主要目的在于提供一种永磁同步电机转子及具有其的压缩机,以解决现有技术电机效率低的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种永磁同步电机转子,包括:转子本体,转子本体的周向开设有多个永磁体槽,相邻的永磁体槽之间具有磁极中心线;永磁体,永磁体设置于永磁体槽内,永磁体的第一端朝向转子本体的轴孔一侧设置,永磁体的第二端朝向转子本体的外边缘延伸设置,永磁体的第一端沿转子本体的周向的厚度为H1,永磁体的第一端的端部的中点处,沿转子本体的周向延伸至相邻的磁极中心线处的长度为L1,其中,
进一步地,转子本体的半径为Rr,永磁体沿转子本体的径向方向的长度为L3,其中,0.45*Rr≤L3≤0.7*Rr。
进一步地,永磁体的第一端至永磁体的第二端的厚度逐渐增加地设置。
进一步地,永磁体包括多个组成段,多个组成段沿转子本体的径向方向依次设置,多个组成段中的至少一个组成段的厚度与其余的组成段的厚度不同。
进一步地,多个组成段包括:第一组成段,第一组成段靠近轴孔一侧设置;第二组成段,第二组成段位于第一组成段的外侧。
进一步地,第一组成段的朝向轴孔一端的厚度大于第一组成段的远离轴孔一端的厚度,第二组成段的朝向轴孔一端的厚度小于第二组成段的远离轴孔一端的厚度。
进一步地,第一组成段的远离轴孔一端的厚度为C,第一组成段的朝向轴孔一端的厚度为H1,其中,0.7*H1≤C≤0.95*H1,第一组成段的沿转子本体的径向方向的长度为D,第一组成段和第二组成段沿转子本体的径向方向的总长度为L3,其中,0.2*L3≤D≤0.6*L3。
进一步地,第一组成段的远离轴孔一端的厚度为C,第一组成段的朝向轴孔一端的厚度为H1,其中,0.7*H1≤C≤0.95*H1,或第一组成段的沿转子本体的径向方向的长度为D,第一组成段和第二组成段沿转子本体的径向方向的总长度为L3,其中,0.2*L3≤D≤0.6*L3。
进一步地,第二组成段的朝向轴孔一端的厚度大于或等于第一组成段的远离轴孔一端的厚度。
进一步地,第一组成段的朝向轴孔一端的厚度小于第一组成段的远离轴孔一端的厚度,第二组成段的朝向轴孔一端的厚度小于或等于第二组成段的远离轴孔一端的厚度。
进一步地,第一组成段的远离轴孔一端的厚度为E,第二组成段的朝向轴孔一端的厚度为F,其中,1.35≥E/F≥1.2。
进一步地,多个组成段还包括:第三组成段,第三组成段位于第二组成段的外侧,第一组成段的朝向轴孔一端的厚度小于第一组成段的远离轴孔一端的厚度,第二组成段的朝向轴孔一端的厚度与第二组成段的远离轴孔一端的厚度相同,第三组成段的朝向轴孔一端的厚度小于第三组成段的远离轴孔一端的厚度。
进一步地,第一组成段的朝向轴孔一端的厚度为H1,第二组成段的厚度为G,其中, 1.2≥G/H1≥1。
进一步地,第一组成段的长边方向具有第一侧壁和与第一侧壁相对设置的第二侧壁,第二组成段的长边方向具有第三侧壁和与第三侧壁相对设置的第四侧壁,第三侧壁与第一组成段位于同一侧,第二侧壁与第四侧壁位于同侧,第三侧壁的延长线与第一侧壁、第一组成段的第一端与第一组成段的第一端的延长线围设成两个面积相同的三角形。
进一步地,第一组成段的长边方向具有第一侧壁和与第一侧壁相对设置的第二侧壁,第三组成段的长边方向具有第五侧壁和与第五侧壁相对设置的第六侧壁,第五侧壁与第一侧壁位于同侧,第六侧壁与第二侧壁位于同侧,第五侧壁的延长线与第一组成段的第一端的端部相连接,第五侧壁的延长线与第一侧壁、第一组成段的第二端的端部的延长线围设成第一三角形,第五侧壁的延长线与第二组成段的侧壁、第三组成段的第一端的端部之间围设成第二三角形,第一三角形的面积与第二三角形的面积相同。
根据本申请的另一方面,提供了一种压缩机,包括永磁同步电机转子,永磁同步电机转子为上述的永磁同步电机转子。
应用本申请的技术方案,这样设置能够合理的布置永磁体与转子铁芯的磁极中心线的位置关系,采用该结构的永磁同步电机转子结构,能够有效地提高了具有该转子结构的电机转矩,提高电机效率,提高电机性价比,提高电机抗退磁能力。
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的永磁同步电机转子的第一实施例的结构示意图;
图2示出了根据本申请的永磁同步电机转子的第二实施例的结构示意图;
图3示出了根据本申请的永磁同步电机转子的第三实施例的结构示意图;
图4示出了根据本申请的永磁同步电机转子的第四实施例的结构示意图;
图5示出了根据本申请的永磁同步电机转子的第五实施例的结构示意图;
图6示出了根据本申请的永磁同步电机转子的第六实施例的结构示意图;
图7示出了根据本申请的永磁同步电机转子的第七实施例的结构示意图;
图8示出了根据本申请的电机的电机效率与(H1/2)/L1的关系示意图;
图9示出了根据本申请的电机转矩与L3/Rr的关系示意图;
图10示出了根据本申请的电机的电机效率与(H2/2)/L2的关系示意图;
图11示出了根据本申请的退磁电流改善效果示意图;
图12示出了根据本申请的电机的实施例的结构示意图。
其中,上述附图包括以下附图标记:
10、转子本体;11、永磁体槽;12、轴孔;
20、永磁体;
31、第一组成段;311、第一侧壁;312、第二侧壁;
32、第二组成段;321、第三侧壁;322、第四侧壁;
33、第三组成段;331、第五侧壁;332、第六侧壁;
40、不导磁套环;50、定子。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
现在,将参照附图更详细地描述根据本申请的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员,在附图中,为了清楚起见,有可能扩大了层和区域的厚度,并且使用相同的附图标记表示相同的器件,因而将省略对它们的描述。
结合图1至图12所示,根据本申请的实施例,提供了一种永磁同步电机转子。
具体地,如图1所示,该永磁同步电机转子包括转子本体10和永磁体20。转子本体 10的周向开设有多个永磁体槽11。相邻的永磁体槽11之间具有磁极中心线。永磁体20设置于永磁体槽11内,永磁体20的第一端朝向转子本体10的轴孔12一侧设置,永磁体20的第二端朝向转子本体10的外边缘延伸设置,永磁体20的第一端沿转子本体10的周向的厚度为H1,永磁体20的第一端的端部的中点处,沿转子本体10的周向延伸至相邻的磁极中心线处的长度为L1,其中,
在本实施例中,这样设置能够合理的布置永磁体的第一端与转子铁芯的磁极中心线Q的位置关系,采用该结构的永磁同步电机转子结构,能够有效地提高了具有该转子结构的电机转矩,提高电机效率,提高电机性价比,提高电机抗退磁能力。
进一步地,永磁体20的第二端沿转子本体10的周向的厚度为H2,永磁体20的第二端的端部的中点处,沿转子本体10的周向延伸至相邻的磁极中心线处的长度为L2,其中,
这样设置能够合理的布置永磁体的第二端与转子铁芯的磁极中心线Q的位置关系,采用该结构的永磁同步电机转子结构,能够有效地提高了具有该转子结构的电机转矩,提高电机效率,提高电机性价比,提高电机抗退磁能力。其中,永磁体20的第一端与磁极中心线交于A点,永磁体20的第二端与磁极中心线交于B点,其中B点位于转子本体10的边缘处。由于在图1中示出的实施例中,多个永磁体20的结构均相同,且均匀地布置于转子本体的永磁体槽11内,所以每一个永磁体20的第一端至与该永磁体20相邻的磁极中心线Q的距离均相等,每一个永磁体20的第二端至与该永磁体20相邻的磁极中心线Q的距离也相等。其中,在本申请中的永磁体20采用切向式充磁,即具有该永磁同步电机转子结构的电机为切向永磁同步电机。
为了进一步地提高具有该转子结构的电机性能,转子本体10的半径设置为Rr,永磁体20沿转子本体10的径向方向的长度为L3,其中,0.45*Rr≤L3≤0.7*Rr。本实施例中,永磁体20的第一端至永磁体20的第二端的厚度逐渐增加地设置。
如图3至图7所示,永磁体20包括多个组成段,多个组成段沿转子本体10的径向方向依次设置,多个组成段中的至少一个组成段的厚度与其余的组成段的厚度不同。这样设置能够同样起到提高电机的抗退磁能力。
具体地,如图3所示,多个组成段包括第一组成段31和第二组成段32。第一组成段31靠近轴孔12一侧设置。第二组成段32位于第一组成段31的外侧。第一组成段31的朝向轴孔12一端的厚度大于第一组成段31的远离轴孔12一端的厚度,第二组成段32的朝向轴孔12一端的厚度小于第二组成段32的远离轴孔12一端的厚度。
可选地,第一组成段31的远离轴孔12一端的厚度为C,第一组成段31的朝向轴孔 12一端的厚度为H1,其中,0.7*H1≤C≤0.95*H1,第一组成段31的沿转子本体10的径向方向的长度为D,第一组成段31和第二组成段32沿转子本体10的径向方向的总长度为L3,其中,0.2*L3≤D≤0.6*L3。
根据本申请的另一个实施例,第二组成段32的朝向轴孔12一端的厚度大于或等于第一组成段31的远离轴孔12一端的厚度。如图4所示,图4中示出了第二组成段32的朝向轴孔12一端的厚度等于第一组成段31的远离轴孔12一端的厚度的实施例。
如图5所示,在本实施例中,第一组成段31的朝向轴孔12一端的厚度小于第一组成段31的远离轴孔12一端的厚度,第二组成段32的朝向轴孔12一端的厚度小于第二组成段32的远离轴孔12一端的厚度。其中,可选地,第一组成段31的远离轴孔12一端的厚度为E,第二组成段32的朝向轴孔12一端的厚度为F,其中,1.35≥E/F≥1.2。这样设置能够有效地提高了电机的性能。当然,也可以将第二组成段32设置成等宽度的方式,即如图6中示出的实施例。
如图7所示,多个组成段还包括第三组成段33。第三组成段33位于第二组成段32的外侧,第一组成段31的朝向轴孔12一端的厚度小于第一组成段31的远离轴孔12一端的厚度,第二组成段32的朝向轴孔12一端的厚度与第二组成段32的远离轴孔12一端的厚度相同,第三组成段33的朝向轴孔12一端的厚度小于第三组成段33的远离轴孔12一端的厚度。其中,第一组成段31的朝向轴孔12一端的厚度为H1,第二组成段32的厚度为G,其中,1.2≥G/H1≥1。
如图3所示,第一组成段31的长边方向具有第一侧壁311和与第一侧壁311相对设置的第二侧壁312。第二组成段32的长边方向具有第三侧壁321和与第三侧壁321相对设置的第四侧壁322,第三侧壁321与第一组成段31位于同一侧。第二侧壁312与第四侧壁322位于同侧,第三侧壁321的延长线与第一侧壁311、第一组成段31的第一端与第一组成段31的第一端的延长线围设成两个面积相同的三角形,即如图中的S1和S2所示。
根据本申请的另一个实施例,第一组成段31的长边方向具有第一侧壁311和与第一侧壁311相对设置的第二侧壁312,第三组成段33的长边方向具有第五侧壁331和与第五侧壁331相对设置的第六侧壁332,第五侧壁331与第一侧壁311位于同侧。第六侧壁332与第二侧壁312位于同侧,第五侧壁331的延长线与第一组成段31的第一端的端部相连接,第五侧壁331的延长线与第一侧壁311、第一组成段31的第二端的端部的延长线围设成第一三角形S3,第五侧壁331的延长线与第二组成段32的侧壁、第三组成段33的第一端的端部之间围设成第二三角形S4,第一三角形S3的面积与第二三角形S4的面积相同。
上述实施例中的永磁同步电机转子还可以用于电机设备技术领域,即根据本申请的另 一方面,提供了一种压缩机,包括永磁同步电机转子,永磁同步电机转子为上述实施例中的永磁同步电机转子。
具体地,本申请提供了一种永磁同步电机转子,永磁体均匀分布在转子上,包含N个沿转子径向方向放置的永磁体,永磁体切向磁化,N为大于等于4的偶数,相邻的两个永磁体具有相同的极性相对设置。切向永磁同步电机由于是单个永磁体的两个面同时提供气隙磁通,磁路为并联结构,使得转子永磁体的工作点较径向永磁同步电机的工作点低,容易引起切向永磁同步电机的效率下降,并且在恶劣环境下切向永磁同步电机存在退磁的风险,使得切向永磁同步电机无法运转。研究发现,切向永磁同步电机的永磁体内侧厚度增大,电机转矩提升,电机效率提升,但厚度增大到一定程度,效率不再提升,且内侧厚度增大,永磁体用量增加,成本增加,会使得电机的性价比下降,靠近转轴的位置为永磁体内侧,靠近转子外径的位置为永磁体内侧,永磁体在转子周向上有一定的厚度,永磁体内侧的厚度设为H内,使永磁体内侧边缘线延伸至磁极中心线,交点为A,内边缘线中点与A之间的距离设为L1,当H1与L1的应满足以下关系:
时,可以使得提升电机转矩,提升电机效率,提升电机性价比,同时内侧厚度增大,电机退磁能力提升。
永磁体沿转子径向方向上的长度设为L3,转子半径设为Rr,L3与Rr的应满足以下关系:0.45*Rr≤L3≤0.7*Rr,在某一转子预设外径下,永磁体径向方向的长度向转子内侧增大,提供有效磁通的截面增大,电机磁链增大,但永磁体向内侧长度增大,会减小内侧的隔磁结构的布置空间,隔磁结构可以是隔磁桥,也可以是不导磁套环,使得隔磁桥变短,或者不导磁套环径向长度变短内侧漏磁增大,电机磁链下降,故当L3与Rr的应满足以下关系:0.45*Rr≤L3≤0.7*Rr时,电机的磁链最高,电机的转矩最大,电机的效率最优,电机的性价比最优。
永磁体外侧在转子周向上有一定的厚度,永磁体外侧的厚度设为H2,使永磁体外侧边缘线延伸至磁极中心线,交点为B,外边缘线中点与B之间的距离设为L2,H2与L2的应满足以下关系:
永磁体外侧厚度增大,电机磁链增大,电机转矩增大,电机抗退磁能力提升,但当H2/2>0.5*L2时,转子磁极的导磁面积降低,电机磁链降低,电机转矩降低,电机效率降低,故当
时,电机效率最优,电机性价比最优。
永磁体的厚度在转子径向方向上不等厚设置,每段磁钢在径向方向上厚度不等,至少有两段,例如永磁体在转子径向方向上设为两段,第一段外薄内厚,第二段外厚内薄,第 一段的外侧厚度小于第二段的内侧厚度,第一段外侧厚度设为C,永磁体内侧的厚度设为H1,当C与H1的满足以下关系:0.7*H1≤C≤0.95*H1时,由于永磁体内侧边角部位易退磁,故进一步增大永磁体内侧的厚度,提升永磁体内侧的工作点,提升电机抗退磁能力,同时去除的永磁体面积S1等于增补的永磁体面积S2,可以保证永磁体用量相同的情况下,提升电机的抗退磁能力,提升电机可靠性。
进一步地,第一段径向方向的长度设为D,永磁体沿转子径向方向上的长度设为L3,D与L3的应满足以下关系:0.2*L3≤D≤0.6*L3,当D<0.2*L3时,第一段的长度过短,永磁体的工作点改善小,电机抗退磁能力改善小,当D>0.6*L3时,虽然第一段的永磁体的抗退磁能力提升,但第二段的长度过短,会使得第二段的工作点下降,电机整体的抗退磁能力下降,故当0.2*L3≤D≤0.6*L3时,在保证永磁体用量相当的情况下电机的抗退磁能力提升。
永磁体在转子径向方向上设为两段,第一段外薄内厚,第二段外厚内薄,第一段的外侧厚度等于(或大于)第二段的内侧厚度,可以使得第一段的永磁体沿径向方向上各处的厚度均有提高,且内侧增加的多,外侧增加的少,内侧永磁体的工作点进一步提升,电机的抗退磁能力进一步提升,同时提升电机的磁链,提升电机转矩。
永磁体在转子径向方向上设为两段,第一段外厚内薄,第二段外厚内薄,第一段的外侧厚度大于第二段的内侧厚度,第一段外侧厚度设为E,第二段内侧厚度设为F,E与F的应满足以下关系:1.35≥E/F≥1.2,可以使得第一段的永磁体沿径向方向上各处的厚度均有提高,外侧增加的多,内侧增加的少,内侧永磁体的工作点进一步提升,电机的抗退磁能力进一步提升,同时提升电机的磁链,提升电机转矩,但当E/F>1.35时,永磁体用量过大,电机成本增大较多,电机性价比降低,故应将E/F设置在:1.35≥E/F≥1.2范围内。
永磁体在转子径向上设为3段,第一段内薄外厚,第二段等厚,第三段内薄外厚,第二段的厚度设为G,第一段内侧厚度设为H1,G与H1的应满足以下关系:1.2≥G/H1≥1,永磁体子啊转子径向上不等厚设置,切向电机的永磁体主要是永磁体内侧和外侧易退磁,故将中间位置的厚度减薄,两侧加厚,提升永磁体内外侧的工作点,提升电机抗退磁能力,当G/H1<1时,中间厚度过薄,电机的磁链降低,电机转矩降低,当G/H1>1.2时,使得永磁体的用量增加,电机成本增加,电机性价比降低,当1.2≥G/H1≥1时,电机的抗退磁能力较优,且电机的性价比较优。其中,该电机还包括不导磁套环40和定子50。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位 之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
除上述以外,还需要说明的是在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”等,指的是结合该实施例描述的具体特征、结构或者特点包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本申请的范围内。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述仅为本申请的较佳实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (17)
- 根据权利要求1或2所述的永磁同步电机转子,其特征在于,所述转子本体(10)的半径为Rr,所述永磁体(20)沿所述转子本体(10)的径向方向的长度为L3,其中,0.45*Rr≤L3≤0.7*Rr。
- 根据权利要求1所述的永磁同步电机转子,其特征在于,所述永磁体(20)的第一端至所述永磁体(20)的第二端的厚度逐渐增加地设置。
- 根据权利要求1所述的永磁同步电机转子,其特征在于,所述永磁体(20)包括多个组成段,多个所述组成段沿所述转子本体(10)的径向方向依次设置,多个所述组成段中的至少一个所述组成段的厚度与其余的所述组成段的厚度不同。
- 根据权利要求5所述的永磁同步电机转子,其特征在于,多个所述组成段包括:第一组成段(31),所述第一组成段(31)靠近所述轴孔(12)一侧设置;第二组成段(32),所述第二组成段(32)位于所述第一组成段(31)的外侧。
- 根据权利要求6所述的永磁同步电机转子,其特征在于,所述第一组成段(31)的朝向所述轴孔(12)一端的厚度大于所述第一组成段(31)的远离所述轴孔(12)一端的厚度,所述第二组成段(32)的朝向所述轴孔(12)一端的厚度小于所述第二组成段(32)的远离所述轴孔(12)一端的厚度。
- 根据权利要求7所述的永磁同步电机转子,其特征在于,所述第一组成段(31)的远离所述轴孔(12)一端的厚度为C,所述第一组成段(31)的朝向所述轴孔(12)一端的厚度为H1,其中,0.7*H1≤C≤0.95*H1,所述第一组成段(31)的沿所述转子本体(10)的径向方向的长度为D,所述第一组成段(31)和所述第二组成段(32)沿所述转子本体(10)的径向方向的总长度为L3,其中,0.2*L3≤D≤0.6*L3。
- 根据权利要求7所述的永磁同步电机转子,其特征在于,所述第一组成段(31)的远离所述轴孔(12)一端的厚度为C,所述第一组成段(31)的朝向所述轴孔(12)一端的厚度为H1,其中,0.7*H1≤C≤0.95*H1,或所述第一组成段(31)的沿所述转子本体(10)的径向方向的长度为D,所述第一组成段(31)和所述第二组成段(32)沿所述转子本体(10)的径向方向的总长度为L3,其中,0.2*L3≤D≤0.6*L3。
- 根据权利要求7所述的永磁同步电机转子,其特征在于,所述第二组成段(32)的朝向所述轴孔(12)一端的厚度大于或等于所述第一组成段(31)的远离所述轴孔(12)一端的厚度。
- 根据权利要求6所述的永磁同步电机转子,其特征在于,所述第一组成段(31)的朝向所述轴孔(12)一端的厚度小于所述第一组成段(31)的远离所述轴孔(12)一端的厚度,所述第二组成段(32)的朝向所述轴孔(12)一端的厚度小于或等于所述第二组成段(32)的远离所述轴孔(12)一端的厚度。
- 根据权利要求11所述的永磁同步电机转子,其特征在于,所述第一组成段(31)的远离所述轴孔(12)一端的厚度为E,所述第二组成段(32)的朝向所述轴孔(12)一端的厚度为F,其中,1.35≥E/F≥1.2。
- 根据权利要求6所述的永磁同步电机转子,其特征在于,多个所述组成段还包括:第三组成段(33),所述第三组成段(33)位于所述第二组成段(32)的外侧,所述第一组成段(31)的朝向所述轴孔(12)一端的厚度小于所述第一组成段(31)的远离所述轴孔(12)一端的厚度,所述第二组成段(32)的朝向所述轴孔(12)一端的厚度与所述第二组成段(32)的远离所述轴孔(12)一端的厚度相同,所述第三组成段(33)的朝向所述轴孔(12)一端的厚度小于所述第三组成段(33)的远离所述轴孔(12)一端的厚度。
- 根据权利要求6所述的永磁同步电机转子,其特征在于,所述第一组成段(31)的朝向所述轴孔(12)一端的厚度为H1,所述第二组成段(32)的厚度为G,其中,1.2≥G/H1≥1。
- 根据权利要求7所述的永磁同步电机转子,其特征在于,所述第一组成段(31)的长边方向具有第一侧壁(311)和与所述第一侧壁(311)相对设置的第二侧壁(312),所述第二组成段(32)的长边方向具有第三侧壁(321)和与所述第三侧壁(321)相对设置的第四侧壁(322),所述第三侧壁(321)与所述第一组成段(31)位于同一侧,所述第二侧壁(312)与所述第四侧壁(322)位于同侧,所述第三侧壁(321)的延长线与所述第一侧壁(311)、所述第一组成段(31)的第一端与所述第一组成段(31)的第一端的延长线围设成两个面积相同的三角形。
- 根据权利要求13所述的永磁同步电机转子,其特征在于,所述第一组成段(31)的长边方向具有第一侧壁(311)和与所述第一侧壁(311)相对设置的第二侧壁(312),所述第三组成段(33)的长边方向具有第五侧壁(331)和与所述第五侧壁(331)相对设置的第六侧壁(332),所述第五侧壁(331)与所述第一侧壁(311)位于同侧,所述第六侧壁(332)与所述第二侧壁(312)位于同侧,所述第五侧壁(331)的延长线与所述第一组成段(31)的第一端的端部相连接,所述第五侧壁(331)的延长线与所述第一侧壁(311)、所述第一组成段(31)的第二端的端部的延长线围设成第一三角形,所述第五侧壁(331)的延长线与所述第二组成段(32)的侧壁、所述第三组成段(33)的第一端的端部之间围设成第二三角形,所述第一三角形的面积与所述第二三角形的面积相同。
- 一种压缩机,包括永磁同步电机转子,其特征在于,所述永磁同步电机转子为权利要求1至16中任一项所述的永磁同步电机转子。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910818999.3 | 2019-08-30 | ||
CN201910818999.3A CN110474456A (zh) | 2019-08-30 | 2019-08-30 | 永磁同步电机转子及具有其的压缩机 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021036460A1 true WO2021036460A1 (zh) | 2021-03-04 |
Family
ID=68514460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/098422 WO2021036460A1 (zh) | 2019-08-30 | 2020-06-28 | 永磁同步电机转子及具有其的压缩机 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110474456A (zh) |
WO (1) | WO2021036460A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110474456A (zh) * | 2019-08-30 | 2019-11-19 | 珠海格力节能环保制冷技术研究中心有限公司 | 永磁同步电机转子及具有其的压缩机 |
US20230318372A1 (en) * | 2020-09-09 | 2023-10-05 | Mitsubishi Electric Corporation | Rotor, motor, blower, and air conditioner |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101232205A (zh) * | 2008-01-25 | 2008-07-30 | 东南大学 | 可变磁通永磁同步电动机 |
CN201146439Y (zh) * | 2008-01-25 | 2008-11-05 | 东南大学 | 可变磁通永磁同步电动机 |
CN204376558U (zh) * | 2015-02-12 | 2015-06-03 | 珠海格力节能环保制冷技术研究中心有限公司 | 转子铁芯及具有其的电机 |
CN205017131U (zh) * | 2015-09-24 | 2016-02-03 | 珠海格力节能环保制冷技术研究中心有限公司 | 电机及其切向式永磁转子 |
CN106558931A (zh) * | 2015-09-24 | 2017-04-05 | 珠海格力节能环保制冷技术研究中心有限公司 | 电机及其切向式永磁转子 |
US20190199164A1 (en) * | 2017-12-26 | 2019-06-27 | Hamilton Sundstrand Corporation | Flywheel energy storage with pm, induction, or variable reluctance machine |
CN110474456A (zh) * | 2019-08-30 | 2019-11-19 | 珠海格力节能环保制冷技术研究中心有限公司 | 永磁同步电机转子及具有其的压缩机 |
CN210640747U (zh) * | 2019-08-30 | 2020-05-29 | 珠海格力节能环保制冷技术研究中心有限公司 | 永磁同步电机转子及具有其的压缩机 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104185938B (zh) * | 2012-03-13 | 2018-01-02 | 博泽沃尔兹堡汽车零部件有限公司 | 电机 |
DE102012218995A1 (de) * | 2012-10-18 | 2014-04-24 | Robert Bosch Gmbh | Läuferanordnung für eine permanentmagneterregte elektrische Maschine |
DE102013202006A1 (de) * | 2013-02-07 | 2014-08-07 | Robert Bosch Gmbh | Läuferanordnung für eine permanentmagneterregte elektrische Maschine |
-
2019
- 2019-08-30 CN CN201910818999.3A patent/CN110474456A/zh active Pending
-
2020
- 2020-06-28 WO PCT/CN2020/098422 patent/WO2021036460A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101232205A (zh) * | 2008-01-25 | 2008-07-30 | 东南大学 | 可变磁通永磁同步电动机 |
CN201146439Y (zh) * | 2008-01-25 | 2008-11-05 | 东南大学 | 可变磁通永磁同步电动机 |
CN204376558U (zh) * | 2015-02-12 | 2015-06-03 | 珠海格力节能环保制冷技术研究中心有限公司 | 转子铁芯及具有其的电机 |
CN205017131U (zh) * | 2015-09-24 | 2016-02-03 | 珠海格力节能环保制冷技术研究中心有限公司 | 电机及其切向式永磁转子 |
CN106558931A (zh) * | 2015-09-24 | 2017-04-05 | 珠海格力节能环保制冷技术研究中心有限公司 | 电机及其切向式永磁转子 |
US20190199164A1 (en) * | 2017-12-26 | 2019-06-27 | Hamilton Sundstrand Corporation | Flywheel energy storage with pm, induction, or variable reluctance machine |
CN110474456A (zh) * | 2019-08-30 | 2019-11-19 | 珠海格力节能环保制冷技术研究中心有限公司 | 永磁同步电机转子及具有其的压缩机 |
CN210640747U (zh) * | 2019-08-30 | 2020-05-29 | 珠海格力节能环保制冷技术研究中心有限公司 | 永磁同步电机转子及具有其的压缩机 |
Also Published As
Publication number | Publication date |
---|---|
CN110474456A (zh) | 2019-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9013082B2 (en) | Rotating machine and rotor thereof | |
US10033234B2 (en) | Motor | |
US9608484B2 (en) | Motor and rotor of a motor having a plurality of magnet groups | |
JP6425542B2 (ja) | モーター回転子及びそれを備えるモーター | |
CN108429375B (zh) | 转子结构、永磁辅助同步磁阻电机及电动汽车 | |
WO2021036460A1 (zh) | 永磁同步电机转子及具有其的压缩机 | |
JP2004015906A (ja) | 永久磁石形モータ | |
WO2020253191A1 (zh) | 自起动同步磁阻电机转子结构、电机及压缩机 | |
WO2016192581A1 (zh) | 永磁电机转子及永磁同步电机 | |
WO2020253192A1 (zh) | 异步起动同步磁阻电机转子结构、电机及压缩机 | |
WO2020093795A1 (zh) | 电机转子、电机、压缩机及热泵系统 | |
WO2020253194A1 (zh) | 直接起动同步磁阻电机转子结构及具有其的电机 | |
WO2020015302A1 (zh) | 交替极电机 | |
WO2020253200A1 (zh) | 自起动同步磁阻电机及具有其的压缩机 | |
CN110601481A (zh) | 一种双转子永磁同步磁阻电机及配置方法 | |
WO2020253196A1 (zh) | 直接起动同步磁阻电机转子结构、电机及压缩机 | |
WO2020253193A1 (zh) | 自起动同步磁阻电机转子结构及具有其的电机 | |
CN108711973B (zh) | 转子结构、永磁辅助同步磁阻电机及电动汽车 | |
WO2017050266A1 (zh) | 磁通切换式永磁马达 | |
WO2012139419A1 (zh) | 一种宽调速永磁同步电机 | |
CN210350986U (zh) | 一种双转子永磁同步磁阻电机 | |
CN210640747U (zh) | 永磁同步电机转子及具有其的压缩机 | |
US11522397B2 (en) | Motor rotor and permanent magnet motor | |
CN108028563A (zh) | 永磁体电动机 | |
CN211556999U (zh) | 转子结构及具有其的电机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20856034 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20856034 Country of ref document: EP Kind code of ref document: A1 |