WO2017050266A1 - 磁通切换式永磁马达 - Google Patents

磁通切换式永磁马达 Download PDF

Info

Publication number
WO2017050266A1
WO2017050266A1 PCT/CN2016/099830 CN2016099830W WO2017050266A1 WO 2017050266 A1 WO2017050266 A1 WO 2017050266A1 CN 2016099830 W CN2016099830 W CN 2016099830W WO 2017050266 A1 WO2017050266 A1 WO 2017050266A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
stator
permanent magnet
rotor
tooth
Prior art date
Application number
PCT/CN2016/099830
Other languages
English (en)
French (fr)
Inventor
李正隆
庄子贤
Original Assignee
奈美电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奈美电子股份有限公司 filed Critical 奈美电子股份有限公司
Publication of WO2017050266A1 publication Critical patent/WO2017050266A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors

Definitions

  • This invention relates to a motor, and more particularly to a flux switching permanent magnet motor.
  • ABB's products are available on the market.
  • This kind of motor does not need a magnet at all but has a very high efficiency, up to the industrial specifications of IE4, but the minimum motor capacity to achieve 90% efficiency also needs 7.5KW or more, which is energy-saving for small and medium-capacity motor products with power less than 1KW. It seems that the help is not big.
  • ABB continues to develop a more efficient "permanent magnet auxiliary synchronous reluctance motor” that does not require rare earth permanent magnets, but has extremely high efficiency and can meet the IE5 level specification.
  • permanent magnet auxiliary synchronous reluctance motor that does not require rare earth permanent magnets, but has extremely high efficiency and can meet the IE5 level specification.
  • problems with low speed torque shortage and efficiency still to be strengthened. It seems that it is difficult to find such motors in existing high efficiency motors.
  • the motor retains the superior performance of the "switched reluctance motor” and the “double salient permanent magnet motor”.
  • the rotating part does not have any permanent magnets, and its shape is similar to that of the "switched reluctance motor”.
  • the rotor so in a rather harsh working environment, such as working at 600 degrees Celsius, there is no need to worry about the rotor will be faulty or the permanent magnet will demagnetize.
  • the permanent magnet built in the fixed part is also easy to dissipate heat, and the problem of demagnetization of the permanent magnet in the fixed part is also Can be excluded indirectly.
  • the present invention provides a flux switching permanent magnet motor including a motor stator and a motor rotor.
  • the motor stator has twelve stator teeth, and each of the stator teeth is provided with a permanent magnet, and one of the stator teeth has the same magnetic strength as the permanent magnet corresponding to one of the adjacent stator teeth, and the adjacent two stator teeth
  • the pitch has a cogging.
  • the motor rotor has a plurality of rotor poles. Among them, the motor stator and the motor rotor meet the following conditions:
  • b m is the thickness of the permanent magnet
  • b t is the 1/2 width of the stator tooth not including the permanent magnet
  • b s is the width of the tooth groove
  • b i is the thickness of the stator yoke of the stator tooth
  • b p is The width of the rotor pole
  • b h is the height of the rotor pole
  • R si is the inner diameter of the motor stator
  • R so is the outer diameter of the motor stator
  • S is the ratio of the inner and outer diameter of the motor stator
  • T s is the pitch of the stator teeth
  • N s is the number of slots
  • R r is the diameter of the rotor of the motor
  • R ro is the outer diameter of the rotor of the motor
  • R ri is the inner diameter of the rotor of the motor.
  • each stator tooth may be coupled by a stator yoke, and each stator yoke corresponds to a tooth slot.
  • the portion of the permanent magnet corresponding to the stator yoke may be replaced by a non-magnetically permeable material.
  • the width of the air gap may be the inner diameter of the motor stator minus the outer diameter of the motor rotor.
  • the magnetic flux switching type permanent magnet motor of the present invention has a structural design of inserting permanent magnets into the stator teeth by 12 stator teeth and 10 rotor poles, so that the flux switching type of the present invention is forever
  • the magnetic motor simplifies the complicated design of the conventional motor and can effectively reduce the conventional motor Torque and torque ripple.
  • FIG. 1 is a schematic view showing the structure of a magnetic flux switching type permanent magnet motor of the present invention.
  • FIG. 2 is a schematic diagram of a single module of a flux switching permanent magnet motor of the present invention.
  • FIG. 3 is a schematic diagram showing the relationship between the diameter of the rotor pole and the position of the magnetic flux switching permanent magnet motor of the present invention.
  • FIG. 1 is a schematic structural view of a magnetic flux switching permanent magnet motor according to the present invention
  • FIG. 2 is a schematic diagram of a single module of a magnetic flux switching permanent magnet motor according to the present invention
  • the flux switching permanent magnet motor of the present invention includes a motor stator 110 and a motor rotor 120. Among them, the motor stator 110 surrounds the motor rotor 120.
  • the motor stator 110 has twelve stator teeth 111, and each of the stator teeth 111 has a permanent magnet 130 interposed therebetween, and one surface of each stator tooth 111 corresponds to one of the adjacent ones of the adjacent stator teeth 111.
  • the magnets 130 have the same magnetic properties, and the adjacent two stator teeth 111 have a slot 112 at a pitch.
  • Motor rotor 120 has a plurality of rotor poles 121.
  • the stator tooth 111 can be made of a silicon steel sheet.
  • b m is the thickness of the permanent magnet
  • b t is 1/2 of the stator tooth not including the permanent magnet
  • b s is the width of the slot
  • b i is the thickness of the stator yoke of the stator tooth
  • b p is the width of the rotor pole
  • b h is the height of the rotor pole
  • R si is the inner diameter of the motor stator
  • R so is the outer diameter of the motor stator
  • S is the ratio of the inner and outer diameter of the motor stator
  • T s is the slot of the stator tooth
  • N s is the number of slots
  • R r is the diameter of the rotor of the motor
  • R ro is the outer diameter of the rotor of the motor
  • R ri is the inner diameter of the rotor of the motor.
  • stator tooth 111 and the stator tooth 111 have a stator yoke 113 in addition to the tooth groove 112 , and each stator yoke 113 respectively corresponds to the tooth groove 112 and connects adjacent stator teeth. 111.
  • the portion 131 of the permanent magnet corresponding to the stator yoke may be replaced by a non-magnetic material, and the thickness of the portion 131 of the permanent magnet corresponding to the stator yoke may not be greater than the thickness of the stator yoke 113.
  • the width of the air gap may be the inner diameter of the motor stator 110 minus the outer diameter of the motor rotor 120.
  • each stator tooth 111 has a coil winding, and 12 stator teeth 111 are divided into three phases A, B, and C, each phase includes four stator teeth 111, and the coils also have three phases, each of which has a corresponding
  • the phase coil is wound around the four stator teeth 111 of the corresponding phase, and the coils of the phase stator tooth 111 are mutually In series or in parallel; preferably, the high voltage can be connected in series, the low voltage can be connected in parallel, and the number of coil turns can be changed according to requirements.
  • the flux-switching permanent magnet motor manufactured according to the design of the conditional formulas (1) to (5) has excellent efficiency and high electromagnetic torque, and the torque it exhibits and Torque chopping is still not negligible; further, in order to have the characteristics of low-torque torque and low-torque chopping equivalent to surface-type permanent magnet synchronous motors, the width and height of the rotor poles need to be redesigned.
  • stator slot the area A s surrounded by one stator slot can be derived from conditional expression (8):
  • Phase resistance R a can be deduced as the conditional expression (9):
  • the torque of the flux-switched permanent magnet motor can be derived from the conditional expression (11):
  • B m is the maximum magnetic flux density of the stator silicon steel material.
  • the rotor pole length is repaired according to the conditional equation (6) according to the rotor pole position angle. Arc action to change the air gap flux, thereby achieving the purpose of reducing the torque and torque ripple.
  • the rotor pole position is zero degrees, and the rotor diameter R r ( ⁇ ) is the rotor pole outer diameter R ro , corresponding to the path length in FIG. 3 is + 1 unit length; the rotor pole position is 180 degrees, R r ( ⁇ ) is the rotor pole inner diameter R ri , corresponding to the length of the path length of -1 unit in Figure 3; and the average diameter of the motor rotor corresponds to Figure 3
  • the length of the path is 0 units.
  • the magnetic flux switching type permanent magnet motor of the present invention has a structure in which a stator magnet is inserted into a permanent magnet of the stator tooth and a design of an arc is applied to the rotor pole, so that the magnetic body of the present invention
  • the switching permanent magnet motor can simplify the complicated design of the conventional motor and can effectively reduce the torque and torque ripple of the conventional motor.
  • the permanent magnet corresponds to the part of the stator yoke

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

一种磁通切换式永磁马达,包含马达定子(110)及马达转子(120)。马达定子(110)具有十二个定子齿极(111),定子齿极(111)中插设永久磁铁(130),定子齿极(111)的一面的磁性与相邻的定子齿极(111)的一面的磁性相同,马达转子(120)具有复数个转子极(121),其中,马达定子(110)及马达转子(120)符合特定条件。该磁通切换式永磁马达可以简化马达的设计,且降低马达的顿转矩和转矩涟波。

Description

磁通切换式永磁马达 技术领域
本发明是有关于一种马达,特别是有关于一种磁通切换式永磁马达。
背景技术
时下高效率的马达中,俗称为同步磁阻马达,已有ABB公司出厂上市各机种产品。这种马达完全不需要磁铁却具有相当高的效率,可达IE4的工业规范,不过达到90%效率的最低马达容量也需要7.5KW以上,这对于功率在1KW以内的中小容量马达产品之节能,似乎帮助并不大。
ABB公司持续发展更具效能的「永磁辅助同步磁阻马达」,这种马达并不需要稀土类的永久磁铁,却具有极高的效率,可达到IE5的水平规范。然而在许多自动化或极需提升续航力的电动载具领域,经常面临着低速转矩不足且效率仍然有待加强的问题,在既有的高效率马达中,似乎很难找到这类马达。
反观,另一款相当另类的马达设计概念却异军突起,其源自「切换式磁阻马达」的定转子结构设计,近年来更结合了「双凸极永磁马达」的优越特性。
承上所述,该马达保留着「切换式磁阻马达」以及「双凸极永磁马达」优越的性能,其转部可不存在任何永久磁铁,形状结构类似于「切换式磁阻马达」的转子,故于相当恶劣的工作环境,譬如工作于摄氏600度时,不需担忧转子会有故障或永久磁铁会消磁的问题。又由于其撷取「双凸极永磁马达」的优点,具备了「传统永磁同步马达」优异的特性外,定部中内置的永久磁铁亦易于散热,定部中永久磁铁消磁的问题也可间接排除。
然,其虽具备上述之优点,该马达的特性及设计却仍停留在学术探研,距离产业界可应用的目标仍存在着一道鸿沟,而无法据以实行。
发明内容
有鉴于上述习知之问题,本发明的目的在于提供一种磁通切换式永磁马达,用以解决习知技术中所面临之问题。
基于上述目的,本发明提供一种磁通切换式永磁马达,其包含马达定子及马达转子。马达定子具有十二定子齿极,各定子齿极中插设永久磁铁,各定子齿极之一面与相邻之定子齿极对应之一面所对应永久磁铁之磁性相同,相邻之二定子齿极间距有齿槽。马达转子具有复数个转子极。其中,马达定子与马达转子符合下列条件式:
Figure PCTCN2016099830-appb-000001
bi=0.1545Ts
S=Rsi/Rso=0.618;
bp=0.4045Ts
bh=0.5Ts
Rr(θ)=Rro-0.25Ts(1-cosθ);以及
Rro-Rri=bh=0.5Ts
其中,bm为永久磁铁之厚度,bt为不包含永久磁铁之定子齿极之1/2宽度,bs为齿槽之宽度,bi为定子齿极之定子轭之厚度,bp为转子极之宽度,bh为转子极之高度,Rsi为马达定子之内径,Rso为马达定子之外径,S为马达定子之内外径比,Ts为定子齿极之齿槽节距,Ns是该齿槽数,Rr是该马达转子之径长,Rro是该马达转子之外径Rri是该马达转子之内径。
较佳地,各定子齿极可以由定子轭连结,各定子轭分别对应齿槽。
较佳地,永久磁铁对应定子轭之部分可以非导磁性材料替换。
较佳地,马达定子与马达转子之间可具有气隙。
较佳地,气隙之宽度可为马达定子之内径减掉马达转子之外径。
承上所述,本发明之磁通切换式永磁马达藉由12个定子齿极及10个转子极,并于定子齿极中插入永久磁铁的结构设计,使得本发明之磁通切换式永磁马达可简化习知马达之繁杂设计,且可有效降低习知马达 之顿转矩及转矩涟波。
附图说明
图1是本发明之磁通切换式永磁马达之结构示意图。
图2是本发明之磁通切换式永磁马达之单一模块示意图。
图3是本发明之磁通切换式永磁马达之转子极之径长与位置之函数关系示意图。
具体实施方式
为利了解本发明之特征、内容与优点及其所能达成之功效,兹将本发明配合图式,并以实施例之表达形式详细说明如下,而其中所使用之图式,其主旨仅为示意及辅助说明书之用,未必为本发明实施后之真实比例与精准配置,故不应就所附之图式的比例与配置关系解读、局限本发明于实际实施上的权利范围。
本发明之优点、特征以及达到之技术方法将参照例示性实施例及所附图式进行更详细地描述而更容易理解,且本发明或可以不同形式来实现,故不应被理解仅限于此处所陈述的实施例,相反地,对所属技术领域具有通常知识者而言,所提供的实施例将使本揭露更加透彻与全面且完整地传达本发明的范畴,且本发明将仅为所附加的申请专利范围所定义。
请参阅图1至图3;图1是本发明之磁通切换式永磁马达之结构示意图;图2是本发明之磁通切换式永磁马达之单一模块示意图;图3是本发明之磁通切换式永磁马达之转子极之径长与位置之函数关系示意图。如图所示,本发明之磁通切换式永磁马达,其包含马达定子110及马达转子120。其中,马达定子110系环绕马达转子120。
续言之,马达定子110具有十二个定子齿极111,每一个定子齿极111中插设永久磁铁130,各定子齿极111之一面与相邻之定子齿极111对应之一面所对应永久磁铁130之磁性相同,相邻之二定子齿极111间距有齿槽112。马达转子120具有复数个转子极121。其中,定子齿极111可由硅钢片制成。
其中,马达定子110与马达转子120符合下列条件式:
Figure PCTCN2016099830-appb-000002
bi=0.1545Ts   (2)
S=Rsi/Rso=0.618   (3)
bp=0.4045Ts   (4)
bh=0.5Ts  (5)
Rr(θ)=Rro-0.25Ts(1-cosθ)   (6)
Rro-Rri=bh=0.5Ts   (7)
其中,上述之bm为永久磁铁之厚度,bt为不包含永久磁铁之定子齿极之1/2宽度,bs为齿槽之宽度,bi为定子齿极之定子轭之厚度,bp为转子极之宽度,bh为转子极之高度,Rsi为马达定子之内径,Rso为马达定子之外径,S为马达定子之内外径比,Ts为定子齿极之齿槽节距,Ns是该齿槽数,Rr是该马达转子之径长,Rro是该马达转子之外径Rri是该马达转子之内径。
如图1所示,定子齿极111与定子齿极111之间除了具有齿槽112之外,更具有定子轭113,各定子轭113便分别对应齿槽112,且连结相邻的定子齿极111。
更进一步地,如图2所示,永久磁铁对应定子轭之部分131可以非导磁性材料替换,永久磁铁对应定子轭之部分131的厚度不可大于定子轭113之厚度。
此外,马达定子110与马达转子120之间可具有气隙;气隙之宽度可为马达定子110之内径减掉马达转子120之外径。
复请参阅图1,各定子齿极111具有线圈缠绕,12个定子齿极111分为A、B、C三相,每相包含4个定子齿极111,而线圈亦对应具有三相,各相线圈缠绕对应相之4个定子齿极111,而该相定子齿极111之线圈可相互 串联或并联;较佳地,高压时可采用串联方式,低压则采用并联方式,并可视需求变更线圈匝数。
更详细地说,依据条件式(1)至(5)之设计所制成的磁通切换式永磁马达已具有优异的效率及高电磁转矩,然,其所呈现出来的顿转矩及转矩涟波仍然不可忽视;进而,为使其具有等同于表面型永磁同步马达低顿转矩及低转矩涟波的特性,转子极之宽度及高度则需要重新设计。
其中,由一个定子槽所包围的面积As可以推出条件式(8):
Figure PCTCN2016099830-appb-000003
相电阻Ra亦可推导得出如条件式(9):
Figure PCTCN2016099830-appb-000004
其中,m代表磁通切换式永磁马达的相数;Nw代表磁通切换式永磁马达每相线圈旋绕的圈数;ρCu为铜的电阻率;Ks为占槽率(slot packing factor);La为磁通切换式永磁马达的轴长;Le为磁通切换式永磁马达端线(ending-winding)之长度,如条件式(10)所示:
Figure PCTCN2016099830-appb-000005
而磁通切换式永磁马达之转矩可推出条件式(11):
Figure PCTCN2016099830-appb-000006
其中,p代表转子极之极数;λm为转子d轴方向之磁铁磁通连结大小,其如条件式(12)式所示:
λm=BmbtLaNw  (12)
其中,Bm为定子硅钢材料之最大磁通密度。
如图2所示,先以条件式(4)及(5)所示之转子极之宽度及高度设计为基础,再依循转子极位置角度,配合条件式(6)对转子极径长作修弧动作,以改变气隙磁通,进而达到降低顿转矩及转矩涟波之目的。
而,当转子极位置由零度至360度改变时,如图3所示,转子极位置为零度,转子径长Rr(θ)为转子极外径Rro,对应图3中径长为+1单位的长 度;而转子极位置为180度,Rr(θ)为转子极内径Rri,对应图3中径长为-1单位的长度;而马达转子之平均径长则对应图3中径长为0单位的长度。
承上所述,本发明之磁通切换式永磁马达藉由12个定子齿极,并于定子齿极中插入永久磁铁的结构,以及对转子极进行修弧之设计,使得本发明之磁通切换式永磁马达可简化习知马达之繁杂设计,且可有效降低习知马达之顿转矩及转矩涟波。
以上所述之实施例仅为说明本发明之技术思想及特点,其目的在使熟习此项技艺之人士能够了解本发明之内容并据以实施,当不能以之限定本发明之专利范围,即大凡依本发明所揭示之精神所作之均等变化或修饰,仍应涵盖在本发明之专利范围内。
符号说明
110:马达定子
111:定子齿极
112:齿槽
113:定子轭
120:马达转子
121:转子极
130:永久磁铁
131:永久磁铁对应定子轭之部分

Claims (5)

  1. 一种磁通切换式永磁马达,其包含:
    一马达定子,系具有十二定子齿极,各该定子齿极中插设一永久磁铁,各该定子齿极之一面与相邻之该定子齿极对应之一面所对应该永久磁铁之磁性相同,相邻之二该定子齿极间距有一齿槽;以及
    一马达转子,系具有复数个转子极;
    其中,该马达定子与该马达转子符合下列条件式:
    Figure PCTCN2016099830-appb-100001
    bi=0.1545Ts
    S=Rsi/Rso=0.618;
    bp=0.4045Ts
    bh=0.5Ts
    Rr(θ)=Rro-0.25Ts(1-cosθ);以及
    Rro-Rri=bh=0.5Ts
    其中,bm是该永久磁铁之厚度,bt是不包含该永久磁铁之该定子齿极之1/2宽度,bs是该齿槽之宽度,bi是该定子齿极之一定子轭之厚度,bp是该转子极之宽度,bh是该转子极之高度,Rsi是该马达定子之内径,Rso是该马达定子之外径,S是该马达定子之内外径比,Ts是该定子齿极之齿槽节距,Ns是该齿槽数,Rr是该马达转子之径长,Rro是该马达转子之外径Rri是该马达转子之内径。
  2. 如权利要求1所述的磁通切换式永磁马达,其中各该定子齿极系以该定子轭连结,各该定子轭系分别对应该齿槽。
  3. 如权利要求2所述的磁通切换式永磁马达,其中该永久磁铁对应该定子轭之部分系以非导磁性材料替换。
  4. 如权利要求1所述的磁通切换式永磁马达,其中该马达定子与该马达转子之间系具有一气隙。
  5. 如权利要求4所述的磁通切换式永磁马达,其中该气隙之宽度是该马达定子之内径减掉该马达转子之外径。
PCT/CN2016/099830 2015-09-23 2016-09-23 磁通切换式永磁马达 WO2017050266A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562222471P 2015-09-23 2015-09-23
US62/222,471 2015-09-23

Publications (1)

Publication Number Publication Date
WO2017050266A1 true WO2017050266A1 (zh) 2017-03-30

Family

ID=58385693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099830 WO2017050266A1 (zh) 2015-09-23 2016-09-23 磁通切换式永磁马达

Country Status (2)

Country Link
TW (1) TWI618332B (zh)
WO (1) WO2017050266A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113982A (zh) * 2021-04-02 2021-07-13 南京师范大学 一种抑制永磁体退磁的磁通切换永磁电机结构

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988520B (zh) * 2018-07-25 2019-07-23 浙江大学 一种双凸极电机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159391A (zh) * 2007-09-21 2008-04-09 东南大学 双通道容错式磁通切换永磁电机及其控制方法
EP2169804A2 (en) * 2008-09-24 2010-03-31 Rolls-Royce plc Flux-switching magnetic machine
GB2475995A (en) * 2009-03-18 2011-06-08 Imra Europe Sas A stator assembly incorporating permanent magnets for an inductor machine
CN103825380A (zh) * 2014-02-21 2014-05-28 东南大学 一种低齿槽转矩磁通切换永磁电机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW427047B (en) * 1999-02-26 2001-03-21 Adlee Powertronic Co Ltd High efficiency permanent magnetic motor for high speed and heavy load
TWI224412B (en) * 2003-07-30 2004-11-21 Ming-Tsung Chu Rotor structure of line-start permanent magnet synchronous motor
TW200924347A (en) * 2007-11-22 2009-06-01 Well Tech Electric Co Ltd Design method for permanent-magnet motors using post-assembly magnetization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159391A (zh) * 2007-09-21 2008-04-09 东南大学 双通道容错式磁通切换永磁电机及其控制方法
EP2169804A2 (en) * 2008-09-24 2010-03-31 Rolls-Royce plc Flux-switching magnetic machine
GB2475995A (en) * 2009-03-18 2011-06-08 Imra Europe Sas A stator assembly incorporating permanent magnets for an inductor machine
CN103825380A (zh) * 2014-02-21 2014-05-28 东南大学 一种低齿槽转矩磁通切换永磁电机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113982A (zh) * 2021-04-02 2021-07-13 南京师范大学 一种抑制永磁体退磁的磁通切换永磁电机结构

Also Published As

Publication number Publication date
TWI618332B (zh) 2018-03-11
TW201713009A (zh) 2017-04-01

Similar Documents

Publication Publication Date Title
Zhao et al. Comparative study on novel dual stator radial flux and axial flux permanent magnet motors with ferrite magnets for traction application
JP6423991B2 (ja) ローター及び駆動モータ
JP5491484B2 (ja) スイッチドリラクタンスモータ
CN108076676B (zh) 旋转电机及车辆
JP5985342B2 (ja) モータ及びモータ用ローター
US20150084468A1 (en) Rotor for permanent-magnet-embedded electric motor, electric motor including the rotor, compressor including the electric motor, and air conditioner including the compressor
CN106972722B (zh) 轴向分段定子交替极永磁同步电机
CN204258453U (zh) 一种定子及其相应的无刷直流电机和三相开关磁阻电机
CN109149800B (zh) 一种9n/10n极分段转子开关磁阻电机
JP2008289209A (ja) ブラシレスdcモータ
CN205178671U (zh) 一种定子及其相应的无刷直流、三相开关磁阻和罩极电机
WO2017050266A1 (zh) 磁通切换式永磁马达
CN102361385A (zh) 无刷直流电动机
JP2018137853A (ja) 埋込磁石同期モータ
CN109038871B (zh) 一种分段转子开关磁阻电机
CN104767336A (zh) 一种单相他励磁阻式发电机
WO2017050267A1 (zh) 磁通切换式永磁马达
Karnavas et al. An Investigation Study Considering the Effect of Magnet Type, Slot Type and Pole-Arc to Pole-Pitch Ratio Variation on PM Brushless DC Motor Design
CN108900053A (zh) 一种9/8极开关磁阻电机
Kalmykov et al. A brushless electric motor with a transverse magnetic flux and disk rotor
CN104283353A (zh) 绕组互补型多相半齿绕磁通切换电机
KR20160044760A (ko) 가변 자속 자기 회로
Matsumoto et al. Study on IPMSM with ferrite magnets driven at high speeds
JP5460807B1 (ja) 同期電動機
JP2007166798A (ja) 回転電機、圧縮機、送風機、及び空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848147

Country of ref document: EP

Kind code of ref document: A1