WO2020015302A1 - 交替极电机 - Google Patents

交替极电机 Download PDF

Info

Publication number
WO2020015302A1
WO2020015302A1 PCT/CN2018/122833 CN2018122833W WO2020015302A1 WO 2020015302 A1 WO2020015302 A1 WO 2020015302A1 CN 2018122833 W CN2018122833 W CN 2018122833W WO 2020015302 A1 WO2020015302 A1 WO 2020015302A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
segment
layer
alternating
Prior art date
Application number
PCT/CN2018/122833
Other languages
English (en)
French (fr)
Inventor
胡余生
陈彬
李权锋
史进飞
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to JP2021500098A priority Critical patent/JP7085685B2/ja
Publication of WO2020015302A1 publication Critical patent/WO2020015302A1/zh
Priority to US17/125,014 priority patent/US20210104924A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2746Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets arranged with the same polarity, e.g. consequent pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present application relates to the technical field of motors, and in particular, to an alternating-pole motor.
  • a conventional permanent magnet motor taking an 8-pole permanent magnet motor as an example, has 8 permanent magnets arranged around the center of the rotor in the direction of rotation, and adjacent permanent magnets have different magnetization directions.
  • Alternating pole permanent magnet synchronous motors have only four permanent magnets, which are also uniformly distributed along the circumference, and adjacent permanent magnets have the same length in the magnetization direction.
  • the permanent magnet mounting slots are called permanent magnets, and two permanent magnet mounting slots
  • the soft magnetic material in between is magnetized by the permanent magnet poles to have the opposite polarity to the permanent magnet poles, so it is called an alternating pole permanent magnet motor.
  • the use of this kind of motor can significantly reduce the use of permanent magnets.
  • the magnetic field lines under a pair of poles of a conventional alternating-pole motor pass through only one permanent magnet.
  • the thickness of a single permanent magnet is thicker than that of a conventional motor, there are two permanent magnets in the magnetic field circuit of a conventional motor.
  • the thickness of the permanent magnet on the magnetic circuit is significantly smaller than the equivalent permanent magnet thickness on the d-axis magnetic circuit of the conventional motor. Therefore, the magnetic resistance of the d-axis magnetic circuit of the alternating-pole motor is small, and the large d-axis inductance results in a small inductance difference between the q-axis and the d-axis, which causes a small reluctance torque and limits the increase of the electromagnetic torque.
  • the purpose of the present application is to provide an alternating-pole motor to solve the problems of the small reluctance torque of the conventional alternating-pole motor and the limitation of the increase of the electromagnetic torque.
  • An alternating-pole motor includes a rotor and a stator sleeved outside the rotor, and the rotor includes a plurality of permanent magnet poles evenly spaced along a circumferential direction of the rotor.
  • a plurality of stator teeth are provided on an inner peripheral edge of the stator along a circumferential direction thereof, and the permanent magnet poles of the rotor include a first permanent magnet mounting slot and a second permanent magnet mounting slot provided from the outside to the inside along the radial direction of the rotor,
  • the first permanent magnet mounting slot is provided with a first layer of permanent magnets
  • the second permanent magnet mounting slot is provided with a second layer of permanent magnets.
  • a multilayer distributed permanent magnet can be used to increase the reluctance torque of the motor, thereby increasing the electromagnetic torque of the motor.
  • an alternating-pole motor according to the above embodiments of the present application may also have the following additional technical features:
  • the number of the stator teeth is z and the number of the permanent magnet poles is p, wherein a first permanent magnet mounting slot of each of the permanent magnet poles and a first region of an inner periphery of the stator Correspondingly, the number of stator teeth in the first region is z / 4p + 1.
  • the first permanent magnet can generate larger permanent magnet torque at the same time, and the q-axis magnetic circuit of the magnetic conduction channel between the first permanent magnet mounting slot and the second permanent magnet mounting slot can be larger. Inductance, which increases reluctance torque.
  • the number of the stator teeth is z and the number of the permanent magnet poles is p, wherein a second permanent magnet mounting slot of each of the permanent magnet poles and a second region of the inner periphery of the stator Correspondingly, the number of stator teeth in the second region is z / 2p + 2.
  • the electromagnetic torque can be further improved.
  • both sides of the stator teeth near one end of the rotor are provided with tooth tips, one side of the second permanent magnet mounting slot and the outer teeth of the stator teeth on the other side in the second region.
  • the tip corresponds
  • the other side of the second permanent magnet mounting slot corresponds to the outer tooth tip of the stator tooth on the other side in the second region.
  • the electromagnetic torque can be maximized.
  • the thickness of the first layer of permanent magnets is t1
  • the thickness of the second layer of permanent magnets is t2; where 1.3 ⁇ t1 / t2 ⁇ 1.7.
  • the maximum electromagnetic torque is provided with the minimum amount of permanent magnets on the premise of meeting the anti-demagnetization capability.
  • a cross section of the first permanent magnet mounting slot and the second permanent magnet mounting slot each includes a first segment, a second segment, and The third segment, the first segment and the third segment are symmetrical about the center line of the second segment, and the second segment of the first permanent magnet mounting slot and the second segment of the second permanent magnet mounting slot
  • the centerline of the segment recombines with the rotor axis; the first permanent magnet is installed in the second segment of the first permanent magnet mounting slot, and the first and third segments of the first permanent magnet mounting slot are installed in the second segment.
  • Magnetic insulation material is installed in the segment; the second layer of permanent magnets is installed in the second segment of the second permanent magnet mounting slot, and the first and third sections of the second permanent magnet mounting slot are installed in Magnetic insulation material.
  • the thickness of the first permanent magnet is t1
  • the thickness of the second permanent magnet is t2
  • the end of the first segment of the second permanent magnet near the outer peripheral edge of the rotor and
  • the distance between the ends of the third segment near the outer periphery of the rotor is w2; where 4 ⁇ w2 / (t1 + t2) ⁇ 8.
  • the minimum distance between the first and third sections of the first permanent magnet mounting slot and the outer peripheral edge of the rotor is t3, and the first section of the second permanent magnet mounting slot and The minimum distance between the third segment and the outer periphery of the rotor is t4, where t3 is greater than or equal to t4.
  • the minimum distance between the center of the first permanent magnet and the outer peripheral edge of the rotor is tm1; the end of the first segment of the first permanent magnet close to the outer peripheral edge of the rotor and the third The distance between the end of the segment near the outer peripheral edge of the rotor is w1.
  • the end of the first segment of the second permanent magnet near the outer peripheral edge of the rotor and the end of the third segment near the outer peripheral edge of the rotor are w1.
  • the ratio of the permanent magnet torque and the reluctance torque can be made appropriate to increase the combined torque.
  • the distance between the end of the first segment of the first permanent magnet near the outer peripheral edge of the rotor and the end of the third segment near the outer peripheral edge of the rotor is w1
  • the second The distance between the end of the first segment near the outer peripheral edge of the rotor and the end of the third segment near the outer peripheral edge of the rotor is w2; where 1.15 ⁇ w2 / w1 ⁇ 2.1.
  • the magnitudes of w1 and w2 are correlated to ensure that the ratio of permanent magnet torque and reluctance torque in the electromagnetic torque is appropriate to increase the combined torque.
  • a first segment of one of two adjacent second permanent magnet mounting slots is adjacent to a third segment of the other, and a first segment of a second permanent magnet is near an end of an outer peripheral edge of the rotor
  • the distance between the third segment of another second permanent magnet near the outer peripheral edge of the rotor is w3; the width of the second permanent magnet is wm2; where 1.8 ⁇ wm2 / w3 ⁇ 2.7.
  • the electromagnetic torque can be maximized, and the additional iron loss caused by local magnetic saturation can be reduced.
  • the first layer of permanent magnets is a low remanence and low coercive force permanent magnet
  • the second layer of permanent magnets is a high remanence and high coercive force permanent magnet
  • the cost can be reduced to the greatest extent under the premise of ensuring the performance of the motor and the ability to resist demagnetization.
  • the first layer of permanent magnets and / or the second layer of permanent magnets are composed of multiple permanent magnet blocks.
  • a cross section of the first layer of permanent magnets in a cross section perpendicular to the rotor axis, is V-shaped or U-shaped.
  • the magnetic flux area of the permanent magnet can be increased.
  • the cross-section of the second layer of permanent magnets has a cross-section or a V-shape in a cross section perpendicular to the rotor axis.
  • the magnetic flux area of the permanent magnet can be increased.
  • FIG. 1 is a schematic structural diagram of an alternating-pole motor according to an embodiment of the present application.
  • FIG. 2 is an enlarged view of part A of FIG. 1; FIG.
  • FIG. 3 is a schematic structural diagram of a rotor according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a magnetic circuit of a d-axis and a q-axis of a rotor according to an embodiment of the present application;
  • FIG. 5 is a schematic diagram of the influence of stator teeth included in the first permanent magnet mounting slot on electromagnetic torque
  • FIG. 6 is a schematic diagram showing changes in electromagnetic torque and torque fluctuations with wm2 / w3;
  • FIG. 7 is a comparison diagram of q-axis inductance of an alternating-pole motor and a prior art motor according to an embodiment of the present application.
  • FIG. 8 is a graph showing changes in the electromagnetic torque of the alternating pole motor and the prior art electric current with the current angle according to the embodiment of the present application.
  • FIG. 9 is a torque curve diagram of the alternating pole motor and the prior art electric power according to the embodiment of the present application.
  • this embodiment provides an alternating-pole motor, including a rotor 1 and a stator 2 sleeved outside the rotor 1.
  • the rotor 1 includes a uniform interval along a circumferential direction of the rotor 1.
  • a plurality of distributed permanent magnet poles, and an inner peripheral edge of the stator 2 is provided with a plurality of stator teeth 11 along its circumferential direction.
  • the permanent magnet poles of the rotor 1 are improved.
  • the permanent magnet poles of the rotor 1 include a first permanent magnet mounting groove 3 provided from the outside to the inside along the radial direction of the rotor 1.
  • the second permanent magnet mounting slot 4 and the distance between the first permanent magnet mounting slot 3 and the outer edge of the rotor 1 is smaller than the distance between the second permanent magnet mounting slot 4 and the outer edge of the rotor 1, the first Between the permanent magnet mounting slot 3 and the second permanent magnet mounting slot 4 is a magnetically permeable channel 10; the first permanent magnet mounting slot 3 is provided with a first layer of permanent magnets 8, and the second permanent magnet mounting slot 4 is provided There is a second layer of permanent magnets 9.
  • the multi-layered distributed permanent magnets of the above structure increase the reluctance torque of the motor, thereby increasing the electromagnetic torque of the motor.
  • the multilayer distributed permanent magnets can significantly increase the q-axis inductance of the motor.
  • the alternating-pole motor of this embodiment provides 3 distinct magnetic line lines, which is easier. Let the q-axis magnetic lines of force pass, the magnetic resistance on the q-axis magnetic resistance decreases, so the q-axis inductance is greater.
  • the permanent magnets passing through the d-axis magnetic circuit of conventional alternating-pole motors have been changed from one layer to two, since the amount of permanent magnets has not changed, the equivalent thickness of the permanent magnets has also remained basically unchanged, and the d-axis magnetic circuit inductance has basically remained constant.
  • FIG. 7 is a comparison diagram of the q-axis inductance of the alternating-pole motor of the present embodiment and a prior art motor. It can be seen from the accompanying drawings that the alternating-pole motor of this embodiment can significantly increase the q-axis inductance of the motor.
  • the cross sections of the first permanent magnet mounting slot 3 and the second permanent magnet mounting slot 4 each include a first section 5 and a first section connected in sequence.
  • the second section 6 and the third section 7, the first section 5 and the third section 7 are symmetrical with respect to the center line of the second section 6, the second section 6 of the first permanent magnet mounting groove 3 and the The centerline of the second segment 6 of the second permanent magnet mounting groove 4 is re-merged with the rotor 1 axis to intersect, and the first segment 5 and the third segment 7 have a shape feature extending toward the outer periphery of the rotor 1.
  • the first permanent magnet 8 is installed in the second section 6 of the first permanent magnet mounting slot 3, and the first section 5 and the third section of the first permanent magnet mounting slot 3 are installed in the second section 6.
  • a magnetic insulation material is installed in the segment 7;
  • the second permanent magnet 9 is installed in the second segment 6 of the second permanent magnet mounting groove 4, and the first segment 5 and
  • the third section 7 is provided with a magnetic insulating material, which is a non-magnetic material.
  • the permanent magnet passed through the d-axis magnetic circuit of a conventional alternating pole motor has been changed from one layer to two layers, Magnetic insulation materials are installed in sections 5 and 3, the amount of permanent magnets has not changed, the equivalent thickness of the permanent magnets has remained basically unchanged, and the d-axis magnetic circuit inductance has remained basically unchanged.
  • the magnetic resistance of the q-axis magnetic circuit is significantly reduced, the q-axis inductance is increased, and the difference between the orthogonal magnetic axis and the magnetic circuit inductance is increased, making better use of the reluctance torque. .
  • the thickness of the first layer of permanent magnets 8 in this embodiment is t1
  • the thickness of the second layer of permanent magnets 9 is t2; where 1.3 ⁇ t1 / t2 ⁇ 1.7.
  • the above structure is adopted because a demagnetizing magnetic field applied from the outside directly acts on the first layer of permanent magnets 8. The thicker the permanent magnet is, the stronger the resistance to demagnetization. Increasing the thickness of the first layer of permanent magnets 8 can effectively improve the resistance to demagnetization. . However, when the thickness of t1 exceeds a certain range, the effect of increasing the resistance to demagnetization continues to be unknown. Instead, the cost of the permanent magnet will rise sharply.
  • the thickness t2 of the second layer of permanent magnets 9 must be reduced. Although the reduction of t2 has little effect on the resistance to demagnetization, the reduction of the operating point of the permanent magnets will cause the electromagnetic torque to drop sharply.
  • the inventor has proved through a large number of experiments that when 1.3 ⁇ t1 / t2 ⁇ 1.7, the ratio of t1 and t2 is more appropriate. Under the premise of meeting the anti-demagnetization capability, the maximum amount of permanent magnets is used to provide the maximum electromagnetic torque.
  • the ratio between the width of the permanent magnet pole and the equivalent thickness of the two layers of permanent magnets is also limited.
  • the thickness of the first layer of permanent magnets 8 is t1.
  • the thickness of the second layer of permanent magnets 9 is t2, between the end of the first segment 5 of the second permanent magnet near the outer peripheral edge of the rotor 1 and the end of the third segment 7 near the outer peripheral edge of the rotor 1.
  • the distance is w2; where 4 ⁇ w2 / (t1 + t2) ⁇ 8.
  • w2 characterizes the width of the permanent magnet poles
  • (t1 + t2) characterizes the equivalent thickness of the two layers of permanent magnets
  • w2 / (t1 + t2) characterizes the slenderness ratio of the permanent magnets in the rotor 1 of the present application
  • the minimum distance between the first section 5 and the third section 7 of the first permanent magnet mounting groove 3 and the outer peripheral edge of the rotor 1 in this embodiment is t3, and the second The minimum distance between the first section 5 and the third section 7 of the permanent magnet mounting slot 4 and the outer peripheral edge of the rotor 1 is t4, where t3 is greater than or equal to t4.
  • the first segment 5 and the third segment 7 of the first permanent magnet mounting slot 3 form a magnetic bridge with a width of t3 between the outer periphery of the rotor 1 and the first segment 5 and the third segment of the second permanent magnet mounting slot 4.
  • the segment 7 and the outer periphery of the rotor 1 form a magnetic bridge with a width t4, and t3 is greater than or equal to t4.
  • This setting increases the magnetic leakage at the end of the first layer of permanent magnet 8 and reduces the permanent magnet torque, but because the magnetic field lines of the armature will easily pass through the magnetic bridge, the reluctance torque is increased, and the total electromagnetic torque will not be reduced. .
  • the first layer of permanent magnet 8 is more prone to irreversible demagnetization than the second layer, which affects the performance of the motor. Due to the increase of the magnetic flux leakage at the end of the first layer of permanent magnet 8, the motor's single chip anti-demagnetization ability is improved.
  • the magnetic field lines included in the magnetically permeable channel 10 include armature magnetic field lines, magnetic field lines generated by the second layer of permanent magnets 9, and magnetic field lines generated by the first layer of permanent magnets 8. Therefore, there are more magnetic field lines distributed on the magnetic transmission channel 101. Research shows that the width of the magnetically permeable channel 10 can be roughly expressed as (w1-w2) / 2.
  • the magnetic field lines on the magnetically permeable channel 10 are sparsely distributed, but the first permanent magnet mounting slot 3
  • the outer magnetic field lines are densely distributed, causing local magnetic saturation, and the permanent magnet torque generated by the first layer of permanent magnets 8 is reduced.
  • the magnetic flux channel 10 normally distributes more magnetic lines of force than the outer side of the first permanent magnet mounting slot 3, when 2tm1 / (w1-w2)> 1, the magnetic flux channel 10 has a higher degree of magnetic saturation and the reluctance torque decreases.
  • the above structural design is because the inventors consider that the larger w1, the smaller the magnetically permeable channel 10, and the smaller the q-axis inductance increase of the motor, which is not conducive to the increase of reluctance torque.
  • the smaller w1, the permanent magnet can provide The smaller the magnetic flux area, the permanent magnet torque in the electromagnetic torque decreases, and the increase of the magnetic conduction channel 10 beyond a certain range continues to increase.
  • the increase in the reluctance torque is not obvious, and the correlation between w1 and w2 ensures that The ratio of permanent magnet torque and reluctance torque in the electromagnetic torque is appropriate, so that the resultant torque is maximum.
  • the first segment 5 of one of the two adjacent second permanent magnet mounting slots 4 of this embodiment is adjacent to the third segment 7 of the other, and the first
  • the distance between the end of the segment 5 near the outer periphery of the rotor 1 and the third segment 7 of the other second permanent magnet near the outer periphery of the rotor 1 is w3;
  • the width is wm2; of which, 1.8 ⁇ wm2 / w3 ⁇ 2.7.
  • w3 characterizes the width of the alternating poles. Since the magnetic lines of force of the first layer of permanent magnets 8 on the permanent magnet poles do not pass through the alternating poles, the magnetic lines of force of the alternating poles are generated only by the second layer of permanent magnets 9. Compared with the single-layer permanent magnet structure, the alternating-pole motor with a single-layer permanent magnet structure can have a smaller width of the alternating poles, thereby providing a larger installation area for the permanent magnet. However, the inventor found that when the permanent magnet pole is too large, the saturation of the alternating pole area is too small.
  • the inventor has proved through a large number of experiments that the magnetic field lines on the alternating pole are evenly distributed when 1.8 ⁇ wm2 / w3 ⁇ 2.7. It can maximize the electromagnetic torque and reduce the additional iron loss due to local magnetic saturation. As shown in Figure 6, the effect of wm2 / w3 on the electromagnetic torque can be more intuitively shown.
  • the first layer of permanent magnets 8 in this embodiment are low remanence and low coercive force permanent magnets
  • the second layer of permanent magnets 9 are high remanence and high coercive force permanent magnets.
  • “low remanence”, “high remanence”, “low coercive force”, and “high coercive force” are all conventional technical terms well known to those skilled in the art, and the remanence is 0.5 Tesla, coercive force Ferrite permanent magnet materials with a capacity of 300 kA / m are considered to be materials with low coercivity and low remanence.
  • Rare earth permanent magnet materials with remanence of 1.2 Tesla and coercivity of 1000 kA / m are considered to have high coercivity and high remanence. Residual magnetic material.
  • the second layer of permanent magnets 9 is made of permanent magnet materials with high remanence and high coercive force. On the premise of ensuring the performance of the motor and the ability to resist demagnetization, the cost is minimized.
  • first layer of permanent magnets 8 and the second layer of permanent magnets 9 are also improved.
  • first layer of permanent magnets 8 and the second layer of permanent magnets 9 may be made of multiple permanent magnets. Composed of magnetic blocks, multiple permanent magnets will simplify the processing and installation of permanent magnets.
  • the cross section of the first layer of permanent magnets 8 is designed as a V-shaped or U-shaped cross section
  • the cross section of the second layer of permanent magnets 9 is designed as a straight or V type.
  • the inventor also found that the relationship between the width of each layer of permanent magnets and the position of the teeth will affect the size of the electromagnetic torque. Therefore, the inventor has improved the width of the permanent magnets and the position of the teeth of the stator 2.
  • the number of the stator teeth 11 in this embodiment is designed as z
  • the number of the permanent magnet poles is designed as p
  • the first permanent magnet mounting slots 3 of each of the permanent magnet poles and the inside of the stator 2 The first region on the periphery corresponds to the number of the stator teeth 11 in the first region is z / 4p + 1.
  • the first permanent magnet mounting slot 3 of the permanent magnet corresponds to the first region of the inner periphery of the stator 2
  • the opposite sides of the first permanent magnet mounting slot 3 face the stator 2
  • the area where the extension line of the direction intersects with the inner peripheral edge of the stator 2, and the number of the stator teeth 11 in the area is z / 4p + 1.
  • the first permanent magnet 8 mounting slot contains only 1 #, then 2 #, 3 #, and 4 # will face the magnetically permeable channel 101, and the number of magnetic lines of force in the magnetically permeable channel 101 increases, despite the entrance of the magnetically permeable channel 101 Places (ie, the third section 7 of the first layer of permanent magnets 8 and the third section 7 of the second layer of permanent magnets 9) will increase due to the shortening of the mounting slot of the first layer of permanent magnets 8, but the The middle section (that is, between the second section 6 of the first layer of permanent magnets 8 and the second section 6 of the second layer of permanent magnets 9) will not increase. This part of the magnetically permeable channel 10 is more saturated, so the q-axis inductance is increased.
  • the electromagnetic torque increase is not obvious.
  • the width of the first layer of the magnetically permeable channel 10 is reduced, the magnetic field lines generated by the first layer of permanent magnets 8 are reduced, and the permanent magnet torque generated by the first layer of permanent magnets 8 is reduced sharply.
  • the proportion of magnetic leakage at both ends of the layer permanent magnet 8 increases correspondingly, and the utilization rate of the permanent magnet decreases.
  • the first permanent magnet mounting slot 3 includes three teeth 1 #, 2 #, and 3 #, the area of the first layer permanent magnet 8 increases, and the torque generated by the first layer permanent magnet 8 increases.
  • the magnetic flux, 1 is reduced at the entrance, and less magnetic lines of force can enter the magnetic flux channel 101, the q-axis inductance decreases, and the electromagnetic torque decreases.
  • the inventors have proved through experiments that when the number of stator teeth 11 included in the mounting slot of the first layer of permanent magnets 8 is z / 4p + 1, the first layer of permanent magnets 8 can generate larger permanent magnet torque at the same time.
  • the q-axis magnetic circuit including the magnetic channel 101 has a larger inductance, thereby increasing the reluctance torque.
  • the effect of the number of teeth on the electromagnetic torque component is shown in FIG. 5.
  • the second permanent magnet mounting slot 4 of each of the permanent magnet poles in this embodiment corresponds to a second area on the inner periphery of the stator 2.
  • the second area includes the above-mentioned
  • the number of the stator teeth 11 in the first region and the second region is z / 2p + 2.
  • a tooth tip 12 is provided on both sides of one end of the stator tooth 11 close to the rotor 1, and one side of the second permanent magnet mounting slot 4 and one side of the stator tooth 11 in the second region are outside.
  • the tooth tip 12 corresponds, and the other side of the second permanent magnet mounting slot 4 corresponds to the outer tooth tip 12 of the stator tooth 11 on the other side in the second region.
  • the “correspondence” means that the two sides of the permanent magnet mounting groove (the first and third segments are specifically described above) may extend in the direction of the stator direction and may intersect with the tooth tips of the stator teeth.
  • the stator teeth 11 included in half of the second layer of permanent magnets 9 include 1 # to 4 #.
  • the mounting slots of the second layer of permanent magnets 9 are aligned with the outer tooth tips 12 of 4 # teeth.
  • the direction is shown by the arrow, and the other half is symmetrical about the d-axis.
  • the q axis is the boundary between adjacent magnetic poles of a conventional motor, and the two sides are different magnetic poles.
  • the design of this application is that the permanent magnet poles exceed the q axis design, because the stator teeth 11 # 3 and the stator teeth 11 #
  • the magnetic field lines in the center of # are distributed in parallel to each other, and they can generate positive torque when they are turned with the magnetic field lines of rotor 1 on the permanent magnet poles.
  • the magnetic field lines of the outer tooth tip 12 of # 4 teeth point to the alternating pole side. Part of the magnetic line of force will produce negative torque, which will cause the electromagnetic torque to drop.
  • the third section 7 of the second slot of the permanent magnet 9 mounting slot is designed to be aligned with the outer tooth tip 12 of the 4 # tooth Designed to maximize electromagnetic torque.
  • the electromagnetic torque of the alternating-pole motor of this embodiment is significantly better than the prior art with the change in current angle.
  • the torque of the alternating-pole motor of this embodiment is also significantly better than that of the prior art. current technology.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present application, the meaning of "a plurality" is two or more, unless it is specifically and specifically defined otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

一种交替极电机,其包括转子(1)和套设在所述转子(1)外的定子(2),所述转子(1)包括沿所述转子(1)周向均匀间隔分布的多个永磁极,所述定子(2)的内周缘沿其周向设有多个定子齿(11),所述转子(1)的永磁极包括沿所述转子(1)径向由外向内设置的第一永磁体安装槽(3)和第二永磁体安装槽(4),所述第一永磁体安装槽(3)内设置有第一层永磁体(8),所述第二永磁体安装槽(4)设置有第二层永磁体(9)。该电机采用多层分布的永磁体,能够提升电机的磁阻转矩,从而提升电机的电磁转矩。

Description

交替极电机
相关申请
本申请要求2018年07月17日申请的,申请号为201810784378.3,名称为“一种交替极电机”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及电机技术领域,尤其涉及一种交替极电机。
背景技术
传统永磁电机,以8极永磁电机为例,其具有8个永磁体,围绕转子中心沿旋转方向布置,并且相邻的永磁体具有不同的磁化方向。而交替极永磁同步电机仅有4个永磁体,同样是沿圆周均匀分布,并且相邻的永磁体具有相同的磁化方向长度,永磁体安装槽的称为永磁极,两个永磁体安装槽之间的软磁材料被永磁极磁化成与具有与永磁极相反的极性,因此称为交替极永磁电机,采用这种电机可以显著降低永磁体使用量。
但是,传统交替极电机的一对极下的磁力线仅穿过一块永磁体,尽管其单块永磁体厚度较常规电机厚,但是常规电机磁力线回路中存在两块永磁体,所以交替极电机d轴磁路上永磁体厚度明显小于常规电机d轴磁路上等效永磁体厚度。因此,交替极电机d轴磁路磁阻较小,d轴电感较大导致q轴与d轴的电感差值较小,从而引起磁阻转矩较小,限制了电磁转矩的提升。
发明内容
本申请的目的在于提供一种交替极电机,以解决传统的交替极电机磁阻转矩较小,限制电磁转矩的提升的问题。
为实现上述目的,本申请提出的技术方案如下:一种交替极电机,包括转子和套设在所述转子外的定子,所述转子包括沿所述转子周向均匀间隔分布的多个永磁极,所述定子的内周缘沿其周向设有多个定子齿,所述转子的永磁极包括沿所述转子径向由外向内设置的第一永磁体安装槽和第二永磁体安装槽,所述第一永磁体安装槽内设置有第一层永磁体,所述第二永磁体安装槽设置有第二层永磁体。
根据本申请提供的交替极电机,采用多层分布的永磁体,能够提升电机的磁阻转矩, 从而提升电机的电磁转矩。
另外,根据本申请上述实施例的一种交替极电机,还可以具有如下附加的技术特征:
根据本申请的一个示例,所述定子齿的数量为z,所述永磁极的数量为p,其中,每个所述永磁极的第一永磁体安装槽与所述定子内周缘的第一区域相对应,所述第一区域内具有的定子齿的数量为z/4p+1。
采用上述技术方案,能够同时使第一层永磁体产生更大的永磁转矩,使第一永磁体安装槽和第二永磁体安装槽之间的导磁通道的q轴磁路具有更大的电感,从而提升磁阻转矩。
根据本申请的一个示例,所述定子齿的数量为z,所述永磁极的数量为p,其中,每个所述永磁极的第二永磁体安装槽与所述定子内周缘的第二区域相对应,所述第二区域内具有的定子齿的数量为z/2p+2。
采用上述技术方案,能够进一步提升电磁转矩。
根据本申请的一个示例,所述定子齿靠近所述转子的一端的两侧均设有齿尖,所述第二永磁体安装槽的一侧与第二区域内一侧的定子齿的外侧齿尖相对应,所述第二永磁体安装槽的另一侧与第二区域内另一侧的定子齿的外侧齿尖相对应。
采用上述技术方案,能够最大化提升电磁转矩。
根据本申请的一个示例,所述第一层永磁体厚度为t1,所述第二层永磁体的厚度为t2;其中,1.3<t1/t2<1.7。
采用上述技术方案,在满足抗退磁能力的前提下,用最少的永磁体用量提供最大的电磁转矩。
根据本申请的一个示例,在垂直于所述转子轴线的截面上,所述第一永磁体安装槽和所述第二永磁体安装槽的截面均包括依次连接的第一段、第二段和第三段,所述第一段和所述第三段关于所述第二段的中线对称,且所述第一永磁体安装槽的第二段和所述第二永磁体安装槽的第二段的中线重合并与所述转子轴线相交;所述第一永磁体安装槽的第二段内安装有所述第一层永磁体,所述第一永磁体安装槽的第一段和第三段内安装有磁绝缘材料;所述第二永磁体安装槽的第二段内安装有所述第二层永磁体,所述第二永磁体安装槽的第一段和第三段内安装有磁绝缘材料。
采用上述技术方案,降低永磁体的用量的同时,使永磁体等效厚度保持不变。
根据本申请的一个示例,所述第一层永磁体厚度为t1,所述第二层永磁体的厚度为t2,所述第二永磁体的第一段靠近所述转子外周缘的端部和第三段靠近所述转子外周缘的端部之间的距离为w2;其中,4<w2/(t1+t2)<8。
采用上述技术方案,保证了永磁体等效磁通面与等效厚度比合适,充分利用永磁体, 降低成本。
根据本申请的一个示例,所述第一永磁体安装槽的第一段和第三段与所述转子外周缘之间的最小距离为t3,所述第二永磁体安装槽的第一段和第三段与转子外周缘之间的最小距离为t4,其中,所述t3大于等于所述t4。
采用上述技术方案,提升的电机单片抗退磁能力。
根据本申请的一个示例,所述第一层永磁体的中心与所述转子外周缘的最小距离为tm1;所述第一永磁体的第一段靠近所述转子外周缘的端部和第三段靠近所述转子外周缘的端部之间的距离为w1,所述第二永磁体的第一段靠近所述转子外周缘的端部和第三段靠近所述转子外周缘的端部之间的距离为w2;其中,(2×tm1)/(w1-w2)=(0.5~1)。
采用上述技术方案,可以使得永磁转矩与磁阻转矩占比合适,以增大合成转矩。
根据本申请的一个示例,所述第一永磁体的第一段靠近所述转子外周缘的端部和第三段靠近所述转子外周缘的端部之间的距离为w1,所述第二永磁体的第一段靠近所述转子外周缘的端部和第三段靠近所述转子外周缘的端部之间的距离为w2;其中,1.15<w2/w1<2.1。
采用上述技术方案,将w1与w2的大小进行关联,保证了电磁转矩中永磁转矩与磁阻转矩占比合适,以增大合成转矩。
根据本申请的一个示例,相邻两个第二永磁体安装槽中的一个的第一段与另一个的第三段相邻,一个第二永磁体的第一段靠近所述转子外周缘的端部和另一个第二永磁体的第三段靠近所述转子外周缘的端部之间的距离为w3;所述第二层永磁体的宽度为wm2;其中,1.8<wm2/w3<2.7。
采用上述技术方案,可以最大化电磁转矩,并且降低由于局部磁饱和产生的额外铁损。
根据本申请的一个示例,所述第一层永磁体为低剩磁和低矫顽力永磁体,所述第二层永磁体为高剩磁和高矫顽力永磁体。
采用上述技术方案,在保证电机性能、抗退磁能力的前提下,最大程度降低成本。
根据本申请的一个示例,所述第一层永磁体和/或第二层永磁体由多个永磁块组成。
采用上述技术方案,多块永磁体会简化永磁体加工与安装难度。
根据本申请的一个示例,在垂直于所述转子轴线的截面上,所述第一层永磁体的截面呈V型或U型。
采用上述技术方案,可以增加永磁体的磁通面积。
根据本申请的一个示例,在垂直于所述转子轴线的截面上,所述第二层永磁体的截面呈一字型或V型。
采用上述技术方案,可以增加永磁体的磁通面积。
以上附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1为本申请实施例的交替极电机的结构示意图;
图2为图1的A部放大图;
图3为本申请实施例的转子的结构示意图;
图4为本申请实施例的转子的d轴和q轴的磁路示意图;
图5为第一永磁体安装槽包含的定子齿对电磁转矩的影响示意图;
图6为电磁转矩、转矩波动随wm2/w3变化状态示意图;
图7为本申请实施例的交替极电机与现有技术电机的q轴电感对比图;
图8为本申请实施例的交替极电机与现有技术电的电磁转矩随电流角变化曲线图;
图9为本申请实施例的交替极电机与现有技术电的转矩曲线图。
附图中,各标号所代表的部件列表如下:
1、转子;2、定子;3、第一永磁体安装槽;4、第二永磁体安装槽;5、第一段;6、第二段;7、第三段;8、第一层永磁体;9、第二层永磁体;10、导磁通道;11、转子齿;12、齿尖。
具体实施方式
下结合附图对本申请的原理和特征进行描述,所举实例只用于解释本申请,并非用于限定本申请的范围。
结合附图1-3所示,本实施例提供了一种交替极电机,包括转子1和套设在所述转子1外的定子2,所述转子1包括沿所述转子1周向均匀间隔分布的多个永磁极,所述定子2的内周缘沿其周向设有多个定子齿11。
本实施例的首先对转子1的永磁极进行改进,如图1和图3所示,所述转子1的永磁极包括沿所述转子1径向由外向内设置的第一永磁体安装槽3和第二永磁体安装槽4,且所述第一永磁体安装槽3与所述转子1外缘的距离小于所述第二永磁体安装槽4与所述转子1外缘的距离,第一永磁体安装槽3和第二永磁体安装槽4之间为导磁通道10;所述第一永磁体安装槽3内设置有第一层永磁体8,所述第二永磁体安装槽4设置有第二层永磁体9。上述结构的多层分布的永磁体一提升电机的磁阻转矩,从而提升电机的电磁转矩。
具体来说,多层分布的永磁体可以显著提高电机的q轴电感,如图4所示的电机的q 轴磁路,本实施例的交替极电机提供了3条明显的磁力线通道,更容易让q轴磁力线通过,q轴磁阻上的磁阻减小,因此q轴电感更大。尽管相比于常规交替极电机d轴磁路穿过的永磁体由一层变为两层,但是由于永磁体用量未变化,永磁体等效厚度也基本不变,d轴磁路电感基本维持不变。但是由于在层与层之间形成了导磁通道10,q轴磁路的磁阻明显减小,q轴电感增大,交直轴磁路电感差值增加,更好地利用了磁阻转矩。图7为本实施例的交替极电机与现有技术电机的q轴电感对比图,结合附图可知,本实施例的交替极电机可以显著提高电机的q轴电感。
下面对本实施例的转子1的结构进行进一步说明:
如图3所示,在垂直于所述转子1轴线的截面上,所述第一永磁体安装槽3和所述第二永磁体安装槽4的截面均包括依次连接的第一段5、第二段6和第三段7,所述第一段5和所述第三段7关于所述第二段6的中线对称,所述第一永磁体安装槽3的第二段6和所述第二永磁体安装槽4的第二段6的中线重合并与所述转子1轴线相交,第一段5与第三段7关于具有向转子1外周缘延伸的形状特征。
具体的,本实施例的所述第一永磁体安装槽3的第二段6内安装有所述第一层永磁体8,所述第一永磁体安装槽3的第一段5和第三段7内安装有磁绝缘材料;所述第二永磁体安装槽4的第二段6内安装有所述第二层永磁体9,所述第二永磁体安装槽4的第一段5和第三段7内安装有磁绝缘材料,磁绝缘材料即不导磁材料,尽管相比于常规交替极电机d轴磁路穿过的永磁体由一层变为两层,但是通过在第一段5和第三段7内安装有磁绝缘材料,永磁体用量未变化,永磁体等效厚度也基本不变,d轴磁路电感基本维持不变。但是由于在层与层之间形成了导磁通道10,q轴磁路的磁阻明显减小,q轴电感增大,交直轴磁路电感差值增加,更好地利用了磁阻转矩。
有利的,本实施例的所述第一层永磁体8厚度为t1,所述第二层永磁体9的厚度为t2;其中,1.3<t1/t2<1.7。采用上述结构是因为:外界施加的退磁磁场直接作用在第一层永磁体8上,永磁体的厚度越厚,抗退磁能力越强,增加第一层永磁体8的厚度可以有效提升抗退磁能力。但是当t1的厚度超出一定范围之后,继续增大对抗退磁能力的增加已不明影响,反而会使永磁体成本急剧上升。而为了控制永磁体成本,第二层永磁体9的厚度t2必然减小,尽管t2减小对抗退磁能力影响不大,但是永磁体工作点的降低会使电磁转矩急剧下降。
因此发明人通过大量的实验证明,当1.3<t1/t2<1.7时,t1和t2的比例较为合适,在满足抗退磁能力的前提下,用最少的永磁体用量提供最大的电磁转矩。
更有利的,本实施例还对永磁极具有的宽度和两层永磁体的等效厚度之间的比例进行限定,如图3所示,所述第一层永磁体8厚度为t1,所述第二层永磁体9的厚度为t2,所述 第二永磁体的第一段5靠近所述转子1外周缘的端部和第三段7靠近所述转子1外周缘的端部之间的距离为w2;其中,4<w2/(t1+t2)<8。
具体来说,w2表征了永磁极具有的宽度,(t1+t2)表征了两层永磁体的等效厚度,w2/(t1+t2)表征了本申请转子1中的永磁体长细比,长细比越大的时候,永磁体磁通面积增加,将产生更多的磁力线,可以增加电磁转矩,但是等效厚度减小表示永磁体整体的抗退磁能力减弱;长细比减小的时候,效果相反。因此发明人通过大量的实验,将w2与t1、t2进行关联,实验证明当4<w2/(t1+t2)<8时,能够保证了永磁体等效磁通面与等效厚度比合适,充分利用永磁体,降低成本。
再结合附图3所示,本实施例的所述第一永磁体安装槽3的第一段5和第三段7与所述转子1外周缘之间的最小距离为t3,所述第二永磁体安装槽4的第一段5和第三段7与转子1外周缘之间的最小距离为t4,其中,所述t3大于等于所述t4。
上述结构第一永磁体安装槽3的第一段5与第三段7均和转子1外周缘之间形成宽度为t3的磁桥,第二永磁体安装槽4的第一段5与第三段7与转子1外周缘形成宽度为t4的磁桥,t3大于等于t4。这样设置增加了第一层永磁体8端部的漏磁,减小永磁转矩,但是由于电枢的磁力线会容易通过磁桥处增加了磁阻转矩,总电磁转矩不会减小。第一层永磁体8比第二层更容易发生不可逆退磁影响电机性能,由于增加了第一层永磁体8端部漏磁,提升的电机单片抗退磁能力。
再结合附图3所示,本实施例的所述第一层永磁体8的中心与所述转子1外周缘的最小距离为tm1;所述第一永磁体的第一段5靠近所述转子1外周缘的端部和第三段7靠近所述转子1外周缘的端部之间的距离为w1,所述第二永磁体的第一段5靠近所述转子1外周缘的端部和第三段7靠近所述转子1外周缘的端部之间的距离为w2;其中,(2×tm1)/(w1-w2)=(0.5~1)。
结合上述结构,发明人通过大量的实验证明,在此范围内时,永磁转矩与磁阻转矩占比合适,可以使合成转矩最大。导磁通道10上包含的磁力线包含电枢磁力线、第二层永磁体9产生的磁力线、第一层永磁体8产生的磁力线,因此,导磁通道101上分布的磁力线更多。研究表明,导磁通道10的宽度可以大致表示为(w1-w2)/2,当2tm1/(w1-w2)<0.5时,导磁通道10上磁力线分布稀疏,但是第一永磁体安装槽3外侧磁力线分布密集,造成局部磁饱和,由第一层永磁体8产生的永磁转矩降低。因为正常情况下导磁通道10分布的磁力线比第一永磁体安装槽3外侧多,当2tm1/(w1-w2)>1时,导磁通道10磁饱和程度较高,磁阻转矩下降。
再结合附图3所示,本实施例的所述第一永磁体的第一段5靠近所述转子1外周缘的 端部和第三段7靠近所述转子1外周缘的端部之间的距离为w1,所述第二永磁体的第一段5靠近所述转子1外周缘的端部和第三段7靠近所述转子1外周缘的端部之间的距离为w2;其中,1.15<w2/w1<2.1。
上述结构设计是由于发明人考虑到w1越大,则导磁通道10相对越小,电机的q轴电感增量较小,不利于磁阻转矩的提升,w1越小,永磁体能提供的磁通面积越小,电磁转矩中的永磁转矩下降,并且导磁通道10增大超出一定范围后继续增加对磁阻转矩提升不明显,将w1与w2的大小进行关联,保证了电磁转矩中永磁转矩与磁阻转矩占比合适,使合成转矩最大。
再结合附图3所示,本实施例的相邻两个第二永磁体安装槽4中的一个的第一段5与另一个的第三段7相邻,一个第二永磁体的第一段5靠近所述转子1外周缘的端部和另一个第二永磁体的第三段7靠近所述转子1外周缘的端部之间的距离为w3;所述第二层永磁体9的宽度为wm2;其中,1.8<wm2/w3<2.7。
具体来说,w3表征了交替极的宽度,由于永磁极上第一层永磁体8的磁力线并不穿过交替极,因此交替极的磁力线仅由第二层永磁体9产生,所以本申请双层永磁体结构的交替极电机相比于单层永磁体结构,交替极的宽度可以设计的更小,从而为永磁体提供更大的安装面积。但发明人发现,当永磁极设计的过大时,交替极面积过小会发生磁饱和,因此发明人通过大量的实验证明,当1.8<wm2/w3<2.7时交替极上的磁力线分布均匀,可以最大化电磁转矩,并且降低由于局部磁饱和产生的额外铁损,如图6所示,可以更直观的表现出wm2/w3对电磁转矩的影响。
有利的,本实施例的所述第一层永磁体8为低剩磁和低矫顽力永磁体,所述第二层永磁体9为高剩磁和高矫顽力永磁体,需要说明的是,“低剩磁”、“高剩磁”、“低矫顽力”和“高矫顽力”均为本领域技术人员所熟知的常规技术用词,剩磁为0.5Tesla、矫顽力为300kA/m的铁氧体永磁材料就认为是低矫顽力、低剩磁的材料,剩磁1.2Tesla、矫顽力1000kA/m的稀土永磁体材料就认为是高矫顽力、高剩磁材料。第二层永磁体9采用高剩磁、高矫顽力的永磁材料,在保证电机性能、抗退磁能力的前提下,最大程度降低成本。
另外,本实施例还对第一层永磁体8和第二层永磁体9的结构形式进行改进,例如,可以使所述第一层永磁体8和第二层永磁体9均由多个永磁块组成,多块永磁体会简化永磁体加工与安装难度。
再例如,在垂直于所述转子1轴线的截面上,将所述第一层永磁体8的截面设计为V型或U型,所述第二层永磁体9的截面设计为一字型或V型。以增加永磁体的磁通面积。
基于上述结构的基础,发明人又发现各层永磁体宽度与齿部位置的关系会影响电磁转 矩的大小,因此发明人又对永磁体宽度和定子2的齿部位置进行了改进。
具体的,将本实施例所述定子齿11的数量设计为z,所述永磁极的数量设计为p,其中,每个所述永磁极的第一永磁体安装槽3与所述定子2内周缘的第一区域相对应,所述第一区域内具有的定子齿11的数量为z/4p+1。需要说明的是,上述的“所述永磁极的第一永磁体安装槽3与所述定子2内周缘的第一区域相对应”指的是第一永磁体安装槽3相对两侧向定子2方向的延长线与定子2内周缘的交接区域,区域内的定子齿11的数量为z/4p+1。
如图2所示,正常情况下由定子2发出的进入转子1的磁力线。以电机为48槽8极为例,z/4p+1=4,因此,第一层永磁体8安装槽的宽度范围内包含了4个定子齿11部,图2中仅画出了一半磁极,另一半通过磁极中心线(也就是图示中的d轴)对称即可得到。包含的一半的齿部如图2中的1#、2#,其上的磁力线方向如箭头所示。当第一层永磁体8安装槽仅包含1#时,那么2#、3#、4#将会对着导磁通道101,导磁通道101中的磁力线数目增加,尽管导磁通道101的入口处(即第一层永磁体8的第三段7与第二层永磁体9的第三段7处)会由于第一层永磁体8安装槽的缩短而增加,但是在导磁通道10的中间段(即第一层永磁体8的第二段6与第二层永磁体9的第二段6之间)不会增加,这部分导磁通道10饱和程度较高,因此q轴电感提升不明显,电磁转矩提升不明显。此外,第一层导磁通道10宽度减小,第一层永磁体8产生的磁力线减少,第一层永磁体8产生的永磁转矩急剧减少,合成的电磁转矩反而下降,同时第一层永磁体8的两端的漏磁占比相应增加,永磁体利用率降低。
当第一永磁体安装槽3包含3个齿部1#、2#、3#时,第一层永磁体8面积增加,由第一层永磁体8产生的转矩增加。但是导磁通,1的入口处减小,较少的磁力线能够进入导磁通道101,q轴电感下降,电磁转矩下降。
发明人通过实验证明,当第一层永磁体8安装槽包含的定子齿11数为z/4p+1时,能够同时使第一层永磁体8产生更大的永磁转矩,使包含导磁通道101在内的q轴磁路具有更大的电感,从而提升磁阻转矩,齿数对电磁转矩成分的影响如图5所示。
再结合附图2所示,本实施例的每个所述永磁极的第二永磁体安装槽4与所述定子2内周缘的第二区域相对应,结合附图可知第二区域包含上述的第一区域,所述第二区域内具有的定子齿11的数量为z/2p+2。有利的,所述定子齿11靠近所述转子1的一端的两侧均设有齿尖12,所述第二永磁体安装槽4的一侧与第二区域内一侧的定子齿11的外侧齿尖12相对应,所述第二永磁体安装槽4的另一侧与第二区域内另一侧的定子齿11的外侧齿尖12相对应。其中的“相对应”指的是永磁体安装槽的两侧(两侧具体为上述的第一 段和第三段)向定子方向延长线方向可以与定子齿的齿尖相交。
一半的第二层永磁体9包含的定子齿11部如图2所示,包括1#~4#,第二层永磁体9安装槽对准4#齿的外侧齿尖12,其上的磁力线方向如箭头所示,另一半关于d轴对称即可得到。q轴是常规电机相邻磁极的分界线,其两侧为不同的磁极,但是本申请设计为永磁极超出q轴设计,因为q轴两侧的定子齿11部3#与定子齿11部4#的齿中心部分磁力线分布相互平行,与永磁极上的转子1磁力线进行匝链均能产生正向的转矩,但是4#齿外侧齿尖12的磁力线指向交替极侧,假如永磁极与这部分磁力线作用将会产生负的转矩,从而使电磁转矩下降。为了使能和永磁极匝链的电枢磁力线最大程度增加,并且不产生负的转矩,本申请设计第二层永磁体9安装槽的第三段7对准4#齿的外侧齿尖12设计,最大化电磁转矩。
再结合附图8所示,可知本实施例交替极电机的电磁转矩随电流角变化明显优于现有技术,另外如图9所示,本实施例交替极电机的转矩也明显优于现有技术。
在本申请的描述中,需要理解的是,术语“内”、“外”、“径向”、“周向”、“轴向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体等。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (15)

  1. 一种交替极电机,包括转子和套设在所述转子外的定子,所述转子包括沿所述转子周向均匀间隔分布的多个永磁极,所述定子的内周缘沿其周向设有多个定子齿,其特征在于,所述转子的永磁极包括沿所述转子径向由外向内设置的第一永磁体安装槽和第二永磁体安装槽,所述第一永磁体安装槽内设置有第一层永磁体,所述第二永磁体安装槽设置有第二层永磁体。
  2. 根据权利要求1所述的交替极电机,其特征在于,所述定子齿的数量为z,所述永磁极的数量为p,其中,所述永磁极的第一永磁体安装槽与所述定子内周缘的第一区域相对应,所述第一区域内具有的定子齿的数量为z/4p+1。
  3. 根据权利要求1所述的交替极电机,其特征在于,所述定子齿的数量为z,所述永磁极的数量为p,其中,所述永磁极的第二永磁体安装槽与所述定子内周缘的第二区域相对应,所述第二区域内具有的定子齿的数量为z/2p+2。
  4. 根据权利要求3所述的交替极电机,其特征在于,所述定子齿靠近所述转子的一端的两侧均设有齿尖,所述第二永磁体安装槽的一侧与第二区域内一侧的定子齿的外侧齿尖相对应,所述第二永磁体安装槽的另一侧与第二区域内另一侧的定子齿的外侧齿尖相对应。
  5. 根据权利要求1所述的交替极电机,其特征在于,所述第一层永磁体厚度为t1,所述第二层永磁体的厚度为t2;其中,1.3<t1/t2<1.7。
  6. 根据权利要求1-5任一项所述的交替极电机,其特征在于,在垂直于所述转子轴线的截面上,所述第一永磁体安装槽和所述第二永磁体安装槽的截面均包括依次连接的第一段、第二段和第三段,所述第一段和所述第三段关于所述第二段的中线对称,且所述第一永磁体安装槽的第二段和所述第二永磁体安装槽的第二段的中线重合并与所述转子轴线相交;所述第一永磁体安装槽的第二段内安装有所述第一层永磁体,所述第一永磁体安装槽的第一段和第三段内安装有磁绝缘材料;所述第二永磁体安装槽的第二段内安装有所述第二层永磁体,所述第二永磁体安装槽的第一段和第三段内安装有磁绝缘材料。
  7. 根据权利要求6所述的交替极电机,其特征在于,所述第一层永磁体厚度为t1,所述第二层永磁体的厚度为t2,所述第二永磁体的第一段靠近所述转子外周缘的端部和第三段靠近所述转子外周缘的端部之间的距离为w2;其中,4<w2/(t1+t2)<8。
  8. 根据权利要求6所述的交替极电机,其特征在于,所述第一永磁体安装槽的第一 段和第三段与所述转子外周缘之间的最小距离为t3,所述第二永磁体安装槽的第一段和第三段与转子外周缘之间的最小距离为t4,其中,所述t3大于等于所述t4。
  9. 根据权利要求6所述的交替极电机,其特征在于,所述第一层永磁体的中心与所述转子外周缘的最小距离为tm1;所述第一永磁体的第一段靠近所述转子外周缘的端部和第三段靠近所述转子外周缘的端部之间的距离为w1,所述第二永磁体的第一段靠近所述转子外周缘的端部和第三段靠近所述转子外周缘的端部之间的距离为w2;其中,(2×tm1)/(w1-w2)=(0.5~1)。
  10. 根据权利要求6所述的交替极电机,其特征在于,所述第一永磁体的第一段靠近所述转子外周缘的端部和第三段靠近所述转子外周缘的端部之间的距离为w1,所述第二永磁体的第一段靠近所述转子外周缘的端部和第三段靠近所述转子外周缘的端部之间的距离为w2;其中,1.15<w2/w1<2.1。
  11. 根据权利要求6所述的交替极电机,其特征在于,相邻两个第二永磁体安装槽中的一个的第一段与另一个的第三段相邻,一个第二永磁体的第一段靠近所述转子外周缘的端部和另一个第二永磁体的第三段靠近所述转子外周缘的端部之间的距离为w3;所述第二层永磁体的宽度为wm2;其中,1.8<wm2/w3<2.7。
  12. 根据权利要求1-5任一项所述的交替极电机,其特征在于,所述第一层永磁体为低剩磁和低矫顽力的永磁体,所述第二层永磁体为高剩磁和高矫顽力的永磁体。
  13. 根据权利要求1-5任一项所述的交替极电机,其特征在于,所述第一层永磁体和/或第二层永磁体由多个永磁块组成。
  14. 根据权利要求1-5任一项所述的交替极电机,其特征在于,在垂直于所述转子轴线的截面上,所述第一层永磁体的截面呈V型或U型。
  15. 根据权利要求1-5任一项所述的交替极电机,其特征在于,在垂直于所述转子轴线的截面上,所述第二层永磁体的截面呈一字型或V型。
PCT/CN2018/122833 2018-07-17 2018-12-21 交替极电机 WO2020015302A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021500098A JP7085685B2 (ja) 2018-07-17 2018-12-21 コンシクエントポールモータ
US17/125,014 US20210104924A1 (en) 2018-07-17 2020-12-17 Consequent-pole motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810784378.3A CN108777520B (zh) 2018-07-17 2018-07-17 一种交替极电机
CN201810784378.3 2018-07-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/125,014 Continuation US20210104924A1 (en) 2018-07-17 2020-12-17 Consequent-pole motor

Publications (1)

Publication Number Publication Date
WO2020015302A1 true WO2020015302A1 (zh) 2020-01-23

Family

ID=64029996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122833 WO2020015302A1 (zh) 2018-07-17 2018-12-21 交替极电机

Country Status (4)

Country Link
US (1) US20210104924A1 (zh)
JP (1) JP7085685B2 (zh)
CN (1) CN108777520B (zh)
WO (1) WO2020015302A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230198322A1 (en) * 2021-12-22 2023-06-22 Abb Schweiz Ag Synchronous reluctance motor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108777520B (zh) * 2018-07-17 2020-03-27 珠海格力电器股份有限公司 一种交替极电机
CN110048530B (zh) * 2019-04-22 2020-09-25 大连理工大学 一种永磁辅助同步磁阻电机的转子结构及设计方法
CN112234727B (zh) * 2020-09-30 2021-07-23 东南大学 一种变永磁磁链同步磁阻电机系统的效率优化控制方法
CN113949183B (zh) * 2021-10-15 2023-12-29 浙江中车尚驰电气有限公司 一种转子冲片、转子及电机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600939A (zh) * 2015-02-04 2015-05-06 广东美芝制冷设备有限公司 永磁同步电机及具有其的压缩机
US20170317540A1 (en) * 2016-04-28 2017-11-02 Faraday&Future Inc. Ipm machine with specialized rotor for automotive electric vechicles
CN107659101A (zh) * 2017-09-29 2018-02-02 珠海格力节能环保制冷技术研究中心有限公司 磁阻式交替极永磁电机
CN108777520A (zh) * 2018-07-17 2018-11-09 珠海格力电器股份有限公司 一种交替极电机
CN208423978U (zh) * 2018-07-17 2019-01-22 珠海格力电器股份有限公司 一种交替极电机

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2913607A (en) * 1957-01-16 1959-11-17 Allis Louis Co Synchronous induction motor
JP2000050542A (ja) * 1998-07-23 2000-02-18 Okuma Corp リラクタンスモータ
US6274960B1 (en) * 1998-09-29 2001-08-14 Kabushiki Kaisha Toshiba Reluctance type rotating machine with permanent magnets
JP4363746B2 (ja) * 2000-05-25 2009-11-11 株式会社東芝 永久磁石式リラクタンス型回転電機
JP2002010547A (ja) * 2000-06-16 2002-01-11 Yamaha Motor Co Ltd 永久磁石回転子及びその製造方法
ITTO20010182A1 (it) * 2001-03-02 2002-09-02 Fiat Ricerche Macchina elettrica di tipo sincrono.
US6703746B2 (en) * 2002-03-01 2004-03-09 General Motors Corporation Interior permanent magnet rotor
KR100591338B1 (ko) * 2004-08-26 2006-06-19 엘지전자 주식회사 영구자석 보조형 동기 릴럭턴스 모터 및 그 착자방법
WO2006047519A2 (en) * 2004-10-26 2006-05-04 Kollmorgen Corporation Design of the magnet and webs in interior permanent magent rotors
US7436095B2 (en) * 2005-10-31 2008-10-14 Caterpillar Inc. Rotary electric machine
US7556082B2 (en) * 2006-03-29 2009-07-07 Gm Global Technology Operations, Inc. Interior permanent magnet rotors with multiple properties and methods of making same
US20090224624A1 (en) * 2008-03-06 2009-09-10 Ajith Kuttannair Kumar Rotor structure for interior permanent magnet electromotive machine
US8242654B2 (en) * 2009-05-20 2012-08-14 Asmo Co., Ltd. Rotor and motor
JP2012161226A (ja) * 2011-02-03 2012-08-23 Toyota Motor Corp 回転電機用回転子
JP5752272B2 (ja) * 2011-12-26 2015-07-22 三菱電機株式会社 回転子およびモータ
JP6007593B2 (ja) * 2012-05-25 2016-10-12 株式会社ジェイテクト ロータ及びこれを備えた回転電機、及びロータの製造方法
FR2995469B1 (fr) * 2012-09-13 2017-04-21 Moteurs Leroy-Somer Rotor de machine electrique tournante, comportant une masse rotorique dans laquelle sont menages des logements.
US10153672B2 (en) * 2013-11-20 2018-12-11 Hitachi Automotive Systems, Ltd. Rotary electric machine and electric vehicle provided with same
JP6215041B2 (ja) * 2013-12-20 2017-10-18 U−Mhiプラテック株式会社 モータ
CN106936284B (zh) * 2015-12-29 2024-04-16 丹佛斯(天津)有限公司 电动机
CN105978198B (zh) * 2016-06-30 2019-05-24 广东美芝制冷设备有限公司 电动机转子和具有其的电动机、压缩机
US10491064B2 (en) * 2017-02-17 2019-11-26 Ford Global Technologies, Llc Electric machine rotor including nested V-shaped inner and outer pockets
CN108336842B (zh) * 2018-03-16 2020-10-16 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
US11955843B2 (en) * 2021-12-22 2024-04-09 Abb Schweiz Ag Synchronous reluctance motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600939A (zh) * 2015-02-04 2015-05-06 广东美芝制冷设备有限公司 永磁同步电机及具有其的压缩机
US20170317540A1 (en) * 2016-04-28 2017-11-02 Faraday&Future Inc. Ipm machine with specialized rotor for automotive electric vechicles
CN107659101A (zh) * 2017-09-29 2018-02-02 珠海格力节能环保制冷技术研究中心有限公司 磁阻式交替极永磁电机
CN108777520A (zh) * 2018-07-17 2018-11-09 珠海格力电器股份有限公司 一种交替极电机
CN208423978U (zh) * 2018-07-17 2019-01-22 珠海格力电器股份有限公司 一种交替极电机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230198322A1 (en) * 2021-12-22 2023-06-22 Abb Schweiz Ag Synchronous reluctance motor
US11955843B2 (en) * 2021-12-22 2024-04-09 Abb Schweiz Ag Synchronous reluctance motor

Also Published As

Publication number Publication date
CN108777520A (zh) 2018-11-09
JP2021530949A (ja) 2021-11-11
JP7085685B2 (ja) 2022-06-16
US20210104924A1 (en) 2021-04-08
CN108777520B (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
WO2020015302A1 (zh) 交替极电机
JP6215041B2 (ja) モータ
US9853509B2 (en) Composite torque rotating electric machine
US9806571B2 (en) Composite torque rotating electric machine
JP5752272B2 (ja) 回転子およびモータ
WO2017118090A1 (zh) 永磁转子及永磁电机
CN108574355B (zh) 旋转电机的转子
US20150069874A1 (en) Rotating electric machine rotor
US20150084468A1 (en) Rotor for permanent-magnet-embedded electric motor, electric motor including the rotor, compressor including the electric motor, and air conditioner including the compressor
JP4619585B2 (ja) リラクタンス型回転電機
JP2011083066A (ja) 永久磁石補助形同期リラクタンスモータ
US20060055267A1 (en) Rotor for rotary electric machine
CN104380584B (zh) 永久磁铁嵌入式电动机、压缩机和制冷空调装置
WO2020098339A1 (zh) 电机转子结构及永磁电机
WO2020125066A1 (zh) 切向电机、电机转子及转子铁芯
CN108683313A (zh) 一种高功率密度高效率的轴向磁通永磁电机
WO2020098345A1 (zh) 电机转子、永磁电机和洗衣机
KR20180015186A (ko) 영구 자석 모터 로터 및 영구 자석 동기 모터
WO2020093795A1 (zh) 电机转子、电机、压缩机及热泵系统
WO2017049954A1 (zh) 电机及其切向式永磁转子
WO2024078131A1 (zh) 具有磁障的转子、电机及压缩机
JP2010200480A (ja) 埋め込み磁石式モータ
WO2021036460A1 (zh) 永磁同步电机转子及具有其的压缩机
WO2020088085A1 (zh) 电机转子及永磁电机
JP7230185B2 (ja) ロータ及び永久磁石モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021500098

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927147

Country of ref document: EP

Kind code of ref document: A1