WO2020034514A1 - 转子组件及交替极电机 - Google Patents

转子组件及交替极电机 Download PDF

Info

Publication number
WO2020034514A1
WO2020034514A1 PCT/CN2018/121701 CN2018121701W WO2020034514A1 WO 2020034514 A1 WO2020034514 A1 WO 2020034514A1 CN 2018121701 W CN2018121701 W CN 2018121701W WO 2020034514 A1 WO2020034514 A1 WO 2020034514A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
air
iron core
mounting
air groove
Prior art date
Application number
PCT/CN2018/121701
Other languages
English (en)
French (fr)
Inventor
陈彬
李权锋
肖勇
史进飞
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US17/055,881 priority Critical patent/US11855489B2/en
Priority to JP2020569747A priority patent/JP7339969B2/ja
Publication of WO2020034514A1 publication Critical patent/WO2020034514A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2746Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets arranged with the same polarity, e.g. consequent pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present disclosure relates to the technical field of motors, and in particular, to a rotor assembly and an alternating-pole motor.
  • alternating pole permanent magnet synchronous motors Compared with traditional permanent magnet synchronous motors, the use of permanent magnets by alternating pole permanent magnet synchronous motors is more sufficient.
  • the number of permanent magnets used in alternating-pole permanent magnet synchronous motors is only half of the number of permanent magnets in conventional permanent magnet synchronous motors, which significantly reduces the number of permanent magnets used in the motor, thereby reducing the cost of the motor.
  • the torque fluctuation of the alternating pole permanent magnet synchronous motor in the related technology is relatively large, which limits the further popularization and application of the alternating pole permanent magnet synchronous motor.
  • the embodiments of the present disclosure provide a rotor assembly and an alternating-pole motor with smooth output torque, which can solve the problem of large torque fluctuations of the alternating-pole permanent magnet synchronous motor in the related art.
  • a rotor assembly including:
  • a plurality of permanent magnets are respectively accommodated in a plurality of the installation slots;
  • a plurality of the mounting grooves are distributed along a circumferential direction of the iron core, the plurality of the mounting grooves divide the iron core into a plurality of permanent magnet pole regions and a plurality of alternating pole regions, and each of the mounting grooves has A first end near the outer edge of the iron core; a side of the first end is provided with a second air slot, and the second air slot is located in the alternating pole region; the second air slot and the installation The slots are connected, and the magnetic poles of the plurality of permanent magnets facing the outer edge of the core are the same.
  • a first air groove is provided on the other side of the first end, the first air groove is located in the permanent magnet pole region, and the first air groove is spaced from the mounting groove.
  • a circumferential width dimension of the first air groove along a radial direction of the iron core is gradually increased.
  • a rotor assembly including:
  • An iron core the iron core is provided with a plurality of mounting slots, the plurality of mounting slots are distributed along a circumferential direction of the iron core, and the plurality of mounting slots divide the iron core into a plurality of permanent magnet pole regions and A plurality of alternating pole regions, each of the mounting grooves has a first end near the outer edge of the iron core; a first air groove and a second air groove are respectively disposed on two sides of the first end, and the first An air slot is located in the permanent magnet pole area, and the second air slot is located in the alternating pole area; the first air slot is spaced from the mounting slot, and the first air slot is along the core diameter The outward width dimension gradually increases; the second air groove communicates with the installation groove;
  • a plurality of permanent magnets are respectively accommodated in a plurality of the mounting slots, and the plurality of permanent magnets have the same magnetic poles facing the outer edge of the iron core.
  • the second air groove extends along a circumferential direction of the core, and the side of the second air groove near the core axis is stepped; the second air groove is along the
  • the radial dimension of the iron core is defined as the radial width of the second air groove, and the second air groove includes a first stepped groove and a second stepped groove in a direction away from the first end.
  • the radial width of the first stepped groove is smaller than the radial width of the second stepped groove.
  • the radius of the iron core is R
  • the radial width of the first stepped groove is w1
  • the radial width of the second stepped groove is w2
  • a plurality of the permanent magnet pole regions and a plurality of the alternate pole regions are spaced apart along a circumferential direction of the iron core; the center angles corresponding to the plurality of permanent magnet pole regions are equal, and a plurality of the The center angles of the alternating polar regions are equal.
  • the number of the permanent magnetic pole region and the alternating pole region is N; in two of the second air grooves in one of the alternating pole regions, two of the second stepped grooves
  • a center angle formed by two of the second stepped grooves away from two end surfaces respectively corresponding to the mounting groove is a1
  • the permanent magnet is a rare earth permanent magnet;
  • the radius of the iron core is R; among the two first air slots on one of the permanent magnet poles, two of the first air slots are far away
  • the center angle formed by the two end surfaces corresponding to the two end surfaces of the mounting groove is a4;
  • the size of the first air groove in the radial direction of the core is defined as the radial width of the first air groove, and the first The radial width of the air groove is w4; each of the mounting grooves has a second end near the center of the iron core, and the size of the second end of the mounting groove pointing to the first end is defined as the
  • the width of the mounting groove, the width of the mounting groove is w3;
  • the permanent magnet is a ferrite permanent magnet; the radius of the iron core is R; in two of the first air slots on one of the permanent magnet poles, two of the first air
  • the central angle formed by the grooves away from the two end surfaces corresponding to the mounting grooves is a4; the size of the first air groove in the radial direction of the core is defined as the radial width of the first air groove.
  • the radial width of the first air groove is w4; each of the mounting grooves has a second end near the center of the iron core, and the size of the second end of the mounting groove pointing to the first end is defined as
  • each two of the mounting grooves form a mounting groove group
  • the mounting groove group is V-shaped
  • the opening of the mounting groove group faces the outer edge of the iron core
  • each of the mounting grooves The two installation grooves in the group are symmetrically arranged with respect to the radial direction of the iron core; a plurality of the installation groove groups are evenly distributed along the circumferential direction of the iron core;
  • the area is a permanent magnet pole area, and the area between adjacent mounting groove groups is an alternating pole area.
  • the permanent magnet region is provided with two of the first air grooves, and the two first air grooves are respectively adjacent to the first of the two installation grooves in the installation groove group.
  • two of the first air grooves are symmetrical with respect to a V-shaped center line corresponding to the mounting groove group; two of the mounting grooves in one mounting groove group respectively correspond to two of the first ends of the mounting groove group.
  • the second air groove is symmetrical with respect to the V-shaped center line of the mounting groove group.
  • a shaft hole is provided in the center of the iron core; a third air groove is also provided in the iron core, and the third air groove is provided on the outer edge of the shaft hole;
  • the three air grooves are of a multi-segment structure. Each third air groove is sandwiched between two installation grooves, and an end surface of the third air groove is separated from the installation grooves.
  • each of the mounting grooves has a second end near the center of the core, and a dimension of the mounting groove on which the second end points to the first end is defined as
  • a size of the third air groove in a radial direction of the iron core is defined as a radial width of the third air groove, and a radial width of the third air groove is t2;
  • the distance between the side wall of the shaft hole and the side wall of the third air groove close to the shaft hole is t3, which satisfies: t3 ⁇ 2 * t2.
  • a size of the third air groove in a radial direction of the iron core is defined as a radial width of the third air groove, and a radial width of the third air groove is t2;
  • an alternating-pole motor including a rotor assembly and a stator assembly, wherein the rotor assembly is the rotor assembly according to any one of the above schemes; and the stator assembly is sleeved on the outside of the rotor assembly edge.
  • the second air slot can prevent the magnetic field lines from the permanent magnets from short-circuiting through the ends of the permanent magnets to reduce magnetic leakage, and can adjust the alternating poles.
  • the direction of the magnetic field lines weakens the torque ripple.
  • the first air slot adjusts the width of the permanent magnet pole facing the air gap, and at the same time, the first air slot limits the magnetic leakage of the two ends of the permanent magnet. Studies have shown that the characteristic that the width gradually increases toward the outer periphery of the rotor along the direction of the permanent magnet can significantly reduce the iron loss.
  • the space between the first air groove and the installation groove can allow more magnetic field lines of the permanent magnet to enter the air gap, thereby further improving the utilization rate of the permanent magnet.
  • FIG. 1 is a schematic structural diagram of some embodiments of a rotor assembly of the present disclosure
  • FIG. 2 is an enlarged schematic view of a structure near a first end of a mounting groove in the embodiment of FIG. 1;
  • FIG. 3 is a graph illustrating an influence on a torque curve when a second stepped groove of a rotor assembly according to some embodiments of the present disclosure changes along a radial width;
  • FIG. 4 is a graph showing changes in electromagnetic torque with w2 / w1 according to some embodiments of a rotor assembly according to the present disclosure
  • FIG. 5 is a schematic diagram of a magnetic flux leakage path on a motor shaft of some embodiments of a rotor assembly of the present disclosure
  • FIG. 6 is a graph of output torque comparison between some embodiments of the alternating-pole motor of the present disclosure and the motor in the prior art.
  • 10-rotor assembly 100-iron core; 110-mounting slot; 111-first end; 113-protrusion; 120-permanent magnetic pole area; 130-alternating pole area; 140-first air groove; 150-second air Slot; 151-first stepped slot; 152-second stepped slot; 160-rotation shaft hole; 170-third air slot; 200-permanent magnet; 300-rotation shaft.
  • the number of permanent magnets used in alternating-pole motors is only half of the number of permanent magnets in conventional permanent magnet synchronous motors.
  • the use of permanent magnets is more sufficient, which can significantly reduce the use of permanent magnets, thereby reducing motor costs.
  • its special magnetic circuit structure also brings many problems, including the decrease of output torque caused by the reduction of the use of permanent magnets, and the increase of torque fluctuations caused by the asymmetry of adjacent magnetic pole structures, which limits the further promotion of alternating pole motor application.
  • the present disclosure provides a rotor assembly and an alternating-pole motor having a large output torque and capable of significantly reducing torque ripple.
  • some embodiments of the present disclosure provide a rotor assembly 10 including an iron core 100 and a plurality of permanent magnets 200.
  • the iron core 100 is provided with a plurality of mounting slots 110.
  • the plurality of mounting slots 110 are distributed along the circumferential direction of the iron core 100.
  • the plurality of mounting slots 110 divide the iron core 100 into a plurality of permanent magnet pole regions 120 and a plurality of alternating pole regions 130
  • Each mounting groove 110 has a first end 111 near the outer edge of the core 100.
  • a first air groove 140 and a second air groove 150 are respectively disposed on both sides of the first end 111.
  • the first air groove 140 is located in the permanent magnet pole region 120 and the second air groove 150 is located in the alternating pole region 130.
  • the first air groove 140 is disposed at a distance from the mounting groove 110, and the width dimension of the first air groove 140 along the radial direction of the iron core 100 is gradually increased.
  • the second air tank 150 communicates with the mounting tank 110.
  • the plurality of permanent magnets 200 are respectively accommodated in the plurality of mounting slots 110, and the magnetic poles of the plurality of permanent magnets 200 facing the outer edge of the iron core 100 are the same.
  • the first air slot 140 adjusts the width of the permanent magnet pole region 120 facing the air gap, and at the same time, the first air slot 140 limits the magnetic leakage at both ends of the permanent magnet 200. Studies have shown that the characteristic of gradually increasing the width of the outer periphery of the rotor along the direction of the permanent magnet 200 can significantly reduce the iron loss.
  • the first air groove 140 is spaced apart from the mounting groove 110, which allows more magnetic lines of force of the permanent magnet 200 to enter the air gap, and further improves the utilization rate of the permanent magnet 200.
  • the second air groove 150 can prevent magnetic flux lines emitted from the permanent magnet 200 on the one hand to reduce magnetic leakage by shorting the ends of the permanent magnet 200, and on the other hand, can adjust the magnetic flux lines on the alternating pole region 130 to weaken the torque fluctuation.
  • the core 100 in the above embodiment is formed by laminating soft magnetic material sheets.
  • the number and arrangement of the mounting grooves 110 may be designed in a zigzag shape, a V shape, an arc shape, or other shapes according to actual working conditions.
  • the iron core 100 has a cylindrical shape as a whole, and the mounting groove 110 has a rectangular groove as a whole.
  • every two mounting grooves 110 form a mounting groove group.
  • the mounting groove groups are V-shaped.
  • the openings of the mounting groove groups face the outer edge of the iron core 100.
  • the two mounting grooves 110 in each mounting groove group are symmetrically arranged with respect to the radial direction of the iron core 100.
  • the plurality of mounting groove groups are evenly distributed along the circumferential direction of the core 100.
  • the first end 111 of each mounting groove 110 has a protrusion 113. After the permanent magnet 200 is put into the mounting groove 110, it can abut against the protrusion 113.
  • the protrusion 113 cooperates with the inner wall of the mounting groove 110 to fix the permanent magnet 200.
  • two opposite surfaces of the two permanent magnets 200 installed in one mounting slot group face the outer edge of the iron core 100 at the same time.
  • the polarity of each permanent magnet 200 facing the outer edge of the iron core 100 is the same polarity, which is the N pole or the S pole.
  • the area within the V-shaped included angle of the mounting slot group is the permanent magnet pole region 120, which faces the surface of the permanent magnet 200 facing the outer edge of the iron core 100.
  • the soft magnetic material between adjacent mounting groove groups is magnetized into alternating pole regions 130 having opposite polarities to the permanent magnet poles.
  • the plurality of permanent magnet pole regions 120 and the plurality of alternating pole regions 130 are distributed at intervals along the circumferential direction of the core 100.
  • the center angles corresponding to the plurality of permanent magnet pole regions 120 are equal, and the center angles corresponding to the plurality of alternating pole regions 130 are equal.
  • the first air groove 140 located in the permanent magnet pole region 120 reasonably adjusts the width of the permanent magnet pole region 120 facing the air gap. If the width is large, a large air-gap magnetic density cannot be formed, and if the width is small, more magnetic lines of force will be brought together to cause magnetic saturation, resulting in increased rotor iron loss, increased heat generation, and reduced electromagnetic torque. In addition, the first air groove 140 limits magnetic leakage at both ends of the permanent magnet 200. As an implementable manner, as shown in FIG. 1 and FIG. 2, the first air groove 140 is semi-spherical or semi-polygonal, so that the size of the first air groove 140 along the circumferential direction of the core 100 is gradually increased. The air groove 140 can smooth magnetic lines of force in the vicinity and reduce iron loss.
  • the permanent magnet pole region 120 is provided with two first air slots 140, and the two first air slots 140 are respectively adjacent to the first ends 111 of the two mounting slots 110 in a mounting slot group, and the two first air slots 140 are about
  • the V-shaped center line corresponding to the mounting groove group is symmetrical.
  • the symmetrically arranged first air groove 140 further reduces the fluctuation of the output torque.
  • the second air groove 150 extends along the circumferential direction of the core 100, and the side of the second air groove 150 near the axis of the core 100 is stepped.
  • the size of the second air groove 150 in the radial direction of the core 100 is defined as the radial width of the second air groove 150.
  • the second air groove 150 includes a first stepped groove 151 and a second stepped groove 152 in this order in a direction away from the first end 111.
  • the radial width of the first stepped groove 151 is smaller than the radial width of the second stepped groove 152.
  • the second air slot 150 prevents the magnetic flux lines emitted by the permanent magnet 200 from causing an increase in magnetic leakage through a short circuit at the end of the permanent magnet 200, on the other hand, it can adjust the magnetic flux lines on the alternating pole region 130 to weaken the torque fluctuation.
  • the second air groove 150 As an implementable manner, the two second air grooves 150 corresponding to the first ends 111 of the two mounting grooves 110 in a mounting groove group are symmetrical about the V-shaped center line of the corresponding mounting groove group.
  • the radius of the iron core 100 is R
  • the radial width of the first stepped groove 151 is w1
  • the radial width of the second stepped groove 152 is w2.
  • the value of w1 is set to be smaller than w2, because w1 is too large, the side of the permanent magnet 200 facing the alternating pole region is too much blocked by the second air groove 150. Because the magnetic permeability of the air is small, the magnetic field lines of the permanent magnet 200 cannot reach the alternating poles, but instead reduce the electromagnetic torque. If w1 is too small, the magnetic lines of force emitted by the permanent magnet 200 will be directly shorted through the second air slot 150, increasing the magnetic flux leakage at the end of the permanent magnet 200, and reducing the output torque.
  • the angle a3 affects how the magnetic lines of force emitted by the permanent magnet 200 enter the alternating pole region 130.
  • a3 85 ° ⁇ 110 °.
  • the angle a3 affects how the magnetic lines of force emitted by the permanent magnet 200 enter the alternating pole region 130.
  • a3 85 ° ⁇ 110 °.
  • the angle a3 affects how the magnetic lines of force emitted by the permanent magnet 200 enter the alternating pole region 130.
  • the number of the permanent magnet pole regions 120 and the alternating pole regions 130 is N, respectively.
  • N 3 that is, the number of mounting groove groups is three, and the number of mounting grooves 110 is six in total.
  • the angle a1 ranges from 30 ° to 39 °.
  • a1 37.5 °
  • the angle range of a2 is 56.25 ° to 71.25 °.
  • the larger the a2 the narrower the width of the soft magnetic material between the second stepped groove 152 of the second air groove 150 and the side of the permanent magnet 200 facing the alternating pole region 130, the greater the magnetic resistance.
  • the magnetic field lines of the permanent magnet 200 cannot reach the alternating pole region 130 and the output torque is reduced.
  • the thickness of the second stepped groove 152 of the second air groove 150 in the circumferential direction decreases.
  • the magnetic line modulation effect of the second air groove 150 on the alternating pole region 130 is weakened, increasing the torque fluctuation, and the A strong magnetic density is formed in the air gap that faces, which limits the output torque capability.
  • the permanent magnet 200 is a rare earth permanent magnet.
  • the radius of the iron core 100 is R.
  • the center angles formed by the two end surfaces of the two first air grooves 140 away from the corresponding mounting grooves 110 are a4.
  • the size of the first air groove 140 along the radial direction of the core 100 is defined as the radial width of the first air groove 140, and the radial width of the first air groove 140 is W4.
  • Each mounting groove 110 has a second end near the center of the iron core 100.
  • the size of the second end of the mounting groove 110 that points to the first end 111 is the width of the mounting groove 110, and the width of the mounting groove 110 is w3.
  • the operating point of the permanent magnet 200 in the motor designed according to the present application is about 0.8, that is, the magnetic flux generated by the permanent magnet 200 per unit area is 0.8 Wb.
  • the total magnetic flux generated by the two permanent magnets 200 forming a V-shape is 2 * (w3-w4) * 0.8, and the center angle formed by these magnetic fluxes through the first air groove 140 is The sector of a4 enters the air gap.
  • the length of the arc between the first air grooves 140 is 2 * ⁇ * a4 * R / 360 °, so the magnetic flux density on the arc is 2 * (w3-w4) * 0.8 / (2 * ⁇ * a4 * R / 360 °), and the saturation magnetic flux of soft magnetic materials is generally 1.9T.
  • 2 * (w3 -w4) * 0.8 / (2 * ⁇ * a4 * R / 360 °) 1.6 to 1.9.
  • the permanent magnet 200 is a ferrite permanent magnet.
  • the radius of the iron core 100 is R.
  • the center angles formed by the two end surfaces of the two first air grooves 140 away from the corresponding mounting grooves 110 are a4.
  • the size of the first air groove 140 along the radial direction of the core 100 is defined as the radial width of the first air groove 140, and the radial width of the first air groove 140 is W4.
  • Each mounting groove 110 has a second end near the center of the iron core 100.
  • the size of the second end of the mounting groove 110 that points to the first end 111 is the width of the mounting groove 110, and the width of the mounting groove 110 is w3.
  • the permanent magnet 200 used is a ferrite permanent magnet
  • simulation results show that the operating point of the permanent magnet 200 in the motor designed according to the present application is about 0.3, that is, the magnetic flux generated by the permanent magnet 200 per unit area is 0.3 Wb. Since the first air groove 140 is provided, the total magnetic flux generated by the two permanent magnets 200 forming a V-shape is 2 * (w3-w4) * 0.3, and the center angle formed by these magnetic fluxes through the first air groove 140 is The sector of a4 enters the air gap.
  • the length of the arc between the first air grooves 140 is 2 * ⁇ * a4 * R / 360 °, so the magnetic flux density on the arc is 2 * (w3-w4) * 0.3 / (2 * ⁇ * a4 * R / 360 °), and the saturation magnetic flux of soft magnetic materials is generally 1.9T.
  • 2 * (w3 -w4) * 0.3 / (2 * ⁇ * a4 * R / 360 °) 1.6 ⁇ 1.9.
  • the size of the first air groove 140 along the radial direction of the core 100 is defined as the radial width of the first air groove 140.
  • the radial width of the first air groove 140 is w4
  • tb2 increases, the mechanical strength of the rotor increases, but the magnetic leakage at the end of the permanent magnet 200 increases, and the magnetic field lines that can enter the air gap decrease.
  • the first air tank 140 can effectively adjust the distribution of the magnetic field lines of the permanent magnet poles into the air gap, reduce torque fluctuations, and effectively limit magnetic leakage at the ends and increase output torque.
  • a shaft hole 160 is defined in the center of the iron core 100.
  • the iron core 100 is further provided with a third air groove 170, and the third air groove 170 is annularly arranged on the outer edge of the rotating shaft hole 160.
  • the third air groove 170 is a multi-segment structure. Each third air groove 170 is sandwiched between two mounting grooves 110, and an end surface of the third air groove 170 is spaced from the mounting groove 110.
  • the magnetic flux leakage of the magnetic field lines on the motor shaft 300 from the permanent magnet 200 forms a magnetic circuit with the motor casing (not shown). The presence of the third air groove 170 increases the magnetic field lines from the permanent magnet 200.
  • the magnetic resistance on the magnetic path to the rotating shaft 300 reduces the number of magnetic lines of force reaching the rotating shaft 300 and improves the output torque of the motor.
  • the third air slot 170 is not in communication with the mounting slot 110 of the permanent magnet 200 to ensure that the rotor punching structure is a whole.
  • each mounting groove 110 has a second end near the center of the iron core 100, and the size of the second end on the mounting groove 110 pointing to the first end 111 is defined as the width of the mounting groove 110.
  • the size of the third air groove 170 in the radial direction of the core 100 is defined as the radial width of the third air groove 170.
  • the area of the magnetic flux surface of the permanent magnet 200 blocked by the third air slot 170 also increases. Compared with the unshielded magnetic flux surface, the magnetic flux lines generated by the increased magnetic resistance will be reduced, resulting in motor output. The torque will decrease.
  • the area of the permanent magnet 200 blocked by the third air groove 170 decreases, and the total magnetic field lines generated by the permanent magnet 200 increase, but the magnetic leakage on the rotating shaft 300 increases, and the electronic torque also decreases.
  • the size of the third air groove 170 along the radial direction of the core 100 is defined as the radial width of the third air groove 170 and the diameter of the third air groove 170.
  • the width is t2.
  • the distance between the side wall of the shaft hole 160 and the side wall of the third air groove 170 near the shaft hole 160 is t3, which satisfies: t3 ⁇ 2 * t2.
  • t2 the effect of reducing the magnetic leakage of the third air tank 170 is better, but the mechanical strength of the rotor structure is reduced due to the centrifugal force when the rotor is operating, and decreasing t2 has the opposite effect.
  • Increasing t3 increases the mechanical strength of the rotor and increases the safety factor, but this will further compress the area of the alternating pole region 130 between the third air groove 170 and the outer periphery of the rotor. Too small an area will cause the magnetic density of the alternating pole region 130 to saturate. , Reduce output torque, increase rotor iron loss, reduce operating efficiency.
  • the size of the third air groove 170 along the radial direction of the core 100 is defined as the radial width of the third air groove 170 and the diameter of the third air groove 170.
  • the width is t2.
  • the smaller tb1 is, the easier the magnetic density thereon is to be saturated, thereby reducing the magnetic flux lines from the permanent magnet 200 that reach the rotating shaft 300.
  • the magnetic resistance of the magnetic circuit facing the permanent magnet 200 blocked by the third air groove 170 also increases, resulting in a decrease in the total magnetic field lines emitted by the permanent magnet 200 and a decrease in mechanical strength.
  • the magnetic leakage is reduced, the electromagnetic torque is also reduced, and tb1 is increased, the effect is opposite.
  • the present disclosure also provides an alternating-pole motor including a rotor assembly 10 and a stator assembly.
  • the rotor assembly 10 is the rotor assembly 10 according to any one of the above schemes.
  • the stator assembly is sleeved on the outer edge of the rotor assembly 10.
  • FIG. 6 A comparison of the torque curve using the alternating-pole motor provided by the present disclosure with the prior art is shown in FIG. 6. It is clear that the alternating pole motor provided by the present disclosure has a larger average torque and a smaller torque ripple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本公开涉及一种转子组件及交替极电机,转子组件包括铁芯和多个永磁体。铁芯上开设有容纳永磁体的多个安装槽,安装槽沿铁芯的周向分布。每个安装槽靠近铁芯外缘端部的一侧设有第二空气槽。第二空气槽位于交替极区。第二空气槽与安装槽连通。第二空气槽一方面能够防止永磁体发出的磁力线通过永磁体端部短路而减少漏磁,另一方面能够调整交替极上的磁力线走向,从而削弱转矩波动。

Description

转子组件及交替极电机
相关申请的交叉引用
本申请是以CN申请号为201810918419.3,申请日为2018年8月13日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及电机技术领域,特别是涉及一种转子组件及交替极电机。
背景技术
相比于传统的永磁同步电机,交替极永磁同步电机对永磁体的利用更加充分。交替极永磁同步电机内使用的永磁体数量仅为传统永磁同步电机内永磁体数量的一半,显著降低了电机中永磁体的使用数量,进而降低了电机的成本。但相关技术中的交替极永磁同步电机的转矩波动较大,限制了交替极永磁同步电机的进一步推广应用。
发明内容
基于此,本公开实施例提供一种平稳输出转矩的转子组件及交替极电机,能够解决相关技术中的交替极永磁同步电机存在的转矩波动较大的问题。
在本公开的一个方面,提供一种转子组件,包括:
铁芯,开设有多个安装槽;和
多个永磁体,分别容置于多个所述安装槽内;
其中,多个所述安装槽沿所述铁芯的周向分布,多个所述安装槽将所述铁芯划分为多个永磁极区和多个交替极区,每个所述安装槽具有靠近所述铁芯外缘的第一端;所述第一端的一侧设有第二空气槽,所述第二空气槽位于所述交替极区;所述第二空气槽与所述安装槽连通,所述多个永磁体朝向所述铁芯外缘的磁极相同。
在一些实施例中,所述第一端的另一侧设有第一空气槽,所述第一空气槽位于所述永磁极区,所述第一空气槽与所述安装槽隔开设置。
在一些实施例中,所述第一空气槽沿所述铁芯径向向外的周向宽度尺寸逐渐增大。
在本公开的一个方面,提供一种转子组件,所述转子组件包括:
铁芯,所述铁芯上开设有多个安装槽,多个所述安装槽沿所述铁芯的周向分布,多个所述安装槽将所述铁芯划分为多个永磁极区和多个交替极区,每个所述安装槽具有靠近所述铁芯外缘的第一端;所述第一端的两侧分别设置一个第一空气槽和一个第二空气槽,所述第一空气槽位于所述永磁极区,所述第二空气槽位于所述交替极区;所述第一空气槽与所述安装槽隔开设置,所述第一空气槽沿所述铁芯径向向外的周向宽度尺寸逐渐增大;所述第二空气槽与所述安装槽连通;
多个永磁体,分别容置于多个所述安装槽内,多个所述永磁体朝向所述铁芯外缘的磁极相同。
在一些实施例中,所述第二空气槽沿所述铁芯的周向延伸,所述第二空气槽靠近所述铁芯轴心的一侧为阶梯状;所述第二空气槽沿所述铁芯径向的尺寸被定义为所述第二空气槽的径向宽度,所述第二空气槽沿远离所述第一端的方向依次包括第一阶梯槽和第二阶梯槽,所述第一阶梯槽的径向宽度小于所述第二阶梯槽的径向宽度。
在一些实施例中,所述铁芯的半径为R,所述第一阶梯槽的径向宽度为w1,所述第二阶梯槽的径向宽度为w2;所述铁芯的半径R、所述第一阶梯槽的径向宽度w1、所述第二阶梯槽的径向宽度w2之间满足如下关系:w2<0.17R,并且w2/w1=1.4~1.8。
在一些实施例中,多个所述永磁极区和多个所述交替极区沿所述铁芯的周向间隔分布;多个所述永磁极区分别对应的圆心角相等,多个所述交替极区分别对应的圆心角相等。
在一些实施例中,所述永磁极区和所述交替极区的数量分别为N;在一个所述交替极区内的两个所述第二空气槽中,两个所述第二阶梯槽远离各自对应所述安装槽的两个端面形成的圆心角为a1,满足:a1/(180°/N)=0.5~0.65。
在一些实施例中,在一个所述交替极区内的两个所述第二空气槽中,两个所述第二阶梯槽远离各自对应所述安装槽的两个端面形成的圆心角为a1,两个所述第二阶梯槽靠近各自对应所述安装槽的两个端面形成的圆心角为a2,满足:a2/a1=1.5~1.9。
在一些实施例中,所述永磁体为稀土永磁体;所述铁芯的半径为R;一个所述永磁极上的两个所述第一空气槽中,两个所述第一空气槽远离各自对应所述安装槽的两个端面形成的圆心角为a4;所述第一空气槽沿所述铁芯径向的尺寸被定义为所述第一空气槽的径向宽度,所述第一空气槽的径向宽度为w4;每个所述安装槽具有靠近所述铁芯中心的第二端,所述安装槽上所述第二端指向所述第一端的尺寸被定义为所述安装槽的宽度,所述安装槽的宽度为w3;R、a4、w4和w3满足:2*(w3-w4)*0.8/(2*π *a4*R/360°)=1.6~1.9。
在一些实施例中,所述永磁体为铁氧体永磁体;所述铁芯的半径为R;一个所述永磁极上的两个所述第一空气槽中,两个所述第一空气槽远离各自对应所述安装槽的两个端面形成的圆心角为a4;所述第一空气槽沿所述铁芯径向的尺寸被定义为所述第一空气槽的径向宽度,所述第一空气槽的径向宽度为w4;每个所述安装槽具有靠近所述铁芯中心的第二端,所述安装槽上所述第二端指向所述第一端的尺寸被定义为所述安装槽的宽度,所述安装槽的宽度为w3;R、a4、w4和w3满足:2*(w3-w4)*0.3/(2*π*a4*R/360°)=1.6~1.9。
在一些实施例中,每两个所述安装槽形成一个安装槽组,所述安装槽组呈V形,所述安装槽组的开口朝向所述铁芯的外缘,每个所述安装槽组内的两个所述安装槽相对于所述铁芯的径向对称设置;多个所述安装槽组沿所述铁芯的周向均匀分布;所述安装槽组V形夹角内的区域为永磁极区,相邻所述安装槽组之间区域为交替极区。
在一些实施例中,所述永磁极区中设有两个所述第一空气槽,两个所述第一空气槽分别靠近一个所述安装槽组中两个所述安装槽的所述第一端,两个所述第一空气槽相对于对应所述安装槽组的V形中心线对称;一个所述安装槽组中两个所述安装槽的第一端分别对应的两个所述第二空气槽,相对于所述安装槽组的V形中心线对称。
在一些实施例中,所述铁芯的中心开设有转轴孔;所述铁芯上还开设有第三空气槽,所述第三空气槽环设于所述转轴孔的外缘;所述第三空气槽为多段式结构,每段所述第三空气槽夹设于两个所述安装槽之间,所述第三空气槽的端面与所述安装槽隔开设置。
在一些实施例中,每个所述安装槽具有靠近所述铁芯中心的第二端,所述安装槽上所述第二端指向所述第一端的尺寸被定义为所述安装槽的宽度;所述第三空气槽沿所述铁芯径向的尺寸被定义为所述第三空气槽的径向宽度;所述安装槽的宽度为w3,所述第三空气槽的径向宽度为t2,满足:t2/w3=0.1~0.3。
在一些实施例中,所述第三空气槽沿所述铁芯径向的尺寸被定义为所述第三空气槽的径向宽度,所述第三空气槽的径向宽度为t2;所述转轴孔的侧壁与第三空气槽靠近所述转轴孔的侧壁之间的距离为t3,满足:t3≥2*t2。
在一些实施例中,所述第三空气槽沿所述铁芯径向的尺寸被定义为所述第三空气槽的径向宽度,所述第三空气槽的径向宽度为t2;所述第三空气槽的端面与所述安装槽靠近所述第三空气槽的侧壁之间的距离为tb1,满足:tb1/t2=0.3~1。
在一些实施例中,所述第二阶梯槽中靠近所述安装槽的端面与靠近所述铁芯轴心的侧面之间的夹角为a3,满足:a3=85°~110°。
在一些实施例中,所述第一空气槽沿所述铁芯径向的尺寸被定义为所述第一空气槽的径向宽度;所述第一空气槽的径向宽度为w4,所述第一空气槽与所述安装槽之间的距离为tb2,满足:tb2/w4=0.3~0.5。
在本公开的一个方面,提供一种交替极电机,包括转子组件及定子组件,所述转子组件为上述方案任一项所述的转子组件;所述定子组件套设于所述转子组件的外缘。
因此,根据本公开实施例,在上述转子组件及交替极电机中,第二空气槽一方面能够防止永磁体发出的磁力线通过永磁体端部短路进而减少漏磁,另一方面能够调整交替极上的磁力线走向,削弱转矩波动。在另一些实施例中,第一空气槽调整了永磁极面向气隙的宽度,同时第一空气槽限制了永磁体两端的漏磁。研究表明,沿永磁体方向向转子外周缘宽度逐渐增加的特征能够显著降低铁损。第一空气槽与安装槽间隔设置,能够允许更多的永磁体磁力线进入气隙,进一步提高永磁体利用率。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1为本公开转子组件的一些实施例的结构示意图;
图2为图1实施例中安装槽的第一端的附近结构的放大示意图;
图3为本公开转子组件的一些实施例的第二阶梯槽沿径向宽度变化时对转矩曲线的影响曲线图;
图4为基于本公开转子组件的一些实施例的电磁转矩随w2/w1变化的曲线图;
图5为本公开转子组件的一些实施例的电机转轴上的漏磁路径示意图;
图6为本公开交替极电机的一些实施例与现有技术中电机的输出转矩对比曲线图。
其中:
10-转子组件;100-铁芯;110-安装槽;111-第一端;113-凸起;120-永磁极区;130-交替极区;140-第一空气槽;150-第二空气槽;151-第一阶梯槽;152-第二阶梯槽; 160-转轴孔;170-第三空气槽;200-永磁体;300-转轴。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本公开的一种转子组件及交替极电机进行进一步详细说明。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。实施例附图中各种不同对象按便于列举说明的比例绘制,而非按实际组件的比例绘制。
交替极电机使用的永磁体数量仅为传统永磁同步电机永磁体数量的一半,其对永磁体的利用更加充分,可以显著降低永磁体使用量,从而降低电机成本。但是其特殊的磁路结构也带来了很多问题,包括永磁体使用量减少带来的输出转矩下降、相邻磁极结构不对称导致转矩波动增加的问题,限制了交替极电机的进一步推广应用。本公开提供一种输出转矩大且能够显著降低转矩波动的转子组件及交替极电机。
如图1-2所示,本公开一些实施例提供一种转子组件10,包括铁芯100和多个永磁体200。铁芯100上开设有多个安装槽110,多个安装槽110沿铁芯100的周向分布,多个安装槽110将铁芯100划分为多个永磁极区120和多个交替极区130,每个安装槽110具有靠近铁芯100外缘的第一端111。第一端111的两侧分别设置一个第一空气槽140和一个第二空气槽150,第一空气槽140位于永磁极区120,第二空气槽150位于交替极区130。第一空气槽140与安装槽110间隔设置,第一空气槽140沿铁芯100径向向外的周向宽度尺寸逐渐增大。第二空气槽150与安装槽110连通。多个永磁体200分别容置于多个安装槽110内,多个永磁体200朝向铁芯100外缘的磁极相同。
上述转子组件10及交替极电机,第一空气槽140调整了永磁极区120面向气隙的宽度,同时第一空气槽140限制了永磁体200两端的漏磁。研究表明,沿永磁体200方向向转子外周缘宽度逐渐增加的特征能够显著降低铁损。第一空气槽140与安装槽110隔开设置,能够允许更多的永磁体200磁力线进入气隙,进一步提高永磁体200利用率。第二空气槽150一方面能够防止永磁体200发出的磁力线通过永磁体200端 部短路而减少漏磁,另一方面能够调整交替极区130上的磁力线走向,以削弱转矩波动。
作为一种可实现的方式,上述实施例中的铁芯100由软磁材料薄片叠压而成。安装槽110的数量及布置形式可根据实际工况设计为一字形、V形、弧形或者其他的形状。如图1及图2所示,在本公开一些实施例中,铁芯100整体呈圆柱状,安装槽110整体呈矩形槽。在与铁芯100的轴向垂直的平面内,每两个安装槽110形成一个安装槽组。安装槽组呈V形,安装槽组的开口朝向铁芯100的外缘,每个安装槽组内的两个安装槽110关于铁芯100的径向对称设置。多个安装槽组沿铁芯100的周向均匀分布。每个安装槽110的第一端111具有凸起113,永磁体200放入安装槽110后能够与凸起113抵接,凸起113与安装槽110的内壁配合固定永磁体200。
进一步,如图1及图2,一个安装槽组内安装的两个永磁体200上相对的两个面同时朝向铁芯100的外缘。每个永磁体200朝向铁芯100外缘的极性为同一极性,为N极或者S极。安装槽组V形夹角内的区域为永磁极区120,永磁极区120与永磁体200朝向铁芯100外缘的面相对。相邻安装槽组之间的软磁材料被磁化成与永磁极具有相反极性的交替极区130。更进一步的,多个永磁极区120和多个交替极区130沿铁芯100的周向间隔分布。多个永磁极区120分别对应的圆心角相等,多个交替极区130分别对应的圆心角相等。
位于永磁极区120的第一空气槽140合理调整了永磁极区120面向气隙的宽度。该宽度大则无法形成较大的气隙磁密,宽度小则会使较多的磁力线集中在一起而导致磁饱和,引起转子铁损增加,发热量增加,并且降低电磁转矩。并且,第一空气槽140限制了永磁体200两端的漏磁。作为一种可实现的方式,如图1及图2所示,第一空气槽140为半球状或半多边形状以实现第一空气槽140沿铁芯100周向的尺寸逐渐增大,第一空气槽140能够使其附近的磁力线平滑,降低铁损。进一步,永磁极区120中设有两个第一空气槽140,两个第一空气槽140分别靠近一个安装槽组中两个安装槽110的第一端111,两个第一空气槽140关于对应安装槽组的V形中心线对称。对称设置的第一空气槽140进一步降低了输出转矩的波动。
在本公开一些实施例中,如图1-2所示,第二空气槽150沿铁芯100的周向延伸,第二空气槽150靠近铁芯100轴心的一侧为阶梯状。第二空气槽150沿铁芯100径向的尺寸被定义为第二空气槽150的径向宽度。第二空气槽150沿远离第一端111的方向依次包括第一阶梯槽151和第二阶梯槽152。第一阶梯槽151的径向宽度小于第二 阶梯槽152的径向宽度。第二空气槽150一方面防止永磁体200发出的磁力线通过永磁体200端部短路而导致漏磁增加,另一方面能够调整交替极区130上的磁力线走向,以削弱转矩波动。将第二空气槽150设置为阶梯状延伸,可以在不影响永磁极区120磁路的情况下有效的调节交替极区130的磁力线走向。作为一种可实现的方式,一个安装槽组中两个安装槽110的第一端111分别对应的两个第二空气槽150,关于对应安装槽组的V形中心线对称。
研究表明,将第二空气槽150设置为阶梯状延伸,永磁体200面向交替极区130的一面产生的磁力线将会沿着第二空气槽150达到交替极区130。在本公开一些实施例中,铁芯100的半径为R,第一阶梯槽151的径向宽度为w1,第二阶梯槽152的径向宽度为w2。铁芯100的半径R、第一阶梯槽151的径向宽度w1、第二阶梯槽152的径向宽度w2之间满足如下关系:w2<0.17R,并且w2/w1=1.4~1.8。可以理解的,w2过大则第二空气槽150越靠近铁芯100中心,导致交替极区130留给磁力线通过的面积减小,而且会形成一个倒八字的形状。由相邻的永磁体200发出的磁力线在倒八字的夹角处集合,造成磁密饱和,转子的输出转矩降低。w2过小,则从永磁体200发出的磁力线会直接穿过第二空气槽150,导致第二空气槽150无法有效调整磁力线进入气隙的形状,从而加剧相邻磁极的不对称,进而引起更大的转矩波动。
w1的值设置为小于w2,因为w1过大会使永磁体200面向交替极区的一面过多的被第二空气槽150遮挡。由于空气的磁导率很小,因此永磁体200的磁力线无法到达交替极,反而降低了电磁转矩。w1过小又会使永磁体200发出的磁力线直接穿过第二空气槽150短路,增加永磁体200的端部漏磁,也降低输出转矩。将两者进行关联,满足w2<0.17R,并且w2/w1=1.4~1.8,可以在不影响永磁极区120磁路的情况下有效调节交替极区130的磁力线走向。w2=0.16R与w2=0.19R时的转矩曲线对比如图3所示,w2=0.19R时转矩曲线会丢失一些峰值点,这些转矩峰值本应由交替极区130产生,现在由于交替极区130发生磁饱和导致丢失,显著降低了电磁转矩,且增加转矩波动。固定w2=0.13R,改变w2/w1对电磁转矩的影响如图4所示,w2/w1=1.4~1.8范围内较优。
在本公开一些实施例中,如图2所示,第二阶梯槽152中靠近安装槽110的端面与靠近铁芯100轴心的侧面之间的夹角为a3,满足:a3=85°~110°。a3夹角影响了永磁体200发出的磁力线如何进入交替极区130。a3增大,则磁力线沿着第二空气槽150靠近转轴300的一面的流动更加平滑,不会发生局部磁饱和,但是w1与w2的差 别将会减小,导致永磁体200发出的磁力线减少,电磁转矩下降。a3减小,则会让第二空气槽150靠近转轴300的一面不平滑,增加了局部磁饱和,降低输出转矩。研究表明,a3=85°~110°范围内可以让永磁体200发出的磁力线平滑流动到交替极区130,提升输出转矩,并降低转子铁损。
在本公开一些实施例中,永磁极区120和交替极区130的数量分别为N。一个交替极区130上的两个第二空气槽150中,两个第二阶梯槽152远离各自对应安装槽110的两个端面形成的圆心角为a1,满足:a1/(180°/N)=0.5~0.65。作为一种可实现的方式,如图1所示,N=3,即安装槽组的数量为3个,安装槽110的数量一共是6个。a1角的范围为30°~39°。a1>39°时,第二空气槽150无法在交替极区130中心线附近有效聚集交替极区130的磁力线,气隙磁密较小,电磁转矩降低。如果a1角过小,则交替极区130又无法提供充足的面积让永磁体200发出的磁力线通过,造成由交替极区130的磁饱和,降低输出转矩。研究表明,a1/(180°/N)=0.5~0.65,能够保证交替极区130的磁力线分布均匀,提高输出转矩,减小由于局部磁饱和引起的转子铁损。
进一步,如图1所示,两个第二阶梯槽152靠近各自对应安装槽110的两个端面形成的圆心角为a2,满足:a2/a1=1.5~1.9。作为一种可实现的方式,a1为37.5°,则a2的角度范围为56.25°~71.25°。保持a1角不变,a2越大,则第二空气槽150的第二阶梯槽152与永磁体200面向交替极区130的一面之间的软磁材料的宽度越窄,磁阻越大。严重时发生磁饱和,则会导致永磁体200的磁力线无法到达交替极区130,降低输出转矩。a1减小,则第二空气槽150的第二阶梯槽152周向厚度减小,第二空气槽150对交替极区130的磁力线调制作用减弱,增加转矩波动,并且无法在交替极区130面对的空气隙中形成较强的磁密,限制了输出转矩能力。
在本公开一些实施例中,永磁体200为稀土永磁体。如图1及图2所示,铁芯100的半径为R。一个永磁极上的两个第一空气槽140中,两个第一空气槽140远离各自对应安装槽110的两个端面形成的圆心角为a4。第一空气槽140沿铁芯100径向的尺寸被定义为第一空气槽140的径向宽度,第一空气槽140的径向宽度为W4。每个安装槽110具有靠近铁芯100中心的第二端,安装槽110上第二端指向第一端111的尺寸为安装槽110的宽度,安装槽110的宽度为w3。R、a4、w4和w3满足:2*(w3-w4)*0.8/(2*π*a4*R/360°)=1.6~1.9。
当采用的永磁体200为稀土永磁体时,仿真结果表明按照本申请设计的电机中永磁体200的工作点约为0.8,即单位面积的永磁体200产生的磁通为0.8Wb。由于设 置了第一空气槽140,由两个组成V形的永磁体200产生的总磁通为2*(w3-w4)*0.8,这些磁通都会通过第一空气槽140形成的圆心角为a4的扇形进入气隙,第一空气槽140之间的圆弧的长度为2*π*a4*R/360°,因此圆弧上的磁通密度为2*(w3-w4)*0.8/(2*π*a4*R/360°),而软磁材料的饱和磁通一般为1.9T,为了防止软磁材料发生磁饱和,并且设置一个合适的磁通密度,可限定2*(w3-w4)*0.8/(2*π*a4*R/360°)=1.6~1.9。
在本公开一些实施例中,永磁体200为铁氧体永磁体。如图1及图2所示,铁芯100的半径为R。一个永磁极上的两个第一空气槽140中,两个第一空气槽140远离各自对应安装槽110的两个端面形成的圆心角为a4。第一空气槽140沿铁芯100径向的尺寸被定义为第一空气槽140的径向宽度,第一空气槽140的径向宽度为W4。每个安装槽110具有靠近铁芯100中心的第二端,安装槽110上第二端指向第一端111的尺寸为安装槽110的宽度,安装槽110的宽度为w3。R、a4、w4和w3满足:2*(w3-w4)*0.3/(2*π*a4*R/360°)=1.6~1.9。
当采用的永磁体200为铁氧体永磁体时,仿真结果表明按照本申请设计的电机中永磁体200的工作点约为0.3,即单位面积的永磁体200产生的磁通为0.3Wb。由于设置了第一空气槽140,由两个组成V形的永磁体200产生的总磁通为2*(w3-w4)*0.3,这些磁通都会通过第一空气槽140形成的圆心角为a4的扇形进入气隙,第一空气槽140之间的圆弧的长度为2*π*a4*R/360°,因此圆弧上的磁通密度为2*(w3-w4)*0.3/(2*π*a4*R/360°),而软磁材料的饱和磁通一般为1.9T,为了防止软磁材料发生磁饱和,并且设置一个合适的磁通密度,可限定2*(w3-w4)*0.3/(2*π*a4*R/360°)=1.6~1.9。
在本公开一些实施例中,如图1及图2所示,第一空气槽140沿铁芯100径向的尺寸被定义为第一空气槽140的径向宽度。第一空气槽140的径向宽度为w4,第一空气槽140与安装槽110之间的距离为tb2,满足:tb2/w4=0.3~0.5。tb2增大,则转子的机械强度增加,但是永磁体200的端部漏磁增加,能进入气隙的磁力线减少。tb2减小,则转子的机械强度降低,漏磁减少,但是被第一空气槽140遮挡的永磁体200磁通面产生的磁力线减少。当tb2减小到一定范围后,电磁转矩反而下降。w4增大,则被第一空气槽140遮挡的永磁体200面积增加,永磁体200产生的磁力线减少,电磁转矩下降。w4减少,则永磁体200靠近转子外周缘的端部产生的磁力线会直接穿过第一空气槽140而导致漏磁增加,并且第一空气槽140无法有效调整永磁体200进入 气隙的磁力线分布,导致转矩波动增加。研究表明,当tb2/t4=0.3~0.5时,第一空气槽140可以有效调节永磁极进入气隙的磁力线分布,降低转矩波动,并且有效限制端部漏磁,提升输出转矩。
在本公开一些实施例中,如图1所示,铁芯100的中心开设有转轴孔160。铁芯100上还开设有第三空气槽170,第三空气槽170环设于转轴孔160的外缘。第三空气槽170为多段式结构,每段第三空气槽170夹设于两个安装槽110之间,第三空气槽170的端面与安装槽110隔开设置。如图5所示,永磁体200发出的磁力线在电机转轴300上的漏磁与电机机壳(图中未示出)形成磁回路,第三空气槽170的存在增加了永磁体200发出的磁力线到转轴300这段磁路上的磁阻,从而减少了到达转轴300的磁力线的数量,提升电机的输出转矩。第三空气槽170不与永磁体200安装槽110连通可保证转子冲片结构为一个整体。
在本公开一些实施例中,每个安装槽110具有靠近铁芯100中心的第二端,安装槽110上第二端指向第一端111的尺寸被定义为安装槽110的宽度。第三空气槽170沿铁芯100径向的尺寸被定义为第三空气槽170的径向宽度。如图1所示,安装槽110的宽度为w3,第三空气槽170的径向宽度为t2,满足:t2/w3=0.1~0.3。t2增加,则第三空气槽170在永磁体200与电机转轴300之间的磁阻越大,减少电机转轴300上的漏磁效果越好。但是第三空气槽170遮挡的永磁体200磁通面的面积也越多,被遮挡的永磁体200相比于没有被遮挡的磁通面由于磁阻增加产生的磁力线会减少,从而导致电机输出转矩会下降。t2减小时,被第三空气槽170遮挡的永磁体200面积减少,永磁体200产生的总的磁力线增加,但是转轴300上的漏磁会增加,电子转矩同样会下降。研究表明,t2/w3=0.1~0.3时,第三空气槽170减少漏磁的效果相比于遮挡永磁体200磁通面减少的磁力线明显占据优势,电机转矩得到提升。
在本公开一些实施例中,如图1及图2所示,第三空气槽170沿铁芯100径向的尺寸被定义为第三空气槽170的径向宽度,第三空气槽170的径向宽度为t2。转轴孔160的侧壁与第三空气槽170靠近转轴孔160的侧壁之间的距离为t3,满足:t3≥2*t2。t2增加,则第三空气槽170的减少漏磁的效果较好,但是受转子运转时离心力影响,转子结构机械强度降低,t2减小则效果相反。t3增加,转子的机械强度增加,安全系数提高,但是这会进一步压缩交替极区130在第三空气槽170与转子外周缘之间的面积,面积过小会引起交替极区130的磁密饱和,降低输出转矩,增加转子铁损,降低运行效率。研究表明,t3>=2*t2时转子具有较好的机械强度,并且电磁转矩获得提 升。
在本公开一些实施例中,如图1及图2所示,第三空气槽170沿铁芯100径向的尺寸被定义为第三空气槽170的径向宽度,第三空气槽170的径向宽度为t2。第三空气槽170的端面与安装槽110靠近第三空气槽170的侧壁之间的距离为tb1,满足:tb1/t2=0.3~1。tb1越小,则其上的磁密越容易饱和,从而减少由永磁体200发出的达到转轴300的漏磁磁力线。但是被第三空气槽170遮挡的永磁体200所面对的磁路的磁阻也增加,导致永磁体200发出的总的磁力线减少,并且机械强度会降低。尽管漏磁减少,但是同样会降低电磁转矩,tb1增加,效果相反。研究表明,tb1/t2=0.3~1时转子的机械强度最好,并且一定程度上提升的电磁转矩。
本公开还提供一种交替极电机,包括转子组件10及定子组件,转子组件10为上述方案任一项所述的转子组件10。定子组件套设于转子组件10的外缘。采用本公开所提供交替极电机的转矩曲线与现有技术的对比如图6所示。很明显,本公开提供的交替极电机具有更大的平均转矩以及更小的转矩波动。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开专利的保护范围应以所附权利要求为准。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (19)

  1. 一种转子组件,包括:
    铁芯(100),开设有多个安装槽(110);和
    多个永磁体(200),分别容置于多个所述安装槽(110)内;
    其中,多个所述安装槽(110)沿所述铁芯(100)的周向分布,多个所述安装槽(110)将所述铁芯(100)划分为多个永磁极区(120)和多个交替极区(130),每个所述安装槽(110)具有靠近所述铁芯(100)外缘的第一端(111);所述第一端(111)的一侧设有第二空气槽(150),所述第二空气槽(150)位于所述交替极区(130);所述第二空气槽(150)与所述安装槽(110)连通,所述多个永磁体(200)朝向所述铁芯(100)外缘的磁极相同。
  2. 根据权利要求1所述的转子组件,其中,所述第一端(111)的另一侧设有第一空气槽(140),所述第一空气槽(140)位于所述永磁极区(120),所述第一空气槽(140)与所述安装槽(110)隔开设置。
  3. 根据权利要求2所述的转子组件,其中,所述第一空气槽(140)沿所述铁芯(100)径向向外的周向宽度尺寸逐渐增大。
  4. 根据权利要求1所述的转子组件,其中,所述第二空气槽(150)沿所述铁芯(100)的周向延伸,所述第二空气槽(150)靠近所述铁芯(100)轴心的一侧为阶梯状;所述第二空气槽(150)沿所述铁芯(100)径向的尺寸被定义为所述第二空气槽(150)的径向宽度,所述第二空气槽(150)沿远离所述第一端(111)的方向依次包括第一阶梯槽(151)和第二阶梯槽(152),所述第一阶梯槽(151)的径向宽度小于所述第二阶梯槽(152)的径向宽度。
  5. 根据权利要求4所述的转子组件,其中,所述铁芯(100)的半径为R,所述第一阶梯槽(151)的径向宽度为w1,所述第二阶梯槽(152)的径向宽度为w2;所述铁芯(100)的半径R、所述第一阶梯槽(151)的径向宽度w1、所述第二阶梯槽(152)的径向宽度w2之间满足如下关系:w2<0.17R,并且w2/w1=1.4~1.8。
  6. 根据权利要求4所述的转子组件,其中,多个所述永磁极区(120)和多个所述交替极区(130)沿所述铁芯(100)的周向间隔分布;多个所述永磁极区(120)分别对应的圆心角相等,多个所述交替极区(130)分别对应的圆心角相等。
  7. 根据权利要求6所述的转子组件,其中,所述永磁极区(120)和所述交替极区(130)的数量分别为N;在一个所述交替极区(130)内的两个所述第二空气槽(150)中,两个所述第二阶梯槽(152)远离各自对应所述安装槽(110)的两个端面形成的圆心角为a1,满 足:
    a1/(180°/N)=0.5~0.65。
  8. 根据权利要求6所述的转子组件,其中,在一个所述交替极区(130)内的两个所述第二空气槽(150)中,两个所述第二阶梯槽(152)远离各自对应所述安装槽(110)的两个端面形成的圆心角为a1,两个所述第二阶梯槽(152)靠近各自对应所述安装槽(110)的两个端面形成的圆心角为a2,满足:a2/a1=1.5~1.9。
  9. 根据权利要求3所述的转子组件,其中,所述永磁体(200)为稀土永磁体;所述铁芯(100)的半径为R;在一个所述永磁极上的两个所述第一空气槽(140)中,两个所述第一空气槽(140)远离各自对应所述安装槽(110)的两个端面形成的圆心角为a4;所述第一空气槽(140)沿所述铁芯(100)径向的尺寸被定义为所述第一空气槽(140)的径向宽度,所述第一空气槽(140)的径向宽度为w4;每个所述安装槽(110)具有靠近所述铁芯(100)中心的第二端,所述安装槽(110)上所述第二端指向所述第一端(111)的尺寸被定义为所述安装槽(110)的宽度,所述安装槽(110)的宽度为w3;R、a4、w4和w3满足:2*(w3-w4)*0.8/(2*π*a4*R/360°)=1.6~1.9。
  10. 根据权利要求3所述的转子组件,其中,所述永磁体(200)为铁氧体永磁体;所述铁芯(100)的半径为R;一个所述永磁极上的两个所述第一空气槽(140)中,两个所述第一空气槽(140)远离各自对应所述安装槽(110)的两个端面形成的圆心角为a4;所述第一空气槽(140)沿所述铁芯(100)径向的尺寸被定义为所述第一空气槽(140)的径向宽度,所述第一空气槽(140)的径向宽度为w4;每个所述安装槽(110)具有靠近所述铁芯(100)中心的第二端,所述安装槽(110)上所述第二端指向所述第一端(111)的尺寸被定义为所述安装槽(110)的宽度,所述安装槽(110)的宽度为w3;R、a4、w4和w3满足:2*(w3-w4)*0.3/(2*π*a4*R/360°)=1.6~1.9。
  11. 根据权利要求2所述的转子组件,其中,每两个所述安装槽(110)形成一个安装槽组,所述安装槽组呈V形,所述安装槽组的开口朝向所述铁芯(100)的外缘,每个所述安装槽组内的两个所述安装槽(110)相对于所述铁芯(100)的径向对称设置;多个所述安装槽组沿所述铁芯(100)的周向均匀分布;所述安装槽组V形夹角内的区域为永磁极区(120),相邻所述安装槽组之间区域为交替极区(130)。
  12. 根据权利要求11所述的转子组件,其中,所述永磁极区(120)中设有两个所述第一空气槽(140),两个所述第一空气槽(140)分别靠近所述安装槽组中两个所述安装槽(110)的所述第一端(111),两个所述第一空气槽(140)相对于所述安装槽组的V形中心 线对称;所述安装槽组中两个所述安装槽(110)的第一端(111)分别对应的两个所述第二空气槽(150)相对于所述安装槽组的V形中心线对称。
  13. 根据权利要求1-12任一项所述的转子组件,其中,所述铁芯(100)的中心开设有转轴孔(160);所述铁芯(100)上还开设有第三空气槽(170),所述第三空气槽(170)环设于所述转轴孔(160)的外缘;所述第三空气槽(170)为多段式结构,每段所述第三空气槽(170)夹设于两个所述安装槽(110)之间,所述第三空气槽(170)的端面与所述安装槽(110)隔开设置。
  14. 根据权利要求13所述的转子组件,其中,每个所述安装槽(110)具有靠近所述铁芯(100)中心的第二端,所述安装槽(110)上所述第二端指向所述第一端(111)的尺寸被定义为所述安装槽(110)的宽度;所述第三空气槽(170)沿所述铁芯(100)径向的尺寸被定义为所述第三空气槽(170)的径向宽度;所述安装槽(110)的宽度为w3,所述第三空气槽(170)的径向宽度为t2,满足:t2/w3=0.1~0.3。
  15. 根据权利要求13所述的转子组件,其中,所述第三空气槽(170)沿所述铁芯(100)径向的尺寸被定义为所述第三空气槽(170)的径向宽度,所述第三空气槽(170)的径向宽度为t2;所述转轴孔(160)的侧壁与第三空气槽(170)靠近所述转轴孔(160)的侧壁之间的距离为t3,满足:t3≥2*t2。
  16. 根据权利要求13所述的转子组件,其中,所述第三空气槽(170)沿所述铁芯(100)径向的尺寸被定义为所述第三空气槽(170)的径向宽度,所述第三空气槽(170)的径向宽度为t2;所述第三空气槽(170)的端面与所述安装槽(110)靠近所述第三空气槽(170)的侧壁之间的距离为tb1,满足:tb1/t2=0.3~1。
  17. 根据权利要求4所述的转子组件,其中,所述第二阶梯槽(152)中靠近所述安装槽(110)的端面与靠近所述铁芯(100)轴心的侧面之间的夹角为a3,满足:a3=85°~110°。
  18. 根据权利要求2所述的转子组件,其中,所述第一空气槽(140)沿所述铁芯(100)径向的尺寸被定义为所述第一空气槽(140)的径向宽度;所述第一空气槽(140)的径向宽度为w4,所述第一空气槽(140)与所述安装槽(110)之间的距离为tb2,满足:tb2/w4=0.3~0.5。
  19. 一种交替极电机,包括转子组件及定子组件,所述转子组件为权利要求1-18任一项所述的转子组件(10);所述定子组件套设于所述转子组件(10)的外缘。
PCT/CN2018/121701 2018-08-13 2018-12-18 转子组件及交替极电机 WO2020034514A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/055,881 US11855489B2 (en) 2018-08-13 2018-12-18 Rotor assembly and consequent-pole motor
JP2020569747A JP7339969B2 (ja) 2018-08-13 2018-12-18 ロータ組立体、及び二次磁極モータ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810918419.3A CN108768023B (zh) 2018-08-13 2018-08-13 转子组件及交替极电机
CN201810918419.3 2018-08-13

Publications (1)

Publication Number Publication Date
WO2020034514A1 true WO2020034514A1 (zh) 2020-02-20

Family

ID=63969841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121701 WO2020034514A1 (zh) 2018-08-13 2018-12-18 转子组件及交替极电机

Country Status (4)

Country Link
US (1) US11855489B2 (zh)
JP (1) JP7339969B2 (zh)
CN (1) CN108768023B (zh)
WO (1) WO2020034514A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114915070A (zh) * 2022-05-09 2022-08-16 山东大学 基于双v形永磁体的转子及高速轴向磁通永磁电机

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108768023B (zh) * 2018-08-13 2020-01-07 珠海格力电器股份有限公司 转子组件及交替极电机
CN110350693B (zh) * 2019-08-02 2021-06-11 珠海格力电器股份有限公司 转子组件和永磁电机
CN110380539A (zh) * 2019-08-02 2019-10-25 珠海格力电器股份有限公司 转子组件和交替极电机
CN113131641B (zh) * 2019-12-30 2023-03-24 安徽威灵汽车部件有限公司 电机的转子、驱动电机和车辆
CN111082626B (zh) * 2020-01-09 2021-12-07 东华大学 一种漏磁可调式无刷混合励磁同步发电机
CN112467909A (zh) * 2020-11-30 2021-03-09 珠海格力电器股份有限公司 电机转子、永磁电机和电动汽车
CN112994290B (zh) * 2021-02-07 2022-03-11 珠海格力节能环保制冷技术研究中心有限公司 一种转子结构和永磁同步电机
CN114189077B (zh) * 2021-12-13 2023-04-28 珠海格力电器股份有限公司 电机转子、电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040007930A1 (en) * 2002-04-15 2004-01-15 Denso Corporation Permanent-magnet rotor for an inner rotor type electric rotary machine and magnet-saving type rotor for a synchronous motor
JP2004254396A (ja) * 2003-02-19 2004-09-09 Toshiba Tec Corp 永久磁石埋込型モータ及び電気掃除機
CN103117611A (zh) * 2013-02-01 2013-05-22 广东威灵电机制造有限公司 一种永磁体电机
CN103872819A (zh) * 2012-12-10 2014-06-18 艾默生环境优化技术(苏州)有限公司 转子组件和包括该转子组件的永磁体电机
CN107124055A (zh) * 2017-06-30 2017-09-01 广东美芝制冷设备有限公司 压缩机的转子、永磁电机、压缩机
CN108768023A (zh) * 2018-08-13 2018-11-06 珠海格力电器股份有限公司 转子组件及交替极电机
CN208508641U (zh) * 2018-08-13 2019-02-15 珠海格力电器股份有限公司 转子组件及交替极电机

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1140036C (zh) * 1997-07-22 2004-02-25 松下电器产业株式会社 采用包含一内装永磁铁的转子的电动机
DE19933009A1 (de) * 1998-07-24 2000-02-10 Matsushita Electric Ind Co Ltd Motor mit interne Permanentmagneten enthaltendem Rotor und einen solchen Motor verwendende Antriebseinheit
EP1855371B1 (en) * 2005-02-28 2016-04-13 Daikin Industries, Ltd. Magnetic body, rotor, motor, compressor, fan, air conditioner, and on-vehicle air conditioner
US7786641B2 (en) * 2005-02-28 2010-08-31 Daikin Industries, Ltd. Magnetic member, rotor and motor
JP4715291B2 (ja) * 2005-05-02 2011-07-06 日産自動車株式会社 電動機
JP4404223B2 (ja) * 2007-03-20 2010-01-27 株式会社安川電機 電磁鋼板形成体、電磁鋼板積層体、これを備えた永久磁石形同期回転電機用回転子、永久磁石形同期回転電機、該回転電機を用いた車両、昇降機、流体機械、加工機
JP5479978B2 (ja) * 2010-03-30 2014-04-23 アイシン・エィ・ダブリュ株式会社 回転電機
JP5557713B2 (ja) 2010-12-03 2014-07-23 本田技研工業株式会社 ロータ
JP6110151B2 (ja) * 2013-02-07 2017-04-05 本田技研工業株式会社 回転電機のロータ
JP2015122936A (ja) * 2013-10-31 2015-07-02 三星電子株式会社Samsung Electronics Co.,Ltd. 埋込磁石型モータ及び埋込磁石型モータの使用方法
KR102118152B1 (ko) * 2013-11-25 2020-06-02 삼성전자주식회사 전동기
CN107196434B (zh) 2017-06-21 2024-03-12 珠海格力节能环保制冷技术研究中心有限公司 转子组件和永磁电机
CN107591921A (zh) 2017-10-30 2018-01-16 常州威灵电机制造有限公司 转子组件及电机
CN108023419A (zh) 2017-12-06 2018-05-11 珠海格力电器股份有限公司 交替极电机及具有其的压缩机
CN108832742B (zh) * 2018-07-16 2020-06-05 珠海格力电器股份有限公司 交替极电机转子和交替极电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040007930A1 (en) * 2002-04-15 2004-01-15 Denso Corporation Permanent-magnet rotor for an inner rotor type electric rotary machine and magnet-saving type rotor for a synchronous motor
JP2004254396A (ja) * 2003-02-19 2004-09-09 Toshiba Tec Corp 永久磁石埋込型モータ及び電気掃除機
CN103872819A (zh) * 2012-12-10 2014-06-18 艾默生环境优化技术(苏州)有限公司 转子组件和包括该转子组件的永磁体电机
CN103117611A (zh) * 2013-02-01 2013-05-22 广东威灵电机制造有限公司 一种永磁体电机
CN107124055A (zh) * 2017-06-30 2017-09-01 广东美芝制冷设备有限公司 压缩机的转子、永磁电机、压缩机
CN108768023A (zh) * 2018-08-13 2018-11-06 珠海格力电器股份有限公司 转子组件及交替极电机
CN208508641U (zh) * 2018-08-13 2019-02-15 珠海格力电器股份有限公司 转子组件及交替极电机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114915070A (zh) * 2022-05-09 2022-08-16 山东大学 基于双v形永磁体的转子及高速轴向磁通永磁电机
CN114915070B (zh) * 2022-05-09 2024-01-09 山东大学 基于双v形永磁体的转子及高速轴向磁通永磁电机

Also Published As

Publication number Publication date
CN108768023A (zh) 2018-11-06
JP2021534708A (ja) 2021-12-09
JP7339969B2 (ja) 2023-09-06
US20210226492A1 (en) 2021-07-22
CN108768023B (zh) 2020-01-07
US11855489B2 (en) 2023-12-26

Similar Documents

Publication Publication Date Title
WO2020034514A1 (zh) 转子组件及交替极电机
JP5684542B2 (ja) ロータ、及びモータ
WO2014046228A1 (ja) 永久磁石埋込型電動機
US11183913B2 (en) Permanent magnet motor
WO2017118090A1 (zh) 永磁转子及永磁电机
US20210242736A1 (en) Motor rotor structure and permanent magnet motor
CN108832742B (zh) 交替极电机转子和交替极电机
WO2020253191A1 (zh) 自起动同步磁阻电机转子结构、电机及压缩机
WO2020125066A1 (zh) 切向电机、电机转子及转子铁芯
CN209805521U (zh) 直接起动同步磁阻电机转子结构、电机
EP4009494B1 (en) Rotor assembly and consequent-pole motor
JP7230185B2 (ja) ロータ及び永久磁石モータ
CN208508641U (zh) 转子组件及交替极电机
WO2020029506A1 (zh) 电机转子和永磁电机
JP6440349B2 (ja) 回転電機
CN110380540A (zh) 转子组件和交替极电机
CN111864940A (zh) 铁芯结构、转子组件、电机及压缩机
WO2016024325A1 (ja) 回転電機
CN212462913U (zh) 铁芯结构、转子组件、电机及压缩机
CN110611386A (zh) 电机转子、电机、压缩机
CN209948821U (zh) 转子组件和交替极电机
CN218071127U (zh) 一种永磁同步电机的转子结构
CN111030339B (zh) 电机转子和交替极电机
CN118157352A (zh) 转子结构和电机
CN118117784A (zh) 永磁电机转子结构及电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569747

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930133

Country of ref document: EP

Kind code of ref document: A1