WO2020029506A1 - 电机转子和永磁电机 - Google Patents

电机转子和永磁电机 Download PDF

Info

Publication number
WO2020029506A1
WO2020029506A1 PCT/CN2018/121816 CN2018121816W WO2020029506A1 WO 2020029506 A1 WO2020029506 A1 WO 2020029506A1 CN 2018121816 W CN2018121816 W CN 2018121816W WO 2020029506 A1 WO2020029506 A1 WO 2020029506A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
end point
rotor
rotor body
center
Prior art date
Application number
PCT/CN2018/121816
Other languages
English (en)
French (fr)
Inventor
刘娜
钟成堡
陈飞龙
谢芳
张闯
杨文德
Original Assignee
珠海格力电器股份有限公司
珠海凯邦电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司, 珠海凯邦电机制造有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP18929536.3A priority Critical patent/EP3780349A4/en
Priority to US17/053,450 priority patent/US11522397B2/en
Publication of WO2020029506A1 publication Critical patent/WO2020029506A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the disclosure belongs to the technical field of motors, and in particular relates to a motor rotor and a permanent magnet motor.
  • a permanent magnet tangentially-embedded motor rotor is provided with magnetic flux by two permanent magnets 1 ′ per pole.
  • the power density of motors using this rotor can be higher.
  • the thickness of the permanent magnet can be increased, and the thickness of the permanent magnet 1 'is represented by W.
  • increasing the thickness of the permanent magnet 1 ′ will cause the magnetic field lines of the rotor to converge toward the center of the magnetic pole, as shown in FIGS. 1 and 2.
  • the arc length L of the outer circle of the rotor through which the magnetic field lines pass gradually decreases as the thickness of the permanent magnet 1 ′ increases, which further affects the air gap magnetic density distribution of the motor.
  • the air gap magnetic density distribution has a great impact on the positioning torque of the motor, so how to increase the motor power density while reducing the positioning torque of the motor is a problem that motor developers strive to solve.
  • embodiments of the present disclosure provide a motor rotor and a permanent magnet motor, which can increase the power density of the motor while reducing the positioning torque of the motor to improve the working performance of the motor.
  • a motor rotor including a rotor body.
  • the rotor body is provided with a plurality of permanent magnet slots along a circumferential direction, and the rotor body between two adjacent permanent magnet slots is provided with a polygonal slot.
  • the polygonal slot is symmetrical about the magnetic pole center line of two adjacent permanent magnets.
  • the polygonal slot includes a first slot edge and a second slot edge. The first slot edge is located at the first end of the polygon slot in the circumferential direction of the rotor body. The slot edge is located at the second end of the polygonal slot in the circumferential direction of the rotor body.
  • the first slot edge has a first end point A far from the center of the rotor body and a A second end point B at the center, a second slot side having a third end point C far from the center of the rotor body and a fourth end point D near the center of the rotor body;
  • the distance between the line connecting the first endpoint A and the third endpoint C and the center of the rotor body is h1
  • the radius of the rotor body is R
  • the relationship between h1 and R satisfies: 0.96 ⁇ h1 / R ⁇ 0.99;
  • connection between the first end A and the center of the rotor body is the first connection
  • connection between the third end C and the center of the rotor body is the second connection.
  • the clamp between the first connection and the second connection is The angle ⁇ satisfies: 3.7 ° ⁇ 5.6 °.
  • the relationship between the projected length h2 of the first slot edge on the magnetic pole center line and the connection length L1 of the first endpoint A and the third endpoint C satisfies: 0.05 ⁇ h2 / L1 ⁇ 0.5;
  • connection length L2 of the second endpoint B and the fourth endpoint D and the connection length L1 of the first endpoint A and the third endpoint C satisfies: 0.2 ⁇ L2 / L1 ⁇ 1.0.
  • a motor rotor including a rotor body.
  • the rotor body is provided with a plurality of permanent magnet slots along a circumferential direction, and the rotor body between two adjacent permanent magnet slots is provided with a polygonal slot.
  • the polygonal slot is symmetrical about the magnetic pole center line of two adjacent permanent magnets.
  • the polygonal slot includes a first slot edge and a second slot edge. The first slot edge is located at the first end of the polygon slot in the circumferential direction of the rotor body. The slot edge is located at the second end of the polygonal slot in the circumferential direction of the rotor body.
  • the first slot edge has a first end point A far from the center of the rotor body and a A second end point B at the center, a second slot side having a third end point C far from the center of the rotor body and a fourth end point D near the center of the rotor body;
  • the distance between the line connecting the first endpoint A and the third endpoint C and the center of the rotor body is h1
  • the radius of the rotor body is R
  • the relationship between h1 and R satisfies: 0.96 ⁇ h1 / R ⁇ 0.99;
  • connection between the first end A and the center of the rotor body is the first connection
  • connection between the third end C and the center of the rotor body is the second connection.
  • the clamp between the first connection and the second connection is The angle ⁇ satisfies: 3.7 ° ⁇ 5.6 °;
  • connection length L2 of the second endpoint B and the fourth endpoint D and the connection length L1 of the first endpoint A and the third endpoint C satisfies: 0.2 ⁇ L2 / L1 ⁇ 1.0.
  • the distance between the first slot edge and the second slot edge increases in a direction away from the center of the rotor body.
  • the first slot edge and the second slot edge are straight edges.
  • the polygonal groove is a trapezoidal groove
  • a line between the first end A and the third end C is a straight line
  • a line between the second end B and the fourth end D is a straight line.
  • first endpoint A and the third endpoint C are connected by a first polyline segment; and / or the second endpoint B and the fourth endpoint D are connected by a second polyline segment.
  • the polygonal groove is a hexagonal groove
  • the first fold line segment includes a first straight line segment and a second straight line segment, and a tip at a connection position of the first straight line segment and the second straight line segment faces a center of the rotor body
  • the second fold line segment includes a third straight line segment and a fourth straight line segment, and a tip at a connection position of the third straight line segment and the fourth straight line segment is far from a center of the rotor body.
  • the first slot edge and the second slot edge are arc edges.
  • connection between the first endpoint A and the third endpoint C is a straight line, a polyline or an arc; and / or, the connection between the second endpoint B and the fourth endpoint D is a straight line, Polyline or arc.
  • a permanent magnet motor including a motor rotor, and the motor rotor is the above-mentioned motor rotor.
  • the permanent magnet motor further includes a stator assembly including a stator core, and an air gap is provided between the stator core and the rotor body.
  • the ratio of W to ⁇ satisfies: 0.18 ⁇ W / ⁇ ⁇ 0.3, where W is the thickness of the permanent magnet, ⁇ is the pole pitch of the motor.
  • the ratio of W to ⁇ satisfies: 0.19 ⁇ W / ⁇ ⁇ 0.23.
  • the stator assembly further includes a stator frame.
  • the stator frame is mounted on the stator core, and the stator frame is wound around the stator windings.
  • the three-phase voltage of the permanent magnet motor is a three-phase sine wave voltage.
  • the motor rotor defined the distance between the line connecting the first and third endpoints and the center of the rotor body as h1, and the radius of the rotor body is R.
  • the relationship between h1 and R satisfies: 0.96 ⁇ h1 / R ⁇ 0.99; the connection between the first endpoint and the center of the rotor body is the first connection, the connection between the third endpoint and the center of the rotor body is the second connection, the first connection and the second connection
  • the included angle ⁇ satisfies: 3.7 ° ⁇ 5.6 °, which can make the positioning torque well reduced. In this way, the positioning torque and output torque can be considered comprehensively to make the motor perform better.
  • connection length L2 of the first slot edge on the magnetic pole center line and the connection length L1 of the first and third endpoints By defining the projection length h2 of the first slot edge on the magnetic pole center line and the connection length L1 of the first and third endpoints, the relationship is satisfied: 0.05 ⁇ h2 / L1 ⁇ 0.5, and the second endpoint and the fourth The relationship between the connection length L2 of the end points and the connection length L1 of the first end and the third end satisfies: 0.2 ⁇ L2 / L1 ⁇ 1.0, which can ensure sufficient output torque while reducing the positioning torque of the motor , Making the comprehensive performance of the motor the best, while ensuring that the structural strength of the motor is the best.
  • the structure of the motor rotor can be optimized, which can effectively reduce the positioning torque of the motor while increasing the power density of the motor. Moment increase problem.
  • FIG. 1 is a schematic diagram of a magnetic field line distribution of a motor rotor in the related art when the thickness of a permanent magnet is small;
  • FIG. 2 is a schematic diagram of a magnetic field line distribution of a motor rotor in the related art when the thickness of a permanent magnet is large;
  • FIG. 3 is a schematic structural diagram of some embodiments of a motor rotor of the present disclosure.
  • FIG. 4 is a schematic diagram of the dimensions of the polygonal groove in the embodiment of FIG. 3;
  • FIG. 6 is a graph of an output torque-W / ⁇ of a motor rotor
  • FIG. 7 is a positioning torque-h1 / R, ⁇ curve diagram of some embodiments of a motor rotor of the present disclosure
  • FIG. 9 is a positioning torque-h2 / L1 curve diagram of some embodiments of a motor rotor of the present disclosure.
  • FIG. 10 is a graph of output torque-h2 / L1 of some embodiments of the motor rotor of the present disclosure.
  • 11 is a positioning torque-L2 / L1 curve diagram of some embodiments of a rotor of a motor of the present disclosure
  • FIG. 12 is an output torque-L2 / L1 curve diagram of some embodiments of a motor rotor of the present disclosure
  • FIG. 13 is a schematic structural diagram of another embodiment of a motor rotor of the present disclosure.
  • FIG. 14 is a schematic diagram of dimensions of a polygonal groove in the embodiment of FIG. 13; FIG.
  • FIG. 15 is a schematic structural diagram of a motor rotor according to still another embodiment of the motor rotor of the present disclosure.
  • FIG. 16 is a schematic diagram of the dimensions of the polygonal groove in the embodiment of FIG. 15; FIG.
  • FIG. 17 is a schematic structural diagram of some embodiments of a permanent magnet motor of the present disclosure.
  • a specific device when it is described that a specific device is located between the first device and the second device, there may or may not be an intervening device between the specific device and the first device or the second device.
  • the specific device When it is described that a specific device is connected to another device, the specific device may be directly connected to the other device without an intervening device, or may have an intervening device without being directly connected to the other device.
  • the motor rotor includes a rotor body 1.
  • the rotor body 1 is provided with a plurality of permanent magnet slots 2 in a circumferential direction, and between two adjacent permanent magnet slots 2.
  • the rotor body 1 is provided with a polygonal slot 3, and the polygonal slot 3 is symmetrical with respect to the magnetic pole center lines of two adjacent permanent magnets.
  • the polygon outline of the polygon groove 3 is not limited to a polygon connected by a straight line segment, and may also include a polygon connected by an arc line segment and a polygon connected by an arc line segment and a straight line segment.
  • the polygonal slot 3 includes a first slot edge 4 and a second slot edge 5.
  • the first slot edge 4 is located at the first end of the polygon slot 3 in the circumferential direction of the rotor body 1.
  • the second slot edge 5 is located at the polygon slot 3 along the rotor body. The second end in the circumferential direction of 1.
  • the first slot edge 4 has a first end point A remote from the center O of the rotor body 1 and a second end point B near the center O of the rotor body 1.
  • the second slot edge 5 has a third end point C far from the center O of the rotor body 1 and a fourth end point D close to the center O of the rotor body 1.
  • the distance between the line connecting the first endpoint A and the third endpoint C and the center O of the rotor body 1 is h1, and the radius of the rotor body 1 is R.
  • the relationship between h1 and R satisfies: 0.96 ⁇ h1 / R ⁇ 0.99.
  • the connection between the first end A and the center O of the rotor body 1 is a first connection
  • the connection between the third end C and the center O of the rotor body 1 is a second connection
  • the included angle ⁇ satisfies: 3.7 ° ⁇ 5.6 °.
  • the relationship between the projection length h2 of the first slot edge 4 on the magnetic pole center line and the connection length L1 of the first end A and the third end C satisfies: 0.05 ⁇ h2 / L1 ⁇ 0.5.
  • the relationship between the connection length L2 of the second endpoint B and the fourth endpoint D and the connection length L1 of the first endpoint A and the third endpoint C satisfies: 0.2 ⁇ L2 / L1 ⁇ 1.0.
  • the structure of the motor rotor can be optimized, which can effectively reduce the positioning torque of the motor while increasing the power density of the motor, and overcome the increase of the positioning torque of the motor caused by the increased thickness of the permanent magnet of the tangential embedded rotor of the permanent magnet. Increased problems.
  • the rotor body 1 is provided with ten permanent magnet slots 2, and the permanent magnet slots 2 are evenly distributed on the rotor body 1 in a radial form.
  • the permanent magnet may be magnetized by externally magnetizing first, and then fixed in the permanent magnet groove 2 by glue.
  • the magnet can also be fixed in the permanent magnet slot 2 by glue first, and then magnetized by using the entire rotor after magnetization.
  • the faces of two adjacent permanent magnets facing each other have the same polarity, and jointly provide the magnetomotive force of the poles, which greatly improves the power density of the permanent magnet motor and enables the permanent magnet motor to be miniaturized.
  • the thickness W of the permanent magnet can be increased.
  • the permanent magnet is magnetic steel.
  • the distance between the first slot edge 4 and the second slot edge 5 increases in a radial direction away from the center of the rotor body 1. This is because along the radial direction of the rotor body 1, the farther away from the center of the rotor body 1, the larger the distance between the two permanent magnets, the correspondingly, the circumferential width of the polygonal groove 3 is correspondingly increased, making the polygonal groove
  • the structure of 3 can be changed correspondingly with the distance between the permanent magnets, thereby more effectively dispersing the magnetic field lines in the center of the magnetic poles, and then optimizing the positioning torque.
  • the polygonal groove 3 is a quadrangular groove, and the first groove edge 4 and the second groove edge 5 are straight edges.
  • the polygonal groove 3 is a trapezoidal groove, a line between the first end point A and the third end point C is a straight line, and a line between the second end point B and the fourth end point D is a straight line.
  • h1 / R can represent the position of the upper side of the quadrangular groove
  • can represent the upper side length of the quadrangular groove.
  • the upper side of the quadrangular groove must not be too small from the outer diameter of the rotor body 1, so h1 / R cannot be designed too large, and the h1 / R limit value is 0.99.
  • the position and length of the upper side of the quadrangular slot are the key factors affecting the distribution of the magnetic field lines of the rotor. The effects on the positioning torque and output torque of the motor are calculated for different h1 / R and ⁇ . Show.
  • h2 / L1 can be used to characterize the height of the quadrilateral groove.
  • the height of the quadrilateral groove is the key factor that affects the distribution of the magnetic field lines of the rotor.
  • the influence on the positioning torque and output torque of the motor is calculated for different h2 / L1.
  • the relationship between h2 / L1 and positioning torque is shown in Figure 9, and the relationship between h2 / L1 and output torque is shown in Figure 10.
  • L2 / L1 represents the ratio of the lower side to the upper side of the quadrangular groove.
  • the calculated relationship between L2 / L1 and the positioning torque is shown in Figure 11, and the calculated relationship between L2 / L1 and the output torque is shown in Figure 12. From the analysis of the calculation results, it is concluded that L2 / L1 has little effect on the performance of the motor, but in order to prevent stress concentration during the stamping of the electromagnetic steel sheet, L2 / L1 must not be too small. When 0.2 ⁇ L2 / L1 ⁇ 1.0, the comprehensive performance and structural strength of the motor rotor are the best.
  • the structure of the motor rotor can be optimized, which can effectively reduce the positioning torque of the motor while increasing the power density of the motor.
  • the problem of increased torque can be increased.
  • the first endpoint A and the third endpoint C are connected by a first polyline segment; and / or, the second endpoint B and the fourth endpoint D are connected by a first Two-fold line segments are connected.
  • the first fold line segment may be formed by connecting a plurality of straight line segments, a first end of the first fold line segment is connected to a first end point A, and a second end of the first fold line segment is connected to a third end point C.
  • the second fold line segment may be formed by connecting a plurality of straight line segments, a first end of the second fold line segment is connected to a second end point B, and a second end of the second fold line segment is connected to a fourth end point D.
  • the polygonal groove 3 is a hexagonal groove
  • the first fold line segment includes a first straight line segment 6 and a second straight line segment 7, and a tip of the connection position of the first straight line segment 6 and the second straight line segment 7 faces The center of the rotor body 1; and / or, the second fold line segment includes a third straight line segment 8 and a fourth straight line segment 9, and the tip at the connection position of the third straight line segment 8 and the fourth straight line segment 9 is far from the center of the rotor body 1; .
  • first endpoint A and the third endpoint C may be connected by a first broken line segment, and the second endpoint B and the fourth endpoint D are connected by a straight line segment, or the first end may be connected.
  • the point A and the third endpoint C are connected by a straight line segment, and the second endpoint B and the fourth endpoint D are connected by a second polyline segment.
  • the first straight line segment 6 and the second straight line segment 7 may also be used.
  • the tip at the connection position is far from the center of the rotor body 1, and the tip at the connection position of the third straight segment 8 and the fourth straight segment 9 faces the center of the rotor body 1.
  • a structure in which the tip at the connection position of the first straight segment 6 and the second straight segment 7 and the tip at the connection position of the third straight segment 8 and the fourth straight segment 9 are both far from the center of the rotor body 1.
  • the first slot edge 4 and the second slot edge 5 are arc edges.
  • the first endpoint A and the third endpoint C may be connected by a straight line, a polyline or an arc
  • the second endpoint B and the fourth endpoint D may also be connected by a straight line, a polyline or an arc.
  • connection between the first endpoint A and the third endpoint C is a first arc; and the connection between the second endpoint B and the fourth endpoint D is a second arc, the first arc
  • the line and the second arc line are arranged concentrically so as to form a quadrangular groove whose sides are all arc-shaped.
  • the permanent magnet motor includes a motor rotor, and the motor rotor is any one of the above-mentioned motor rotors of the present disclosure.
  • the permanent magnet motor further includes a stator assembly including a stator core 10 having an air gap between the stator core 10 and the rotor body 1.
  • the stator core 10 and the rotor core of the motor rotor are laminated and laminated by electromagnetic steel plates. Most of the structure of the motor rotor is a main magnetic circuit. Together with the stator core 10, it provides a magnetic circuit for the magnetomotive force.
  • the pole distance is defined in electromechanics as: the length of the circumference of the inner surface of the stator corresponding to one pole.
  • the ratio of W to ⁇ can represent the overall proportion of the thickness of the magnetic steel.
  • the ratio of W to ⁇ satisfies: 0.18 ⁇ W / ⁇ ⁇ 0.3, where W is the thickness of the permanent magnet , ⁇ is the pole pitch of the motor.
  • the ratio of W to ⁇ satisfies: 0.19 ⁇ W / ⁇ ⁇ 0.23.
  • the positioning torque and output torque of the motor can be calculated. The results are shown in Figure 5 and Figure 6.
  • the positioning torque decreases first and then increases as W / ⁇ increases. This is because increasing the thickness of the permanent magnet will cause the magnetic field lines of the rotor to converge towards the center of the magnetic pole, which will affect the distribution of the air gap magnetic density of the motor. The distribution of the air gap magnetic density has a great influence on the positioning torque of the motor.
  • the motor has an optimal magnetic field line distribution. At this time, the positioning torque is the smallest.
  • the positioning torque must not be too large.
  • W / ⁇ is relatively appropriate to take 0.19 ⁇ W / ⁇ 0.23. Since the thickness W of the permanent magnet is relatively large at this time, the magnetic field lines gather toward the center of the magnetic pole, and the positioning torque is not ideal.
  • the polygonal groove 3 can be used to disperse the magnetic field center line of magnetic poles, thereby optimizing the positioning torque, so that the motor output torque is at the highest level without waste of materials, while avoiding the permanent magnet thickness W being too large.
  • the problem of increased positioning torque of the motor effectively improves the structure of the motor rotor, improves the working performance of the permanent magnet motor, and reduces the positioning torque of the motor while increasing the power density of the motor.
  • the stator assembly further includes a stator frame.
  • the stator frame is mounted on the stator core 10, and the stator frame is wound with stator windings in a concentrated manner.
  • the three-phase voltage of a permanent magnet motor is a three-phase sine wave voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本公开提供一种电机转子和永磁电机。该电机转子包括转子本体,在垂直于转子本体的中心轴线的截面内,第一槽边具有第一端点A和第二端点B,第二槽边具有第三端点C和第四端点D;A和C的连线与转子本体的中心之间的距离为h1,转子本体的半径为R,0.96≤h1/R≤0.99;A与转子本体的中心的连线为第一连线,C与转子本体的中心的连线为第二连线,两个连线的夹角φ满足:3.7°≤Ф≤5.6°。根据本公开的电机转子,能够在提高电机功率密度的同时又降低电机定位转矩,提高电机工作性能。

Description

电机转子和永磁电机
相关申请的交叉引用
本申请是以CN申请号为201810903354.5,申请日为2018年8月9日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开属于电机技术领域,具体涉及一种电机转子和永磁电机。
背景技术
参考图1,永磁体切向埋入型电机转子每极由两块永磁体1'共同提供磁通。相比其他形式的转子电机,采用这种转子的电机的功率密度可以更高。为了追求更高的功率密度,可以加大永磁体厚度,永磁体1'的厚度用W表示。但是,增大永磁体1'的厚度会导致转子磁力线向磁极中心聚拢,如图1和图2所示。磁力线所经过转子外圆的圆弧长度L随着永磁体1'的厚度的增大而逐渐减小,进而影响电机气隙磁密的分布。而气隙磁密的分布对电机的定位转矩有很大影响,所以如何在提高电机功率密度的同时又降低电机的定位转矩是电机开发者力求解决的问题。
发明内容
有鉴于此,本公开实施例提供一种电机转子和永磁电机,能够在提高电机功率密度的同时又降低电机定位转矩,以提高电机工作性能。
在本公开的一个方面,提供一种电机转子,包括转子本体,转子本体上沿周向设置有多个永磁体槽,相邻的两个永磁体槽之间的转子本体上设置有多边形槽,多边形槽关于相邻的两个永磁体的磁极中心线对称,多边形槽包括第一槽边和第二槽边,第一槽边位于多边形槽沿转子本体的周向方向的第一端,第二槽边位于多边形槽沿转子本体的周向方向的第二端,在垂直于转子本体的中心轴线的截面内,第一槽边具有远离转子本体的中心的第一端点A和靠近转子本体的中心的第二端点B,第二槽边具有远离转子本体的中心的第三端点C和靠近转子本体的中心的第四端点D;
第一端点A和第三端点C的连线与转子本体的中心之间的距离为h1,转子本体的半径为R,h1和R之间的关系满足:0.96≤h1/R≤0.99;
第一端点A与转子本体的中心的连线为第一连线,第三端点C与转子本体的中心的连线为第二连线,第一连线和第二连线之间的夹角φ满足:3.7°≤Ф≤5.6°。
在一些实施例中,第一槽边在磁极中心线上的投影长度h2与第一端点A和第三端点C的连线长度L1之间的关系满足:0.05≤h2/L1≤0.5;
在一些实施例中,第二端点B和第四端点D的连线长度L2与第一端点A和第三端点C的连线长度L1之间的关系满足:0.2≤L2/L1≤1.0。
在本公开的一个方面,提供一种电机转子,包括转子本体,转子本体上沿周向设置有多个永磁体槽,相邻的两个永磁体槽之间的转子本体上设置有多边形槽,多边形槽关于相邻的两个永磁体的磁极中心线对称,多边形槽包括第一槽边和第二槽边,第一槽边位于多边形槽沿转子本体的周向方向的第一端,第二槽边位于多边形槽沿转子本体的周向方向的第二端,在垂直于转子本体的中心轴线的截面内,第一槽边具有远离转子本体的中心的第一端点A和靠近转子本体的中心的第二端点B,第二槽边具有远离转子本体的中心的第三端点C和靠近转子本体的中心的第四端点D;
第一端点A和第三端点C的连线与转子本体的中心之间的距离为h1,转子本体的半径为R,h1和R之间的关系满足:0.96≤h1/R≤0.99;
第一端点A与转子本体的中心的连线为第一连线,第三端点C与转子本体的中心的连线为第二连线,第一连线和第二连线之间的夹角φ满足:3.7°≤Ф≤5.6°;
第一槽边在磁极中心线上的投影长度h2与第一端点A和第三端点C的连线长度L1之间的关系满足:0.05≤h2/L1≤0.5;
第二端点B和第四端点D的连线长度L2与第一端点A和第三端点C的连线长度L1之间的关系满足:0.2≤L2/L1≤1.0。
在一些实施例中,沿着远离转子本体的中心的方向,第一槽边和第二槽边之间的间距递增。
在一些实施例中,第一槽边和第二槽边为直边。
在一些实施例中,多边形槽为梯形槽,第一端点A和第三端点C之间的连线为直线,第二端点B和第四端点D之间的连线为直线。
在一些实施例中,第一端点A和第三端点C之间通过第一折线段连接;和/或,第二端点B和第四端点D之间通过第二折线段连接。
在一些实施例中,多边形槽为六边形槽,第一折线段包括第一直线段和第二直线段,第一直线段和第二直线段的连接位置处的尖端朝向转子本体的中心;和/或,第二 折线段包括第三直线段和第四直线段,第三直线段和第四直线段的连接位置处的尖端远离转子本体的中心。
在一些实施例中,第一槽边和第二槽边为弧边。
在一些实施例中,第一端点A和第三端点C之间的连线为直线、折线或弧线;和/或,第二端点B和第四端点D之间的连线为直线、折线或弧线。
在本公开的另一方面,提供了一种永磁电机,包括电机转子,该电机转子为上述的电机转子。
在一些实施例中,永磁电机还包括定子组件,定子组件包括定子铁芯,定子铁芯与转子本体之间具有空气隙。
在一些实施例中,空气隙的气隙长度a≤0.4mm且转子本体的外径D≥20mm时,W与τ的比值满足:0.18≤W/τ≤0.3,其中W为永磁体的厚度,τ为电机极距。
在一些实施例中,W与τ的比值满足:0.19≤W/τ≤0.23。
在一些实施例中,定子组件还包括定子骨架,定子骨架安装在定子铁芯上,定子骨架上集中绕制有定子绕组。
在一些实施例中,永磁电机的三相电压为三相正弦波电压。
本公开提供的电机转子,通过限定第一端点和第三端点的连线与转子本体的中心之间的距离为h1,转子本体的半径为R,h1和R之间的关系满足:0.96≤h1/R≤0.99;第一端点与转子本体的中心的连线为第一连线,第三端点与转子本体的中心的连线为第二连线,第一连线和第二连线之间的夹角φ满足:3.7°≤Ф≤5.6°,能够使得定位转矩得到很好的降低。这样可以综合考虑定位转矩与输出转矩,以使电机性能较佳。
通过限定第一槽边在磁极中心线上的投影长度h2与第一端点和第三端点的连线长度L1之间的关系满足:0.05≤h2/L1≤0.5,以及第二端点和第四端点的连线长度L2与第一端点和第三端点的连线长度L1之间的关系满足:0.2≤L2/L1≤1.0,可以在降低电机定位转矩的情况下保证足够的输出转矩,使得电机综合性能最佳,同时能够保证电机的结构强度最佳。
通过增加上述的约束,可以对电机转子的结构进行优化,从而在提高电机功率密度的同时有效降低电机定位转矩,克服永磁体切向埋入型转子的永磁体厚度增大带来电机定位转矩增大的问题。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1为相关技术中的电机转子在永磁体厚度较小时的磁力线分布示意图;
图2为相关技术中的电机转子在永磁体厚度较大时的磁力线分布示意图;
图3为本公开电机转子的一些实施例的结构示意图;
图4为图3实施例中多边形槽的尺寸示意图;
图5为电机转子的定位转矩-W/τ曲线图;
图6为电机转子的输出转矩-W/τ曲线图;
图7为本公开电机转子的一些实施例的定位转矩-h1/R、Ф曲线图;
图8为本公开电机转子的一些实施例的输出转矩-h1/R、Ф曲线图;
图9为本公开电机转子的一些实施例的定位转矩-h2/L1曲线图;
图10为本公开电机转子的一些实施例的输出转矩-h2/L1曲线图;
图11为本公开电机转子的一些实施例的定位转矩-L2/L1曲线图;
图12为本公开电机转子的一些实施例的输出转矩-L2/L1曲线图;
图13为本公开电机转子的另一些实施例的结构示意图;
图14为图13实施例中多边形槽的尺寸示意图;
图15为本公开电机转子的又一些实施例的电机转子的结构示意图;
图16为图15实施例中多边形槽的尺寸示意图;
图17为本公开永磁电机的一些实施例的结构示意图。
附图标记表示为:
1、转子本体;2、永磁体槽;3、多边形槽;4、第一槽边;5、第二槽边;6、第一直线段;7、第二直线段;8、第三直线段;9、第四直线段;10、定子铁芯。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值应被解释为仅 仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定器件位于第一器件和第二器件之间时,在该特定器件与第一器件或第二器件之间可以存在居间器件,也可以不存在居间器件。当描述到特定器件连接其它器件时,该特定器件可以与所述其它器件直接连接而不具有居间器件,也可以不与所述其它器件直接连接而具有居间器件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
结合参考图3至图16,根据本公开的一些实施例,电机转子包括转子本体1,转子本体1上沿周向设置有多个永磁体槽2,相邻的两个永磁体槽2之间的转子本体1上设置有多边形槽3,多边形槽3相对于相邻的两个永磁体的磁极中心线对称。多边形槽3的多边形轮廓不限于通过直线段连接而成的多边形,还可以包括通过弧线段连接而成的多边形以及通过弧线段和直线段连接而成的多边形。
多边形槽3包括第一槽边4和第二槽边5,第一槽边4位于多边形槽3沿转子本体1的周向方向的第一端,第二槽边5位于多边形槽3沿转子本体1的周向方向的第二端。在垂直于转子本体1的中心轴线的截面内,第一槽边4具有远离转子本体1的中心O的第一端点A和靠近转子本体1的中心O的第二端点B,第二槽边5具有远离转子本体1的中心O的第三端点C和靠近转子本体1的中心O的第四端点D。
第一端点A和第三端点C的连线与转子本体1的中心O之间的距离为h1,转子本体1的半径为R,h1和R之间的关系满足:0.96≤h1/R≤0.99。第一端点A与转子本体1的中心O的连线为第一连线,第三端点C与转子本体1的中心O的连线为第二连线,第一连线和第二连线之间的夹角φ满足:3.7°≤Ф≤5.6°。
第一槽边4在磁极中心线上的投影长度h2与第一端点A和第三端点C的连线长度L1之间的关系满足:0.05≤h2/L1≤0.5。第二端点B和第四端点D的连线长度L2与第一端点A和第三端点C的连线长度L1之间的关系满足:0.2≤L2/L1≤1.0。
通过增加上述的约束,可以对电机转子的结构进行优化,从而在提高电机功率密度的同时有效降低电机定位转矩,克服永久磁体切向埋入型转子永磁体厚度增大带来电机定位转矩增大的问题。
参考图3,在一些实施例中,转子本体1上开有10个永磁体槽2,永磁体槽2以辐射状的形式均匀地分布在转子本体1上。在一些实施例中,永磁体可以采用外部先充磁的方式充磁,再通过胶水固定在永磁体槽2内。在另一些实施例中,也可以先通过胶水固定在永磁体槽2内,再采用转子整体后充磁的方式进行充磁。相邻两块永磁体互相面对的面极性相同,共同提供该极的磁动势,大大提高了永磁电机的功率密度,使得永磁电机可以实现小型化。为了进一步提高电机功率密度,可以加大永磁体厚度W。在一些实施例中,永磁体为磁钢。
在一些实施例中,沿着远离转子本体1的中心的径向方向,第一槽边4和第二槽边5之间的间距递增。这是由于沿着转子本体1的径向方向,越远离转子本体1的中心,两个永磁体之间的间距越大,相应的,多边形槽3的周向宽度也相应增大,使得多边形槽3的结构能够随着永磁体之间的间距而相应变化,从而更加有效地分散磁极中心的磁力线,进而优化定位转矩。
参考图3和图4,在一些实施例中,多边形槽3为四边形槽,第一槽边4和第二槽边5为直边。在图3中,多边形槽3为梯形槽,第一端点A和第三端点C之间的连线为直线,第二端点B和第四端点D之间的连线为直线。
以图4所示的多边形槽3与转子本体1的尺寸关系为例,针对不同大小的电机,h1/R可以表征四边形槽上边的位置,Ф可以表征四边形槽的上边长度。受冲压工艺限制,四边形槽的上边距离转子本体1的外径不可过小,所以h1/R不可设计过大,h1/R极限值为0.99。四边形槽的上边长的位置和长度是影响转子磁力线分布的关键因素,下面针对不同的h1/R和Ф计算了其对电机定位转矩和输出转矩的影响,结果如图7和图8所示。
当h1/R<0.96时,由图7的数据可以看出,随着Ф的增大,定位转矩逐渐减小,但是由图8的数据同时可以看出,随着Ф的增大输出转矩也逐渐减小,在定位转矩较小时输出转矩也同时大大削弱,所以h1/R小于0.96时,电机综合性能不佳。
当0.96≤h1/R≤0.99时,由图7的数据可以看出,定位转矩随着Ф的增大先减小再增大再减小,定位转矩最小点出现在3.7°≤Ф≤5.6°时,此时定位转矩得到很好的降低。由图8的数据可以看出,由于此时的Ф较小,输出转矩依然处于较大水平。通过以上分析,综合考虑定位转矩和输出转矩,0.96≤h1/R≤0.99且3.7°≤Ф≤5.6°时电机性能最佳。
h2/L1可以表征四边形槽的高,四边形槽的高是影响转子磁力线分布的关键因素,下面针对不同的h2/L1计算了其对电机定位转矩和输出转矩的影响。h2/L1与定位转矩关系如图9所示,h2/L1与输出转矩关系如图10所示。
由图9和图10得出结论:随着h2/L1的增大,定位转矩逐渐减小,输出转矩逐渐减小。在降低定位转矩的情况下要保证一定的输出转矩,由计算结果可知,0.05≤h2/L1≤0.5时电机综合性能最佳。
L2/L1表征四边形槽下边与上边的比值,L2/L1与定位转矩的计算关系如图11所示,L2/L1与输出转矩的计算关系如图12所示。由计算结果分析得出结论:L2/L1对电机性能影响很小,但是为了防止电磁钢板冲压时应力集中,L2/L1不可过小。0.2≤L2/L1≤1.0时,电机转子的综合性能及结构强度最佳。
因此,通过增加上述的约束,可以对电机转子的结构进行优化,从而在提高电机功率密度的同时有效降低电机定位转矩,克服永久磁体切向埋入型转子永磁体厚度增大带来电机定位转矩增大的问题。
参考图13和图14,在另一些实施例中,第一端点A和第三端点C之间通过第一折线段连接;和/或,第二端点B和第四端点D之间通过第二折线段连接。其中第一折线段可以由多个直线段连接而成,第一折线段的第一端与第一端点A连接,第一折线段的第二端与第三端点C连接。第二折线段可以由多个直线段连接而成,第二折线段的第一端与第二端点B连接,第二折线段的第二端与第四端点D连接。
在本实施例中,多边形槽3为六边形槽,第一折线段包括第一直线段6和第二直线段7,第一直线段6和第二直线段7的连接位置处的尖端朝向转子本体1的中心;和/或,第二折线段包括第三直线段8和第四直线段9,第三直线段8和第四直线段9的连接位置处的尖端远离转子本体1的中心。
在其他的实施例中,也可以采用第一端点A和第三端点C之间通过第一折线段连接,第二端点B和第四端点D之间通过直线段连接,或者是第一端点A和第三端点C之间通过直线段连接,第二端点B和第四端点D之间通过第二折线段连接。
当第一折线段包括第一直线段6和第二直线段7,第二折线段包括第三直线段8和第四直线段9时,也可以采用第一直线段6和第二直线段7的连接位置处的尖端远离转子本体1的中心,第三直线段8和第四直线段9的连接位置处的尖端朝向转子本体1的中心的结构。或者采用第一直线段6和第二直线段7的连接位置处的尖端以及第三直线段8和第四直线段9的连接位置处的尖端均朝向转子本体1的中心的结构。或者采用第一直线段6和第二直线段7的连接位置处的尖端以及第三直线段8和第四直线段9的连接位置处的尖端均远离转子本体1的中心的结构。
参考图15和图16,在一些实施例中,第一槽边4和第二槽边5为弧边。其中第一端点A和第三端点C之间可以通过直线、折线或者弧线连接,第二端点B和第四端点D之间也可以通过直线、折线或者弧线连接。
在图16中,第一端点A和第三端点C之间的连线为第一弧线;且第二端点B和第四端点D之间的连线为第二弧线,第一弧线和第二弧线同心设置,从而形成四边均为弧形的四边形槽。
参考图17,在一些实施例中,永磁电机包括电机转子,该电机转子为本公开上述各电机转子的任一实施例。
永磁电机还包括定子组件,定子组件包括定子铁芯10,定子铁芯10与转子本体1之间具有空气隙。定子铁芯10和电机转子的转子铁芯由电磁钢板充制叠压而成,电机转子大部分结构为主磁路,和定子铁芯10共同为磁动势提供磁路。
极距在电机学的定义为:对应于一个极的定子内表面圆周长度。当气隙长度a≤0.4mm且转子外径D≥20mm时,W与τ的比值可以表征磁钢厚度总体占比。
在本实施例中,空气隙的气隙长度a≤0.4mm且转子本体1的外径D≥20mm时,W与τ的比值满足:0.18≤W/τ≤0.3,其中W为永磁体的厚度,τ为电机极距。
在一些实施例中,W与τ的比值满足:0.19≤W/τ≤0.23。针对不同的W/τ,可以计算出电机的定位转矩和输出转矩,结果如图5和图6所示。
由图5得出结论,定位转矩随着W/τ的增大先减小后增大。这是因为增大永磁体厚度会导致转子磁力线向磁极中心聚拢,进而影响电机气隙磁密的分布,气隙磁密的分布对电机定位转矩有很大影响,电机存在一个最佳磁力线分布,此时的定位转矩是最小的。
由图6得出结论,输出转矩随着W/τ的增大而逐渐增大,但是增速逐渐减慢。这是因为增加永磁体厚度会提升永磁体的工作点,但工作点增加到一定值后基本趋于 稳定。从提高电机功率密度和节约永磁体成本两方面考虑,W/τ取0.18~0.3较合适,此时电机输出转矩最处于较高水平且不浪费材料。
综合考虑电机输出转矩和定位转矩,定位转矩不可过大,W/τ取0.19≤W/τ≤0.23相对合适。由于此时永磁体厚度W相对较大,磁力线向磁极中心聚拢,定位转矩不理想。而在加入多边形槽3之后,可以利用多边形槽3来分散磁极中心磁力线,进而优化定位转矩,从而使得电机输出转矩最处于较高水平且不浪费材料的同时,避免永磁体厚度W过大导致的电机定位转矩增大的问题,有效地改善了电机转子的结构,提高了永磁电机的工作性能,在提高电机功率密度的同时降低了电机定位转矩。
定子组件还包括定子骨架,定子骨架安装在定子铁芯10上,定子骨架上集中绕制有定子绕组。
永磁电机的三相电压为三相正弦波电压。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。本领域的技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。以上仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本公开的保护范围。

Claims (16)

  1. 一种电机转子,包括转子本体(1),所述转子本体(1)上沿周向设置有多个永磁体槽(2),相邻的两个所述永磁体槽(2)之间的所述转子本体(1)上设置有多边形槽(3),所述多边形槽(3)关于相邻的两个永磁体的磁极中心线对称,所述多边形槽(3)包括第一槽边(4)和第二槽边(5),所述第一槽边(4)位于所述多边形槽(3)沿所述转子本体(1)的周向方向的第一端,所述第二槽边(5)位于所述多边形槽(3)沿所述转子本体(1)的周向方向的第二端,在垂直于所述转子本体(1)的中心轴线的截面内,所述第一槽边(4)具有远离所述转子本体(1)的中心的第一端点A和靠近所述转子本体(1)的中心的第二端点B,所述第二槽边(5)具有远离所述转子本体(1)的中心的第三端点C和靠近所述转子本体(1)的中心的第四端点D;
    所述第一端点A和所述第三端点C的连线与所述转子本体(1)的中心之间的距离为h1,所述转子本体(1)的半径为R,h1和R之间的关系满足:0.96≤h1/R≤0.99;所述第一端点A与所述转子本体(1)的中心的连线为第一连线,所述第三端点C与所述转子本体(1)的中心的连线为第二连线,第一连线和第二连线之间的夹角φ满足:3.7°≤Ф≤5.6°。
  2. 根据权利要求1所述的电机转子,其中,所述第一槽边(4)在所述磁极中心线上的投影长度h2与所述第一端点A和所述第三端点C的连线长度L1之间的关系满足:0.05≤h2/L1≤0.5。
  3. 根据权利要求1所述的电机转子,其中,所述第二端点B和所述第四端点D的连线长度L2与所述第一端点A和所述第三端点C的连线长度L1之间的关系满足:0.2≤L2/L1≤1.0。
  4. 根据权利要求1所述的电机转子,其中,沿着远离所述转子本体(1)的中心的方向,所述第一槽边(4)和所述第二槽边(5)之间的间距递增。
  5. 根据权利要求4所述的电机转子,其中,所述第一槽边(4)和所述第二槽边(5)为直边。
  6. 根据权利要求5所述的电机转子,其中,所述多边形槽(3)为梯形槽,所述第一端点A和所述第三端点C之间的连线为直线,所述第二端点B和所述第四端点D之间的连线为直线。
  7. 根据权利要求5所述的电机转子,其中,所述第一端点A和所述第三端点C之间通过第一折线段连接;和/或,所述第二端点B和所述第四端点D之间通过第二折线段连接。
  8. 根据权利要求7所述的电机转子,其中,所述多边形槽(3)为六边形槽,
    所述第一折线段包括第一直线段(6)和第二直线段(7),所述第一直线段(6)和所述第二直线段(7)的连接位置处的尖端朝向所述转子本体(1)的中心;和/或,所述第二折线段包括第三直线段(8)和第四直线段(9),所述第三直线段(8)和所述第四直线段(9)的连接位置处的尖端远离所述转子本体(1)的中心。
  9. 根据权利要求4所述的电机转子,其中,所述第一槽边(4)和所述第二槽边(5)为弧边。
  10. 根据权利要求9所述的电机转子,其中,所述第一端点A和所述第三端点C之间的连线为直线、折线或弧线;和/或,所述第二端点B和所述第四端点D之间的连线为直线、折线或弧线。
  11. 一种永磁电机,包括电机转子,所述电机转子为权利要求1至10中任一项所述的电机转子。
  12. 根据权利要求11所述的永磁电机,其中,所述永磁电机还包括定子组件,所述定子组件包括定子铁芯(10),所述定子铁芯(10)与所述转子本体(1)之间具有空气隙。
  13. 根据权利要求12所述的永磁电机,其中,所述空气隙的气隙长度a≤0.4mm且转子本体(1)的外径D≥20mm时,W与τ的比值满足:0.18≤W/τ≤0.3,其中W为永磁体的厚度,τ为电机极距。
  14. 根据权利要求13所述的永磁电机,其中,W与τ的比值满足:0.19≤W/τ≤0.23。
  15. 根据权利要求12所述的永磁电机,其中,所述定子组件还包括定子骨架,所述定子骨架安装在定子铁芯(10)上,所述定子骨架上集中绕制有定子绕组。
  16. 根据权利要求11所述的永磁电机,其中,所述永磁电机的三相电压为三相正弦波电压。
PCT/CN2018/121816 2018-08-09 2018-12-18 电机转子和永磁电机 WO2020029506A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18929536.3A EP3780349A4 (en) 2018-08-09 2018-12-18 MOTOR ROTOR AND PERMANENT MAGNETIC MOTOR
US17/053,450 US11522397B2 (en) 2018-08-09 2018-12-18 Motor rotor and permanent magnet motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810903354.5A CN108736610B (zh) 2018-08-09 2018-08-09 电机转子和永磁电机
CN201810903354.5 2018-08-09

Publications (1)

Publication Number Publication Date
WO2020029506A1 true WO2020029506A1 (zh) 2020-02-13

Family

ID=63942582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121816 WO2020029506A1 (zh) 2018-08-09 2018-12-18 电机转子和永磁电机

Country Status (4)

Country Link
US (1) US11522397B2 (zh)
EP (1) EP3780349A4 (zh)
CN (1) CN108736610B (zh)
WO (1) WO2020029506A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108736610B (zh) 2018-08-09 2019-07-16 珠海格力电器股份有限公司 电机转子和永磁电机
CN109494897A (zh) * 2018-11-09 2019-03-19 深圳南方德尔汽车电子有限公司 Eps电机定转子冲片结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107222047A (zh) * 2017-08-09 2017-09-29 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯
CN107240975A (zh) * 2017-08-09 2017-10-10 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯
CN108039785A (zh) * 2017-12-11 2018-05-15 珠海格力节能环保制冷技术研究中心有限公司 电机转子及电机
CN108736610A (zh) * 2018-08-09 2018-11-02 珠海格力电器股份有限公司 电机转子和永磁电机
CN208423983U (zh) * 2018-08-09 2019-01-22 珠海格力电器股份有限公司 电机转子和永磁电机

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002112480A (ja) 2000-09-28 2002-04-12 Fujitsu General Ltd 永久磁石電動機の回転子
KR20040095218A (ko) * 2002-02-09 2004-11-12 유규 황 Ac 유도 전동기 패턴의 스위칭
WO2007052385A1 (ja) * 2005-11-01 2007-05-10 Matsushita Electric Industrial Co., Ltd. モータとそのモータに使用されるステータの製造方法
JP5288698B2 (ja) * 2006-10-20 2013-09-11 株式会社東芝 永久磁石式リラクタンス型回転電機
US7932658B2 (en) * 2007-03-15 2011-04-26 A.O. Smith Corporation Interior permanent magnet motor including rotor with flux barriers
JP5264897B2 (ja) 2008-05-21 2013-08-14 東芝キヤリア株式会社 永久磁石電動機、密閉型圧縮機、および冷凍サイクル装置
EP2611001B1 (en) 2010-08-27 2019-01-09 Mitsubishi Electric Corporation Rotor of permanent magnet embedded motor, compressor, and refrigeration and air conditioning device
DE102010043224A1 (de) * 2010-11-02 2012-05-03 Robert Bosch Gmbh Wirkungsgradoptimierte Synchronmaschine
CN102185397B (zh) 2011-04-18 2015-06-24 无锡新大力电机有限公司 具磁场正弦控制和交轴电抗控制的转子冲片
CN103138442B (zh) 2011-11-25 2016-04-13 丹佛斯(天津)有限公司 内置式永磁电机的转子和使用其的内置式永磁电机
JP5594492B2 (ja) * 2012-10-22 2014-09-24 株式会社安川電機 回転電機
JP5758966B2 (ja) 2013-10-11 2015-08-05 ファナック株式会社 コギングトルクを低減可能な同期電動機
FR3022088B1 (fr) * 2014-06-05 2016-06-03 Valeo Equip Electr Moteur Rotor a aimants permanents a concentration de flux pour machine electrique tournante
CN105743311A (zh) 2016-05-05 2016-07-06 上海电机学院 内置式永磁同步电机的齿槽转矩削弱结构
CN206259766U (zh) 2016-10-13 2017-06-16 珠海格力节能环保制冷技术研究中心有限公司 一种转子结构、电机及压缩机
GB201620300D0 (en) * 2016-11-30 2017-01-11 Jaguar Land Rover Ltd Electric machine apparatus
CN106549521B (zh) * 2016-12-22 2018-12-28 东南大学 一种高转矩密度表贴式永磁磁阻同步电机转子结构
CN106787565A (zh) * 2017-01-23 2017-05-31 徐州中矿大传动与自动化有限公司 反凸极永磁磁阻电机
CN207234637U (zh) 2017-08-09 2018-04-13 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯
CN107516954A (zh) 2017-10-24 2017-12-26 东莞市博瓦特动力科技有限公司 一种抗去磁的纯正弦波永磁电机转子
CN108321953B (zh) * 2018-03-16 2020-10-23 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN108321954B (zh) * 2018-03-16 2020-10-23 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN108321955B (zh) * 2018-03-16 2020-10-23 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107222047A (zh) * 2017-08-09 2017-09-29 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯
CN107240975A (zh) * 2017-08-09 2017-10-10 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯
CN108039785A (zh) * 2017-12-11 2018-05-15 珠海格力节能环保制冷技术研究中心有限公司 电机转子及电机
CN108736610A (zh) * 2018-08-09 2018-11-02 珠海格力电器股份有限公司 电机转子和永磁电机
CN208423983U (zh) * 2018-08-09 2019-01-22 珠海格力电器股份有限公司 电机转子和永磁电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780349A4 *

Also Published As

Publication number Publication date
US11522397B2 (en) 2022-12-06
CN108736610A (zh) 2018-11-02
CN108736610B (zh) 2019-07-16
EP3780349A4 (en) 2021-08-18
US20210226493A1 (en) 2021-07-22
EP3780349A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
JP5684542B2 (ja) ロータ、及びモータ
JP5663936B2 (ja) 永久磁石式回転電機
JP4736472B2 (ja) 電動機
WO2020034514A1 (zh) 转子组件及交替极电机
US10186918B2 (en) Motor and its rotor
WO2013001557A1 (ja) 磁気歯車型回転電機
US9537361B2 (en) Rotor and electric rotating machine
WO2015025669A1 (ja) 発電機
US20180269734A1 (en) Rotor of rotary electric machine
WO2014208110A1 (ja) アキシャル型回転電機
WO2020098339A1 (zh) 电机转子结构及永磁电机
WO2020125066A1 (zh) 切向电机、电机转子及转子铁芯
JP7230185B2 (ja) ロータ及び永久磁石モータ
WO2020029506A1 (zh) 电机转子和永磁电机
JPWO2012008012A1 (ja) 永久磁石型回転電機
JP5111535B2 (ja) 永久磁石型回転電機
TW201528657A (zh) 徑向繞線馬達定子
JP2010183792A (ja) 電動機
WO2020088085A1 (zh) 电机转子及永磁电机
CN207782523U (zh) 电机转子和永磁电机
CN208423983U (zh) 电机转子和永磁电机
WO2023241475A1 (zh) 转子组件和电机
TWI849682B (zh) 具雙定子之馬達
TWI792848B (zh) 具有諧波抑制結構之轉子
US10511203B2 (en) Motor stator structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929536

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018929536

Country of ref document: EP

Effective date: 20201103

NENP Non-entry into the national phase

Ref country code: DE