WO2023241475A1 - 转子组件和电机 - Google Patents

转子组件和电机 Download PDF

Info

Publication number
WO2023241475A1
WO2023241475A1 PCT/CN2023/099371 CN2023099371W WO2023241475A1 WO 2023241475 A1 WO2023241475 A1 WO 2023241475A1 CN 2023099371 W CN2023099371 W CN 2023099371W WO 2023241475 A1 WO2023241475 A1 WO 2023241475A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor assembly
length
rotor
rotor core
Prior art date
Application number
PCT/CN2023/099371
Other languages
English (en)
French (fr)
Inventor
甘磊
徐飞
程云峰
吴越虹
Original Assignee
美的威灵电机技术(上海)有限公司
广东美的智能科技有限公司
高创传动科技开发(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210666327.7A external-priority patent/CN115001177A/zh
Priority claimed from CN202211001430.6A external-priority patent/CN117639328A/zh
Application filed by 美的威灵电机技术(上海)有限公司, 广东美的智能科技有限公司, 高创传动科技开发(深圳)有限公司 filed Critical 美的威灵电机技术(上海)有限公司
Publication of WO2023241475A1 publication Critical patent/WO2023241475A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present application relates to the field of motor technology, specifically, to a rotor assembly and a motor.
  • the rotor of the permanent magnet motor includes an iron core and a permanent magnet.
  • the permanent magnet can be placed inside the first rotor iron core.
  • the magnetic flux leakage phenomenon of the rotor is more serious.
  • This application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • a first aspect of the application proposes a rotor assembly.
  • a second aspect of the application proposes a rotor assembly.
  • a third aspect of the present application proposes a motor.
  • the first aspect of the present application provides a rotor assembly, including a first rotor core, a plurality of first permanent magnets and a plurality of second permanent magnets;
  • the first rotor core includes a first core body, A plurality of first grooves, a plurality of second grooves and a first magnetic isolation bridge.
  • the plurality of first grooves and the plurality of second grooves are alternately arranged along the circumferential direction of the first iron core body.
  • the plurality of first grooves respectively extend to a plurality of A gap between two adjacent second grooves in the second groove, and a first magnetic isolation bridge is provided between adjacent first grooves and second grooves among the plurality of first grooves and the plurality of second grooves;
  • a plurality of first permanent magnets are respectively arranged in a plurality of first slots;
  • a plurality of second permanent magnets are respectively arranged in a plurality of second slots.
  • the rotor assembly includes a first rotor core, a plurality of first permanent magnets and a plurality of second permanent magnets.
  • the first rotor core includes a first core body, a plurality of first slots and a plurality of second permanent magnets. Two slots, a plurality of first permanent magnets are respectively arranged in a plurality of first slots; a plurality of second permanent magnets are respectively arranged in a plurality of second slots, thereby realizing the installation and installation of the first permanent magnets and the second permanent magnets. fixed.
  • a plurality of first grooves and a plurality of second grooves are alternately arranged along the circumferential direction of the first iron core body, the plurality of first grooves respectively extend to the gap between two adjacent second grooves among the plurality of second grooves, and
  • the first magnetic isolation bridge is disposed between the adjacent first slot and the second slot, so that the length of the first magnetic isolation bridge is increased, thereby reducing the magnetic flux leakage of the rotor assembly and alleviating the magnetic flux leakage phenomenon of the rotor assembly.
  • the motor output torque is increased and the motor performance is optimized.
  • the rotor assembly in the above technical solution provided by this application can also have the following additional technical features:
  • each of the plurality of first grooves includes an extension groove and a receiving groove; the extension groove is located between adjacent second grooves among the plurality of second grooves; the first groove of the receiving groove is The first side is connected with the extension groove, and the second side extends toward the edge of the first iron core body; the first permanent magnet is located in the accommodation groove.
  • the first magnetic isolation bridge includes a first sub-magnetic isolation bridge and a second sub-magnetic isolation bridge; the first sub-magnetic isolation bridge is located on the first side of the extension slot in the circumferential direction; the second sub-magnetic isolation bridge The magnetic bridge is located on the second side of the extending slot in the circumferential direction.
  • the first sub-magnetic isolation bridge and the second sub-magnetic isolation bridge are distributed in a V-shape or a figure-eight shape.
  • the first permanent magnet is a rare earth permanent magnet
  • the maximum magnetic energy product of the first permanent magnet is greater than the maximum magnetic energy product of the second permanent magnet
  • the length of the first permanent magnet in the radial direction is a first length
  • the length of the first permanent magnet in the circumferential direction is a second length
  • the length of the second permanent magnet in the radial direction is a third length.
  • the first length is greater than the second length
  • the third length is greater than the second length.
  • the length of the first magnetic isolation bridge is greater than 0.7 times the second length.
  • the first rotor core includes a second magnetic isolation bridge, and the second magnetic isolation bridge is provided along the edge of the first core body, opposite to the first slot.
  • the first rotor core further includes protrusions or grooves.
  • the protrusions or grooves are provided on the circumferential side walls of the first core body and extend in the axial direction.
  • the first rotor core further includes a third groove.
  • the third groove is located on a side of the first groove close to the edge of the first rotor core, extends in the circumferential direction, and is connected with the first groove.
  • the ratio of the cross-sectional area of the first permanent magnet to the cross-sectional area of the second permanent magnet is greater than or equal to 0.3 and less than or equal to 3; and/or the product of the cross-sectional area of the first permanent magnet and the residual magnetism is the first value, the product of the cross-sectional area of the second permanent magnet and the remanence is the second value, and the ratio of the first value to the second value is greater than 0.5 and less than or equal to 15.
  • the minimum distance between the first permanent magnet and the axis of the first rotor core is the first distance
  • the maximum distance between the second permanent magnet and the axis is the second distance.
  • the length of the magnet in the radial direction is the first length; the difference between the second distance and the first distance is greater than 0 and less than 0.2 times the first length; or the difference between the second distance and the first distance is less than 0.
  • the rotor assembly further includes non-magnetic filler, and the non-magnetic filler is filled in the extension slot.
  • the edge of the section perpendicular to the axial direction of the first rotor core includes a plurality of curve groups, the plurality of curve groups are distributed along the circumferential direction of the section, and each of the plurality of curve groups Includes arc segments and/or straight segments.
  • the number of arc segments is multiple, and the center of at least one arc segment among the multiple arc segments is offset from the axis of the first rotor core.
  • the first rotor core further includes a first positioning part and a second positioning part; the first positioning part is connected to the first core body, is disposed in the first slot, and protrudes from the first positioning part.
  • the first rotor core further includes a fourth slot, which is connected with the second slot and is opposite to the corner of the second permanent magnet.
  • a second aspect of the application provides a rotor assembly, including a second rotor core, a plurality of third permanent magnets and a plurality of fourth permanent magnets; the second rotor core is provided with a plurality of fourth slots and a plurality of third permanent magnets.
  • Five slots, a plurality of fourth slots and a plurality of fifth slots are arranged circumferentially, and a third magnetic isolation device is provided between adjacent fourth slots and fifth slots among the plurality of fourth slots and the plurality of fifth slots.
  • the third magnetic isolation bridge extends along the circumferential direction or radial direction of the second rotor core; a plurality of third permanent magnets are respectively arranged in a plurality of fourth slots; a plurality of fourth permanent magnets are arranged in a plurality of fifth slots Inside.
  • the rotor assembly provided by this application is provided with a third magnetic isolation bridge between adjacent fourth slots and fifth slots to reduce the magnetic leakage phenomenon of the rotor assembly.
  • multiple fourth slots and multiple third slots are provided.
  • Five slots, and a third magnetic isolation bridge is provided between each fourth slot and each adjacent fifth slot.
  • the rotor assembly in the above technical solution provided by this application can also have the following additional technical features:
  • the third permanent magnet is a ferrite permanent magnet, and the maximum magnetic energy product of the third permanent magnet is smaller than the maximum magnetic energy product of the fourth permanent magnet.
  • a plurality of third permanent magnets are arranged along the circumferential direction of the second rotor core; a plurality of fourth permanent magnets are arranged along the circumferential direction of the second rotor core, located between the plurality of third permanent magnets. The side close to the axis of the second rotor core.
  • the minimum distance between the third permanent magnet and the axis of the second rotor core is the third distance
  • the maximum distance between the fourth permanent magnet and the axis is the fourth distance.
  • the length of the magnet in the radial direction is the sixth length; the difference between the fourth distance and the third distance is the first value; the first value is greater than 0 and less than 0.3 times the sixth length; or the first value is less than 0.
  • a plurality of third permanent magnets and a plurality of fourth permanent magnets are alternately arranged along the circumferential direction of the second rotor core.
  • the minimum distance between the third permanent magnet and the axis of the second rotor core is the third distance
  • the maximum distance between the fourth permanent magnet and the axis is the fourth distance.
  • the length of the magnet in the radial direction is the sixth length; the difference between the fourth distance and the third distance is the second value; the second value is greater than 0 and less than 0.3 times the sixth length.
  • the length of the side of the third permanent magnet away from the axis of the second rotor core in the circumferential direction of the second rotor core is a fourth length; the third permanent magnet is close to the axis of the second rotor core.
  • the length of one side in the circumferential direction of the second rotor core is the fifth length; the fourth length is greater than the fifth length.
  • the length of the fourth permanent magnet in the radial direction of the second rotor core is smaller than the length of the fourth permanent magnet in the circumferential direction of the second rotor core.
  • the ratio of the cross-sectional area of the third permanent magnet to the cross-sectional area of the fourth permanent magnet is greater than or equal to 1 and less than or equal to 15.
  • the ratio of the residual magnetism of the third permanent magnet to the residual magnetism of the fourth permanent magnet is greater than or equal to 0.1 and less than or equal to 0.9.
  • the length of the third permanent magnet in the circumferential direction of the second rotor core is greater than the length of the fourth permanent magnet in the radial direction of the second rotor core.
  • the second rotor core includes a second core body and a fourth magnetic isolation bridge; a plurality of fourth slots are provided in the second core body; the fourth magnetic isolation bridge extends along the second iron core The edge of the body is arranged opposite to a plurality of fourth grooves.
  • the fourth magnetic isolation bridge and the second iron core body are of an integrated structure; or the fourth magnetic isolation bridge is made of poor magnetic permeability material; or the fourth magnetic isolation bridge is disposed on the second iron core. Empty slot on the edge of the body.
  • the edge of the second rotor core's section perpendicular to the axial direction includes multiple sets of curve groups, the multiple sets of curve groups are distributed along the circumferential direction of the section, and each of the multiple sets of curve groups Includes arc segments and/or straight segments.
  • the number of arc segments is multiple, and the center of at least one of the multiple arc segments is offset from the axis of the second rotor core.
  • the third aspect of the present application provides a motor, including the rotor assembly of any of the above technical solutions. Therefore, the motor has all the beneficial effects of the rotor assembly of any of the above technical solutions.
  • Figure 1 shows a schematic structural diagram of a rotor assembly according to an embodiment of the present application
  • Figure 2 shows a schematic structural diagram of a first rotor core according to an embodiment of the present application
  • Figure 3 shows a schematic structural diagram of a rotor assembly according to another embodiment of the present application.
  • Figure 4 shows one of the partial structural schematic diagrams of a rotor assembly according to an embodiment of the present application
  • Figure 5 shows the second partial structural schematic diagram of the rotor assembly according to an embodiment of the present application
  • Figure 6 shows a schematic structural diagram of a motor according to an embodiment of the present application.
  • Figure 7 shows a schematic structural diagram of a rotor assembly according to an embodiment of the present application.
  • Figure 8 shows a schematic structural diagram of a rotor assembly according to another embodiment of the present application.
  • Figure 9 shows a schematic diagram of the magnetization direction of the rotor assembly according to an embodiment of the present application.
  • Figure 10 shows a schematic structural diagram of a motor according to an embodiment of the present application.
  • 10 rotor assembly 100 first rotor core, 110 first core body, 120 first magnetic isolation bridge, 122 first sub-magnetic isolation bridge, 124 second sub-magnetic isolation bridge, 130 second magnetic isolation bridge, 210th One slot, 212 extension slot, 214 accommodation slot, 220 second slot, 310 first permanent magnet, 320 second permanent magnet, 400 first stator core, 410 first stator teeth, 420 first stator slot, 430 first stator yoke, 500 first stator winding, 102 second rotor core, 104 third permanent magnet, 106 fourth permanent magnet, 108 third magnetic isolation bridge, 112 fourth magnetic isolation bridge, 200 stator assembly , 202 second stator core, 204 second stator winding, 206 second stator tooth, 208 second stator slot, 216 second stator yoke, 300 motor.
  • a rotor assembly 10 including a first rotor core 100, a plurality of first permanent magnets 310 and a plurality of second permanent magnets 320;
  • the first rotor core 100 includes a first core body 110 , a plurality of first slots 210 , a plurality of second slots 220 and a first magnetic isolation bridge 120 .
  • the plurality of first slots 210 and the plurality of second slots 220 are along the An iron core body 110 is arranged alternately in the circumferential direction.
  • the plurality of first grooves 210 respectively extend to between two adjacent second grooves 220 of the plurality of second grooves 220.
  • a first magnetic isolation bridge 120 is provided between adjacent first slots 210 and second slots 220 in 220; a plurality of first permanent magnets 310 are respectively arranged in a plurality of first slots 210; a plurality of second permanent magnets 320 are respectively arranged in a plurality of second grooves 220 .
  • the rotor assembly 10 includes a first rotor core 100 , a plurality of first permanent magnets 310 and a plurality of second permanent magnets 320 .
  • the first rotor core 100 includes a first core body 110 , a plurality of second permanent magnets 320 .
  • One slot 210 and a plurality of second slots 220, a plurality of first permanent magnets 310 are respectively arranged in the plurality of first slots 210; a plurality of second permanent magnets 320 are respectively arranged in the plurality of second slots 220, thereby achieving alignment. Installation and fixation of the first permanent magnet 310 and the second permanent magnet 320.
  • a plurality of first grooves 210 and a plurality of second grooves 220 are alternately arranged along the circumferential direction of the first iron core body 110 .
  • the plurality of first grooves 210 respectively extend to two adjacent second grooves 220 of the plurality of second grooves 220 .
  • between the first magnetic isolation bridge 120 and the first magnetic isolation bridge 120 is disposed between the adjacent first slot 210 and the second slot 220, so that the length of the first magnetic isolation bridge 120 is increased, thereby reducing the magnetic leakage of the rotor assembly 10 and alleviating the problem of the rotor assembly. 10 magnetic flux leakage phenomenon. Since the magnetic leakage of the rotor assembly 10 is reduced, the output torque of the motor 300 is increased, thereby optimizing the performance of the motor 300 .
  • the first magnetic isolation bridge 120 is disposed between the adjacent first grooves 210 and the second grooves 220.
  • the plurality of first permanent magnets 310 are respectively arranged in the plurality of first slots 210
  • the plurality of second permanent magnets 320 are respectively arranged in the plurality of second slots 220, thereby reducing the magnetic flux leakage of the rotor assembly 10.
  • the magnetic flux of the rotor assembly 10 is increased.
  • the utilization rate of the first permanent magnet 310 and the second permanent magnet 320 is improved, and the usage of the first permanent magnet 310 and the second permanent magnet is reduced.
  • the waste of permanent magnet material of the magnet 320 increases the torque of the motor 300 without increasing the cost of the permanent magnet components, thereby improving the electromagnetic performance of the motor 300 and improving the quality of the motor 300 .
  • a plurality of first slots 210 and a plurality of second slots 220 are alternately arranged along the circumferential direction of the first core body 110 , and a plurality of first permanent magnets 310 are respectively arranged in the plurality of first slots 210 .
  • the second permanent magnets 320 are respectively disposed in the plurality of second slots 220, so that the arrangement of the first permanent magnets 310 and the second permanent magnets 320 is achieved while installing and fixing the first permanent magnets 310 and the second permanent magnets 320.
  • the method is more reasonable and improves the utilization rate of the space on the first rotor core 100, thereby enabling more first permanent magnets 310 and second permanent magnets 320 to be arranged in the limited space of the first rotor core 100, further improving the efficiency of the motor 300. performance.
  • the rotor assembly 10 is provided with a first permanent magnet 310 and a second permanent magnet 320 .
  • the first permanent magnet 310 and the second permanent magnet 320 drive the rotor assembly 10 to rotate under the action of the magnetic field generated by the stator assembly, and because the rotor assembly 10
  • the first permanent magnet 310 and the second permanent magnet 320 are provided so that the motor 300 has greater output torque, thereby improving the performance of the motor 300 .
  • the first permanent magnet 310 is opposite to the radial edge of the second permanent magnet 320 , that is, the second permanent magnet 320 is arranged along the circumferential direction of the first rotor core 100 , and the first permanent magnet 310 is not adjacent to
  • the gaps between the second permanent magnets 320 are opposite to each other, but when the first permanent magnet 310 and the second permanent magnet 320 are located opposite to each other at the outer edges in the radial direction, the length of the first magnetic isolation bridge 120 is equal to the length of the first permanent magnet 310 .
  • the widths in the circumferential direction are matched, thereby making the length of the first magnetic isolation bridge 120 shorter.
  • the first magnetic isolation bridge 120 When the gaps between the plurality of first slots 210 and the plurality of second slots 220 are opposite, that is, the gaps between the first permanent magnets 310 and the adjacent second permanent magnets 320 are opposite, the first magnetic isolation bridge 120 The length of the first permanent magnet 320 is opposite to the edge of the second permanent magnet 320 in the radial direction. The length of the first magnetic isolation bridge 120 is longer than the length of the second permanent magnet 320 in the radial direction relative to the width of the first permanent magnet 310 in the circumferential direction, thereby lengthening The length of the first magnetic isolation bridge 120 is determined.
  • a magnetic isolation bridge may no longer be provided at a position opposite to the width of the first permanent magnet 310 in the circumferential direction, which can further reduce the magnetic flux leakage of the rotor assembly 10 .
  • the first permanent magnet 310 has a rectangular cross-section in the radial direction of the first rotor core 100 .
  • the cross section of the second permanent magnet 320 in the radial direction of the first rotor core 100 is rectangular.
  • the cross section of the second permanent magnet 320 may also be a polygon, including but not limited to a trapezoid, a parallelogram, and a hexagon, so as to make full use of the rotor space and flexibly arrange the permanent magnets.
  • the cross-section of the second permanent magnet 320 may also be a special-shaped polygon with at least one arc as a side, including but not limited to a sector shape, a part of an annular shape, and a U shape.
  • the plurality of second permanent magnets 320 are distributed annularly along the circumferential direction of the first rotor core 100 .
  • the first groove 210 extends between a plurality of second grooves 220 .
  • the plurality of first permanent magnets 310 are distributed in a radial shape
  • the plurality of second permanent magnets 320 are distributed in an annular shape.
  • Two adjacent first permanent magnets 310 and one second permanent magnet 320 between the two adjacent first permanent magnets 310 are distributed in a U shape.
  • the two adjacent second permanent magnets 320 and the one first permanent magnet 310 between the two adjacent second permanent magnets 320 are distributed in a Y shape or a T shape.
  • the magnetizing direction of the permanent magnet is the direction in which the N pole faces, that is, the direction in which the magnetic lines of force emit.
  • the magnetization direction of the permanent magnet is stipulated to be the direction of the N pole, or the average direction of the magnetic field lines, that is, the average magnetization direction, or the direction of the magnetic field lines of the symmetrical structure permanent magnet at the symmetry axis position. .
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • each first groove 210 in the plurality of first grooves 210 includes an extension groove 212 and a receiving groove 214; the extending groove 212 is located between adjacent second grooves 220 in the plurality of second grooves 220; The first side of the groove 214 is connected with the extension groove 212 , and the second side extends toward the edge of the first core body 110 ; the first permanent magnet 310 is located in the receiving groove 214 .
  • each first slot 210 of the plurality of first slots 210 includes an extension slot 212 and a receiving slot 214.
  • the receiving slot 214 can accommodate the first permanent magnet 310, thereby realizing the installation of the first permanent magnet 310. and fixed.
  • the extension slot 212 is connected with the accommodation slot 214 and extends between the adjacent second slots 220 to further reduce the magnetic leakage of the rotor assembly 10 and alleviate the magnetic leakage phenomenon of the rotor assembly 10, thereby increasing the output torque of the motor 300 and achieving Optimization of motor 300 performance.
  • the first permanent magnet 310 is disposed in the receiving groove 214 without extending into the extending groove 212 .
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the first magnetic isolation bridge 120 includes a first sub-magnetic isolation bridge 122 and a second sub-magnetic isolation bridge 124 ; the first sub-magnetic isolation bridge 122 is located on the first side of the extension slot 212 in the circumferential direction; The sub-magnetic isolation bridge 124 is located on the second side of the extending slot 212 in the circumferential direction.
  • the first magnetic isolation bridge 120 includes a first sub-magnetic isolation bridge 122 and a second sub-magnetic isolation bridge 124.
  • the first sub-magnetic isolation bridge 122 and the second sub-magnetic isolation bridge 124 are respectively disposed in the extension slot 212.
  • the lengths of the first sub-magnetic isolation bridge 122 and the second sub-magnetic isolation bridge 124 are further extended, so that the first sub-magnetic isolation bridge 122 and the second sub-magnetic isolation bridge 124 enter a magnetic saturation state, thereby reducing the The magnetic flux leakage of the rotor assembly 10 increases the output torque of the motor 300 .
  • the first sub-magnetic isolation bridge 122 and the second sub-magnetic isolation bridge 124 are respectively disposed on both sides of the extension groove 212 in the circumferential direction, such that the lengths of the first sub-magnetic isolation bridge 122 and the second sub-magnetic isolation bridge 124 are It can match the width of the second permanent magnet 320 in the radial direction, thereby increasing the lengths of the first sub-magnetic isolation bridge 122 and the second sub-magnetic isolation bridge 124 .
  • both the first sub-magnetic isolation bridge 122 and the second sub-magnetic isolation bridge 124 may be continuous magnetic isolation bridges.
  • At least one of the first sub-magnetic isolation bridge 122 and the second sub-magnetic isolation bridge 124 may also be disconnected.
  • the first sub-magnetic isolation bridge 122 is disconnected, the second sub-magnetic isolation bridge 124 is not disconnected, and the extension slot 212 is connected to the second slot 220 on one side of the first sub-magnetic isolation bridge 122, so that the first slot 210 Connected to the second slot 220.
  • the first sub-magnetic isolation bridge 122 is not disconnected, the second sub-magnetic isolation bridge 124 is disconnected, and the extension slot 212 is connected to the second slot 220 on one side of the second sub-magnetic isolation bridge 124, thereby making the first slot 210 and the second slot 220 connected.
  • the plurality of first sub-magnetic isolation bridges 122 are all disconnected, and some of the plurality of second sub-magnetic isolation bridges 124 are disconnected.
  • the undisconnected second sub-magnetic isolation bridges 124 can ensure the connection of the punched sheets. Strength requirements are enough.
  • the plurality of second sub-magnetic isolation bridges 124 are all disconnected, and some of the plurality of first sub-magnetic isolation bridges 122 are disconnected.
  • the undisconnected first sub-magnetic isolation bridges 122 can ensure the connection of the punched sheets. Strength requirements are enough.
  • the first rotor core 100 includes a plurality of rotor punching sheets, which are stacked. Among the plurality of rotor punching sheets, the first sub-magnetic isolation bridge 122 and the second sub-magnetic isolation bridge 124 of some rotor punching sheets are disconnected. , the first sub-magnetic isolation bridge 122 and the second sub-magnetic isolation bridge 124 of another part of the rotor stampings are partially disconnected or not disconnected.
  • the first slot 210 and the second slot 220 are connected, and the first permanent magnet 310 and the second permanent magnet 320 are arranged at the same location.
  • the number of magnetic isolation bridges between the first permanent magnet 310 and the second permanent magnet 320 is reduced, thereby reducing the magnetic leakage of the rotor assembly 10 and alleviating the magnetic leakage phenomenon of the rotor assembly 10 . Since the magnetic leakage of the rotor assembly 10 is reduced, the output torque of the motor 300 is increased, thereby optimizing the performance of the motor 300 .
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the first sub-magnetic isolation bridge 122 and the second sub-magnetic isolation bridge 124 are distributed in a V-shape or a figure-eight shape.
  • the first sub-magnetic isolation bridge 122 and the second sub-magnetic isolation bridge 124 are distributed in a V-shape or a figure-eight shape, so that the first sub-magnetic isolation bridge 122 and the second sub-magnetic isolation bridge 124 are relatively opposite to the second sub-magnetic isolation bridge 122 .
  • the edges of the permanent magnet 320 in the radial direction are inclined, further lengthening the lengths of the first sub-magnetic isolation bridge 122 and the second sub-magnetic isolation bridge 124 .
  • the first sub-magnetic isolation bridge 122 and the second sub-magnetic isolation bridge 124 are distributed in a V-shape or a figure-eight shape, so that the first sub-magnetic isolation bridge 122 and the second sub-magnetic isolation bridge 124 are arranged relative to the second permanent magnet.
  • the edge of 320 in the radial direction is arranged obliquely, and is arranged parallel to the edge of the second permanent magnet 320 in the radial direction relative to the first sub-magnetic isolation bridge 122 and the second sub-magnetic isolation bridge 124.
  • the first sub-magnetic isolation bridge is arranged obliquely. 122 and the second magnetic isolation bridge 124 have stronger strength.
  • the first sub-magnetic isolation bridge 122 may extend generally in a radial direction, or may also extend generally in a tangential direction.
  • the first magnetic isolation bridge 120 that is substantially along the radial direction means that the angle between the extension direction of the first magnetic isolation bridge 120 and the diameter direction of the rotor assembly 10 is less than 45°. If the included angle is greater than 45°, then It is said to extend roughly tangentially.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the first permanent magnet 310 is a rare earth permanent magnet, and the maximum magnetic energy product of the first permanent magnet 310 is greater than the maximum magnetic energy product of the second permanent magnet 320 .
  • the first permanent magnet 310 is set as a rare earth permanent magnet
  • the second permanent magnet 320 is set as a permanent magnet material with a maximum magnetic energy product smaller than that of the first permanent magnet 310 , so that the second permanent magnet 320
  • the material is different from the material of the first permanent magnet 310 , and the material unit price of the second permanent magnet 320 is lower than that of the first permanent magnet 310 .
  • the first permanent magnet 310 and the second permanent magnet 320 are arranged in permanent magnets of different materials, and the first permanent magnet 310 and the second permanent magnet 320 of different materials are arranged in the same installation slot, so that the motor 300 can be installed without lowering the At the same time, the material cost of the permanent magnet component is reduced, thereby reducing the material cost of the motor 300.
  • the materials of the first permanent magnet 310 and the second permanent magnet 320 are different, wherein the material of the first permanent magnet 310 is a rare earth permanent magnet with a higher maximum magnetic energy product, and the material of the second permanent magnet 320 is The maximum magnetic energy product is lower than that of the first permanent magnet 310 .
  • the material of the first permanent magnet 310 is NdFeB, and its maximum magnetic energy product is greater than 200KJ/m 3 .
  • the material of the second permanent magnet 320 is ferrite, and its maximum magnetic energy product is less than 100KJ/m 3 .
  • the maximum magnetic energy product is much higher than that of the second permanent magnet 320 .
  • the maximum magnetic energy product is an important parameter to measure the magnetic performance of a permanent magnet. It refers to the maximum value of the product of the magnetic induction intensity and the magnetic field intensity on the demagnetization curve of the permanent magnet material. Usually, the larger the maximum magnetic energy product, the stronger the magnetic performance of the permanent magnet material. .
  • the radial edges of the first permanent magnet 310 and the second permanent magnet 320 are opposite, and the first permanent magnet 310 and the second permanent magnet 320 are located on the outer edges in the radial direction. relatively.
  • the gaps between the plurality of first slots 210 and the plurality of second slots 220 are opposite, and the gaps between the first permanent magnet 310 and the adjacent second permanent magnet 320 are opposite.
  • the first groove 210 extends between adjacent second grooves 220 .
  • the first permanent magnet 310 and the second permanent magnet 320 use permanent magnets of the same material.
  • the material of the first permanent magnet 310 is set to NdFeB
  • the material of the second permanent magnet 320 is set to NdFeB.
  • the material is set to a permanent magnet material with a smaller maximum magnetic energy product, such as ferrite.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the length of the first permanent magnet 310 in the radial direction is the first length W1
  • the length of the first permanent magnet 310 in the circumferential direction is the second length H1
  • the length of the second permanent magnet 320 in the radial direction is the second length H1.
  • the length of the first permanent magnet 310 in the radial direction is greater than the length of the first permanent magnet 310 in the circumferential direction, which can improve the magnet utilization rate of the first permanent magnet 310 and thereby improve the magnetism of the first permanent magnet 310 . Pass.
  • the length of the second permanent magnet 320 in the radial direction is greater than the length of the first permanent magnet 310 in the circumferential direction, which is the second length H1, that is, H1 ⁇ H2. This can improve the anti-demagnetization ability of the second permanent magnet 320 and extend the service life of the motor 300. , to improve the stability of the motor 300 during operation.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the length Lb of the first magnetic isolation bridge 120 is greater than 0.7 times the second length H1.
  • the length Lb of the first magnetic isolation bridge 120 is greater than 0.7 times the second length H1, which further improves the effect of the rotor assembly 10 on suppressing magnetic flux leakage.
  • the length Lb of the first magnetic isolation bridge 120 is greater than 0.707 times the second length H1, that is, Lb>0.707 ⁇ H1.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the first rotor core 100 includes a second magnetic isolation bridge 130 .
  • the second magnetic isolation bridge 130 is provided along the edge of the first core body 110 , opposite to the first slot 210 .
  • a second magnetic isolation bridge 130 is provided on the edge of the first iron core body 110 opposite to the first slot 210 , and the second magnetic isolation bridge 130 is arranged on the first iron core body 110 and in contact with the first iron core body 110 .
  • the opposite edge position of the first slot 210 can increase the strength of the rotor. If the rotor strength meets the requirements, the second magnetic isolation bridge can be partially or completely disconnected to further reduce the magnetic leakage of the rotor assembly 10 and thereby improve the motor 300 of output torque.
  • first slot 210 close to the outer edge of the first rotor core 100 and the outer edge of the first rotor core 100 form a second magnetic isolation bridge 130.
  • the second magnetic isolation bridge 130 may be the first rotor iron.
  • a portion of the core 100, the second magnetic isolation bridge 130, may also be disconnected and filled with air or other poorly conductive material.
  • the second magnetic isolation bridge 130 may be a continuous magnetic isolation bridge.
  • the second magnetic isolation bridge 130 can also be disconnected.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the first rotor core 100 further includes a third groove.
  • the third groove is located on a side of the first groove 210 close to the edge of the first rotor core 100 , extends in the circumferential direction, and is connected with the first groove 210 .
  • the first rotor core 100 further includes a third groove extending along the edge of the first rotor core 100 and located on a side of the first groove 210 close to the rotor edge, and the third groove is connected to the edge of the rotor core 100 .
  • the first slot 210 is connected.
  • the first slot 210 can increase the length of the magnetic isolation bridge located on the side of the first slot 210 away from the second slot 220 , thereby reducing magnetic leakage of the rotor assembly 10 , increasing the back electromotive force of the motor 300 , and increasing the output torque of the motor 300 .
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the ratio of the cross-sectional area of the first permanent magnet 310 to the cross-sectional area of the second permanent magnet 320 is greater than or equal to 0.3 and less than or equal to 3; and/or the product of the cross-sectional area of the first permanent magnet 310 and the residual magnetism is a first value, and The product of the cross-sectional area of the two permanent magnets 320 and the residual magnetism is the second value, and the ratio of the first value to the second value is greater than 0.5 and less than or equal to 15.
  • the ratio of the cross-sectional area S1 of the first permanent magnet 310 to the cross-sectional area S2 of the second permanent magnet 320 is 0.3 to 3, that is, 0.3 ⁇ S1/S2 ⁇ 3, so that the first permanent magnet 310 and the second permanent magnet 320
  • the distribution ratio of the permanent magnets 320 is more reasonable, thereby ensuring the performance of the motor 300 while reducing the cost of the motor 300 and improving the cost performance of the motor 300 .
  • the ratio between the product K1 of the cross-sectional area S1 of the first permanent magnet 310 and the remanent magnet Br1 and the product K2 of the cross-sectional area S2 of the second permanent magnet 320 and the remanent magnet Br2 is 0.5 to 15, that is, 0.5 ⁇ K1/K2 ⁇ 15 . This makes the distribution ratio of the first permanent magnet 310 and the second permanent magnet 320 more reasonable, thereby ensuring the performance of the motor 300 while reducing the cost of the motor 300 and improving the cost performance of the motor 300 .
  • the cross-sectional area of the first permanent magnet 310 is the cross-sectional area of the first permanent magnet 310 in the radial direction of the first rotor core 100 .
  • the cross-sectional area of the second permanent magnet 320 is the cross-sectional area of the second permanent magnet 320 in the radial direction of the first rotor core 100 .
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the minimum distance between the first permanent magnet 310 and the axis of the first rotor core 100 is the first distance R1
  • the maximum distance between the second permanent magnet 320 and the axis is the second distance R2.
  • the length of a permanent magnet 310 in the radial direction is the first length; the difference between the second distance R2 and the first distance R1 is greater than 0 and less than 0.2 times the first length; or the difference between the second distance R2 and the first distance R1 The value is less than 0.
  • the difference between the maximum distance between the second permanent magnet 320 and the axis and the minimum distance between the first permanent magnet 310 and the axis of the first rotor core 100 is 0 to 0.2 times the first permanent magnet.
  • the length of the magnet 310 in the radial direction that is, 0 ⁇ (R2-R1) ⁇ 0.2 ⁇ W1; or the difference between the second distance R2 and the first distance R1 is less than 0, that is, (R2-R1) ⁇ 0, reduce the first permanent length.
  • the overlapping of the magnet 310 and the second permanent magnet 320 in the radial direction of the first rotor iron core 100 further reduces the first permanent magnet 310 and the second permanent magnet 320 caused by the overlapping of the first permanent magnet 310 and the second permanent magnet 320 in the radial direction of the first rotor iron core 100 .
  • the waste of the first permanent magnet 310 and the second permanent magnet 320 further improves the rationality of the layout of the first permanent magnet 310 and the second permanent magnet 320 and achieves optimization of the magnetic circuit of the rotor assembly 10 .
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the rotor assembly 10 also includes non-magnetic filler, and the non-magnetic filler is filled in the extension slot 212 .
  • the rotor assembly 10 further includes non-magnetic filler, and the non-magnetic filler is filled in the extension slot 212 to thereby enhance the structural strength of the first rotor core 100 .
  • the extension slot 212 may not be provided with a non-magnetic filler, but may be filled with air, which can also reduce the magnetic leakage of the rotor assembly 10 .
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the edge of the section perpendicular to the axial direction of the first rotor core 100 includes a plurality of curve groups, the plurality of curve groups are distributed along the circumferential direction of the section, and each of the plurality of curve groups includes arc segments and/or straight lines. part.
  • the edge of the rotor by configuring the edge of the rotor to be composed of multiple sets of curves connected in sequence, and setting each set of curves with multiple arc segments or arc segments plus straight segments, the rotation speed of the motor 300 is reduced. torque ripple, thereby reducing the back electromotive force harmonics of the motor 300.
  • the outer edge of the cross-section of the first rotor core 100 is a compound curve composed of multiple arc segments, or a composite curve composed of multiple arc segments and straight lines, and the compound curve is periodically repeated along the circumferential direction of the first rotor core 100 , the number of repeated cycles is equal to the number of first permanent magnets 310 .
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the number of arc segments is multiple, and the center of at least one of the arc segments is offset from the axis of the first rotor core 100 .
  • setting the center of at least one arc segment away from the axis of the first rotor core 100 can further improve the air gap magnetic density harmonic distribution of the motor 300 .
  • the compound curve includes at least one straight line or one eccentric arc within a repeating period, and the center of the eccentric arc is not on the rotation center of the rotor assembly 10 .
  • the cross-sectional outer edge of the first rotor core 100 may also be circular, with the center of the circle being on the rotation center of the rotor assembly 10 .
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the first rotor core 100 also includes a first positioning part and a second positioning part; the first positioning part is connected to the first core body 110, is disposed in the first groove 210, and protrudes from the inner wall of the first groove 210; The two positioning parts are connected to the first iron core body 110 , are disposed in the second groove 220 , and protrude from the inner wall of the second groove 220 .
  • the first positioning part is disposed in the first slot 210.
  • the first permanent magnet 310 When the first permanent magnet 310 is placed in the first slot 210, the first permanent magnet 310 can be positioned and fixed through the first positioning part, and the first permanent magnet 310 can be lifted. While the position of the first permanent magnet 310 is accurate, the first permanent magnet 310 can be embedded in the first slot 210 more stably.
  • the second positioning part is disposed in the second groove 220.
  • the second permanent magnet 320 can be positioned and fixed through the second positioning part to improve the position of the second permanent magnet 320. While ensuring accuracy, the second permanent magnet 320 can be embedded in the second slot 220 more stably.
  • the first positioning portion may be provided through the first rotor core 100 in the axial direction, or may be provided at intervals along the axial direction of the first rotor core 100 .
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the first rotor core 100 further includes protrusions or grooves.
  • the protrusions or grooves are provided on the circumferential side walls of the first core body 110 and extend in the axial direction.
  • the first rotor core 100 further includes protrusions or grooves, and the protrusions or grooves are provided on the circumferential side walls of the first core body 110 along the axial direction of the first rotor core 100, The harmonic distribution of the motor 300 is further improved.
  • the first rotor core 100 further includes a protrusion, which extends along the axial direction of the side wall of the first rotor core 100 and is located in the air gap between the electronic rotor and the stator.
  • the height of the protrusion is less than The distance between the rotor and the stator prevents the rotor from scratching the stator during rotation.
  • the first rotor core 100 further includes a groove extending along the axial direction of the side wall of the first rotor core 100 and located in the air gap between the electronic rotor and the stator.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the first rotor core 100 further includes a fourth slot, which is connected with the second slot 220 and opposite to the corner of the second permanent magnet 320 .
  • the first rotor core 100 further includes a fourth slot.
  • the fourth slot is provided on the first rotor core 100 at a position opposite to the corner of the second permanent magnet 320 , and the fourth slot is connected to the corner of the second permanent magnet 320 .
  • the second slot 220 is connected. The degree of demagnetization at the corners of the second permanent magnet 320 is reduced through the fourth slot, thereby improving the stability of the second permanent magnet 320 during the operation of the motor 300, thereby improving the stability of the performance of the motor 300.
  • the first rotor core 100 further includes a fifth slot.
  • the fifth slot is provided on the first rotor core 100 at a position opposite to the corner of the first permanent magnet 310 , and the fifth slot is in contact with the first slot. 210 connected.
  • the fifth slot reduces the degree of demagnetization at the corners of the first permanent magnet 310 and reduces the probability of demagnetization at the corners of the first permanent magnet 310, thereby improving the stability of the first permanent magnet 310 during the operation of the motor 300, thereby improving the performance of the motor 300. stability.
  • the fourth groove is a through hole provided along the axial direction of the first rotor core 100 and communicates with the second groove 220 on the side of the fourth groove.
  • the fifth slot is also a through hole provided along the axial direction of the first rotor core 100 and communicates with the first slot 210 on the side of the fifth slot.
  • the first slot 210 is provided with a fifth slot at the corner of the first permanent magnet 310 , so that an air bubble can be formed between the corner of the first permanent magnet 310 and the first slot 210 , or the first permanent magnet 310 can be and other materials outside the second permanent magnet 320 to protect the permanent magnet.
  • the second slot 220 is provided with a fourth slot at the corner of the second permanent magnet 320, so that an air bubble can be formed between the corner of the second permanent magnet 320 and the second slot 220, or the air bubble can be formed between the first permanent magnet 310 and the second permanent magnet.
  • Other materials outside the magnet 320 are filled to protect the permanent magnet.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the magnetization direction of the first permanent magnet 310 is tangential magnetization, that is, the magnetization direction of the first permanent magnet 310 is magnetization along the circumferential direction of the rotor, and in the circumferential direction of the first rotor core 100
  • the magnetizing directions of the two adjacent first permanent magnets 310 are opposite, clockwise and counterclockwise along the rotor circumference respectively.
  • the first permanent magnets 310 extend from the center of the first rotor core 100 to the edge of the first rotor core 100 , and a plurality of first permanent magnets 310 are arranged at intervals along the circumferential direction of the first rotor core 100 .
  • the two adjacent first permanent magnets 310 are both magnetized along the tangential direction of the first rotor core 100, and the magnetizing directions of the two adjacent first permanent magnets 310 are opposite.
  • One of the first permanent magnets 310 in 310 is magnetized in the clockwise direction, and the other first permanent magnet 310 of the two adjacent first permanent magnets 310 is magnetized in the clockwise direction.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the magnetization direction of the second permanent magnet 320 is radial parallel magnetization, that is, it is magnetized in a direction parallel to the diameter of the rotor, and the magnetization of two adjacent second permanent magnets 320 in the circumferential direction The directions are opposite, pointing to the center of the rotor and the outer edge of the rotor respectively.
  • the second permanent magnets 320 extend along the circumferential direction of the first rotor core 100 , and a plurality of second permanent magnets 320 are arranged at intervals along the circumferential direction of the first rotor core 100 .
  • the magnetizing directions of two adjacent second permanent magnets 320 among the plurality of second permanent magnets 320 are opposite.
  • the magnetizing direction of one of the two adjacent second permanent magnets 320 is determined by the first rotor core.
  • the center of 100 points to the edge of the first rotor core 100
  • the magnetizing direction of one of the two adjacent second permanent magnets 320 points from the edge of the first rotor core 100 to the edge of the first rotor core 100 center.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the magnetization direction of the second permanent magnet 320 is radial non-parallel magnetization, that is, the magnetization directions of various parts of the second permanent magnet 320 are different, but the mutual angles are less than 180°.
  • the N pole and S pole of the permanent magnet 320 face the rotor center and the outer edge of the rotor respectively.
  • the magnetizing directions of two adjacent second permanent magnets 320 are opposite. When the N pole of one of the second permanent magnets 320 faces the rotor center, the adjacent second permanent magnets 320 have N poles facing the rotor center and the rotor outer edge respectively.
  • the S pole of the other second permanent magnet 320 faces the center of the rotor.
  • each second permanent magnet 320 in the plurality of second permanent magnets 320 forms a certain angle with the symmetry line of the second permanent magnet 320 in the radial direction, so that the second permanent magnet 320
  • the magnetization direction is not parallel to the direction of the radial symmetry line of the second permanent magnet 320, but the overall trend of the magnetization direction is still from the middle of the first rotor core 100 to the edge of the first rotor core 100.
  • the overall trend of the magnetizing direction is from the edge of the first rotor core 100 to the middle of the first rotor core 100 .
  • the magnetizing direction of one of the two adjacent second permanent magnets 320 is from the middle of the first rotor core 100 to the edge of the first rotor core 100, then between the two adjacent second permanent magnets 320
  • the magnetization direction of the other second permanent magnet 320 among the two permanent magnets 320 is from the edge of the first rotor core 100 to the middle of the first rotor core 100 , that is, the magnetization direction of the two adjacent second permanent magnets 320 on the contrary.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the magnetizing direction of the first permanent magnet 310 and the magnetizing direction of the second permanent magnet 320 meet the following requirements: two adjacent first permanent magnets 310 and a second permanent magnet 320 located in the middle.
  • two adjacent first permanent magnets 310 points to the inside of the U, that is, the N pole faces the inside of the U
  • the magnetizing direction of a second permanent magnet 320 in the middle of them also points to the U.
  • the inner side of the U shape that is, the N pole faces the inner side of the U shape; when the magnetizing directions of two adjacent first permanent magnets 310 point to the outside of the U shape, that is, the N pole faces the outer side of the U shape, then the second permanent magnet 320 in the middle position
  • the magnetizing direction also points to the outside of the U-shape, that is, the N pole faces the outside of the U-shape.
  • a second permanent magnet 320 includes two first permanent magnets 310 on both sides of the first rotor core 100 in the circumferential direction.
  • the two first permanent magnets 310 are further away from the first permanent magnet 320 than the second permanent magnet 320 .
  • the center of the rotor core 100 is now referred to as the first first permanent magnet, the first second permanent magnet and the second first permanent magnet 310.
  • a second second permanent magnet 320 is also provided at a position adjacent to the second first permanent magnet 310, and a third first permanent magnet 310 is provided at a position adjacent to the second second permanent magnet 320. , the third first permanent magnet 310 is located on a side of the second second permanent magnet 320 away from the second first permanent magnet 310 in the circumferential direction.
  • the magnetization direction of the first first permanent magnet 310 is from the first first permanent magnet 310 to the second first permanent magnet 310
  • the magnetization direction of the second first permanent magnet 310 is from the second first permanent magnet 310 to the second first permanent magnet 310
  • a permanent magnet 310 points to the first permanent magnet 310
  • the magnetizing direction of the first second permanent magnet 320 is from the center of the first rotor core 100 to the edge of the first rotor core 100 .
  • the magnetizing direction of the second first permanent magnet 310 is directed from the second first permanent magnet 310 to the direction away from the third first permanent magnet 310
  • the magnetizing direction of the third first permanent magnet 310 is directed by the third first permanent magnet 310 .
  • the three first permanent magnets 310 point in a direction away from the second first permanent magnet 310
  • the magnetizing direction of the second second permanent magnet 320 points from the edge of the first rotor core 100 to the center of the first rotor core 100 .
  • the magnetizing directions of the first permanent magnet 310 and the second permanent magnet 320 are from the S pole to the N pole of the first permanent magnet 310 and the second permanent magnet 320 .
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the first rotor core 100 is provided with at least one hole or slit or punch riveting point.
  • the first rotor core 100 includes a plurality of rotor punching sheets.
  • the plurality of rotor punching sheets are stacked to form the first rotor core 100 .
  • Each of the plurality of rotor punching sheets is provided with at least one rotor punching sheet. Holes, slits or riveting points of punched sheets, multiple rotor punched sheets are connected through at least one hole, slit or riveted point of punched sheets.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the axial length of the first rotor core 100 , the axial length of the first permanent magnet 310 and the axial length of the second permanent magnet 320 may be the same or different in order to utilize the end effect.
  • the axial length of the first rotor core 100 , the axial length of the first permanent magnet 310 and the axial length of the second permanent magnet 320 are the same, and when assembling the first rotor core 100 and the first permanent magnet 310 and the second permanent magnet 320 are aligned in the axial direction of the first rotor core 100 .
  • the axial length of the first rotor core 100 , the axial length of the first permanent magnet 310 and the axial length of the second permanent magnet 320 are different and the same, and when assembling the first rotor core 100 , the first permanent magnet 310 and the When the two permanent magnets 320 are assembled in the axial direction of the first rotor core 100, the end of the first rotor core 100, the end of the first permanent magnet 310 and the end of the second permanent magnet 320 are arranged in a staggered manner.
  • a motor 300 is provided, including the rotor assembly 10 of any of the above embodiments. Therefore, the motor 300 has all the beneficial effects of the rotor assembly 10 of any of the above embodiments.
  • the motor 300 is a permanent magnet motor.
  • the motor 300 provided by this application includes a rotor assembly 10.
  • the rotor assembly 10 of this application by combining two sets of permanent magnets and reasonably arranging a magnetic isolation bridge, the magnetic leakage of the permanent magnets is effectively reduced and the rotor magnetic flux is increased.
  • the performance of the motor 300 is competent, the utilization rate of permanent magnet materials is improved.
  • This embodiment provides a motor 300.
  • this embodiment further includes the following technical features.
  • the motor 300 further includes a stator assembly and a rotor assembly 10 rotatably installed in the inner cavity of the stator assembly.
  • An air gap is provided between the inner cavity of the stator assembly and the outer edge of the rotor assembly 10 .
  • This embodiment provides a motor 300.
  • this embodiment further includes the following technical features.
  • the stator assembly includes a first stator core 400 and a first stator winding 500 .
  • the first stator core 400 includes a first stator tooth 410 , a first stator slot 420 and a first stator winding 500 .
  • the stator yoke 430, the first stator winding 500 includes a plurality of stator coils, the stator coil is wound on the first stator tooth 410, and its two coil sides are respectively placed on both sides of the wound first stator tooth 410. in the two adjacent first stator slots 420.
  • This embodiment provides a motor 300.
  • this embodiment further includes the following technical features.
  • the axial length of the first rotor core 100 and the axial length of the first stator core 400 may be the same or different in order to utilize the end effect.
  • This embodiment provides a motor 300.
  • this embodiment further includes the following technical features.
  • the materials of the first rotor core 100 and the first stator core 400 are laminated silicon steel sheets, solid steel, amorphous ferromagnetic composite materials or soft magnetic composite materials.
  • the materials of the first stator winding 500 are copper wires and aluminum. wire or copper-aluminum hybrid wire.
  • a rotor assembly 10 including a second rotor core 102, a plurality of third permanent magnets 104 and a plurality of fourth permanent magnets 106;
  • the second rotor core 102 is provided with a plurality of fourth grooves and a plurality of fifth grooves.
  • the plurality of fourth grooves and the plurality of fifth grooves are arranged in the circumferential direction.
  • a third magnetic isolation bridge 108 is provided between the adjacent fourth slot and the fifth slot.
  • the third magnetic isolation bridge 108 extends along the circumferential direction or radial direction of the second rotor core 102; a plurality of third permanent magnets 104 are respectively provided. in a plurality of fourth slots; a plurality of fourth permanent magnets 106 are disposed in a plurality of fifth slots.
  • the rotor assembly 10 includes a second rotor core 102 , fourth slots, fifth slots, third permanent magnets 104 and fourth permanent magnets 106 , wherein the fourth slots, the fifth slots, the third permanent magnets 106
  • the number of magnets 104 and fourth permanent magnets 106 is multiple.
  • the plurality of fourth slots provide accommodation space for the plurality of third permanent magnets 104.
  • the plurality of fifth slots provide accommodation space for the plurality of fourth permanent magnets 106.
  • Multiple permanent magnets are provided on the second rotor core 102. On the one hand, the distribution range of the permanent magnets can be increased, thereby increasing the magnetic flux of the rotor assembly 10 and enhancing the magnetism of the rotor assembly 10. On the other hand, multiple permanent magnets are provided , which can improve the magnetization effect and reduce the size of the rotor assembly 10 .
  • a third magnetic isolation bridge 108 is provided between adjacent fourth slots and fifth slots to reduce the magnetic leakage phenomenon of the rotor assembly 10.
  • multiple fourth slots and multiple fifth slots are provided,
  • a third magnetic isolation bridge 108 is provided between each fourth slot and each adjacent fifth slot.
  • the position of the third magnetic isolation bridge 108 is reasonably set, so that the third magnetic isolation bridge 108 enters the magnetic field. saturation state, further improving the magnetic flux leakage problem of the rotor assembly 10, ensuring the magnetism of the rotor assembly 10, thereby improving the utilization rate of the permanent magnets. It can be understood that in order for the rotor assembly 10 to operate normally, it needs to ensure that it provides sufficient magnetic flux. Related In the technology, more permanent magnets are often arranged in the rotor assembly 10 where the magnetic flux leakage phenomenon is more serious to compensate for the magnetic flux loss caused by the magnetic flux leakage.
  • a plurality of fourth and fifth slots are provided along the circumferential direction, and in the The third permanent magnet 104 is arranged in the four slots, the fourth permanent magnet 106 is arranged in the fifth slot, and the third magnetic isolation bridge 108 is arranged between the adjacent third permanent magnet 104 and the fourth permanent magnet 106, thereby through reasonable Setting the position of the third magnetic isolation bridge 108 improves the magnetic leakage phenomenon of the rotor assembly 10, thereby reducing the usage of the third permanent magnet 104 and the fourth permanent magnet 106, and increasing the usage of the third permanent magnet 104 and the fourth permanent magnet 106. utilization rate.
  • a plurality of third permanent magnets 104 are distributed radially in the rotor assembly 10
  • a plurality of fourth permanent magnets 106 are distributed in an annular shape in the rotor assembly 10 .
  • Two adjacent ones are The third permanent magnet 104 and the fourth permanent magnets 106 between the two third permanent magnets 104 are distributed in a "U" shape.
  • the two adjacent fourth permanent magnets 106 and the third permanent magnets 106 between the two adjacent fourth permanent magnets 106 The three permanent magnets 104 are distributed in a "Y" shape.
  • this arrangement can ensure that the distribution of the permanent magnets has certain rules, thereby facilitating the installation and removal of the permanent magnets on the rotor assembly 10; on the other hand, this arrangement can ensure that all the permanent magnets 104 are arranged in a "Y" shape.
  • the magnetic fluxes generated by the three permanent magnets 104 and the fourth permanent magnet 106 superimpose each other and strengthen rather than weaken each other, ensuring that the rotor assembly 10 works efficiently.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the third permanent magnet 104 is a ferrite permanent magnet, and the maximum magnetic energy product of the third permanent magnet 104 is smaller than the maximum magnetic energy product of the fourth permanent magnet 106 .
  • the third permanent magnet 104 is configured as a ferrite permanent magnet
  • the fourth permanent magnet 106 is configured as a permanent magnet material with a magnetic energy product greater than that of the third permanent magnet 104 , so that the fourth permanent magnet 106
  • the material is different from the material of the third permanent magnet 104, and the unit volume cost of the third permanent magnet 104 material is lower than the unit volume cost of the fourth permanent magnet 106 material.
  • the third permanent magnet 104 can be configured as a ferrite permanent magnet.
  • the maximum magnetic energy product of the third permanent magnet 104 is smaller than the maximum magnetic energy product of the fourth permanent magnet 106. It can be understood that the maximum magnetic energy product can measure the strength of the magnetic properties of the permanent magnet. Weakly, for example, the maximum magnetic energy product can be expressed as (BH)max, where B refers to the magnetic induction intensity of the permanent magnet material on the demagnetization curve, H refers to the magnetic field intensity, and the maximum magnetic energy product refers to the permanent magnet material The maximum product of the magnetic induction intensity on the demagnetization curve and the magnetic field strength on the demagnetization curve.
  • the maximum magnetic energy product of ferrite is less than 10KJ/m 3 .
  • the fourth permanent magnet 106 can be set as a NdFeB permanent magnet or other rare earth permanent magnet.
  • the maximum magnetic energy product of NdFeB is greater than 200KJ/m 3 .
  • ferrite permanent magnets are low in price, simple in manufacturing process, and widely used, which can reduce the cost of the rotor assembly 10; on the other hand, NdFeB permanent magnets or other rare earth permanent magnets have strong magnetic properties and can reduce the cost of the rotor assembly. volume; mixing the two materials can ensure the performance of the permanent magnet while reasonably controlling the cost and improving the cost performance of the permanent magnet, thereby helping to reduce the cost of the rotor assembly 10 .
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • a plurality of third permanent magnets 104 are arranged along the circumferential direction of the second rotor core 102 ; a plurality of fourth permanent magnets 106 are arranged along the circumferential direction of the second rotor core 102 , located at multiple locations.
  • the third permanent magnet 104 is close to one side of the axis of the second rotor core 102 .
  • a plurality of third permanent magnets 104 and a plurality of fourth permanent magnets 106 are arranged along the circumferential direction of the second rotor core 102 , thereby facilitating the reasonable arrangement of the third magnetic isolation bridge 108 and ensuring the second While permanent magnets are arranged on the rotor core 102 in the circumferential direction, the third magnetic isolation bridge 108 is reasonably arranged to improve the magnetic leakage phenomenon of the rotor assembly 10, thereby improving the utilization rate of the permanent magnets and ensuring the operation of the rotor assembly 10 in the circumferential direction.
  • the magnetic flux requirement ensures the magnetism of the rotor assembly 10 and the normal operation of the rotor assembly 10.
  • a plurality of fourth permanent magnets 106 are disposed on one side of the plurality of third permanent magnets 104 close to the axis of the second rotor core 102.
  • the material of the fourth permanent magnets 106 is set to neodymium iron boron or other rare earth permanent magnets.
  • Magnetic, compared to ferrite, has a larger maximum magnetic energy product, which can further enhance the magnetic flux compared to ferrite. It can be understood that arranging a permanent magnet material with a larger maximum magnetic energy product close to the axis can provide magnetic flux while improving its anti-demagnetization performance, thereby improving the reliability of the rotor assembly 10 .
  • the third permanent magnet 104 is further away from the axis of the rotor assembly 10 relative to the fourth permanent magnet 106 , so that the material of the third permanent magnet 104 is set to ferrite, which can ensure the magnetism of the rotor assembly 10 while reducing the rotor assembly 10 . 10 cost.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the minimum distance between the third permanent magnet 104 and the axis of the second rotor core 102 is the third distance a
  • the maximum distance between the fourth permanent magnet 106 and the axis is the fourth distance.
  • the length of the third permanent magnet 104 in the radial direction is the sixth length e
  • the difference between the fourth distance b and the third distance a is the first value
  • the first value is greater than 0 and less than 0.3 times the sixth length e
  • Or the first value is less than 0.
  • the minimum distance between the axis of the second rotor core 102 and the third permanent magnet 104 is set to the third distance a
  • the distance between the axis of the second rotor core 102 and the fourth permanent magnet 106 is The maximum distance is set to the fourth distance b
  • the radial length of the third permanent magnet 104 is set to the sixth length e
  • the difference between the fourth distance b and the third distance a is set to the first value
  • the third A value is greater than 0 and less than 0.3 times the sixth length e, or the first value is controlled to be less than 0, so that by setting the first value, the position of the third permanent magnet 104 and the fourth permanent magnet 106 in the rotor assembly 10 is adjusted.
  • Reasonable space setting facilitates reasonable setting of the position of the third magnetic isolation bridge 108, thereby improving the space utilization of the permanent magnets in the rotor assembly 10, improving the magnetic leakage phenomenon of the rotor assembly 10, and improving the torque output capability of the rotor assembly 10 .
  • controlling the first value to be greater than 0 and less than 0.3 times the sixth length e, or controlling the first value to be less than 0, can reduce the overlap of the third permanent magnet 104 and the fourth permanent magnet 106 in the spatial position, and improve the quality of the rotor.
  • the space utilization of the assembly 10 is thereby avoided, the utilization of the third permanent magnet 104 and the fourth permanent magnet 106 is improved, the cost of the rotor assembly 10 is further reduced, and the utilization of the third permanent magnet 104 and the fourth permanent magnet 106 is improved.
  • the optimization of the magnetic circuit of the rotor assembly 10 improves the torque output capability of the rotor assembly 10, ensures the magnetic flux requirements for the operation of the rotor assembly 10, ensures the magnetism of the rotor assembly 10, and ensures the normal and stable operation of the rotor assembly 10.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the plurality of third permanent magnets 104 and the plurality of fourth permanent magnets 106 are alternately arranged along the circumferential direction of the second rotor core 102 .
  • a plurality of third permanent magnets 104 and a plurality of fourth permanent magnets 106 may be alternately arranged in the circumferential direction of the second rotor core 102 , thereby reducing the number of third permanent magnets 104 and fourth permanent magnets 106 .
  • the space occupied by the magnet 106 within the rotor assembly 10 enables reasonable allocation of the space resources of the rotor assembly 10, facilitates the reasonable setting of the position of the first isolation bridge, improves the magnetic leakage phenomenon of the rotor assembly 10, and thereby increases the torque output of the rotor assembly 10.
  • Ability to ensure the magnetic flux requirements for the operation of the rotor assembly 10, ensure the magnetism of the rotor assembly 10, and ensure the normal and stable operation of the rotor assembly 10.
  • a plurality of third permanent magnets 104 are distributed radially in the rotor assembly 10 , with two adjacent third permanent magnets 104 and a fourth between the two third permanent magnets 104
  • the permanent magnets 106 are distributed in a "U" shape, and the two adjacent fourth permanent magnets 106 and the third permanent magnets 104 between the two fourth permanent magnets 106 are distributed in a "Y" shape.
  • this arrangement can ensure The distribution of the third permanent magnet 104 and the fourth permanent magnet 106 has certain rules, thereby facilitating the installation and removal of the third permanent magnet 104 and the fourth permanent magnet 106 on the rotor assembly 10; on the other hand, such an arrangement can ensure that all third permanent magnets 104 and 106 are installed and disassembled on the rotor assembly 10.
  • the magnetic fluxes generated by the three permanent magnets 104 and the fourth permanent magnet 106 superimpose each other and enhance rather than weaken each other, ensuring that the rotor assembly 10 works efficiently.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the minimum distance between the third permanent magnet 104 and the axis of the second rotor core 102 is the third distance a
  • the maximum distance between the fourth permanent magnet 106 and the axis is the fourth distance.
  • the length of the third permanent magnet 104 in the radial direction is the sixth length e
  • the difference between the fourth distance b and the third distance a is the second value
  • the second value is greater than 0 and less than 0.3 times the sixth length e.
  • the minimum distance between the axis of the second rotor core 102 and the third permanent magnet 104 is set to the third distance a
  • the distance between the axis of the second rotor core 102 and the fourth permanent magnet 106 is The maximum distance is set as the fourth distance b
  • the radial length of the third permanent magnet 104 is set as the sixth length e
  • the difference between the fourth distance b and the third distance a is set as the second value
  • the second value is controlled is greater than 0 and less than 0.3 times the sixth length e. Therefore, by setting the second value, the space of the third permanent magnet 104 and the fourth permanent magnet 106 in the rotor assembly 10 is reasonably set, thereby improving the space of the permanent magnets.
  • the space utilization of the rotor assembly 10 facilitates the reasonable setting of the position of the first isolation bridge, improves the magnetic leakage phenomenon of the rotor assembly 10, thereby reducing the usage of the third permanent magnet 104 and the fourth permanent magnet 106, and improving the efficiency of the third permanent magnet. 104 and the utilization of the fourth permanent magnet 106.
  • controlling the second value to be greater than 0 and less than 0.3 times of the sixth length e can reduce the overlap in spatial positions of the third permanent magnet 104 and the fourth permanent magnet 106 and improve the space utilization of the rotor assembly 10, thereby improving the space utilization of the rotor assembly 10.
  • Improve the utilization rate of the third permanent magnet 104 and the fourth permanent magnet 106 avoid the waste of the third permanent magnet 104 and the fourth permanent magnet 106, further reduce the cost of the rotor assembly 10, and realize the optimization of the magnetic circuit of the rotor assembly 10 , improve the torque output capability of the rotor assembly 10, ensure the magnetic flux requirements for the operation of the rotor assembly 10, ensure the magnetism of the rotor assembly 10, and ensure the normal and stable operation of the rotor assembly 10.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the length of the axis side of the third permanent magnet 104 away from the second rotor core 102 in the circumferential direction of the second rotor core 102 is the fourth length c; the third permanent magnet 104 is close to the second rotor core 102.
  • the length of one side of the axis of the rotor core 102 in the circumferential direction of the second rotor core 102 is the fifth length d; the fourth length c is greater than the fifth length d.
  • the length of the side of the third permanent magnet 104 away from the axis of the second rotor core 102 is set to the fourth length c
  • the length of the third permanent magnet 104 is The side close to the axis
  • the fifth length d is set to be less than the fourth length c. It can be understood that the position of the rotor assembly 10 close to the axis center has smaller installation space, so the fifth length d is set to be smaller than the fourth length c.
  • the torque output capability of the component 10 ensures the normal and stable operation of the rotor component 10 .
  • the axial length of the second rotor core 102 , the axial length of the third permanent magnet 104 and the axial length of the fourth permanent magnet 106 can be set to be the same, thereby facilitating the installation and disassembly of the rotor assembly 10 , and also The axial lengths of the second rotor core 102 , the third permanent magnet 104 and the fourth permanent magnet 106 may be set to be different to optimize and utilize the end effect of the rotor assembly 10 .
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the length of the fourth permanent magnet 106 in the radial direction of the second rotor core 102 is smaller than the length of the fourth permanent magnet 106 in the circumferential direction of the second rotor core 102 .
  • the length of the fourth permanent magnet 106 along the circumferential direction of the second rotor core 102 is greater than the length of the fourth permanent magnet 106 along the radial direction of the second rotor core 102 , thereby improving the efficiency of the fourth permanent magnet.
  • the utilization rate of 106 ensures the magnetic flux requirement for the operation of the rotor assembly 10, ensures the magnetism of the rotor assembly 10, improves the torque output capability of the rotor assembly 10, and ensures the normal and stable operation of the rotor assembly 10.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the ratio of the cross-sectional area of the third permanent magnet 104 to the cross-sectional area of the fourth permanent magnet 106 is greater than or equal to 1 and is less than or equal to 15.
  • the ratio of the cross-sectional area of the third permanent magnet 104 to the cross-sectional area of the fourth permanent magnet 106 is set in a range of greater than or equal to 1 and less than or equal to 15, thereby achieving a reasonable space for the rotor assembly 10 distribution, improve the space utilization of the rotor assembly 10, facilitate reasonable setting of the position of the first isolation bridge, improve the magnetic leakage phenomenon of the rotor assembly 10, and, by adjusting the cross-sectional area ratio of the third permanent magnet 104 and the fourth permanent magnet 106
  • a reasonable configuration can control the cost of the rotor assembly 10, thereby improving the utilization rate of the third permanent magnet 104 and the fourth permanent magnet 106, ensuring the magnetic flux requirements for the operation of the rotor assembly 10, ensuring the magnetism of the rotor assembly 10, and improving the performance of the rotor assembly 10.
  • the torque output capability ensures the normal and stable operation of the rotor assembly 10.
  • the cross section of the fourth permanent magnet 106 may be rectangular.
  • the cross-sectional area S1 of the third permanent magnet 104 can be set to 50mm 2 (square millimeters), and the cross-sectional area S2 of the fourth permanent magnet 106 can be set to 10mm 2 , so that the ratio of S1/S2 is set to 5, It is in the range of greater than or equal to 1 and less than or equal to 15.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the ratio of the residual magnetism of the third permanent magnet 104 to the residual magnetism of the fourth permanent magnet 106 is greater than or equal to 0.1 and less than or equal to 0.9.
  • the ratio of the residual magnetism of the third permanent magnet 104 to the residual magnetism of the fourth permanent magnet 106 is set in a range of greater than or equal to 0.1 and less than or equal to 0.9, so that the third permanent magnet 104 and the fourth permanent magnet 106 can be improved.
  • the magnetic flux leakage phenomenon between the permanent magnets 106 ensures the magnetic flux requirement for the operation of the rotor assembly 10, ensures the magnetism of the rotor assembly 10, improves the torque output capability of the rotor assembly 10, ensures the normal and stable operation of the rotor assembly 10, and improves the performance of the rotor assembly 10. Value for money.
  • the remanent magnet Br1 of the third permanent magnet 104 can be set to 0.4T (Tesla), and the remanent magnet Br2 of the fourth permanent magnet 106 can be set to 1.2T, so that the ratio of Br1/Br2 The ratio is set to 0.33, which is within the range of greater than or equal to 0.1 and less than or equal to 0.9.
  • the magnetization direction of the third permanent magnets 104 is tangential magnetization, that is, magnetization along the circumferential direction of the rotor assembly 10 , and every two adjacent third permanent magnets 104 in the circumferential direction The magnetizing direction is opposite.
  • the other third permanent magnet 104 of the two adjacent third permanent magnets 104 is magnetized in the counterclockwise direction (as shown by arrow g) of the circumferential direction of the rotor assembly 10; when the two adjacent third permanent magnets 104 are magnetized,
  • the other third permanent magnet 104 of the two adjacent third permanent magnets 104 moves along the rotor.
  • the circumferential direction of component 10 is magnetized clockwise.
  • the magnetizing direction of the fourth permanent magnet 106 is radial parallel magnetization, that is, it is magnetized in a direction parallel to the diameter of the rotor assembly 10, and the magnetizing directions of two adjacent fourth permanent magnets 106 in the circumferential direction are opposite. respectively point to the center of the rotor assembly 10 and the outer edge of the rotor assembly 10 .
  • the two adjacent fourth permanent magnets 106 when one of the two adjacent fourth permanent magnets 106 is magnetized toward the center direction of the rotor assembly 10 (as shown by arrow h), the two adjacent fourth permanent magnets 106 The other fourth permanent magnet 106 among the magnets 106 is magnetized toward the outer edge direction of the rotor assembly 10 (as shown by arrow i); when one of the two adjacent fourth permanent magnets 106 is When magnetizing along the outer edge direction of the rotor assembly 10 , the other fourth permanent magnet 106 of the two adjacent fourth permanent magnets 106 is magnetized along the center direction of the rotor assembly 10 .
  • the cross section of the fourth permanent magnet 106 may be rectangular, and the length of the fourth permanent magnet 106 in the radial direction, that is, the length in the magnetizing direction of the fourth permanent magnet 106 is smaller than its length in the circumferential direction.
  • the length of the third permanent magnet 104 in the magnetizing direction is greater than the length of the fourth permanent magnet 106 in the magnetizing direction.
  • the permanent magnet has an N pole (south pole, also known as the positive pole) and an S pole (the north pole, also known as the negative pole).
  • the magnetizing direction of the permanent magnet is the direction in which the N pole faces, which is the direction in which the magnetic lines of force of the permanent magnet emit.
  • the magnetizing direction of the third permanent magnet 104 and the magnetizing direction of the fourth permanent magnet 106 meet the following requirements: two adjacent third permanent magnets 104 and a fourth permanent magnet 106 located between the two third permanent magnets 104 constitute U-shaped distribution, when the magnetizing direction of two adjacent third permanent magnets 104 points to the inside of the U-shape (that is, the N pole faces the inside of the U-shape), the magnetizing direction of the fourth permanent magnet 106 in the middle also points to the U-shape.
  • the N pole faces the inside of the U-shape
  • the magnetizing directions of two adjacent third permanent magnets 104 point to the outside of the U-shape (i.e., the N pole faces the outside of the U-shape)
  • the fourth permanent magnet 106 between them
  • the magnetizing direction also points to the outside of the U-shape (that is, the N pole faces the outside of the U-shape).
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the length of the third permanent magnet 104 in the circumferential direction of the second rotor core 102 is greater than the length of the fourth permanent magnet 106 in the radial direction of the second rotor core 102 .
  • the length of the fourth permanent magnet 106 along the radial direction of the second rotor core 102 is smaller than the length of the fourth permanent magnet 106 along the circumferential direction of the second rotor core 102 , so that the length of the fourth permanent magnet 106 can be increased.
  • the anti-demagnetization ability ensures the normal and stable operation of the rotor assembly 10.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the second rotor core 102 includes a second core body and a fourth magnetic isolation bridge 112; a plurality of fourth slots are provided in the second core body; the fourth magnetic isolation bridge 112 is provided along the second core body.
  • the edges of the two iron core bodies are arranged opposite to a plurality of fourth slots.
  • the second rotor core 102 further includes a second core body and a fourth magnetic isolation bridge 112 , wherein a plurality of fourth slots are provided on the second core body, and the fourth magnetic isolation bridge 112
  • the setting position corresponds to the position of the fourth slot and is arranged along the edge of the second iron core body.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the fourth magnetic isolation bridge 112 and the second iron core body have an integrated structure; or the fourth magnetic isolation bridge 112 is made of poor magnetic permeability material; or the fourth magnetic isolation bridge 112 is arranged on the third Two empty slots on the edge of the iron core body.
  • the fourth magnetic isolation bridge 112 and the second iron core body have an integrated structure, or the fourth magnetic isolation bridge 112 is made of poor magnetic permeability material, or the fourth magnetic isolation bridge 112 is made of
  • the empty slot is provided at the edge of the second core body, so that the arrangement form of the fourth magnetic isolation bridge 112 can be selected according to the space of the rotor assembly 10, which facilitates the reasonable arrangement of the space resources of the rotor assembly 10 and the reasonable arrangement of the second isolation bridge. position to improve the magnetic leakage phenomenon of the rotor assembly 10.
  • the slot of the third permanent magnet 104 is close to one end of the outer edge of the rotor assembly 10 , and at least one of the two sides of the third permanent magnet 104 is provided with an extension groove, and the extension groove is along the circumference of the second rotor core 102 direction, thereby further improving the torque output capability of the motor 300 .
  • the slots of the third permanent magnet 104 may be provided with round holes or slits on both sides of the circumferential direction of the rotor assembly 10 and on one side close to the outer edge of the rotor assembly 10 .
  • the diameter of the round hole and the width of the slit may be set. In the range of greater than 0.5mm and less than 2mm, thereby reducing the torque ripple of the rotor assembly 10, reducing the harmonics of the back electromotive force, and optimizing the air gap magnetic density harmonics.
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the second rotor core 102 includes multiple sets of curves at the edge of the section perpendicular to the axial direction.
  • the multiple sets of curves are distributed along the circumferential direction of the section.
  • Each set of curves in the multiple sets of curves Groups include arc segments and/or straight line segments.
  • the edge of the rotor by configuring the edge of the rotor to be composed of multiple sets of curves connected in sequence, and setting each set of curves with multiple arc segments or arc segments plus straight segments, the rotation speed of the motor 300 is reduced. torque ripple, thereby reducing the back electromotive force harmonics of the motor 300.
  • each of the multiple groups of curves is composed of multiple segments of compound curves, wherein the compound curves can be It is composed of multiple arc segments and/or multiple straight segments, thereby reducing the torque ripple of the rotor assembly 10, reducing the harmonics of the back electromotive force, and optimizing the air gap magnetic density harmonics.
  • the cross-sectional outer edge of the second iron core body may be circular.
  • the compound curves may be periodically arranged along the circumferential direction of the second rotor core 102 , and the number of periodic arrangements may be the same as the number of third permanent magnets 104 , thereby ensuring the symmetry of the rotor assembly 10 .
  • This embodiment provides a rotor assembly 10.
  • this embodiment further includes the following technical features.
  • the number of arc segments is multiple segments, and the center of at least one arc segment among the multiple arc segments is offset from the axis of the second rotor core 102 .
  • the center of at least one arc segment among the plurality of arc segments is not on the rotation center of the rotor assembly 10 , thereby reducing the torque ripple of the rotor assembly 10 , reducing the harmonics of the back electromotive force, and optimizing Air gap magnetic density harmonics.
  • a motor 300 is provided, including the rotor assembly 10 of any of the above embodiments. Therefore, the motor 300 has all the beneficial technical effects of the rotor assembly 10 of any of the above embodiments.
  • the motor 300 further includes a stator assembly 200 , and the rotor assembly 10 is installed in the inner cavity of the stator assembly 200 .
  • An air gap is provided between the inner cavity of the stator assembly 200 and the outer edge of the rotor assembly 10 so that the rotor assembly 10 can rotate relative to the stator assembly 200 .
  • the stator assembly 200 includes a second stator core 202 and a second stator winding 204 , wherein the second stator core 202 includes second stator teeth 206 , second stator slots 208 , and a second stator yoke 216 .
  • the winding 204 includes a plurality of stator coils. The stator coils are wound around the second stator teeth 206 . Two of the stator coils are respectively disposed at two adjacent second stator slots on both sides of the wound second stator teeth 206 . 208 in.
  • the axial length of the second rotor core 102 and the axial length of the second stator core 202 can be set to be the same, thereby facilitating the installation and disassembly of the rotor assembly 10 , or the second rotor core 102 can be set to have the same axial length.
  • the axial length and the axial length of the second stator core 202 are set to be different so as to optimize and utilize the end effect of the rotor assembly 10 .
  • the second rotor core 102 and the second stator core 202 may be configured as laminated silicon steel sheets, solid steel, amorphous ferromagnetic composite materials or SMC (soft magnetic composite) materials, and the second stator may be
  • the winding 204 material is copper wire, aluminum wire or copper-aluminum mixed wire.
  • the third magnetic isolation bridge 108 and the third permanent magnet 108 are reasonably arranged.
  • the position of the fourth magnetic isolation bridge 112 improves the magnetic leakage phenomenon of the third permanent magnet 104 and the fourth permanent magnet 106, reduces the usage of the third permanent magnet 104 and the fourth permanent magnet 106, and increases the amount of the third permanent magnet 104 and the fourth permanent magnet 106.
  • the utilization rate of the fourth permanent magnet 106 can improve its anti-demagnetization performance while providing magnetic flux, thereby improving the reliability of the rotor assembly 10, improving the reliability of the use of the motor 300, and ensuring the stable operation of the motor 300.
  • connection means two or more than two, unless otherwise expressly limited.
  • connection can be a fixed connection, a detachable connection, or an integral connection; “connection” can be Either directly or indirectly through an intermediary.
  • connection can be Either directly or indirectly through an intermediary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

本申请提供了一种转子组件和电机,转子组件包括第一转子铁芯、多个第一永磁体和多个第二永磁体;第一转子铁芯包括第一铁芯本体、多个第一槽、多个第二槽和第一隔磁桥,多个第一槽和多个第二槽沿第一铁芯本体的周向交替设置,多个第一槽分别延伸至多个第二槽中相邻的两个第二槽之间的间隙,多个第一槽和多个第二槽中相邻的第一槽和第二槽之间设置有第一隔磁桥;多个第一永磁体分别设置于多个第一槽内;多个第二永磁体分别设置于多个第二槽内。

Description

转子组件和电机
本申请要求于2022年06月14日提交中国专利局、申请号为“202210666327.7”、申请名称为“转子组件和电机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2022年08月19日提交中国专利局、申请号为“202211001430.6”、申请名称为“转子组件和电机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机技术领域,具体而言,涉及一种转子组件和电机。
背景技术
目前,永磁电机具有结构简单、可靠,效率高和功率密度大等优点,应用十分广泛。在相关技术中,永磁电机的转子包括铁芯和永磁体,为便于对永磁体进行安装和固定,可将永磁体内置于第一转子铁芯的内部。但由于相邻的永磁体之间存在隔磁桥,使得转子的漏磁现象较为严重。
技术解决方案
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一方面提出一种转子组件。
本申请的第二方面提出一种转子组件。
本申请的第三方面提出一种电机。
有鉴于此,本申请的第一方面提供了一种转子组件,包括第一转子铁芯、多个第一永磁体和多个第二永磁体;第一转子铁芯包括第一铁芯本体、多个第一槽、多个第二槽和第一隔磁桥,多个第一槽和多个第二槽沿第一铁芯本体的周向交替设置,多个第一槽分别延伸至多个第二槽中相邻的两个第二槽之间的间隙,多个第一槽和多个第二槽中相邻的第一槽和第二槽之间设置有第一隔磁桥;多个第一永磁体分别设置于多个第一槽内;多个第二永磁体分别设置于多个第二槽内。
本申请所提供的转子组件,包括第一转子铁芯、多个第一永磁体和多个第二永磁体,第一转子铁芯包括第一铁芯本体、多个第一槽和多个第二槽,多个第一永磁体分别设置于多个第一槽内;多个第二永磁体分别设置于多个第二槽内,进而实现对第一永磁体和第二永磁体的安装和固定。多个第一槽和多个第二槽沿第一铁芯本体的周向交替设置,多个第一槽分别延伸至多个第二槽中相邻的两个第二槽之间的间隙,且第一隔磁桥设置于相邻的第一槽和第二槽之间,使得第一隔磁桥的长度增长,进而减少转子组件的漏磁,缓解转子组件的漏磁现象。由于减少了转子组件漏磁,进而提升了电机输出转矩,实现对电机性能的优化。
另外,本申请提供的上述技术方案中的转子组件还可以具有如下附加技术特征:
在本申请的一个技术方案中,多个第一槽中每个第一槽包括延伸槽和容纳槽;延伸槽位于多个第二槽中相邻的第二槽之间;容纳槽的第一侧与延伸槽连通,第二侧向第一铁芯本体的边缘延伸;第一永磁体位于容纳槽内。
在本申请的一个技术方案中,第一隔磁桥包括第一子隔磁桥和第二子隔磁桥;第一子隔磁桥位于延伸槽在周向上的第一侧;第二子隔磁桥位于延伸槽在周向上的第二侧。
在本申请的一个技术方案中,第一子隔磁桥和第二子隔磁桥呈V字形分布或八字形分布。
在本申请的一个技术方案中,第一永磁体为稀土永磁体,第一永磁体的最大磁能积大于第二永磁体的最大磁能积。
在本申请的一个技术方案中,第一永磁体在径向上的长度为第一长度,第一永磁体在周向上的长度为第二长度,第二永磁体在径向上的长度为第三长度;第一长度大于第二长度;和/或第三长度大于第二长度。
在本申请的一个技术方案中,第一隔磁桥的长度大于0.7倍的第二长度。
在本申请的一个技术方案中,第一转子铁芯包括第二隔磁桥,第二隔磁桥沿第一铁芯本体的边缘设置,与第一槽相对。
在本申请的一个技术方案中,第一转子铁芯还包括凸起或凹槽,凸起或凹槽设置于第一铁芯本体的周向侧壁上,沿轴向延伸。
在本申请的一个技术方案中,第一转子铁芯还包括第三槽,第三槽位于第一槽靠近第一转子铁芯边缘的一侧,沿周向延伸,与第一槽连通。
在本申请的一个技术方案中,第一永磁体的截面积与第二永磁体的截面积的比值大于等于0.3,且小于等于3;和/或第一永磁体的截面积与剩磁的乘积为第一值,第二永磁体的截面积与剩磁的乘积为第二值,第一值与第二值的比值大于0.5,且小于等于15。
在本申请的一个技术方案中,第一永磁体与第一转子铁芯的轴线之间的最小距离为第一距离,第二永磁体与轴线之间的最大距离为第二距离,第一永磁体在径向上的长度为第一长度;第二距离与第一距离的差值大于0,且小于0.2倍的第一长度;或第二距离与第一距离的差值小于0。
在本申请的一个技术方案中,转子组件还包括非导磁填充物,非导磁填充物填充于延伸槽内。
在本申请的一个技术方案中,第一转子铁芯在垂直于轴向上的截面的边缘包括多组曲线组,多组曲线组沿截面的周向分布,多组曲线组中每组曲线组包括圆弧段和/或直线段。
在本申请的一个技术方案中,圆弧段的数量为多段,多段圆弧段中至少一段圆弧段的圆心偏离第一转子铁芯的轴线。
在本申请的一个技术方案中,第一转子铁芯还包括第一定位部和第二定位部;第一定位部与第一铁芯本体连接,设置于第一槽内,凸出于第一槽的内壁;第二定位部与第一铁芯本体连接,设置于第二槽内,凸出于第二槽的内壁。
在本申请的一个技术方案中,第一转子铁芯还包括第四槽,第四槽与第二槽连通,与第二永磁体的角部相对。
本申请的第二方面提供了一种转子组件,包括第二转子铁芯、多个第三永磁体和多个第四永磁体;第二转子铁芯设置有多个第四槽和多个第五槽,多个第四槽和多个第五槽均沿周向布置,多个第四槽和多个第五槽中相邻的第四槽和第五槽之间设置有第三隔磁桥,第三隔磁桥沿第二转子铁芯的周向或径向延伸;多个第三永磁体分别设置于多个第四槽内;多个第四永磁体设置于多个第五槽内。
本申请所提供的转子组件,在相邻的第四槽和第五槽之间设置有第三隔磁桥从而能够减少转子组件的漏磁现象,同时,设置多个第四槽和多个第五槽,并在每一个第四槽和每一个相邻的第五槽之间设置有第三隔磁桥,通过合理设置第三隔磁桥的位置,从而改善第三永磁体和第四永磁体之间的漏磁问题,提高第三永磁体和第四永磁体的利用率,保证转子组件运转的磁通量需求,保证转子组件的磁性,提高转子组件的转矩输出能力。
另外,本申请提供的上述技术方案中的转子组件还可以具有如下附加技术特征:
在本申请的一个技术方案中,第三永磁体为铁氧体永磁,第三永磁体的最大磁能积小于第四永磁体的最大磁能积。
在本申请的一个技术方案中,多个第三永磁体沿第二转子铁芯的周向布置;多个第四永磁体沿第二转子铁芯的周向布置,位于多个第三永磁体靠近第二转子铁芯的轴线的一侧。
在本申请的一个技术方案中,第三永磁体与第二转子铁芯的轴线之间的最小距离为第三距离,第四永磁体与轴线之间的最大距离为第四距离,第三永磁体在径向上的长度为第六长度;第四距离与第三距离的差为第一数值;第一数值大于0,且小于0.3倍的第六长度;或第一数值小于0。
在本申请的一个技术方案中,多个第三永磁体和多个第四永磁体沿第二转子铁芯的周向交替布置。
在本申请的一个技术方案中,第三永磁体与第二转子铁芯的轴线之间的最小距离为第三距离,第四永磁体与轴线之间的最大距离为第四距离,第三永磁体在径向上的长度为第六长度;第四距离与第三距离的差为第二数值;第二数值大于0,且小于0.3倍的第六长度。
在本申请的一个技术方案中,第三永磁体远离第二转子铁芯的轴线一侧在第二转子铁芯周向上的长度为第四长度;第三永磁体靠近第二转子铁芯的轴线一侧在第二转子铁芯周向上的长度为第五长度;第四长度大于第五长度。
在本申请的一个技术方案中,第四永磁体在第二转子铁芯的径向方向的长度小于第四永磁体在第二转子铁芯周向方向的长度。
在本申请的一个技术方案中,第三永磁体的截面积与第四永磁体的截面积的比值大于等于1,且小于等于15。
在本申请的一个技术方案中,第三永磁体的剩磁与第四永磁体的剩磁的比值大于等于0.1,且小于等于0.9。
在本申请的一个技术方案中,第三永磁体在第二转子铁芯的周向上的长度大于第四永磁体在第二转子铁芯的径向上的长度。
在本申请的一个技术方案中,第二转子铁芯包括第二铁芯本体和第四隔磁桥;多个第四槽设置于第二铁芯本体;第四隔磁桥沿第二铁芯本体的边缘设置,与多个第四槽相对。
在本申请的一个技术方案中,第四隔磁桥与第二铁芯本体为一体式结构;或第四隔磁桥为不良导磁材料;或第四隔磁桥为设置在第二铁芯本体的边缘的空槽。
在本申请的一个技术方案中,第二转子铁芯在垂直于轴向上的截面的边缘包括多组曲线组,多组曲线组沿截面的周向分布,多组曲线组中每组曲线组包括圆弧段和/或直线段。
在本申请的一个技术方案中,圆弧段的数量为多段,多段圆弧段中至少一段圆弧段的圆心偏离第二转子铁芯的轴线。
本申请第三方面提供了一种电机,包括如上述任一技术方案的转子组件,因此该电机具备上述任一技术方案的转子组件的全部有益效果。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请的一个实施例的转子组件的结构示意图;
图2示出了根据本申请的一个实施例的第一转子铁芯的结构示意图;
图3示出了根据本申请的另一个实施例的转子组件的结构示意图;
图4示出了根据本申请的一个实施例的转子组件的局部结构示意图之一;
图5示出了根据本申请的一个实施例的转子组件的局部结构示意图之二;
图6示出了根据本申请的一个实施例的电机的结构示意图;
图7示出了根据本申请的一个实施例的转子组件的结构示意图;
图8示出了根据本申请的另一个实施例的转子组件的结构示意图;
图9示出了根据本申请的一个实施例的转子组件的充磁方向示意图;
图10示出了根据本申请的一个实施例的电机的结构示意图。
其中,图1至图10中的附图标记与部件名称之间的对应关系为:
10转子组件,100第一转子铁芯,110第一铁芯本体,120第一隔磁桥,122第一子隔磁桥,124第二子隔磁桥,130第二隔磁桥,210第一槽,212延伸槽,214容纳槽,220第二槽,310第一永磁体,320第二永磁体,400第一定子铁芯,410第一定子齿,420第一定子槽,430第一定子轭,500第一定子绕组,102第二转子铁芯,104第三永磁体,106第四永磁体,108第三隔磁桥,112第四隔磁桥,200定子组件,202第二定子铁芯,204第二定子绕组,206第二定子齿,208第二定子槽,216第二定子轭,300电机。
本发明的实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图10描述根据本申请一些实施例的转子组件和电机。
在本申请的一个实施例中,如图1和图2所示,提供了一种转子组件10,包括第一转子铁芯100、多个第一永磁体310和多个第二永磁体320;第一转子铁芯100包括第一铁芯本体110、多个第一槽210、多个第二槽220和第一隔磁桥120,多个第一槽210和多个第二槽220沿第一铁芯本体110的周向交替设置,多个第一槽210分别延伸至多个第二槽220中相邻的两个第二槽220之间,多个第一槽210和多个第二槽220中相邻的第一槽210和第二槽220之间设置有第一隔磁桥120;多个第一永磁体310分别设置于多个第一槽210内;多个第二永磁体320分别设置于多个第二槽220内。
在该实施例中,转子组件10包括第一转子铁芯100、多个第一永磁体310和多个第二永磁体320,第一转子铁芯100包括第一铁芯本体110、多个第一槽210和多个第二槽220,多个第一永磁体310分别设置于多个第一槽210内;多个第二永磁体320分别设置于多个第二槽220内,进而实现对第一永磁体310和第二永磁体320的安装和固定。多个第一槽210和多个第二槽220沿第一铁芯本体110的周向交替设置,多个第一槽210分别延伸至多个第二槽220中相邻的两个第二槽220之间,且第一隔磁桥120设置于相邻的第一槽210和第二槽220之间,使得第一隔磁桥120的长度增长,进而减少转子组件10的漏磁,缓解转子组件10的漏磁现象。由于减少了转子组件10漏磁,进而提升了电机300输出转矩,实现对电机300性能的优化。
通过将多个第一槽210分别延伸至多个第二槽220中相邻的两个第二槽220之间,且第一隔磁桥120设置于相邻的第一槽210和第二槽220之间,并且将多个第一永磁体310分别设置于多个第一槽210内,将多个第二永磁体320分别设置于多个第二槽220内,在减少转子组件10的漏磁的同时,提高了转子组件10的磁通,在能够保证电机300性能的前提下,提升了第一永磁体310和第二永磁体320的利用率,减少了第一永磁体310和第二永磁体320的永磁材料的浪费,在不增加永磁组件成本的同时提升电机300的转矩,进而改善了电机300的电磁性能,提升了电机300的品质。
将多个第一槽210和多个第二槽220沿第一铁芯本体110的周向交替设置,并且将多个第一永磁体310分别设置于多个第一槽210内,将多个第二永磁体320分别设置于多个第二槽220内,在实现对第一永磁体310和第二永磁体320安装和固定的同时,使得第一永磁体310和第二永磁体320的布置方式更合理,提升第一转子铁芯100上空间的利用率,进而能够在第一转子铁芯100有限的空间内布置更多的第一永磁体310和第二永磁体320,进一步提升电机300的性能。
转子组件10设置有第一永磁体310和第二永磁体320,第一永磁体310和第二永磁体320在定子组件所产生的磁场的作用下,带动转子组件10旋转,并且由于转子组件10设置有第一永磁体310和第二永磁体320,使得电机300具备更大的输出转矩,进而提升电机300的性能。
示例性地,第一永磁体310与第二永磁体320在径向上的边缘相对,即第二永磁体320沿第一转子铁芯100的周向布置,第一永磁体310不与相邻的第二永磁体320之间的间隙相对,而是第一永磁体310与第二永磁体320在径向上位于外侧边缘相对的情况下,第一隔磁桥120的长度与第一永磁体310在周向上宽度相匹配,进而使得第一隔磁桥120的长度较短。
在多个第一槽210与多个第二槽220之间的间隙相对,即第一永磁体310与相邻的第二永磁体320之间的间隙相对的情况下,第一隔磁桥120的长度与第二永磁体320在径向上的边缘相对,第一隔磁桥120的长度与第二永磁体320在径向上的长度相对于第一永磁体310在周向上宽度更长,进而加长了第一隔磁桥120的长度。
并且,与第一永磁体310在周向上的宽度相对的位置也可以不再设置隔磁桥,也能够进一步降低转子组件10的漏磁。
示例性地,第一永磁体310在第一转子铁芯100的径向上的截面呈矩形。第二永磁体320在第一转子铁芯100的径向上的截面呈矩形。
示例性地,第二永磁体320的截面也可为多边形,包括但不限于梯形、平行四边形,和六边形,便于充分利用转子空间,灵活布置永磁体。
第二永磁体320的截面也可为至少含有一条弧线作为边所构成的异形多边形,包括但不限于扇形、环形的一部分和U形。
示例性地,多个第二永磁体320沿第一转子铁芯100的周向呈环状分布。
示例性地,第一槽210延伸至多个第二槽220之间。
示例性地,多个第一永磁体310呈辐射状分布,多个第二永磁体320呈圆环状分布。
相邻两个第一永磁体310和该相邻两个第一永磁体310之间的一个第二永磁体320呈U形分布。
相邻两个第二永磁体320和该相邻两个第二永磁体320之间的一个第一永磁体310呈Y形或T形分布。
示例性地,永磁体的充磁方向为N极朝向的方向,也即磁力线发出的方向。对于充磁方向不是单一方向的永磁体,规定永磁体的充磁方向为N极朝向的方向,或磁力线发出的平均方向,即平均充磁方向,或对称结构永磁体对称轴位置磁力线发出的方向。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图2所示,多个第一槽210中每个第一槽210包括延伸槽212和容纳槽214;延伸槽212位于多个第二槽220中相邻的第二槽220之间;容纳槽214的第一侧与延伸槽212连通,第二侧向第一铁芯本体110的边缘延伸;第一永磁体310位于容纳槽214内。
在该实施例中,多个第一槽210中每个第一槽210均包括延伸槽212和容纳槽214,容纳槽214能够容纳第一永磁体310,进而实现对第一永磁体310的安装和固定。延伸槽212与容纳槽214连通,并且延伸至相邻的第二槽220之间,进一步减少转子组件10的漏磁,缓解转子组件10的漏磁现象,进而提升了电机300输出转矩,实现对电机300性能的优化。
示例性地,第一永磁体310设置于容纳槽214中,而不会延伸至延伸槽212内。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图2所示,第一隔磁桥120包括第一子隔磁桥122和第二子隔磁桥124;第一子隔磁桥122位于延伸槽212在周向上的第一侧;第二子隔磁桥124位于延伸槽212在周向上的第二侧。
在该实施例中,第一隔磁桥120包括第一子隔磁桥122和第二子隔磁桥124,第一子隔磁桥122和第二子隔磁桥124分别设置于延伸槽212在周向上的两侧,进一步延长第一子隔磁桥122和第二子隔磁桥124的长度,使得第一子隔磁桥122和第二子隔磁桥124进入磁饱和状态,进而降低转子组件10的漏磁,提升电机300的输出转矩。
示例性地,第一子隔磁桥122和第二子隔磁桥124分别设置于延伸槽212在周向上的两侧,使得第一子隔磁桥122和第二子隔磁桥124的长度能够与第二永磁体320在径向上的宽度相匹配,进而增加第一子隔磁桥122和第二子隔磁桥124的长度。
进一步地,第一子隔磁桥122和第二子隔磁桥124均可为连续的隔磁桥。
也可将第一子隔磁桥122和第二子隔磁桥124中至少一个隔磁桥断开。
示例性地,第一子隔磁桥122断开,第二子隔磁桥124不断开,延伸槽212与第一子隔磁桥122一侧的第二槽220连通,进而使得第一槽210与第二槽220连通。
第一子隔磁桥122不断开,第二子隔磁桥124断开,延伸槽212与第二子隔磁桥124一侧的第二槽220连通,进而使得第一槽210与第二槽220连通。
多个第一子隔磁桥122全部断开,多个第二子隔磁桥124中部分第二子隔磁桥124断开,不断开的第二子隔磁桥124能够确保冲片的连接强度要求即可。
多个第二子隔磁桥124全部断开,多个第一子隔磁桥122中部分第一子隔磁桥122断开,不断开的第一子隔磁桥122能够确保冲片的连接强度要求即可。
第一转子铁芯100包括多个转子冲片,多个转子冲片叠设,多个转子冲片中,部分转子冲片的第一子隔磁桥122和第二子隔磁桥124断开,另一部分转子冲片的第一子隔磁桥122和第二子隔磁桥124部分断开或不断开。
通过将第一子隔磁桥122和第二子隔磁桥124中部分隔磁桥断开,使得第一槽210和第二槽220连通,第一永磁体310和第二永磁体320设置于同一个槽内,减少第一永磁体310和第二永磁体320之间隔磁桥的数量,进而减少转子组件10的漏磁,缓解转子组件10的漏磁现象。由于减少了转子组件10漏磁,进而提升了电机300输出转矩,实现对电机300性能的优化。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图2所示,第一子隔磁桥122和第二子隔磁桥124呈V字形分布或八字形分布。
在该实施例中,第一子隔磁桥122和第二子隔磁桥124呈V字形分布或八字形分布,使得第一子隔磁桥122和第二子隔磁桥124相对于第二永磁体320在径向上的边缘倾斜设置,进一步加长了第一子隔磁桥122和第二子隔磁桥124的长度。
示例性地,第一子隔磁桥122和第二子隔磁桥124呈V字形分布或八字形分布,使得第一子隔磁桥122和第二子隔磁桥124相对于第二永磁体320在径向上的边缘倾斜设置,相对于第一子隔磁桥122和第二子隔磁桥124相对于第二永磁体320在径向上的边缘平行设置,倾斜设置的第一子隔磁桥122和第二子隔磁桥124具备更强的强度。
示例性地,第一子隔磁桥122可大致沿径向延伸,也可大致沿切向延伸。大致沿径向的第一隔磁桥120,是指第一隔磁桥120的延伸方向与所处的转子组件10直径的方向之间的夹角小于45°,如果该夹角大于45°则称之为大致沿切向延伸。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
第一永磁体310为稀土永磁体,第一永磁体310的最大磁能积大于第二永磁体320的最大磁能积。
在该实施例中,第一永磁体310设置为稀土永磁体,将第二永磁体320设置为最大磁能积小于第一永磁体310的最大磁能积的永磁材料,进而使得第二永磁体320的材料与第一永磁体310的材料不同,并且使得第二永磁体320的材料单价低于第一永磁体310的材料单价。
将第一永磁体310和第二永磁体320设置在材料不同的永磁体,并且将材料不同的第一永磁体310和第二永磁体320设置于同一个安装槽内,能够在不降低电机300转矩的同时,降低永磁组件的材料成本,进而降低电机300的材料成本。
示例性地,第一永磁体310的材料和第二永磁体320的材料不同,其中第一永磁体310的材料为具有更高的最大磁能积的稀土永磁,第二永磁体320的材料的最大磁能积低于第一永磁体310。
第一永磁体310的材料为钕铁硼,其最大磁能积大于200KJ/m 3,第二永磁体320的材料为铁氧体,其最大磁能积小于100KJ/m 3,第一永磁体310的最大磁能积远远高于第二永磁体320的最大磁能积。
最大磁能积作为衡量永磁体磁性能强弱的重要参数,指的是永磁材料退磁曲线上磁感应强度和磁场强度乘积的最大值,通常最大磁能积越大就表示永磁材料的磁性能越强。
示例性地,在方案一中,如图3所示,第一永磁体310与第二永磁体320在径向上的边缘相对,第一永磁体310与第二永磁体320在径向上位于外侧边缘相对。
在方案二中,如图1所示,多个第一槽210与多个第二槽220之间的间隙相对,第一永磁体310与相邻的第二永磁体320之间的间隙相对的情况下,第一槽210延伸至相邻的第二槽220之间。
在方案一和方案二中,第一永磁体310和第二永磁体320使用相同材料的永磁体,例如将其第一永磁体310的材料设置为钕铁硼,将其第二永磁体320的材料设置为最大磁能积较小的永磁材料,比如铁氧体。那么,方案一中的转子组件与相同尺寸的方案二中的转子组件相比,在相同定子组件中产生有效磁链地计算结果如表1所示。对比可知:相比于方案一的转子组件,方案二的转子组件有效降低了永磁体的漏磁,提高了永磁材料的利用率。
表1
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图4所示,第一永磁体310在径向上的长度为第一长度W1,第一永磁体310在周向上的长度为第二长度H1,第二永磁体320在径向上的长度为第三长度H2;第一长度W1大于第二长度H1;和/或第三长度H2大于第二长度H1。
在该实施例中,第一永磁体310在径向上的长度大于第一永磁体310在周向上的长度,能够提升第一永磁体310的磁钢利用率,进而提升第一永磁体310的磁通。
第二永磁体320在径向上的长度大于第一永磁体310在周向上的长度为第二长度H1,即H1<H2,能够提高第二永磁体320的抗退磁能力,延长电机300的使用寿命,提升电机300在工作过程中的稳定性。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图4所示,第一隔磁桥120的长度Lb大于0.7倍的第二长度H1。
在该实施例中,第一隔磁桥120的长度Lb大于0.7倍的第二长度H1,进一步提升转子组件10抑止漏磁效果。
示例性地,第一隔磁桥120的长度Lb大于0.707倍的第二长度H1,即Lb>0.707×H1。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图1和图2所示,第一转子铁芯100包括第二隔磁桥130,第二隔磁桥130沿第一铁芯本体110的边缘设置,与第一槽210相对。
在该实施例中,在第一铁芯本体110上与第一槽210相对的边缘处设置有第二隔磁桥130,将第二隔磁桥130设置于与第一铁芯本体110上与第一槽210相对的边缘位置,能够增加转子强度,也可以在转子强度满足要求的情况下部分地或全部地断开第二隔磁桥,以便进一步减少转子组件10漏磁,进而提升电机300的输出转矩。
示例性地,第一槽210靠近第一转子铁芯100外缘的一端与第一转子铁芯100的外缘形成第二隔磁桥130,该第二隔磁桥130可以是第一转子铁芯100上的一部分,第二隔磁桥130也可以断开并由空气或其他不良导磁材料填充。
进一步地,第二隔磁桥130可为连续的隔磁桥。
也可将第二隔磁桥130断开。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
第一转子铁芯100还包括第三槽,第三槽位于第一槽210靠近第一转子铁芯100边缘的一侧,沿周向延伸,与第一槽210连通。
在该实施例中,第一转子铁芯100还包括第三槽,第三槽沿第一转子铁芯100的边缘延伸,并且位于第一槽210靠近转子边缘的一侧,且第三槽与第一槽210连通。第一槽210能够增加位于第一槽210远离第二槽220一侧的隔磁桥的长度,进而减少转子组件10的漏磁,提升电机300反电势,增大电机300的输出转矩。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
第一永磁体310的截面积与第二永磁体320的截面积的比值大于等于0.3,且小于等于3;和/或第一永磁体310的截面积与剩磁的乘积为第一值,第二永磁体320的截面积与剩磁的乘积为第二值,第一值与第二值的比值大于0.5,且小于等于15。
在该实施例中,第一永磁体310的截面积S1与第二永磁体320的截面积S2的比值为0.3至3,即0.3≤S1/S2≤3,使得第一永磁体310和第二永磁体320的分配比例更合理,进而在确保电机300性能的同时,降低电机300的成本,提升电机300的性价比。
第一永磁体310的截面积S1与剩磁Br1的乘积K1与第二永磁体320的截面积S2与剩磁Br2的乘积K2之间的比值为0.5至15,即0.5≤K1/K2≤15。使得第一永磁体310和第二永磁体320的分配比例更合理,进而在确保电机300性能的同时,降低电机300的成本,提升电机300的性价比。
示例性地,第一永磁体310的截面积为第一永磁体310在第一转子铁芯100的径向上的截面的面积。第二永磁体320的截面积为第二永磁体320在第一转子铁芯100的径向上的截面的面积。
进一步地,0.3<S1/S2<3。0.5<K1/K2<15。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图4所示,第一永磁体310与第一转子铁芯100的轴线之间的最小距离为第一距离R1,第二永磁体320与轴线之间的最大距离为第二距离R2,第一永磁体310在径向上的长度为第一长度;第二距离R2与第一距离R1的差值大于0,且小于0.2倍的第一长度;或第二距离R2与第一距离R1的差值小于0。
在该实施例中,第二永磁体320与轴线之间的最大距离与第一永磁体310与第一转子铁芯100的轴线之间的最小距离的差值为0至0.2倍的第一永磁体310在径向上的长度,即0<(R2-R1)<0.2×W1;或第二距离R2与第一距离R1的差值小于0,即(R2-R1)<0,减少第一永磁体310和第二永磁体320在第一转子铁芯100的径向上的重叠,进而降低因第一永磁体310和第二永磁体320在第一转子铁芯100的径向上重叠而造成的第一永磁体310和第二永磁体320的浪费,进一步提升第一永磁体310和第二永磁体320的布局的合理性,实现对转子组件10的磁路的优化。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
转子组件10还包括非导磁填充物,非导磁填充物填充于延伸槽212内。
在该实施例中,转子组件10还包括非导磁填充物,非导磁填充物填充于延伸槽212内,进而提升第一转子铁芯100的结构强度。
可选地,延伸槽212内也可不设置非导磁填充物,而是填充空气,同样可降低转子组件10的漏磁。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
第一转子铁芯100在垂直于轴向上的截面的边缘包括多组曲线组,多组曲线组沿截面的周向分布,多组曲线组中每组曲线组包括圆弧段和/或直线段。
在该实施例中,通过将转子的边缘设置为由多组曲线依次连接而成,并且将每组曲线组设置多段圆弧段或圆弧段加直线段的组成方式,降低了电机300的转矩脉动,进而降低电机300的反电势谐波。
示例性地,第一转子铁芯100的截面外缘为多段弧线组成的复合曲线,或者为多段弧线与直线组成的复合曲线,复合曲线沿第一转子铁芯100的圆周方向周期性重复,重复的周期数等于第一永磁体310的数量。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
圆弧段的数量为多段,多段所述圆弧段中至少一段圆弧段的圆心偏离第一转子铁芯100的轴线。
在该实施例中,将至少一段圆弧段的圆心设置为偏离第一转子铁芯100的轴线,能够进一步改善电机300的气隙磁密谐波分布情况。
示例性地,复合曲线在一个重复周期内至少包括一条直线或一条偏心圆弧,偏心圆弧的圆心不在转子组件10的旋转中心上。
可选地,第一转子铁芯100的截面外缘也可为圆形,其圆心在转子组件10的旋转中心上。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
第一转子铁芯100还包括第一定位部和第二定位部;第一定位部与第一铁芯本体110连接,设置于第一槽210内,凸出于第一槽210的内壁;第二定位部与第一铁芯本体110连接,设置于第二槽220内,凸出于第二槽220的内壁。
在该实施例中,第一定位部设置于第一槽210内,第一永磁体310放置于第一槽210中时,可通过第一定位部对第一永磁体310进行定位和固定,提升第一永磁体310位置准确性的同时,使得第一永磁体310能够更稳定地嵌于第一槽210内。
第二定位部设置于第二槽220内,第二永磁体320放置于第二槽220中时,可通过第二定位部对第二永磁体320进行定位和固定,提升第二永磁体320位置准确性的同时,使得第二永磁体320能够更稳定地嵌于第二槽220内。
进一步地,第一定位部可沿第一转子铁芯100的轴向贯通设置,也可沿转第一转子铁芯100的轴向间隔设置。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
第一转子铁芯100还包括凸起或凹槽,凸起或凹槽设置于第一铁芯本体110的周向侧壁上,沿轴向延伸。
在该实施例中,第一转子铁芯100还包括凸起或凹槽,凸起或凹槽沿第一转子铁芯100的轴向设置于第一铁芯本体110的周向侧壁上,进一步改善电机300的谐波分布情况。
示例性地,第一转子铁芯100还包括凸起,凸起沿第一转子铁芯100的侧壁的轴向延伸,位于电子的转子与定子之间的气隙内,凸起的高度小于转子与定子之间的距离,进而避免转子在转动过程中与定子产生刮碰。
示例性地,第一转子铁芯100还包括凹槽,凹槽沿第一转子铁芯100的侧壁的轴向延伸,位于电子的转子与定子之间的气隙内。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
第一转子铁芯100还包括第四槽,第四槽与第二槽220连通,与第二永磁体320的角部相对。
在该实施例中,第一转子铁芯100还包括第四槽,第四槽设置于第一转子铁芯100上,位于与第二永磁体320的角部相对的位置,且第四槽与第二槽220连通。通过第四槽降低第二永磁体320角部退磁的程度,提升第二永磁体320在电机300工作过程中的稳定性,进而提升电机300性能的稳定性。
进一步地,第一转子铁芯100还包括第五槽,第五槽设置于第一转子铁芯100上,位于与第一永磁体310的角部相对的位置,且第五槽与第一槽210连通。通过第五槽降低第一永磁体310角部退磁的程度和降低第一永磁体310角部退磁的概率,提升第一永磁体310在电机300工作过程中的稳定性,进而提升电机300性能的稳定性。
示例性地,第四槽为沿第一转子铁芯100轴向上设置的贯通孔,且在第四槽的侧方与第二槽220连通。第五槽也为沿第一转子铁芯100轴向上设置的贯通孔,且在第五槽的侧方与第一槽210连通。
示例性地,第一槽210在第一永磁体310角部所在位置设置第五槽,可使第一永磁体310角部和第一槽210之间形成空气泡,或由第一永磁体310和第二永磁体320外的其他材料填充,起到保护永磁体的作用。
第二槽220在第二永磁体320角部所在位置设置第四槽,可使第二永磁体320角部和第二槽220之间形成空气泡,或由第一永磁体310和第二永磁体320外的其他材料填充,起到保护永磁体的作用。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图5所示,第一永磁体310的充磁方向为切向充磁,即第一永磁体310的充磁方向为沿转子圆周方向充磁,且在第一转子铁芯100的圆周方向上相邻的两个第一永磁体310的充磁方向相反,分别沿转子圆周顺时针方向和逆时针方向。
示例性地,第一永磁体310由第一转子铁芯100的中心向第一转子铁芯100的边缘延伸,且多个第一永磁体310沿第一转子铁芯100的周向间隔布置。
相邻的两个第一永磁体310均沿第一转子铁芯100的切向充磁,且相邻的两个第一永磁体310的充磁方向相反,相邻的两个第一永磁体310中一个第一永磁体310沿顺时针方向充磁,该相邻的两个第一永磁体310中另一个第一永磁体310沿顺时针方向充磁。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图5所示,第二永磁体320的充磁方向为径向平行充磁,即沿平行于转子直径的方向充磁,且圆周方向上相邻的两个第二永磁体320的充磁方向相反,分别指向转子中心和转子外缘。
示例性地,第二永磁体320沿第一转子铁芯100的周向延伸,且多个第二永磁体320沿第一转子铁芯100的周向间隔布置。多个第二永磁体320中相邻的两个第二永磁体320的充磁方向相反,相邻的两个第二永磁体320中一个第二永磁的充磁方向由第一转子铁芯100的中心指向第一转子铁芯100的边缘,相邻的两个第二永磁体320中一个第二永磁的充磁方向由第一转子铁芯100的边缘指向第一转子铁芯100的中心。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图5所示,第二永磁体320的充磁方向为径向非平行充磁,即第二永磁体320上各部位的充磁方向不相同,但相互夹角均小于180°,第二永磁体320的N极和S极分别面向转子中心和转子外缘,相邻两个第二永磁体320的充磁方向相反,当其中一个第二永磁体320的N极面向转子中心,相邻的另一个第二永磁体320的S极面向转子中心。
示例性地,多个第二永磁体320中每个第二永磁体320的充磁方向与该第二永磁体320在径向上的对称线呈一定的夹角,使得该第二永磁体320的充磁方向与该第二永磁体320在径向上的对称线所在的方向不平行,但充磁方向的整体趋势仍是由第一转子铁芯100的中部指向第一转子铁芯100的边缘,或充磁方向的整体趋势由第一转子铁芯100的边缘指向第一转子铁芯100的中部。并且在相邻的两个第二永磁体320中一个第二永磁体320的充磁方向由第一转子铁芯100的中部指向第一转子铁芯100的边缘,那么在相邻的两个第二永磁体320中另一个第二永磁体320的充磁方向由第一转子铁芯100的边缘指向第一转子铁芯100的中部,即相邻的两个第二永磁体320的充磁方向相反。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图5所示,第一永磁体310的充磁方向和第二永磁体320的充磁方向满足以下要求:相邻两个第一永磁体310及位于其中间位置的一个第二永磁体320构成U形分布,当相邻两个第一永磁体310的充磁方向指向U形内侧,即N极面向U形内侧,则它们中间位置的一个第二永磁体320的充磁方向也指向U形内侧,即N极面向U形内侧;当相邻两个第一永磁体310的充磁方向指向U形外侧,即N极面向U形外侧,则它们中间位置的一个第二永磁体320的充磁方向也指向U形外侧,即N极面向U形外侧。
示例性地,一个第二永磁体320在第一转子铁芯100周向上的两侧包括两个第一永磁体310,两个第一永磁体310相对于一个第二永磁体320更远离第一转子铁芯100的中心,为便于说明,现将以上三个永磁体分别称作第一个第一永磁、第一个第二永磁和第二个第一永磁体310。
在与第二个第一永磁体310相邻的位置还设置有第二个第二永磁体320,在于第二个第二永磁体320相邻的位置还设置有第三个第一永磁体310,第三个第一永磁体310位于第二个第二永磁体320在周向上远离第二个第一永磁体310的一侧。
第一个第一永磁体310的充磁方向为由第一个第一永磁体310指向第二个第一永磁体310,第二个第一永磁体310的充磁方向为由第二个第一永磁体310指向第一个第一永磁体310,第一个第二永磁体320的充磁方向由第一转子铁芯100的中心指向第一转子铁芯100的边缘。
第二个第一永磁体310的充磁方向为由第二个第一永磁体310指向背离第三个第一永磁体310的方向,第三个第一永磁体310的充磁方向为由第三个第一永磁体310指向背离第二个第一永磁体310的方向,第二个第二永磁体320的充磁方向由第一转子铁芯100的边缘指向第一转子铁芯100的中心。
示例性地,第一永磁体310和第二永磁体320的充磁方向均为第一永磁体310和第二永磁体320的S极至N极。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
第一转子铁芯100设置有至少一个孔或狭缝或冲片铆扣点。
在该实施例中,第一转子铁芯100包括多个转子冲片,多个转子冲片叠设为第一转子铁芯100,多个转子冲片中每个转子冲片上均设置有至少一个孔、狭缝或冲片铆扣点,多个转子冲片通过至少一个孔、狭缝或冲片铆扣点连接。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
第一转子铁芯100的轴向长度、第一永磁体310的轴向长度以及第二永磁体320的轴向长度,三者可以相同、也可以不相同,以便利用端部效应。
示例性地,第一转子铁芯100的轴向长度、第一永磁体310的轴向长度以及第二永磁体320的轴向长度相同,并且在装配第一转子铁芯100、第一永磁体310和第二永磁体320时在第一转子铁芯100的轴向上对齐。
第一转子铁芯100的轴向长度、第一永磁体310的轴向长度以及第二永磁体320的轴向长度不同相同,并且在装配第一转子铁芯100、第一永磁体310和第二永磁体320时在第一转子铁芯100的轴向上装配第一转子铁芯100的端部、第一永磁体310的端部和第二永磁体320的端部交错排列。
在本申请的一个实施例中,提供了一种电机300,包括如上述任一实施例的转子组件10,因此该电机300具备上述任一实施例的转子组件10的全部有益效果。
进一步地,电机300为永磁电机。
本申请所提供的电机300包括转子组件10,根据本申请的转子组件10,通过组合使用两组永磁体并合理设置隔磁桥,有效地降低了永磁体的漏磁并提高了转子磁通,在电机300性能胜任的前提下,提高了永磁材料的利用率。
本实施例提供了一种电机300,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
电机300还包括定子组件和安装在定子组件内腔中的可旋转地转子组件10,定子组件内腔和转子组件10外缘之间设置有气隙。
本实施例提供了一种电机300,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图6所示,定子组件包括第一定子铁芯400和第一定子绕组500,其中第一定子铁芯400包括第一定子齿410、第一定子槽420和第一定子轭430,第一定子绕组500包括多个定子线圈,定子线圈缠绕在第一定子齿410上,且它的两条线圈边分别放置在被缠绕的第一定子齿410两侧相邻的两个第一定子槽420中。
本实施例提供了一种电机300,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图6所示,第一转子铁芯100的轴向长度与第一定子铁芯400的轴向长度,二者可以相同、也可以不相同,以便利用端部效应。
本实施例提供了一种电机300,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
第一转子铁芯100和第一定子铁芯400的材料为叠压硅钢片、实心钢、非晶态铁磁复合材料或者软磁复合材料,第一定子绕组500材料为铜线、铝线或者铜铝混合线。
在本申请的一个实施例中,如图7和图8所示,提供了一种转子组件10,包括第二转子铁芯102、多个第三永磁体104和多个第四永磁体106;第二转子铁芯102设置有多个第四槽和多个第五槽,多个第四槽和多个第五槽均沿周向布置,多个第四槽和多个第五槽中相邻的第四槽和第五槽之间设置有第三隔磁桥108,第三隔磁桥108沿第二转子铁芯102的周向或径向延伸;多个第三永磁体104分别设置于多个第四槽内;多个第四永磁体106设置于多个第五槽内。
在该实施例中,转子组件10包括第二转子铁芯102、第四槽、第五槽、第三永磁体104和第四永磁体106,其中,第四槽、第五槽、第三永磁体104和第四永磁体106的数量均为多个,多个第四槽为多个第三永磁体104提供容纳空间,多个第五槽为多个第四永磁体106提供容纳空间,第二转子铁芯102上设置有多个永磁体,一方面,可以增大永磁体的分布范围,从而增大转子组件10的磁通量,增强转子组件10的磁性,另一方面,设置多个永磁体,可以提升聚磁效果,减小转子组件10的体积。
进一步地,在相邻的第四槽和第五槽之间设置有第三隔磁桥108从而能够减少转子组件10的漏磁现象,同时,设置多个第四槽和多个第五槽,并在每一个第四槽和每一个相邻的第五槽之间设置有第三隔磁桥108,通过合理设置第三隔磁桥108的位置,从而改善第三永磁体104和第四永磁体106之间的漏磁问题,提高第三永磁体104和第四永磁体106的利用率,保证转子组件10运转的磁通量需求,保证转子组件10的磁性,提高转子组件10的转矩输出能力。
更进一步地,通过将第三隔磁桥108设置为沿第二转子铁芯102的周向或径向延伸,从而合理设置第三隔磁桥108的位置,使第三隔磁桥108进入磁饱和状态,进一步改善转子组件10的漏磁问题,保证转子组件10的磁性,从而提高永磁体的利用率,可以理解的是,为使转子组件10正常运行,需要保证其提供足够的磁通量,相关技术中往往对漏磁现象更严重的转子组件10布置更多的永磁体,以弥补漏磁造成的磁通量损失,而本申请通过沿周向设置多个第四槽和第五槽,并在第四槽内设置第三永磁体104,在第五槽内设置第四永磁体106,在相邻的第三永磁体104和第四永磁体106之间设置第三隔磁桥108,从而通过合理设置第三隔磁桥108的位置,改善了转子组件10的漏磁现象,进而减少了第三永磁体104和第四永磁体106的用量,提高了第三永磁体104和第四永磁体106的利用率。
示例性地,如图7所示,多个第三永磁体104在转子组件10中呈辐射状分布,多个第四永磁体106在转子组件10中呈圆环状分布,相邻的两个第三永磁体104和两个第三永磁体104之间的第四永磁体106呈“U”形分布,相邻的两个第四永磁体106和两个第四永磁体106之间的第三永磁体104呈“Y”形分布,一方面,这样设置可以保证永磁体分布具有一定的规则,从而便于永磁体在转子组件10上的安装和拆卸;另一方面,这样设置可以保证所有第三永磁体104和第四永磁体106产生的磁通量相互叠加增强而不是削弱,确保了转子组件10高效工作。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
第三永磁体104为铁氧体永磁,第三永磁体104的最大磁能积小于第四永磁体106的最大磁能积。
在该实施例中,第三永磁体104设置为铁氧体永磁体,将第四永磁体106设置为磁能积大于第三永磁体104的磁能积的永磁材料,进而使得第四永磁体106的材料与第三永磁体104的材料不同,并且使得第三永磁体104材料的单位体积成本低于第四永磁体106材料的单位体积成本。
第三永磁体104可以设置为铁氧体永磁,第三永磁体104的最大磁能积小于第四永磁体106的最大磁能积,可以理解的是,最大磁能积可以衡量永磁体磁性能的强弱,示例性地,最大磁能积可以表示为(BH)max,其中,B指的是永磁材料在退磁曲线上的磁感应强度,H指的是磁场强度,最大磁能积指的是永磁材料在退磁曲线上的磁感应强度与磁场强度在退磁曲线上的最大乘积。
示例性地,铁氧体的最大磁能积小于10KJ/m 3,第四永磁体106可以设置为钕铁硼永磁或其他稀土永磁,钕铁硼的最大磁能积大于200KJ/m 3,一方面,铁氧体永磁价格低廉,制作工艺简单,使用范围广泛,可以降低转子组件10的成本;另一方面,钕铁硼永磁或其他稀土永磁磁性能强,可以减小转子组件的体积;将两种材料混合使用,在保证永磁体性能的同时,合理控制成本,提升永磁体的性价比,从而利于降低转子组件10的成本。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图7和图8所示,多个第三永磁体104沿第二转子铁芯102的周向布置;多个第四永磁体106沿第二转子铁芯102的周向布置,位于多个第三永磁体104靠近第二转子铁芯102的轴线的一侧。
在该实施例中,多个第三永磁体104和多个第四永磁体106沿第二转子铁芯102的周向布置,从而便于第三隔磁桥108的合理设置,能够在保证第二转子铁芯102的圆周方向上均设置有永磁体的同时,合理设置第三隔磁桥108,改善转子组件10的漏磁现象,进而提高永磁体的利用率,保证圆周方向上转子组件10运转的磁通量需求,保证转子组件10的磁性,保证转子组件10的正常运转。
将多个第四永磁体106设置于多个第三永磁体104靠近第二转子铁芯102轴线的一侧,示例性地,将第四永磁体106的材料设置为钕铁硼或其他稀土永磁,相比于铁氧体,最大磁能积更大,从而能够相比与铁氧体进一步增强磁通量。可以理解的是,在靠近轴线的位置设置最大磁能积更大的永磁材料,能够在提供磁通量的同时提高其抗退磁性能,从而提升转子组件10的可靠性。
进一步地,第三永磁体104相对于第四永磁体106远离转子组件10的轴线,从而将第三永磁体104的材料设置为铁氧体,能够在保证转子组件10磁性的同时,降低转子组件10的成本。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图7和图8所示,第三永磁体104与第二转子铁芯102的轴线之间的最小距离为第三距离a,第四永磁体106与轴线之间的最大距离为第四距离b,第三永磁体104在径向上的长度为第六长度e;第四距离b与第三距离a的差为第一数值;第一数值大于0,且小于0.3倍的第六长度e;或第一数值小于0。
在该实施例中,将第二转子铁芯102的轴线与第三永磁体104之间的最小距离设置为第三距离a,将第二转子铁芯102的轴线与第四永磁体106之间的最大距离的最大设置为第四距离b,将第三永磁体104的径向长度设置为第六长度e,将第四距离b和第三距离a的差值设置为第一数值,控制第一数值大于0,且小于第六长度e的0.3倍,或控制第一数值小于0,从而通过对第一数值的设置,对第三永磁体104和第四永磁体106在转子组件10内的空间进行合理设置,便于对第三隔磁桥108的位置进行合理设置,进而提高永磁体在转子组件10的空间利用率,改善转子组件10的漏磁现象,提高转子组件10的转矩输出能力。
进一步地,控制第一数值大于0,且小于第六长度e的0.3倍,或控制第一数值小于0,可以减少第三永磁体104和第四永磁体106在空间位置上的重叠,提高转子组件10的空间利用率,从而避免对第三永磁体104和第四永磁体106的浪费,提高第三永磁体104和第四永磁体106的利用率,进一步降低转子组件10的成本,实现对转子组件10的磁路的优化,提高转子组件10的转矩输出能力,保证转子组件10运转的磁通量需求,保证转子组件10的磁性,保障转子组件10的正常稳定运转。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
多个第三永磁体104和多个第四永磁体106沿第二转子铁芯102的周向交替布置。
在该实施例中,可以在第二转子铁芯102的圆周方向上,将多个第三永磁体104和多个第四永磁体106交替设置,从而可以减少第三永磁体104和第四永磁体106在转子组件10内的占据空间,实现对转子组件10空间资源的合理分配,便于合理设置第一隔离桥的位置,改善转子组件10的漏磁现象,进而提高转子组件10的转矩输出能力,保证转子组件10运转的磁通量需求,保证转子组件10的磁性,保障转子组件10的正常稳定运转。
示例性地,如图8所示,多个第三永磁体104在转子组件10中呈辐射状分布,相邻的两个第三永磁体104和两个第三永磁体104之间的第四永磁体106呈“U”形分布,相邻的两个第四永磁体106和两个第四永磁体106之间的第三永磁体104呈“Y”形分布,一方面,这样设置可以保证第三永磁体104和第四永磁体106分布具有一定的规则,从而便于第三永磁体104和第四永磁体106在转子组件10上的安装和拆卸;另一方面,这样设置可以保证所有第三永磁体104和第四永磁体106产生的磁通量相互叠加增强而不是削弱,确保了转子组件10高效工作。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图7和图8所示,第三永磁体104与第二转子铁芯102的轴线之间的最小距离为第三距离a,第四永磁体106与轴线之间的最大距离为第四距离b,第三永磁体104在径向上的长度为第六长度e;第四距离b与第三距离a的差为第二数值;第二数值大于0,且小于0.3倍的第六长度e。
在该实施例中,将第二转子铁芯102的轴线与第三永磁体104之间的最小距离设置为第三距离a,将第二转子铁芯102的轴线与第四永磁体106之间的最大距离设置为第四距离b,将第三永磁体104的径向长度设置为第六长度e,将第四距离b和第三距离a的差值设置为第二数值,控制第二数值大于0,且小于第六长度e的0.3倍,从而通过对第二数值的设置,对第三永磁体104和第四永磁体106在转子组件10内的空间进行合理设置,从而提高永磁体在转子组件10的空间利用率,便于合理设置第一隔离桥的位置,改善转子组件10的漏磁现象,进而减少了第三永磁体104和第四永磁体106的用量,提高了第三永磁体104和第四永磁体106的利用率。
进一步地,控制第二数值大于0,且小于第六长度e的0.3倍,可以减少第三永磁体104和第四永磁体106在空间位置上的重叠,提高转子组件10的空间利用率,从而提高第三永磁体104和第四永磁体106的利用率,避免对第三永磁体104和第四永磁体106的浪费,进一步降低转子组件10的成本,实现对转子组件10的磁路的优化,提高转子组件10的转矩输出能力,保证转子组件10运转的磁通量需求,保证转子组件10的磁性,保障转子组件10的正常稳定运转。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图7和图8所示,第三永磁体104远离第二转子铁芯102的轴线一侧在第二转子铁芯102周向上的长度为第四长度c;第三永磁体104靠近第二转子铁芯102的轴线一侧在第二转子铁芯102周向上的长度为第五长度d;第四长度c大于第五长度d。
在该实施例中,在第二转子铁芯102的圆周方向上,将第三永磁体104远离第二转子铁芯102轴线的一侧的长度设置为第四长度c,将第三永磁体104靠近轴线的一侧设置为第五长度d,将第五长度d设置为小于第四长度c,可以理解的是,转子组件10靠近轴心的位置,安装空间较小,从而将第五长度d设置为小于第四长度c,从而能够便于第三永磁体104的安装和拆卸,进而保证永磁体之间可以形成磁路,保证转子组件10运转的磁通量需求,保证转子组件10的磁性,提高转子组件10的转矩输出能力,保障转子组件10的正常稳定运转。
进一步地,可以将第二转子铁芯102的轴向长度、第三永磁体104的轴向长度和第四永磁体106的轴向长度设置成相同,从而便于转子组件10的安装和拆卸,也可以将第二转子铁芯102的轴向长度、第三永磁体104的轴向长度和第四永磁体106的轴向长度设置成不同,从而优化和利用转子组件10的端部效应。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图7和图8所示,第四永磁体106在第二转子铁芯102的径向方向的长度小于第四永磁体106在第二转子铁芯102周向方向的长度。
在该实施例中,设置第四永磁体106的沿第二转子铁芯102的圆周方向的长度大于第四永磁体106的沿第二转子铁芯102的半径方向的长度,提高第四永磁体106的利用率,保证转子组件10运转的磁通量需求,保证转子组件10的磁性,提高转子组件10的转矩输出能力,保障转子组件10的正常稳定运转。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
第三永磁体104的截面积与第四永磁体106的截面积的比值大于等于1,且小于等于15。
在该实施例中,将第三永磁体104的横截面积与第四永磁体106的横截面积的比值设置在大于等于1,小于等于15的范围内,从而实现对转子组件10空间的合理分配,提升转子组件10的空间利用率,便于合理设置第一隔离桥的位置,改善转子组件10的漏磁现象,并且,通过对第三永磁体104和第四永磁体106的横截面积比值的合理配置,能够控制转子组件10的成本,从而提高第三永磁体104和第四永磁体106的利用率,保证转子组件10运转的磁通量需求,保证转子组件10的磁性,提高转子组件10的转矩输出能力,保障转子组件10的正常稳定运转。
示例性地,第四永磁体106的截面可以为矩形。
示例性地,可以将第三永磁体104的截面积S1设置为50mm 2(平方毫米),将第四永磁体106的截面积S2设置为10mm 2,从而使得S1/S2的比值设置为5,处于大于等于1,小于等于15的范围内。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
第三永磁体104的剩磁与第四永磁体106的剩磁的比值大于等于0.1,且小于等于0.9。
在该实施例中,将第三永磁体104的剩磁与第四永磁体106的剩磁的比值设置在大于等于0.1,小于等于0.9的范围内,从而能够改善第三永磁体104和第四永磁体106之间的漏磁现象,保证转子组件10运转的磁通量需求,保证转子组件10的磁性,提高转子组件10的转矩输出能力,保障转子组件10的正常稳定运转,提升转子组件10的性价比。
示例性地,可以在室温下,将第三永磁体104的剩磁Br1设置为0.4T(特斯拉),将第四永磁体106的剩磁Br2设置为1.2T,从而使Br1/Br2的比值设置为0.33,处于大于等于0.1,小于等于0.9的范围内。
进一步地,如图9所示,第三永磁体104的充磁方向为切向充磁,即沿转子组件10的圆周方向充磁,且圆周方向上每相邻的两个第三永磁体104的充磁方向相反,示例性地,当相邻的两个第三永磁体104中的其中一个第三永磁体104为沿转子组件10的圆周方向的顺时针方向(如箭头f所示)充磁时,相邻的两个第三永磁体104中的另一个第三永磁体104沿转子组件10的圆周方向的逆时针方向(如箭头g所示)充磁;当相邻的两个第三永磁体104中的其中一个第三永磁体104为沿转子组件10的圆周方向的逆时针方向充磁时,相邻的两个第三永磁体104中的另一个第三永磁体104沿转子组件10的圆周方向的顺时针方向充磁。
第四永磁体106的充磁方向为径向平行充磁,即沿平行于转子组件10的直径的方向充磁,且圆周方向上相邻的两个第四永磁体106的充磁方向相反,分别指向转子组件10的中心和转子组件10的外部边缘。示例性地,当相邻的两个第四永磁体106中的其中一个第四永磁体106向转子组件10的中心方向(如箭头h所示)充磁时,相邻的两个第四永磁体106中的另一个第四永磁体106向转子组件10的外部边缘方向(如箭头i所示)充磁;当相邻的两个第四永磁体106中的其中一个第四永磁体106为沿转子组件10的外部边缘方向充磁时,相邻的两个第四永磁体106中的另一个的第四永磁体106沿转子组件10的中心方向充磁。
示例性地,第四永磁体106的截面可以为矩形,第四永磁体106的径向方向,也就是第四永磁体106的充磁方向上的长度小于其圆周方向上的长度。第三永磁体104充磁方向上的长度大于第四永磁体106充磁方向上的长度。
可以理解的是,永磁体具有N极(南极,也即正极)和S极(北极,也即负极),永磁体的充磁方向为N极朝向的方向,也即永磁体磁力线发出的方向。
第三永磁体104的充磁方向和第四永磁体106的充磁方向满足以下要求:相邻两个第三永磁体104及位于两个第三永磁体104中间的一个第四永磁体106构成U形分布,当相邻两个第三永磁体104的充磁方向指向U形内侧(即N极面向U形内侧)时,则中间的一个第四永磁体106的充磁方向也指向U形内侧(即N极面向U形内侧);当相邻两个第三永磁体104的充磁方向指向U形外侧(即N极面向U形外侧),则它们中间的一个第四永磁体106的充磁方向也指向U形外侧(即N极面向U形外侧)。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图7和图8所示,第三永磁体104在第二转子铁芯102的周向上的长度大于第四永磁体106在第二转子铁芯102的径向上的长度。
在该实施例中,第四永磁体106沿第二转子铁芯102半径方向上的长度小于第四永磁体106沿第二转子铁芯102圆周方向上的长度,从而能够增加第四永磁体106的抗退磁能力,保障转子组件10的正常稳定运转。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图7和图8所示,第二转子铁芯102包括第二铁芯本体和第四隔磁桥112;多个第四槽设置于第二铁芯本体;第四隔磁桥112沿第二铁芯本体的边缘设置,与多个第四槽相对。
在该实施例中,第二转子铁芯102还包括第二铁芯本体和第四隔磁桥112,其中,第二铁芯本体上设置有多个第四槽,第四隔磁桥112的设置位置与第四槽的位置相互对应,并沿着第二铁芯本体的边缘布置,通过增设第四隔磁桥112,进一步改善转子组件10的漏磁现象,保证转子组件10运转的磁通量需求,保证转子组件10的磁性,提高转子组件10的转矩输出能力。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图7和图8所示,第四隔磁桥112与第二铁芯本体为一体式结构;或第四隔磁桥112为不良导磁材料;或第四隔磁桥112为设置在第二铁芯本体的边缘的空槽。
在该实施例中,在该实施例中,第四隔磁桥112与第二铁芯本体为一体式结构,或第四隔磁桥112为不良导磁材料,或第四隔磁桥112为设置在第二铁芯本体的边缘的空槽,从而可以根据转子组件10的空间选择第四隔磁桥112的设置形式,便于对转子组件10空间资源的合理布置,便于合理设置第二隔离桥的位置,改善转子组件10的漏磁现象。
示例性地,第三永磁体104槽靠近转子组件10外部边缘的一端,第三永磁体104的两侧中的至少一侧设置有延伸凹槽,延伸凹槽沿第二转子铁芯102的圆周方向延伸,从而进一步提高电机300的转矩输出能力。
示例性地,第三永磁体104槽沿转子组件10圆周方向的两侧、靠近转子组件10外部边缘的一侧可以设置有圆孔或狭缝,可以将圆孔的直径和狭缝的宽度设置在大于0.5mm且小于2mm的范围内,从而降低转子组件10的转矩脉动,降低反电势的谐波,并优化气隙磁密谐波。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
如图7和图8所示,第二转子铁芯102在垂直于轴向上的截面的边缘包括多组曲线组,多组曲线组沿截面的周向分布,多组曲线组中每组曲线组包括圆弧段和/或直线段。
在该实施例中,通过将转子的边缘设置为由多组曲线依次连接而成,并且将每组曲线组设置多段圆弧段或圆弧段加直线段的组成方式,降低了电机300的转矩脉动,进而降低电机300的反电势谐波。
沿第二转子铁芯102垂直于其轴向所形成的截面的圆周方向上,设置有多组曲线组,多组曲线组中的每一个曲线组均由多段复合曲线组成,其中,复合曲线可以由多段圆弧段和/或多个直线段组成,从而降低转子组件10的转矩脉动,降低反电势的谐波,并优化气隙磁密谐波。示例性地,第二铁芯本体的截面外部边缘可以为圆形。
进一步地,可以将复合曲线沿第二转子铁芯102的圆周方向上周期性设置,可以将周期设置的数量与第三永磁体104的数量设置相同,进而保证转子组件10的对称性。
本实施例提供了一种转子组件10,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征。
圆弧段的数量为多段,多段圆弧段中至少一段圆弧段的圆心偏离第二转子铁芯102的轴线。
在该实施例中,多个圆弧段中的至少一个圆弧段的圆心不在转子组件10的旋转中心上,从而可以从而降低转子组件10的转矩脉动,降低反电势的谐波,并优化气隙磁密谐波。
在本申请的一个实施例中,提供了一种电机300,包括上述任一实施例的转子组件10,因而该电机300具有上述任一实施例的转子组件10的全部有益技术效果。
如图10所示,进一步地,电机300还包括定子组件200,转子组件10安装在定子组件200的内腔中。定子组件200的内腔和转子组件10外部边缘之间设置有气隙,从而使得转子组件10可以相对定子组件200旋转。
示例性地,定子组件200包括第二定子铁芯202和第二定子绕组204,其中第二定子铁芯202包括第二定子齿206、第二定子槽208和第二定子轭216,第二定子绕组204包括多个定子线圈,定子线圈缠绕在第二定子齿206上,定子线圈的其中两条线圈分别设置在被缠绕的第二定子齿206的两侧的相邻的两个第二定子槽208中。
进一步地,可以将第二转子铁芯102的轴向长度和第二定子铁芯202的轴向长度设置为相同,从而便于转子组件10的安装和拆卸,也可以将第二转子铁芯102的轴向长度和第二定子铁芯202的轴向长度设置为不同,从而优化和利用转子组件10的端部效应。
示例性地,可以将第二转子铁芯102和第二定子铁芯202设置为叠压硅钢片、实心钢、非晶态铁磁复合材料或者SMC(软磁复合)材料,可以将第二定子绕组204材料为铜线、铝线或者铜铝混合线。
通过本申请在转子组件10中设置的第三永磁体104和第四永磁体106,并对第三永磁体104和第四永磁体106的位置进行合理布置,合理设置第三隔磁桥108和第四隔磁桥112的位置,从而改善第三永磁体104和第四永磁体106的漏磁现象,减少了第三永磁体104和第四永磁体106的用量,提高第三永磁体104和第四永磁体106的利用率,能够在提供磁通量的同时提高其抗退磁性能,从而提升转子组件10的可靠性,提高了电机300的使用的可靠性,保证电机300的稳定运行。
在本申请中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (33)

  1. 一种转子组件,其中,包括:
    第一转子铁芯,所述第一转子铁芯包括第一铁芯本体、多个第一槽、多个第二槽和第一隔磁桥,所述多个第一槽和所述多个第二槽沿所述第一铁芯本体的周向交替设置,所述多个第一槽分别延伸至所述多个第二槽中相邻的两个第二槽之间,所述多个第一槽和所述多个第二槽中相邻的第一槽和第二槽之间设置有所述第一隔磁桥;
    多个第一永磁体,所述多个第一永磁体分别设置于所述多个第一槽内;
    多个第二永磁体,所述多个第二永磁体分别设置于所述多个第二槽内。
  2. 根据权利要求1所述的转子组件,其中,所述多个第一槽中每个第一槽包括:
    延伸槽,所述延伸槽位于所述多个第二槽中相邻的第二槽之间;
    容纳槽,所述容纳槽的第一侧与所述延伸槽连通,第二侧向所述第一铁芯本体的边缘延伸;
    所述第一永磁体位于所述容纳槽内。
  3.  根据权利要求2所述的转子组件,其中,所述第一隔磁桥包括:
    第一子隔磁桥,所述第一子隔磁桥位于所述延伸槽在周向上的第一侧;
    第二子隔磁桥,所述第二子隔磁桥位于所述延伸槽在周向上的第二侧。
  4.  根据权利要求3所述的转子组件,其中,所述第一子隔磁桥和所述第二子隔磁桥呈V字形分布或八字形分布。
  5.  根据权利要求1至4中任一项所述的转子组件,其中,第一永磁体为稀土永磁体,所述第一永磁体的最大磁能积大于所述第二永磁体的最大磁能积。
  6.  根据权利要求1至5中任一项所述的转子组件,其中,所述第一永磁体在径向上的长度为第一长度,所述第一永磁体在周向上的长度为第二长度,所述第二永磁体在径向上的长度为第三长度;
    所述第一长度大于所述第二长度;和/或
    所述第三长度大于所述第二长度。
  7.  根据权利要求6所述的转子组件,其中,所述第一隔磁桥的长度大于0.7倍的所述第二长度。
  8.  根据权利要求1至7中任一项所述的转子组件,其中,所述第一转子铁芯包括:
    第二隔磁桥,所述第二隔磁桥沿所述第一铁芯本体的边缘设置,与所述第一槽相对。
  9.  根据权利要求1至8中任一项所述的转子组件,其中,所述第一转子铁芯还包括:
    第三槽,所述第三槽位于所述第一槽靠近所述第一转子铁芯边缘的一侧,沿周向延伸,与所述第一槽连通。
  10.  根据权利要求1至9中任一项所述的转子组件,其中,所述第一永磁体的截面积与所述第二永磁体的截面积的比值大于等于0.3,且小于等于3;和/或
    所述第一永磁体的截面积与剩磁的乘积为第一值,所述第二永磁体的截面积与剩磁的乘积为第二值,所述第一值与所述第二值的比值大于0.5,且小于等于15。
  11.  根据权利要求1至10中任一项所述的转子组件,其中,所述第一永磁体与所述第一转子铁芯的轴线之间的最小距离为第一距离,所述第二永磁体与所述轴线之间的最大距离为第二距离,所述第一永磁体在径向上的长度为第一长度;
    所述第二距离与所述第一距离的差值大于0,且小于0.2倍的第一长度;或
    所述第二距离与所述第一距离的差值小于0。
  12.  根据权利要求2至4中任一项所述的转子组件,其中,还包括:
    非导磁填充物,所述非导磁填充物填充于所述延伸槽内。
  13.  根据权利要求1至12中任一项所述的转子组件,其中,所述第一转子铁芯在垂直于轴向上的截面的边缘包括多组曲线组,所述多组曲线组沿所述截面的周向分布,所述多组曲线组中每组曲线组包括圆弧段和/或直线段。
  14.  根据权利要求13所述的转子组件,其中,所述圆弧段的数量为多段,多段所述圆弧段中至少一段圆弧段的圆心偏离所述第一转子铁芯的轴线。
  15.  根据权利要求1至14中任一项所述的转子组件,其中,所述第一转子铁芯还包括:
    第一定位部,所述第一定位部与所述第一铁芯本体连接,设置于所述第一槽内,凸出于所述第一槽的内壁;
    第二定位部,所述第二定位部与所述第一铁芯本体连接,设置于所述第二槽内,凸出于所述第二槽的内壁。
  16.  根据权利要求1至15中任一项所述的转子组件,其中,所述第一转子铁芯还包括:
    凸起或凹槽,所述凸起或所述凹槽设置于所述第一铁芯本体的周向侧壁上,沿轴向延伸。
  17.  根据权利要求1至16中任一项所述的转子组件,其中,所述第一转子铁芯还包括:
    第四槽,所述第四槽与所述第二槽连通,与所述第二永磁体的角部相对。
  18.  一种转子组件,其中,包括:
    第二转子铁芯,所述第二转子铁芯设置有多个第四槽和多个第五槽,所述多个第四槽和所述多个第五槽均沿周向布置,所述多个第四槽和所述多个第五槽中相邻的第四槽和第五槽之间设置有第三隔磁桥,所述第三隔磁桥沿所述第二转子铁芯的周向或径向延伸;
    多个第三永磁体,所述多个第三永磁体分别设置于所述多个第四槽内;
    多个第四永磁体,所述多个第四永磁体设置于所述多个第五槽内。
  19.  根据权利要求18所述的转子组件,其中,所述第三永磁体为铁氧体永磁,所述第三永磁体的最大磁能积小于所述第四永磁体的最大磁能积。
  20.  根据权利要求18或19所述的转子组件,其中,所述多个第三永磁体沿所述第二转子铁芯的周向布置;
    所述多个第四永磁体沿所述第二转子铁芯的周向布置,位于所述多个第三永磁体靠近所述第二转子铁芯的轴线的一侧。
  21.  根据权利要求20所述的转子组件,其中,所述第三永磁体与所述第二转子铁芯的轴线之间的最小距离为第三距离,所述第四永磁体与所述轴线之间的最大距离为第四距离,所述第三永磁体在径向上的长度为第六长度;
    所述第四距离与所述第三距离的差为第一数值;
    所述第一数值大于0,且小于0.3倍的第六长度;或
    所述第一数值小于0。
  22.  根据权利要求18至21中任一项所述的转子组件,其中,所述多个第三永磁体和所述多个第四永磁体沿所述第二转子铁芯的周向交替布置。
  23.  根据权利要求22所述的转子组件,其中,所述第三永磁体与所述第二转子铁芯的轴线之间的最小距离为第三距离,所述第四永磁体与所述轴线之间的最大距离为第四距离,所述第三永磁体在径向上的长度为第六长度;
    所述第四距离与所述第三距离的差为第二数值;
    所述第二数值大于0,且小于0.3倍的第六长度。
  24.  根据权利要求18至23中任一项所述的转子组件,其中,所述第三永磁体远离所述第二转子铁芯的轴线一侧在所述第二转子铁芯周向上的长度为第四长度;
    所述第三永磁体靠近所述第二转子铁芯的轴线一侧在所述第二转子铁芯周向上的长度为第五长度;
    所述第四长度大于所述第五长度。
  25.  根据权利要求18至24中任一项所述的转子组件,其中,所述第四永磁体在所述第二转子铁芯的径向方向的长度小于所述第四永磁体在所述第二转子铁芯周向方向的长度。
  26.  根据权利要求18至25中任一项所述的转子组件,其中,所述第三永磁体的截面积与所述第四永磁体的截面积的比值大于等于1,且小于等于15。
  27.  根据权利要求18至26中任一项所述的转子组件,其中,所述第三永磁体的剩磁与所述第四永磁体的剩磁的比值大于等于0.1,且小于等于0.9。
  28.  根据权利要求18至27中任一项所述的转子组件,其中,所述第三永磁体在所述第二转子铁芯的周向上的长度大于所述第四永磁体在所述第二转子铁芯的径向上的长度。
  29.  根据权利要求18至28中任一项所述的转子组件,其中,所述第二转子铁芯包括:
    第二铁芯本体,所述多个第四槽设置于所述第二铁芯本体;
    第四隔磁桥,所述第四隔磁桥沿所述第二铁芯本体的边缘设置,与所述多个第四槽相对。
  30.  根据权利要求29所述的转子组件,其中,所述第四隔磁桥与所述第二铁芯本体为一体式结构;或
    所述第四隔磁桥为不良导磁材料;或
    所述第四隔磁桥为设置在所述第二铁芯本体的边缘的空槽。
  31.  根据权利要求18至30中任一项所述的转子组件,其中,所述第二转子铁芯在垂直于轴向上的截面的边缘包括多组曲线组,所述多组曲线组沿所述截面的周向分布,所述多组曲线组中每组曲线组包括圆弧段和/或直线段。
  32.  根据权利要求31所述的转子组件,其中,所述圆弧段的数量为多段,多段所述圆弧段中至少一段圆弧段的圆心偏离所述第二转子铁芯的轴线。
  33.  一种电机,其中,包括:
    如权利要求1至17中任一项所述的转子组件;或
    如权利要求18至32中任一项所述的转子组件。
PCT/CN2023/099371 2022-06-14 2023-06-09 转子组件和电机 WO2023241475A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210666327.7 2022-06-14
CN202210666327.7A CN115001177A (zh) 2022-06-14 2022-06-14 转子组件和电机
CN202211001430.6 2022-08-19
CN202211001430.6A CN117639328A (zh) 2022-08-19 2022-08-19 转子组件和电机

Publications (1)

Publication Number Publication Date
WO2023241475A1 true WO2023241475A1 (zh) 2023-12-21

Family

ID=89192163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099371 WO2023241475A1 (zh) 2022-06-14 2023-06-09 转子组件和电机

Country Status (1)

Country Link
WO (1) WO2023241475A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102047536A (zh) * 2008-05-30 2011-05-04 株式会社东芝 永久磁铁及其制造方法、电动机用永久磁铁及永久磁铁电动机
CN102769347A (zh) * 2012-07-26 2012-11-07 岳群生 一种混合式永磁同步电动机转子
US20130134820A1 (en) * 2011-11-29 2013-05-30 Delta Electronics (Shanghai) Co., Ltd. Rotor and rotary electric machine containing the same
CN104485762A (zh) * 2014-11-18 2015-04-01 珠海格力节能环保制冷技术研究中心有限公司 一种永磁同步电机转子及永磁同步电机
CN110855039A (zh) * 2019-10-21 2020-02-28 浙江龙芯电驱动科技有限公司 一种混合磁钢的永磁同步电机转子
CN111490612A (zh) * 2019-01-25 2020-08-04 广东威灵汽车部件有限公司 电机转子、电机和电子水泵
CN112383159A (zh) * 2020-07-09 2021-02-19 东南大学 一种新型轮辐式永磁同步电机转子结构
CN115001177A (zh) * 2022-06-14 2022-09-02 美的威灵电机技术(上海)有限公司 转子组件和电机
CN217469587U (zh) * 2022-06-14 2022-09-20 美的威灵电机技术(上海)有限公司 转子组件和电机
CN218071130U (zh) * 2022-08-19 2022-12-16 美的威灵电机技术(上海)有限公司 转子组件和电机

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102047536A (zh) * 2008-05-30 2011-05-04 株式会社东芝 永久磁铁及其制造方法、电动机用永久磁铁及永久磁铁电动机
US20130134820A1 (en) * 2011-11-29 2013-05-30 Delta Electronics (Shanghai) Co., Ltd. Rotor and rotary electric machine containing the same
CN102769347A (zh) * 2012-07-26 2012-11-07 岳群生 一种混合式永磁同步电动机转子
CN104485762A (zh) * 2014-11-18 2015-04-01 珠海格力节能环保制冷技术研究中心有限公司 一种永磁同步电机转子及永磁同步电机
CN111490612A (zh) * 2019-01-25 2020-08-04 广东威灵汽车部件有限公司 电机转子、电机和电子水泵
CN110855039A (zh) * 2019-10-21 2020-02-28 浙江龙芯电驱动科技有限公司 一种混合磁钢的永磁同步电机转子
CN112383159A (zh) * 2020-07-09 2021-02-19 东南大学 一种新型轮辐式永磁同步电机转子结构
CN115001177A (zh) * 2022-06-14 2022-09-02 美的威灵电机技术(上海)有限公司 转子组件和电机
CN217469587U (zh) * 2022-06-14 2022-09-20 美的威灵电机技术(上海)有限公司 转子组件和电机
CN218071130U (zh) * 2022-08-19 2022-12-16 美的威灵电机技术(上海)有限公司 转子组件和电机

Similar Documents

Publication Publication Date Title
CN109274240A (zh) 复合型非晶合金轴向磁通电机
CN218071130U (zh) 转子组件和电机
CN209282957U (zh) 一种电机转子及具有其的电动机
CN105656228A (zh) 一种横向磁通永磁电机
CN110601481A (zh) 一种双转子永磁同步磁阻电机及配置方法
CN110838779B (zh) 一种混合励磁绕线转子及混合励磁绕线式同步电机
CN115065181A (zh) 转子组件和电机
CN115001177A (zh) 转子组件和电机
CN114123581B (zh) 自起动永磁辅助同步磁阻电机转子和电机
CN110112844B (zh) 一种双凸极永磁电机
CN108649768B (zh) 一种定子带有爪极旁路结构的混合励磁磁通切换电机
CN110649732A (zh) 混合励磁转子及混合励磁表贴式永磁电机
CN210350986U (zh) 一种双转子永磁同步磁阻电机
JP7230185B2 (ja) ロータ及び永久磁石モータ
CN110138165B (zh) 一种复合磁路定子分割式轴向永磁电机
CN217469587U (zh) 转子组件和电机
CN117134565A (zh) 一种低速磁阻永磁内外双转子电机
WO2023241475A1 (zh) 转子组件和电机
WO2023108910A1 (zh) 转子组件、电机和电器设备
CN216959631U (zh) 一种永磁体内嵌式永磁同步电机
WO2020029506A1 (zh) 电机转子和永磁电机
CN117559679A (zh) 一种具有定子槽口永磁体的磁通切换永磁电机和调速系统
CN114785081A (zh) 一种交替极串联磁路混合永磁记忆电机
CN115224903A (zh) 一种混合励磁式无轴承开关磁阻电机
CN111049296B (zh) 电机转子和磁阻电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823043

Country of ref document: EP

Kind code of ref document: A1